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Abstract—Clustering validation has long been recognized
as one of the vital issues essential to the success of clus-
tering applications. In general, clustering validation can be
categorized into two classes, external clustering validation
and internal clustering validation. In this paper, we focus on
internal clustering validation and present a detailed study of
11 widely used internal clustering validation measures for crisp
clustering. From five conventional aspects of clustering, we
investigate their validation properties. Experiment results show
that 𝑆 𝐷𝑏𝑤 is the only internal validation measure which
performs well in all five aspects, while other measures have
certain limitations in different application scenarios.

I. INTRODUCTION

Clustering, one of the most important unsupervised learn-
ing problems, is the task of dividing a set of objects into
clusters such that objects within the same cluster are similar
while objects in different clusters are distinct. Clustering
is widely used in many fields, such as image analysis
and bioinformatics. As an unsupervised learning task, it is
necessary to find a way to validate the goodness of partitions
after clustering. Otherwise, it would be difficult to make use
of different clustering results.

Clustering validation, which evaluates the goodness of
clustering results [1], has long been recognized as one of the
vital issues essential to the success of clustering applications
[2]. External clustering validation and internal clustering val-
idation are the two main categories of clustering validation.
The main difference is whether or not external information
is used for clustering validation. An example of external
validation measure is entropy, which evaluates the “purity”
of clusters based on the given class labels [3].

Unlike external validation measures, which use external
information not present in the data, internal validation mea-
sures only rely on information in the data. The internal
measures evaluate the goodness of a clustering structure
without respect to external information [4]. Since external
validation measures know the “true” cluster number in
advance, they are mainly used for choosing an optimal
clustering algorithm on a specific data set. On the other hand,
internal validation measures can be used to choose the best
clustering algorithm as well as the optimal cluster number

without any additional information. In practice, external
information such as class labels is often not available in
many application scenarios. Therefore, in the situation that
there is no external information available, internal validation
measures are the only option for cluster validation.

In literature, a number of internal clustering validation
measures for crisp clustering have been proposed, such as
𝐶𝐻 , 𝐼 , 𝐷𝐵, 𝑆𝐷 and 𝑆 𝐷𝑏𝑤. However, current existing
measures can be affected by various data characteristics. For
example, noise in data can have a significant impact on the
performance of an internal validation measure, if minimum
or maximum pairwise distances are used in the measure.
The performance of existing measures in different situations
remains unknown. Therefore, we present a detailed study
of 11 widely used internal validation measures, as shown
in Table I. We investigate their validation properties in five
different aspects: monotonicity, noise, density, subclusters
and skewed distributions. For each aspect, we generate
synthetic data for experiments. These synthetic data well
represent the properties. Finally, the experiment results show
that 𝑆 𝐷𝑏𝑤 is the only internal validation measure which
performs well in all five aspects, while other measures have
certain limitations in different application scenarios, mainly
in aspects of noise and subclusters.

II. INTERNAL CLUSTERING VALIDATION MEASURES

In this section, we introduce some basic concepts of
internal validation measures, as well as a suite of 11 widely
used internal validation indices.

As the goal of clustering is to make objects within the
same cluster similar and objects in different clusters distinct,
internal validation measures are often based on the following
two criteria [4] [5].

I. Compactness. It measures how closely related the
objects in a cluster are. A group of measures evaluate cluster
compactness based on variance. Lower variance indicates
better compactness. Also, there are numerous measures
estimate the cluster compactness based on distance, such
as maximum or average pairwise distance, and maximum or
average center-based distance.
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Table I
INTERNAL CLUSTERING VALIDATION MEASURES

