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1  |   INTRODUCTION

When the treatment effect on the outcome of interest differs 
according to the presence (or absence) of a baseline/demo-
graphic factor, investigators say that a (statistical) interaction 
is present. In randomized clinical trials (RCTs), statistical 
analysis of such a phenomenon is typically referred to as a 
subgroup analysis. The reason that motivates interaction (or 
subgroup) analysis is to learn how to use the treatment most 
effectively by identifying subgroups of patients who would 
and those who would not benefit from treatment, or to learn 

whether treatment would be harmful in specific subgroups 
defined by the baseline/demographic factor.1 Although in-
teraction analysis in RCTs is usually stated as the secondary 
study objective, if incorrectly tested or misinterpreted, it may 
lead to unnecessary withholding of treatment, ineffective or 
even harmful treatment effects.2

Although the concept of statistical interaction is not new, 
it still poses problems for clinical investigators. In 2000, 
Assmann et al3 reviewed 50 RCTs in high‐impact journals 
and found that 70% of trials tested interactions, but only 43% 
of the studies testing interaction reported the test they used, 
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Abstract
Background: When the treatment effect on the outcome of interest is influenced by a 
baseline/demographic factor, investigators say that an interaction is present. In rand-
omized clinical trials (RCTs), this type of analysis is typically referred to as subgroup 
analysis. Although interaction (or subgroup) analyses are usually stated as a second-
ary study objective, it is not uncommon that these results lead to changes in treatment 
protocols or even modify public health policies. Nonetheless, recent reviews have in-
dicated that their proper assessment, interpretation and reporting remain challenging.
Results: Therefore, this article provides an overview of these challenges, to help 
investigators find the best strategy for application of interaction analyses on binary 
outcomes in RCTs. Specifically, we discuss the key points of formal interaction test-
ing, including the estimation of both additive and multiplicative interaction effects. 
We also provide recommendations that, if adhered to, could increase the clarity and 
the completeness of reports of RCTs.
Conclusion: Altogether, this article provides a brief non‐statistical guide for clinical 
investigators on how to perform, interpret and report interaction (subgroup) analyses 
in RCTs.
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and 37% of them reported P‐values only. In 2006, Hernandez 
et al4 reported similar results after investigating published 
cardiovascular RCTs. In 2007, Wang et al1 evaluated 97 
RCTs of which 61% tested interactions, but in 68% of the 
studies testing interaction, it was unclear whether analyses 
were prespecified or post hoc and only 27% of them reported 
formal testing. In 2017, Wallach et al5 demonstrated that 61% 
of RCTs that claimed subgroup heterogeneity already in their 
abstracts (assuming these were most credible) were not sup-
ported by their results. Therefore, previous reports have tried 
to address this important topic including the issue of multiple 
testing and the importance of prespecifying the subgroup‐
treatment interaction.1-3,6,7 These reviews were informative 
but did not consider certain statistical aspects which are im-
portant for analysis and interpretation of the results. To date, 
a few reports8,9 have addressed some of these aspects but they 
were mainly intended for an epidemiological audience.

This article provides an overview of the key aspects of 
interaction testing to assist clinical investigators to appro-
priately apply statistical interaction analyses for binary out-
comes and categorical covariates. In the following sections, 
we start by explaining how to analyse an interaction, then 
describe how to interpret, and finally report the results.

2  |   ASSESSMENT OF 
STATISTICAL INTERACTION

A statistical interaction can be assessed in two ways: by 
stratification—when treatment effects are assessed across 
subgroups defined by a baseline/demographic factor; or by 
interaction modelling—when the treatment and the baseline/
demographic factor are included together with an interac-
tion term into a statistical model (treatment + baseline fac-
tor + treatment × baseline factor).10

Of note is that an interaction does not have a consistent 
meaning across statistical models. This is because different 
models estimate different effect measures (eg risk difference 
[RD], risk ratio [RR], odds ratio [OR], hazard ratio [HR]). 
Consequently, some statistical models are constructed as 
linear models (eg a linear regression model) and others as 
exponential models (eg logistic and Cox regression models). 
In a linear regression model, the β coefficient for an inter-
action term estimates a deviation from the sum of treatment 
subgroup effects. This implies that a linear regression model 
utilizes an additive scale for interaction testing. In logistic 

and Cox regression models, a ratio for an interaction term 
estimates a deviation from the product of treatment subgroup 
effects. This implies that these exponential models utilize a 
multiplicative scale for interaction testing.

