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ABSTRACT

Online Social Networks (OSNs) have already attracted muaa t
half a billion users. However, our understanding of whichNG&a-
tures attract and keep the attention of these users is poadieS
thus far have relied on surveys or interviews of OSN user®or f
cused on static properties, e. g., the friendship graplneged via
sampled crawls. In this paper, we study how users actuaiy-in
act with OSNs by extracting clickstreams from passively itwoad
network traffic. Our characterization of user interactiwaithin the
OSN for four different OSNs (Facebook, LinkedIn, Hi5, andi-St
divZ) focuses on feature popularity, session charactesisand the
dynamics within OSN sessions. We find, for example, thatsuser
commonly spend more than half an hour interacting with th&l©S
while the byte contributions per OSN session are relatisgigll.

Categories and Subject Descriptors

C.2.2 [Computer-communication networkg: Network pro-
tocols—Applications C.2.3 [Computer-communication net-
works]: Network operations-Network monitoring

General Terms
Measurement, Performance

Keywords

Clickstream analysis, HTTP, Online social networks, Feapop-
ularity, Network measurement, Session characteristiesy ihter-
actions

1. INTRODUCTION

Online Social Networks (OSNs) such as Facebook, MySpace,
LinkedIn, Hi5, and StudiVZ, have become popular within the
last few years. OSNs form online communities among people
with common interests, activities, backgrounds, andientiships.
Most OSNs are Web-based and allow users to upload profibes (te
images, and video) and interact with others in numerous wHys
contemporaneous rise of Web 2.0 technology and user-gedera
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content has resulted in over half a billion users being priese the

OSN ecosystem. Facebook alone adds over 377,000 users every
twenty-four hours and is expected to overtake MySpace inotiad
number of users in 2009 [2].

This sheer number of users makes OSN usage interestingor di
ferent entities:(i) ISPs have to transport the data back and forth
and provide the connectivityji) OSN service providers need to
develop and operate scalable systems,(@jdesearchers and de-
velopers have to identify trends and suggest improvemanisw
designs. The questions this paper aims at answering therigfo
cludeWhich features of OSNs are popular and capture the users at-
tention? What is the impact of OSNs on the netwoMhat needs
to be considered when designing future OSNsthe user’s behav-
ior homogeneous?

A recent study exploring the properties of OSNs worth exam-
ining and present methodologies available, discussesusdhal-
lenges associated with measuring them [19]. Earlier woukl-st
ied the graph properties of the online communities, higtellev
properties of snapshots of individual OSNs, and issuesect!@
anonymization and privacy. However, they can only capthee t
state of an OSN as inferred by some specific measurement tech-
nique, e.g., crawling. Furthermore, there are no knownissud
which document how users interact with various OSNs beyond
those that rely on surveys [1, 10, 35] and interviews [17].r&4o
over, such techniques are limited in scope and cannot ea®8N
macro-level properties such as overall volume of trafficditnam-
ics, etc. or micro-level properties such as what happerisinwén
OSN when users interact with it. To analyze such properties o
has to capture the interactions of the user with the OSN dwer t
which is impossible via crawling.

This paper focuses exclusively on these understudied giepe
by examining actual user clickstreams. We extract cligestrs
from several anonymized HTTP header trdc&®m large user
populations collected at different vantage points witlairge ISPs
across two continents. We focus on OSNs whose primary conten
are user maintained profiles. We chose Facebook, LinkedB, H
and StudiVZ [12, 24, 16, 34] because they are popular, welhkn
and well represented in our traces. We present a methodthagy
allows us to reverse engineer user interactions with OSiws fret-
work traces.

Unfortunately, currently available clickstream data setsvery
limited. In principle, there are three ways of gatheringhsdata,
either on the server, on the client side, or at a proxy/aggoeg
As server-side data is considered proprietary, dataseténaited.