Measure Notation Definition Optimal value

1 Root-mean-square std dev 𝑅𝑀𝑆𝑆𝑇𝐷 {∑𝑖

∑
𝑥∈𝐶𝑖

∥ 𝑥− 𝑐𝑖 ∥2/[𝑃
∑

𝑖(𝑛𝑖 − 1)]} 1
2 Elbow

2 R-squared 𝑅𝑆 (
∑

𝑥∈𝐷 ∥ 𝑥− 𝑐 ∥2 −∑
𝑖

∑
𝑥∈𝐶𝑖

∥ 𝑥− 𝑐𝑖 ∥2)/
∑

𝑥∈𝐷 ∥ 𝑥− 𝑐 ∥2 Elbow

3 Modified Hubert Γ statistic Γ 2
𝑛(𝑛−1)

∑
𝑥∈𝐷

∑
𝑦∈𝐷 𝑑(𝑥, 𝑦)𝑑𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

(𝑐𝑖, 𝑐𝑗) Elbow

4 Calinski-Harabasz index 𝐶𝐻
∑

𝑖 𝑛𝑖𝑑
2(𝑐𝑖,𝑐)/(𝑁𝐶−1)

∑
𝑖
∑

𝑥∈𝐶𝑖
𝑑2(𝑥,𝑐𝑖)/(𝑛−𝑁𝐶)

Max

5 𝐼 index 𝐼 ( 1
𝑁𝐶 ⋅

∑
𝑥∈𝐷 𝑑(𝑥,𝑐)

∑
𝑖
∑

𝑥∈𝐶𝑖
𝑑(𝑥,𝑐𝑖)

⋅max𝑖,𝑗 𝑑(𝑐𝑖, 𝑐𝑗))𝑝 Max

6 Dunn’s indices 𝐷 min𝑖{min𝑗(
min𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥,𝑦)

max𝑘{max𝑥,𝑦∈𝐶𝑘
𝑑(𝑥,𝑦)} )} Max

7 Silhouette index 𝑆 1
𝑁𝐶

∑
𝑖{ 1

𝑛𝑖

∑
𝑥∈𝐶𝑖

𝑏(𝑥)−𝑎(𝑥)
max[𝑏(𝑥),𝑎(𝑥)]

} Max

𝑎(𝑥) = 1
𝑛𝑖−1

∑
𝑦∈𝐶𝑖,𝑦 ∕=𝑥 𝑑(𝑥, 𝑦), 𝑏(𝑥) = min𝑗,𝑗 ∕=𝑖[

1
𝑛𝑗

∑
𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)]

8 Davies-Bouldin index 𝐷𝐵 1
𝑁𝐶

∑
𝑖 max𝑗,𝑗 ∕=𝑖{[ 1

𝑛𝑖

∑
𝑥∈𝐶𝑖

𝑑(𝑥, 𝑐𝑖) +
1
𝑛𝑗

∑
𝑥∈𝐶𝑗

𝑑(𝑥, 𝑐𝑗)]/𝑑(𝑐𝑖, 𝑐𝑗)} Min

9 Xie-Beni index 𝑋𝐵 [
∑

𝑖

∑
𝑥∈𝐶𝑖

𝑑2(𝑥, 𝑐𝑖)]/[𝑛⋅𝑚𝑖𝑛𝑖,𝑗 ∕=𝑖𝑑
2(𝑐𝑖, 𝑐𝑗)] Min

10 SD validity index 𝑆𝐷 𝐷𝑖𝑠(𝑁𝐶𝑚𝑎𝑥)𝑆𝑐𝑎𝑡(𝑁𝐶) +𝐷𝑖𝑠(𝑁𝐶) Min

𝑆𝑐𝑎𝑡(𝑁𝐶) = 1
𝑁𝐶

∑
𝑖 ∥ 𝜎(𝐶𝑖) ∥ / ∥ 𝜎(𝐷) ∥, 𝐷𝑖𝑠(𝑁𝐶) =

𝑚𝑎𝑥𝑖,𝑗𝑑(𝑐𝑖,𝑐𝑗)

𝑚𝑖𝑛𝑖,𝑗𝑑(𝑐𝑖,𝑐𝑗)