Importantly, whether an interaction is present or in which 
direction it operates will depend on which of these two scales 
it is tested. Consider the following hypothetical example: a 
study finds that in women, 1% of participants receiving treat-
ment and 3% of those receiving placebo reached the outcome, 
and in men, 2% of participants receiving treatment and 4% 
of those receiving placebo reached the outcome (Figure 1.1). 
The risk difference (RD) between the placebo and treatment 
arm is 2% (3%‐1%) in women, and 2% (4%‐2%) in men, 
suggesting no additive interaction between treatment and 
sex. The study also finds that the RR between the placebo 
and treatment arms in women is 3 (3%

1%
), and in men is 2 (4%

2%

), suggesting a multiplicative interaction between treatment 
and sex. Figure 1 illustrates that this situation, where additive 
and multiplicative interaction effects do not match, is not just 
a theoretical possibility, but even common, when analysing 
statistical interactions (Figure 1.1‐4, 7, 8).

In RCTs, many statistical analyses are based on logistic 
and Cox regression models (ie binary outcomes are often 
analysed) which utilize the multiplicative scale.11 Hence, 
these analyses will only test multiplicative, rather than ad-
ditive interaction effects. At the same time, from the pub-
lic health perspective, additive effects are favourable over 
multiplicative effects to increase the net benefit by allocat-
ing the treatment to the proper subgroup.12,13 In addition, 
some authors have argued that showing an additive effect 
of a treatment across subgroups may also provide stron-
ger evidence for an underlying biological interaction.12,14 
Therefore, it is reasonable that investigators assess the ad-
ditive, apart from the multiplicative, interaction effects. 
Moreover, the confidence intervals (CIs) for both inter-
action effects should be calculated to assess the statistical 
strength for such inferences.

2.1  |  Multiplicative interaction effect
For binary outcomes, logistic or Cox regression models can 
be applied to test for multiplicative interaction between treat-
ment and a baseline/demographic factor (Table 1). From the 
model's output, a ratio with 95% CI for an interaction term 
indicates the magnitude of the interaction and the P‐value 
indicates the significance level.

F I G U R E  1   Statistical interactions on additive and multiplicative scales. “a” denotes the effect in the placebo arm in the subgroup where the 
baseline factor equals zero; “b” denotes the effect in the treatment arm in the subgroup where the baseline factor equals zero; “c” denotes the effect 
in the placebo arm in the subgroup where the baseline factor equals 1; “d” the effect in the treatment arm in the subgroup where the baseline factor 
equals 1. RD denotes risk difference, whereas RR denotes risk ratio within subgroups. Y–axes display numerical values (rates of outcome per 1000 
patients) which can be used for calculation of RD0, RD1, RR0, and RR1 (RD0 = a−b; RD1 = c−d; RR0 = a/b; RR1 = c/d). Eight potential scenarios 
can be observed when a deviation exists from the sum of treatment subgroup effects (additive scale) or their product (multiplicative scale)
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The benefits of interaction testing in regression models 
include the following: multivariable adjustment, testing in-
teractions between >2 factors and continuous factors, and 
testing treatment effects across subgroups defined by a risk 
model. Note that when testing an interaction with a contin-
uous factor, the amount of change of the interaction coef-
ficient will depend on the chosen unit (or unit interval) of 
the continuous factor (for details see Knol et al15). For con-
tinuous factors, a non‐linear interaction should also be con-
sidered because the interaction may not be uniform across 
the entire range of the continuous factor. In such cases, the 
choice could be to categorize the continuous factor.

2.2  |  Additive interaction effect
For binary outcomes, the additive interaction can be ex-
pressed as the absolute excess risk due to interaction 
(AERI). The AERI can only be calculated if absolute risks 
are known, and under the assumption that the risks are un-
biased (ie without confounding). An AERI >0 will indicate 
super‐additive interaction (ie joint effect is higher than the 
sum of individual effects), whereas AERI <0 will indicate 
sub‐additive interaction (ie joint effect is lower than the 
sum of individual effects). Of note, to further define a di-
rection of an interaction as super‐ or sub‐, one needs to 

T A B L E  1   Multiplicative interaction effects

Relative risk ratio due to interaction (stratification) Eq.

Formula (RR, OR, HR):  
RR

T+,B+

RR
T+,B−×RR

T−,B+

(1)

Description:  

T, treatment;  

B, baseline factor;  
RR

T+,B+

RR
T+,B−×RR

T−,B+ equals to the ratio for the interaction term in the regression model
 

Logistic regression model (interaction modelling)  

Formula:  

Ln
[

Pr
Y=1

(1−Pr
Y=1)

]

=�0+�1 (T)+�2 (B)+�3 (T ×B) 
(exponentiation of both sides of the equation will eliminate the logarithm)

 

Pr
Y=1

(1−Pr
Y=1)

= e
�0 ×e

�1(T) ×e
�2(B) ×e

�3(T×B) 
(this can also be rewritten as)

 

Odds=O0 ×OR
T
×OR

B
×OR

T×B
(2)

Description:  

PrY = 1, probability of outcome Y = 1 (eg a patient dies)  

O0, odds of outcome Y = 1 in the subgroup receiving placebo without the effect of the baseline factor (T−,B−); this is a background risk 
because it is not defined by treatment or baseline factor

 

ORT, odds ratio between the subgroup receiving treatment without the effect of the baseline factor (T+,B−) and the subgroup in which 
both treatment and baseline factor are absent (T−,B−)

 

ORB, odds ratio between the subgroup receiving placebo with the effect of the baseline factor (T−,B+) and the subgroup in which both 
treatment and the baseline factor are absent

 

ORT × ORB × ORT × B, odds ratio between the subgroup receiving treatment with the effect of the baseline factor (T+,B+) and the sub-
group in which both treatment and baseline factor are absent

 

ORT × B, odds ratio for the interaction term quantifies the multiplicative interaction effect  

Cox regression model (interaction modelling)  

Formula:  

Ln [H (t)]=�0+�1 (T)+�2 (B)+�3 (T ×B)  

H (t)= e
�0 ×e

�1(T) ×e
�2(B) ×e

�3(T×B) 
(this can also be rewritten as)

 

H (t)=H0 (t)×HR
T
×HR

B
×HR

T×B
(3)

Description:  

HRT × B, hazard ratio for the interaction term quantifies multiplicative interaction effect

β0, β1, β2, β3, coefficients in a regression model.
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specify the exact subgroups on which this particular nota-
tion is based.

Consider the study by Head et al,16 who investigated the 
effects of primary coronary intervention (PCI) and coronary 
artery bypass grafting (CABG) on 5‐year mortality among 
patients with complex coronary artery disease (CAD) using 
pooled data from eleven RCTs. The investigators found a 
significantly higher 5‐year mortality in patients treated 
with PCI compared to those treated with CABG only in 
the subgroup of diabetic patients. They applied a Cox re-
gression model implying that the interaction was analysed 
on the multiplicative scale. To examine whether this inter-
action also exists on the additive scale, we can calculate 
AERI using the numbers provided in their Table 2.16 In 
their study, the 5‐year mortality risk was 15.7% in patients 
with diabetes treated with PCI, 8.4% in patients without 
diabetes treated with CABG, 10.7% in patients with diabe-
tes treated with CABG, and 8.7% in patients without dia-
betes treated with PCI. We calculate AERI using equation 
4 from Table 2 as 15.7 + 8.4−10.7−8.7 = 4.7%, suggest-
ing a super‐additive interaction between diabetes and PCI. 
Assuming this AERI of 4.7% is unbiased, then the direction 

alone (AERI >0), rather than its magnitude (4.7%), is im-
portant to answer the question whether diabetic patients 
should be treated with CABG over PCI. Yet, in certain sit-
uations it may also be relevant to consider the magnitude of 
the interaction itself, which will be discussed later.

When absolute risks are not reported, when treatment 
effects are derived from multivariable models (ie treatment 
effects adjusted for other covariates), or when interaction 
between treatment and a continuous factor is considered, 
additive interaction can be assessed using relative excess 
risk due to interaction (RERI) and synergy index.17-19 
Because these indices operate with ratios (derived from lo-
gistic or Cox regression models) instead of absolute risks, 
they can only be used to assess the direction, and not the 
magnitude, of additive interaction for absolute risks, as 
AERI can. Moreover, since ratios are asymmetrically dis-
tributed (ie preventive effects range from 0 to 1 and hazard-
ous effects range from 1 to ∞), the subgroup effects should 
be recoded before calculation. Otherwise, these indices can 
differ if preventive and hazardous effects are combined in 
the equation. The easiest way to recode the effects is to use 
the subgroup with the lowest risk as the reference when 

T A B L E  2   Additive interaction effects

Absolute excess risk due to interaction (AERI) Eq. n.