∑
𝑖(
∑

𝑗 𝑑(𝑐𝑖, 𝑐𝑗))
−1

11 S Dbw validity index 𝑆 𝐷𝑏𝑤 𝑆𝑐𝑎𝑡(𝑁𝐶) +𝐷𝑒𝑛𝑠 𝑏𝑤(𝑁𝐶) Min

𝐷𝑒𝑛𝑠 𝑏𝑤(𝑁𝐶) = 1
𝑁𝐶(𝑁𝐶−1)

∑
𝑖[
∑

𝑗,𝑗 ∕=𝑖

∑
𝑥∈𝐶𝑖

∪
𝐶𝑗

𝑓(𝑥,𝑢𝑖𝑗)

𝑚𝑎𝑥{∑𝑥∈𝐶𝑖
𝑓(𝑥,𝑐𝑖),

∑
𝑥∈𝐶𝑗

𝑓(𝑥,𝑐𝑗)} ]

𝐷: data set; 𝑛: number of objects in 𝐷; 𝑐: center of 𝐷; 𝑃 : attributes number of 𝐷; 𝑁𝐶: number of clusters; 𝐶𝑖: the i–th cluster; 𝑛𝑖: number of objects in 𝐶𝑖;

𝑐𝑖: center of 𝐶𝑖; 𝜎(𝐶𝑖): variance vector of 𝐶𝑖; 𝑑(𝑥, 𝑦): distance between x and y; ∥ 𝑋𝑖 ∥= (𝑋𝑇
𝑖 ⋅𝑋𝑖)

1
2

II. Separation. It measures how distinct or well-separated
a cluster is from other clusters. For example, the pairwise
distances between cluster centers or the pairwise minimum
distances between objects in different clusters are widely
used as measures of separation. Also, measures based on
density are used in some indices.

The general procedure to determine the best partition and
optimal cluster number of a set of objects by using internal
validation measures is as follows.

Step 1: Initialize a list of clustering algorithms which will
be applied to the data set.

Step 2: For each clustering algorithm, use different com-
binations of parameters to get different clustering results.

Step 3: Compute the corresponding internal validation
index of each partition obtained in step 2.

Step 4: Choose the best partition and the optimal cluster
number according to the criteria.

Table I shows a suite of 11 widely used internal validation
measures. To the best of our knowledge, these measures
represent a good coverage of the validation measures avail-
able in different fields, such as data mining, information
retrieval, and machine learning. The “Definition” column
gives the computation forms of the measures. Next, we
briefly introduce these measures.

Most indices consider both of the evaluation criteria (com-
pactness and separation) in the way of ratio or summation,
such as 𝐷𝐵, 𝑋𝐵, and 𝑆 𝐷𝑏𝑤. On the other hand, some
indices only consider one aspect, such as 𝑅𝑀𝑆𝑆𝑇 𝐷, 𝑅𝑆,
and Γ.

The Root-mean-square standard deviation (𝑅𝑀𝑆𝑆𝑇 𝐷)
is the square root of the pooled sample variance of all the
attributes [6]. It measures the homogeneity of the formed
clusters. R-squared (𝑅𝑆) is the ratio of sum of squares
between clusters to the total sum of squares of the whole data
set. It measures the degree of difference between clusters [6]

[7]. The Modified Hubert Γ statistic (Γ) [8] evaluates the
difference between clusters by counting the disagreements
of pairs of data objects in two partitions.

The Calinski-Harabasz index (𝐶𝐻) [9] evaluates the
cluster validity based on the average between- and within-
cluster sum of squares. Index 𝐼 (𝐼) [1] measures sep-
aration based on the maximum distance between cluster
centers, and measures compactness based on the sum of
distances between objects and their cluster center. Dunn’s
index (𝐷) [10] uses the minimum pairwise distance between
objects in different clusters as the inter-cluster separation
and the maximum diameter among all clusters as the intra-
cluster compactness. These three indices take a form of
𝐼𝑛𝑑𝑒𝑥 = (𝑎⋅𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛)/(𝑏⋅𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠), where 𝑎 and
𝑏 are weights. The optimal cluster number is determined by
maximizing the value of these indices.

The Silhouette index (𝑆) [11] validates the clustering
performance based on the pairwise difference of between-
and within-cluster distances. In addition, the optimal cluster
number is determined by maximizing the value of this index.

The Davies-Bouldin index (𝐷𝐵) [12] is calculated as
follows. For each cluster 𝐶, the similarities between 𝐶 and
all other clusters are computed, and the highest value is
assigned to 𝐶 as its cluster similarity. Then the 𝐷𝐵 index
can be obtained by averaging all the cluster similarities.
The smaller the index is, the better the clustering result
is. By minimizing this index, clusters are the most distinct
from each other, and therefore achieves the best partition.
The Xie-Beni index (𝑋𝐵) [13] defines the inter-cluster
separation as the minimum square distance between cluster
centers, and the intra-cluster compactness as the mean square
distance between each data object and its cluster center. The
optimal cluster number is reached when the minimum of
𝑋𝐵 is found. Kim et al. [14] proposed indices 𝐷𝐵∗∗ and
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Table II
EXPERIMENT RESULTS OF THE IMPACT OF MONOTONICITY, TRUE 𝑁𝐶 = 5

𝑅𝑀𝑆𝑆𝑇𝐷 𝑅𝑆 Γ 𝐶𝐻 𝐼 𝐷 𝑆 𝐷𝐵∗∗ 𝑆𝐷 𝑆 𝐷𝑏𝑤 𝑋𝐵∗∗
2 28.496 0.627 2973 1683 3384 0.491 0.607 0.716 0.215 61.843 0.265
3 20.804 0.801 3678 2016 5759 0.549 0.707 0.683 0.124 0.153 0.374
4 14.829 0.899 4007 2968 11230 0.580 0.825 0.522 0.075 0.059 0.495
5 3.201 0.994 4342 52863 106163 2.234 0.913 0.122 0.045 0.004 0.254
6 3.081 0.995 4343 45641 82239 0.025 0.718 0.521 0.504 0.066 35.099
7 2.957 0.996 4344 41291 68894 0.017 0.579 0.803 0.486 0.098 35.099
8 2.834 0.996 4346 38580 58420 0.009 0.475 1.016 0.538 0.080 36.506
9 2.715 0.997 4347 36788 50259 0.010 0.391 1.168 0.553 0.113 38.008

𝑋𝐵∗∗ in year 2005 as the improvements of 𝐷𝐵 and 𝑋𝐵.
In this paper, we will use these two improved measures.

The idea of SD index (𝑆𝐷) [15] is based on the concepts
of the average scattering and the total separation of clusters.
The first term evaluates compactness based on variances of
cluster objects, and the second term evaluates separation
difference based on distances between cluster centers. The
value of this index is the summation of these two terms,
and the optimal number of clusters can be obtained by
minimizing the value of 𝑆𝐷.

The S Dbw index (𝑆 𝐷𝑏𝑤) [16] takes density into ac-
count to measure the inter-cluster separation. The basic idea
is that for each pair of cluster centers, at least one of their
densities should be larger than the density of their midpoint.
The intra-cluster compactness is the same as it is in 𝑆𝐷.
Similarly, the index is the summation of these two terms
and the minimum value of 𝑆 𝐷𝑏𝑤 indicates the optimal
cluster number.

There are some other internal validation measures in
literature [17] [18] [19] [20]. However, some have poor
performance while some are designed for data sets with
specific structures. Take Composed Density between and
within clusters index (𝐶𝐷𝑏𝑤) and Symmetry distance-based
index (𝑆𝑦𝑚–𝑖𝑛𝑑𝑒𝑥) for examples. It is hard for 𝐶𝐷𝑏𝑤 to
find the representatives for each cluster, which makes the
result of 𝐶𝐷𝑏𝑤 instable. Also 𝑆𝑦𝑚–𝑖𝑛𝑑𝑒𝑥 can only handle
data sets which are internally symmetrical. As a result,
we focus on the above mentioned 11 internal validation
measures in the rest of the paper. And throughout this paper,
we will use the acronyms of these measures.