Formula (absolute risks):  

AERI=R
T+,B+ +R

T−,B− −R
T+,B− −R

T−,B+ (4)

Description:  

T, treatment  

B, baseline factor  

RT+,B+, risk in the subgroup receiving treatment with the effect of the baseline factor  

RT−,B−, risk in the subgroup receiving placebo without the effect of the baseline factor  

RT+,B−, risk in the subgroup receiving treatment without the effect of the baseline factor  

RT−,B+, risk in the subgroup receiving placebo with the effect of the baseline factor  

Relative excess risk due to interaction (RERI)  

Formula (RR, OR, HR):  

RERI=RR
T+,B+ −RR

T+,B− −RR
T−,B+ +1 (stratification) (5)

RERI= e�1+�2+�3 −e�1(T) −e�1(B) +1 (interaction modelling) (6)

(this can also be rewritten as)  

RERI=OR
T
×OR

B
×OR

T×B
−OR

T
−OR

B
+1 (7)

Description: 
Note that ORT+,B+ is not provided in the regression model’s output using the interaction term 
ORT × ORB × ORT × B equals to ORT+,B+

Attributable proportion of joint effect due to interaction (modified AP)  

Formula (absolute risks)  

modified AP=
AERI

R
T+,B+−R

T−,B−

(8)

Formula (RR, OR, HR):  

modified AP=
RERI

RR
T+,B+−1

(9)

β0, β1, β2, β3, coefficients in a regression model.
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the treatment and the baseline factor are jointly considered 
(note that some statistical packages perform recoding auto-
matically,20 to do this manually see Knol et al21).

2.2.1  |  Relative excess risk due to interaction 
(RERI)
The RERI (synonym: interaction contrast ratio [ICR]) is 
the difference between the joint effect of treatment and a 
demographic/baseline factor and their effects considered 
individually (Table 2).13 The RERI ranges from −∞ to 
+∞ and can indicate super‐additive (RERI >0) or sub‐
additive (RERI <0) interaction effects.21 The 95% CI for 
RERI can be calculated using the delta method22 or using 
the first percentile Bootstrap method.23 The latter is more 
suitable for continuous factors.15 If additional covariates 
are included into the model, RERI may vary across levels 
of those covariates.24 The codes for calculating RERI with 
95% CI are available for SAS,17,25 STATA,18 R,20,26 and 
using excel sheets.8,15

Consider another RCT by Andrews et al,27 who found 
that treatment based on a sepsis protocol has paradoxically 
increased in‐hospital mortality compared to usual care in 
septic patients with hypotension. They reported that this 
was only the case in the subgroup of patients with normal 
Glasgow coma score (GCS ≥13) at baseline. From their 
Figure 3, we re‐calculated RR as 3.55 in patients with GCS 
<13 treated using the sepsis protocol, 3.09 in patients with 
GCS <13 receiving usual care, and 1.91 in patients with 
GCS ≥13 treated using the sepsis protocol, as compared 
to the subgroup of patients with GCS ≥13 receiving usual 
care. To illustrate how additivity can be assessed using 
ratio measures, we calculated RERI using equation 5 from 
Table 2 as 3.55−1.91−3.09 + 1 = −0.45. The RERI sug-
gested a sub‐additive interaction (RERI <0) between the 
sepsis‐protocol treatment and the lower GCS score. This 
can be explained by the fact that patients with lower GSC 
score at baseline had a poorer health condition than those 
who did not (ie the GSC score was a proxy for patient 
health condition), which on its part altered the effect of the 
sepsis‐protocol treatment on patient outcome. Note that the 
direction, and not the magnitude, of RERI is relevant for 
drawing this conclusion.