III. UNDERSTANDING OF INTERNAL CLUSTERING

VALIDATION MEASURES

In this section, we present a detailed study of the 11
internal validation measures mentioned in Section II and
investigate the validation properties of different internal
validation measures in different aspects, which may be
helpful for index selection. If not mentioned, we use K-
means [21] (implemented by CLUTO) [22] as the clustering
algorithm for experiment.

A. The Impact of Monotonicity

The monotonicity of different internal validation indices
can be evaluated by the following experiment. We apply the
K-means algorithm on the data set Wellseparated and get the

clustering results for different number of clusters. As shown
in Figure 1, Wellseparated is a synthetic data set composed
of five well-separated clusters.

As the experiment results shown in Table II, the first three
indices monotonically increases or decreases as the cluster
number 𝑁𝐶 increases. On the other hand, the rest eight
indices reach their maximum or minimum value as 𝑁𝐶
equals to the true cluster number. There are certain reasons
for the monotonicity of the first three indices.

Figure 1. The Data Set Wellseparated

𝑅𝑀𝑆𝑆𝑇 𝐷 =
√

𝑆𝑆𝐸/𝑃 (𝑛−𝑁𝐶), and 𝑆𝑆𝐸 (Sum
of Square Error) decreases as 𝑁𝐶 increases. In practice
𝑁𝐶 ≪ 𝑛, thus 𝑛−𝑁𝐶 can be viewed as a constant number.
Therefore, 𝑅𝑀𝑆𝑆𝑇 𝐷 decreases as 𝑁𝐶 increases. And we
also have 𝑅𝑆 = (𝑇 𝑆𝑆−𝑆𝑆𝐸)/𝑇 𝑆𝑆 (𝑇 𝑆𝑆 - Total Sum of
Squares), and 𝑇 𝑆𝑆 = 𝑆𝑆𝐸+𝑆𝑆𝐵 (𝑆𝑆𝐵 - Between group
Sum of Squares) which is a constant number for a certain
data set. Thus, 𝑅𝑆 increases as 𝑁𝐶 increases.

From the definition of Γ, only data objects in different
clusters will be counted in the equation. Therefore, if the
data set is divided into two equal clusters, each cluster
will have 𝑛/2 objects, and 𝑛2/4 pairs of distances will be
counted actually. If the data set is divided into three equal
clusters, each cluster will have 𝑛/3 objects, and 𝑛2/3 pairs
of distances will be counted. Therefore, with the increasing
of the cluster number 𝑁𝐶, more pairs of distances are
counted, which makes Γ increase.

Looking further into these three indices, we can find
out that they only take either separation or compactness
into account. (𝑅𝑆 and Γ only consider separation, and
𝑅𝑀𝑆𝑆𝑇 𝐷 only considers compactness). As the property
of monotonicity, the curves of 𝑅𝑀𝑆𝑆𝑇 𝐷, 𝑅𝑆 and Γ will
be either upward or downward. It is claimed that the optimal
cluster number is reached at the shift point of the curves,
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which is also known as “the elbow” [7]. However, since
the judgement of the shift point is very subjective and hard
to determine, we will not discuss these three indices in the
further sections.

B. The Impact of Noise

In order to evaluate the influence of noise on internal
validation indices, we have the following experiment on
the data set Wellseparated.noise. As shown in Figure 2,
Wellseparated.noise is a synthetic data set formulated by
adding 5% noise to the data set Wellseparated. The cluster
numbers select by indices are shown in Table III. The
experiment results show that 𝐷 and 𝐶𝐻 choose the wrong
cluster number. From our point of view, there are certain
reasons that 𝐷 and 𝐶𝐻 are significantly affected by noise.

Figure 2. The Data Set Wellseparated-noise

Table III
EXPERIMENT RESULTS OF THE IMPACT OF NOISE, TRUE 𝑁𝐶 = 5

𝐶𝐻 𝐼 𝐷 𝑆 𝐷𝐵∗∗ 𝑆𝐷 𝑆 𝐷𝑏𝑤 𝑋𝐵∗∗
2 1626 3213 0.0493 0.590 0.739 0.069 20.368 0.264
3 1846 5073 0.0574 0.670 0.721 0.061 0.523 0.380
4 2554 9005 0.0844 0.783 0.560 0.050 0.087 0.444
5 10174 51530 0.0532 0.870 0.183 0.045 0.025 0.251
6 14677 48682 0.0774 0.802 0.508 0.046 0.044 0.445
7 12429 37568 0.0682 0.653 0.710 0.055 0.070 0.647
8 11593 29693 0.0692 0.626 0.863 0.109 0.052 2.404
9 11088 25191 0.0788 0.596 0.993 0.121 0.056 3.706

𝐷 uses the minimum pairwise distance between objects in
different clusters (𝑚𝑖𝑛𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)) as the inter-cluster
separation, and the maximum diameter among all clusters
(max𝑘{max𝑥,𝑦∈𝐶𝑘

𝑑(𝑥, 𝑦)}) as the intra-cluster compact-
ness. And the optimal number of clusters can be obtained
by maximizing the value of 𝐷. When noise are introduced,
the inter-cluster separation can decrease sharply since it only
uses the minimum pairwise distance, rather than the average
pairwise distance, between objects in different clusters.
Thus, the value of 𝐷 may change dramatically and the
corresponding optimal cluster number will be influenced by
the noise.

Since 𝐶𝐻 = (𝑆𝑆𝐵/𝑆𝑆𝐸)⋅ ((𝑛−𝑁𝐶)/(𝑁𝐶 − 1)), and
((𝑛−𝑁𝐶)/(𝑁𝐶−1)) is constant for the same 𝑁𝐶, we can
just focus on the (𝑆𝑆𝐵/𝑆𝑆𝐸) part. By introducing noise,
𝑆𝑆𝐸 increases in a more significant way comparing with
𝑆𝑆𝐵. Therefore, for the same 𝑁𝐶, 𝐶𝐻 will decrease by the

influence of noise, which makes the value of 𝐶𝐻 instable.
Finally, the optimal cluster number will be affected by noise.

Moreover, the other indices rather than 𝐶𝐻 and 𝐷
will also be influenced by noise in a less sensitive way.
Comparing Table III with Table II, we can observe that
the values of other indices more or less change. If we add
20% noise to the data set Wellseparated, the optimal cluster
number suggested by 𝐼 will also be incorrect. Thus, in order
to minimize the adverse effect of noise, in practice it is
always good to remove noise before clustering.

C. The Impact of Density

Data set with various density is challenging for many
clustering algorithms. Therefore, we are very interested
in whether it also affects the performance of the internal
validation measures. An experiment is done on a synthetic
data set with different density, which names Differentdensity.
The results listed in Table IV show that only 𝑆 suggests the
wrong optimal cluster number. The details of Differentden-
sity is shown in Figure 3.

Figure 3. The Data Set Differentdensity

Table IV
EXPERIMENT RESULTS OF THE IMPACT OF DENSITY, TRUE 𝑁𝐶 = 3

𝐶𝐻 𝐼 𝐷 𝑆 𝐷𝐵∗∗ 𝑆𝐷 𝑆 𝐷𝑏𝑤 𝑋𝐵∗∗
2 1172 120.1 0.0493 0.587 0.658 0.705 0.603 0.408
3 1197 104.3 0.0764 0.646 0.498 0.371 0.275 0.313
4 1122 93.5 0.0048 0.463 1.001 0.672 0.401 3.188
5 932 78.6 0.0049 0.372 1.186 0.692 0.367 3.078
6 811 59.9 0.0049 0.312 1.457 0.952 0.312 6.192
7 734 56.1 0.0026 0.278 1.688 1.192 0.298 9.082
8 657 44.8 0.0026 0.244 1.654 1.103 0.291 8.897
9 591 45.5 0.0026 0.236 1.696 1.142 0.287 8.897