2.2.2  |  Attributable proportion of joint 
effect due to interaction
As noted above, in certain situations it is relevant to consider 
the magnitude of the interaction, that is to what extent the 
treatment effect is changed due to a certain baseline factor. 
The motivation behind this is to test the robustness of the 
interaction by assessing its magnitude and limits of confi-
dence interval. Another motivation can be that investigators 

may consider a future intervention on that baseline factor to 
improve the treatment effect. Alternatively, if intervening on 
the primary exposure is impossible, investigators can try to 
target other factors that interact with the primary exposure to 
eliminate most of its effects. For this purpose, investigators 
could assess attributing proportions of interaction effect to 
identify the most relevant baseline factors. Further reading on 
this topic is provided elsewhere.28

Attributable proportion of joint effect due to interaction, 
called here modified AP, indicates the proportion of the joint 
effect of the treatment and a baseline/demographic factor 
that is due to the interaction itself (Table 2).29 It ranges from 
(−)100% to (+)100% and indicates super‐additive (modified 
AP >0) or sub‐additive (modified AP <0) interaction effects. 
It can be calculated using either absolute risks or ratios (Table 
2). It is independent of covariate adjustment.29 The codes 
for calculating modified AP with 95% CI are available in 
SAS,28 STATA28 and R.20,26 In the study by Head et al, mod-
ified AP can be calculated using equation 8 from Table 2 as 

4.7

15.7−8.4
=0.64 suggesting a super‐additive interaction. It also 

indicates that 64% of the joint effect is due to the interaction 
itself between diabetes and PCI (the rest of 36% is the sum 
of the proportions of their effects considered individually).

3  |   CLINICAL INTERPRETATION 
AND REPORTING

In previous sections, we explained that a presence, and even 
direction, of the interaction can change with the choice of 
the statistical model. We also discussed arguments for prefer-
ring additive over multiplicative interaction effects for binary 
outcomes. The following section discusses the interpretation 
of interaction analyses in RCTs accompanied by relevant rec-
ommendations (Table 3).

Statistical interaction between the treatment and a base-
line/demographic factor can be interpreted as effect‐measure 
modification or as causal interaction. When treatment effects 
vary across the subgroups of baseline/demographic factor, 
this can be interpreted as effect‐measure modification.30 For 
effect‐measure modification, this baseline/demographic factor 
does not need to affect the outcome directly, but only needs to 
correlate with another factor that does.18 As a consequence, 
investigators cannot attribute treatment subgroup effects to 
the baseline factor itself. Therefore, some authors refer to it 
simply as effect heterogeneity.13,31 The clinical motivation be-
hind effect modification (or heterogeneity) can be to identify 
the subgroups wherein treatment is most effective (or perhaps 
harmful). However, the interaction can be interpreted as causal 
only if both the treatment and the baseline factor directly affect 
the outcome.30,32 For example, the clinical motivation behind 
assessing causal interaction could be to intervene on the base-
line factor to improve the effect of treatment.



      |  7 of 9BRANKOVIC et al.

In RCTs, investigators could claim that treatment directly 
affects the outcome even across subgroups of the baseline 
factor due to randomization of the treatment (assuming also 
adequate sample size, adherence to the study protocol, and no 
differential loss to follow‐up).33 However, claiming that the 
baseline factor itself is responsible for the subgroup effects 
is not immediately possible if confounding of the baseline 
factor on the outcome was not controlled for. This is because 
randomization accounts for unbiased comparability of treat-
ment arms, but does not account for imbalances between the 
subgroups themselves that affect the outcome. Consider again 
the study by Head et al,16 who found that PCI was associated 
with higher mortality than CABG in the subgroup of dia-
betic patients. The subgroup analysis would validly indicate 
that CABG is more effective than PCI in diabetic patients. 
However, concluding that diabetes itself is responsible for 
the subgroup effects is only possible if the investigators had 
controlled for other baseline factors that affect patient sur-
vival and are unequally distributed between the subgroups. 
For example, it could be that diabetic patients were treated 
less proactively with PCI than non‐diabetic patients (eg they 
waited longer for PCI) which on its part affected patient sur-
vival, instead of diabetes itself.

Although randomization accounts for comparability be-
tween treatment arms even across subgroups, imbalances can 
still occur due to chance. Stratified randomization on known 
baseline factors that influence patient outcome prevents these 
imbalances to occur.34 Yet, it does not control for imbalances 
between subgroups of baseline factors other than the treat-
ment. Stratified randomization only helps to obtain compa-
rable numbers of participants in both treatment arms within 
each subgroup.34 However, other covariates can still be un-
evenly distributed among the subgroups which could affect 
the outcome. Alternatively, if randomization of the baseline 
factor is possible, investigators can apply a factorial design 
to control for confounding of treatment and the secondary 
intervention on that baseline factor. Another approach could 
be to adjust for relevant factors by including them into the 
statistical model. Using this approach however, one can never 
be completely sure from trial data that unknown confounding 
does not exist.