The reason why 𝐼 does not give the right cluster number
is not easy to tell. We can observe that 𝐼 keeps decreasing as
cluster number 𝑁𝐶 increases. One possible reason by our
guess is the uniform effect of K-means algorithm, which
tends to divide objects into relatively equal sizes [23].
𝐼 measures compactness based on the sum of distances
between objects and their cluster center. When 𝑁𝐶 is small,
objects with high density are likely in the same cluster,
which makes the sum of distances almost remain the same.
Since most of the objects are in one cluster, the total sum
will not change too much. Therefore, as 𝑁𝐶 increases, 𝐼
will decrease as 𝑁𝐶 is in the denominator.
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D. The Impact of Subclusters

Subclusters are clusters that are closed to each other. Fig-
ure 4 shows a synthetic data set Subcluster which contains
five clusters, and four of them are subclusters since they can
form two pairs of clusters respectively.

The experiment results presented in Table V evaluate
whether the internal validation measures can handle data set
with subclusters. For the data set Subcluster, 𝐷, 𝑆, 𝐷𝐵∗∗,
𝑆𝐷 and 𝑋𝐵∗∗ get the wrong optimal cluster numbers,
while 𝐼 , 𝐶𝐻 and 𝑆 𝐷𝑏𝑤 suggest the correct ones. Inter-
cluster separation is supposed to have a sharp decrease when
cluster number changes from 𝑁𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 to 𝑁𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙+1

[14]. However, for 𝐷, 𝑆, 𝐷𝐵∗∗, 𝑆𝐷 and 𝑋𝐵∗∗, sharper
deceases can be observed at 𝑁𝐶 < 𝑁𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙. The reasons
are as follows.

Figure 4. The Data Set Subcluster

Table V
EXPERIMENT RESULTS OF THE IMPACT OF SUBCLUSTERS, TRUE

𝑁𝐶 = 5

𝐶𝐻 𝐼 𝐷 𝑆 𝐷𝐵∗∗ 𝑆𝐷 𝑆 𝐷𝑏𝑤 𝑋𝐵∗∗
2 3474 2616 0.7410 0.736 0.445 0.156 0.207 0.378
3 7851 5008 0.7864 0.803 0.353 0.096 0.056 0.264
4 8670 5594 0.0818 0.737 0.540 0.164 0.039 1.420
5 16630 9242 0.0243 0.709 0.414 0.165 0.026 1.215
6 14310 7021 0.0243 0.587 0.723 0.522 0.063 12.538
7 12900 5745 0.0167 0.490 0.953 0.526 0.101 12.978
8 11948 4803 0.0167 0.402 1.159 0.535 0.105 14.037
9 11354 4248 0.0107 0.350 1.301 0.545 0.108 14.858

𝑆 uses the average minimum distance between clusters
as the inter-cluster separation. For data set with subclusters,
the inter-cluster separation will achieve its maximum value
when subclusters close to each other are considered as one
big cluster. Therefore, the wrong optimal cluster number
will be chosen due to subclusters. 𝑋𝐵∗∗ uses the minimum
pairwise distance between cluster centers as the evaluation
of separation. For data set with subclusters, the measure of
separation will achieve its maximum value when subclusters
closed to each other are considered as a big cluster. As a
result, the correct cluster number will not be found by using
𝑋𝐵∗∗. The reasons for 𝐷, 𝑆𝐷 and 𝐷𝐵∗∗ are very similar
to the reason of 𝑋𝐵∗∗, we will not elaborate them here due
to the limit of space.

E. The Impact of Skewed Distributions

It is common that clusters in a data set have unequal
sizes. Figure 5 shows a synthetic data set Skewdistribution

with skewed distributions. It consists of one large cluster
and two small ones. Since K-means has the uniform effect
which tends to divide objects into relatively equal sizes,
it does not have a good performance when dealing with
skewed distributed data sets [23]. In order to demonstrate
this statement, we employ four widely used algorithms
from four different categories: K-means (prototype-based),
DBSCAN (density-based) [24], Agglo based on average-
link (hierarchical) [2] and Chameleon (graph-based) [25].
We apply each of them on Skewdistribution and divide the
data set into three clusters, since three is the true cluster
number. As shown in Figure 6, K-means performs the worst
while Chameleon is the best.

Figure 5. The Data Set Skewdistribution

Table VI
EXPERIMENT RESULTS OF THE IMPACT OF SKEWED DISTRIBUTIONS,

TRUE 𝑁𝐶 = 3

𝐶𝐻 𝐼 𝐷 𝑆 𝐷𝐵∗∗ 𝑆𝐷 𝑆 𝐷𝑏𝑤 𝑋𝐵∗∗
2 788 232.3 0.0286 0.621 0.571 0.327 0.651 0.369
3 1590 417.9 0.0342 0.691 0.466 0.187 0.309 0.264
4 1714 334.5 0.0055 0.538 0.844 0.294 0.379 1.102
5 1905 282.9 0.0069 0.486 0.807 0.274 0.445 0.865
6 1886 226.7 0.0075 0.457 0.851 0.308 0.547 1.305
7 1680 187.1 0.0071 0.371 1.181 0.478 0.378 3.249
8 1745 172.9 0.0075 0.370 1.212 0.474 0.409 3.463
9 1317 125.5 0.0061 0.301 1.875 0.681 0.398 7.716

An experiment is done on the data set Skewdistribution to
evaluate the performance of different indices on data set with
skewed distributions. We use Chameleon as the clustering
algorithm. The experiment results listed in Table VI show
that only 𝐶𝐻 cannot give the right optimal cluster number.
Since 𝐶𝐻 = (𝑇 𝑆𝑆/𝑆𝑆𝐸− 1)⋅ ((𝑛−𝑁𝐶)/(𝑁𝐶 − 1)) and
𝑇 𝑆𝑆 is a constant number of a certain data set. Thus, 𝐶𝐻 is
essentially based on 𝑆𝑆𝐸, which shares the same basis with
K-means algorithm. As mentioned above, K-means cannot
handle skewed distributed data sets. Therefore, the similar
conclusion can be applied to 𝐶𝐻 .

Table VII lists the validation properties of all 11 internal
validation measures in all five aspects studied above, which
may serve as a guidance for index selection in practice.
In this table, ’–’ stands for property not tested, and ’×’
denotes situation cannot be handled. From Table VII we can
see, 𝑆 𝐷𝑏𝑤 is the only internal validation measure which
performs well in all five aspects, while the other measures
have certain limitations in different scenarios, mainly in
aspects of noise and subclusters.
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(d) Clustering by Chameleon

Figure 6. Clustering results on the data set Skewdistribution by different algorithms where NC = 3

Table VII
OVERALL PERFORMANCE OF DIFFERENT INDICES

Mono. Noise Dens. Subc. Skew Dis.
𝑅𝑀𝑆𝑆𝑇𝐷 × – – – –
𝑅𝑆 × – – – –
Γ × – – – –
𝐶𝐻 × ×
𝐼 ×
𝐷 × ×
𝑆 ×
𝐷𝐵∗∗ ×
𝑆𝐷 ×
𝑆 𝐷𝑏𝑤
𝑋𝐵∗∗ ×

IV. CONCLUDING REMARKS

In this paper, we investigated the validation properties of
a suite of 11 existing internal clustering validation measures
for crisp clustering in five different aspects: monotonicity,
noise, density, subclusters and skewed distributions. Compu-
tational experiments on five synthetic data sets, which well
represent the above five aspects respectively, were used to
evaluate the 11 validation measures. As demonstrated by
the experiment results, most of the existing measures have
certain limitations in different application scenarios. 𝑆 𝐷𝑏𝑤
is the only measure that performs well in all five aspects.
The summation of validation properties of these 11 internal
validation measures shown in Table VII may serve as a
guidance for index selection in practice.
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