For effect‐measure modification, controlling for confound-
ing is generally unnecessary but can be helpful in some in-
stances. First, imbalances that occur even with randomization 
could be adjusted for. Second, in stratified randomization the 
number of strata should be as low as possible (total number 
of strata is the product of the number of subgroups of each 
factor; eg if stratifying on sex and age using 3 categories, one 
will have 2 × 3 = 6 strata). With too many strata, one can end 
up with low numbers of participants per subgroup. Thus, strat-
ifying on some factors and adjusting for others is an option. 
Third, if multiple significant subgroups exist, further adjust-
ments could help narrowing the choice to the most relevant.

Randomized clinical trials are principally conducted assum-
ing homogeneous effects of the treatment within subgroups. 
Based on this assumption, sample size is usually calculated by 
estimating only one (relative) effect that is supposed to hold 
for all eligible study participants. This is the main reason why 
RCTs are often underpowered to detect differences of treatment 
effects between subgroups even if they truly exist. Investigators 
should, therefore, plan a priori to analyse subgroups and incor-
porate these considerations into the sample size calculation. In 
this way, an adequate number of participants will be recruited 
for each subgroup. Moreover, the choice which interactions to 
test should be based on pathophysiological (and genetic) con-
siderations and other relevant clinical implications (eg benefits 
of treatment based on disease stage, timing of treatment, comor-
bidities).2 Such prespecified analyses would also help prevent 
bias that may arise when subgroup analysis is assessed after 
obtaining overall findings. A prespecified analysis (synonyms: 
“a priori,” “preplanned,” “planned,” “previously suggested”) is 
specified before obtaining data or as an attempt of corrobora-
tion (ie a trial performing an analysis similar to a previously 
reported trial).5 If this is not the case, the analysis is post hoc 
(synonyms: “non‐prespecified,” “secondary,” “explanatory,” 
“preliminary”).5 Note that post hoc analyses may be data‐driven 

T A B L E  3   Recommendations on the use of the interaction 
analysis in RCTs

Methods

1.	Specify whether effect‐measure modification or causal interac-
tion is in view

2.	Describe whether an interaction analysis is prespecified or post 
hoc

3.	Describe how confounding was controlled for (eg randomiza-
tion, multivariable adjustment)

a	 For effect–measure modification, additional adjustment is gener-
ally not needed because the treatment is randomized

b	 Consider further adjustment If multiple treatment subgroup 
modifications are found to be significant in order to identify the 
most relevant subgroups

c	 Report which relation is controlled for (eg “treatment” – “out-
come of interest” and/or “baseline/demographic factor” – “out-
come of interest”) and the set of relevant confounders

d	 For causal interaction, confounding between the “baseline/demo-
graphic factor” and the “outcome of interest” must be taken into 
consideration

Results

1.	Report the number of patients with and without the “outcome 
of interest” in treatment and placebo arms per each subgroup 
defined by the baseline/demographic factor

2.	Report the treatment effect (eg RR/OR/HR) per each subgroup 
defined by the baseline/demographic factor using the subgroup 
with the lowest risk as the reference category

3.	Report both multiplicative and additive interaction effects with 
95% confidence intervals

4.	To define a direction of an interaction (positive or negative), 
specify the subgroups on which this particular notation is based
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or motivated by overall null findings.35 Investigators could try 
to systematically assess all possible statistical interactions to re-
duce the chance of spurious results36 but then also correct for 
multiple testing. Finally, the best way to validate a statistical 
interaction is to replicate it in subsequent trials.

4  |   CONCLUSION

This article describes challenges associated with assess-
ment and interpretation of statistical interactions for binary 
outcomes in RCTs. It also provides information on publicly 
available excel sheets, SAS, STATA and R codes which 
can be used to assess different additive and multiplicative 
interaction effects, as well as recommendations to increase 
completeness and reliability of interaction analyses in future 
RCTs. Altogether, this article provides a brief non‐statistical 
guide for clinical investigators on how to perform, interpret 
and report statistical interaction analyses in RCTs.
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