For search engines there are some examples [31, 32, 33]. How-

1Al IP addresses are anonymized and HTTP content is excluded
Furthermore, we apply anonymization to any other field trest h
the potential to contain user related data before proogs$sedata.



ever, none of the server-side data sets can include thelith-c
stream as the full clickstream consists of all user acceesgb\Web
pages related to the OSN or the search query. Previous weddba
on client-side data gathering has focused on Web searck- clic
streams [18] or on asking volunteers to interact with the Q&ML
Other approaches include surfing the Web using additionayser
plug-ins, e. g., [41], or enhancing HTTP proxies with exiethtbg-
ging functionality, e.g., [3]. However, ISPs servicingidestial
customers do not necessarily use proxies nor do voluntesaiy
tions with an OSN necessarily correspond to their naturbhize
ior. Recently, Benevenuto et al. [5] have analyzed cligatn data
from a Brazilian social network aggregator.

Using our methodology we are able to track the beginning and
ending of a user’s interaction with an OSN as well as variotrsi
OSN actions performed by the user. We apply this methoddlogy
each of the four selected OSNs and validate the results trsiogs
of manual interactions with these OSNs. We present results o
feature popularitywithin OSNs, OSN session characteristics, and
on dynamics within sessions. For example:

e We find that users commonly spend more than half an hour
interacting with the OSNs. For Facebook users, we verified
that while users interact with the OSN, only a minority of
them accesses any non-Facebook sites.

OSN sessions in Section 7. Finally, after reviewing relatedk
in Section 8, we summarize our experience and suggest fréure
search directions in Section 9.

2. OSN FEATURES AND TERMINOLOGY

Before delving into the user session and clickstream aisalys
introduce the terminology we use in the rest of the paper by di
cussing which features OSNSs offer and how a sample OSN sessio
is seen from a network perspective.

2.1 OSN features

Most OSNs include features for creating user accounts and au
thenticating users. A user’s basic profile includes entiGesage
or home town. OSNs offer a variety of different features tuat
commonly accessible only to those users that are loggedsardJ
can update their profiles (contact information, photogsajfifor-
mation about hobbies, books, movies, music, etc.), brovisero
users’ profiles by searching and subsequently obtainitgydfgheir
friends and narrowing them via categories like schools orkwo
sites. They can add friends, invite new friends, join groopgeet-
works, communicate with other users via OSN-internal eseil
vices, writing on other users’ “walls” or on discussion fors, and
adjust their privacy settings.

Several OSNs offer a platform to build third-party applioas;

« While we selected OSNs based on the criterion that they fea- these are hosted on external servers by the individual cjun

ture profiles, profiles are only the most popular featureiwith
LinkedIn and StudiVZ. Within Facebook and Hi5 profiles are

writers and allow OSN users to exploit the social graph andndo
load and interact with each other through the applicaticopulRar

among the popular features besides downloading photos and@pplications are of the social utility variety (e. g., dafior games.

exchanging messages. In addition, the most popular feature
in terms of clicks usually do not contribute the most to the
traffic volume. With regards to volume, photos play a major
role, especially with regards to uplink bandwidth.

e We find that the number of accesses to profiles within the

There are also several applications that are internal to8i. We
do not explore specific application features in this paper.

2.2 A*“sample” Facebook session

Next, we show how a sample OSN session is seen from a net-
work perspective. Users must login before accessing angtiead

session is highly skewed. While there are some sessions withfeature and this starts tf@SN sessignafter logging in the user

many accesses>(100) most users only access a handful. In-
deed, in terms of unique profiles the number is even lower.
This indicates that the richness of the friendship graplots n
a good indicator on how many profiles will actually be ac-
cessed during a session.

This results in an in-depth understanding of what happetisn
an OSN and also allows us to look for similarégrossOSNs. Our
work complements the efforts of the OSN community towards a
better understanding of how OSNSs are used. Service previner-
efit by knowing OSN features that are of significant interesiwn
users and by understanding what else on the Web is impodant t
their users. This allows them to influence and improve thein o
service offerings. Researchers can propose improvemeisise
plifications for existing OSNs or design OSNs with novel fees.
From an ISP viewpoint OSNs currently contribute a lot lesnth
peer-to-peer applications in terms of bytes. However, OSight
add features that increase the per-user bandwidth demaindn G
this potential for traffic explosion (e. g., when video beesnpop-
ular within OSNSs), it is imperative to understand the netwevel
dynamics of OSNs.

The remainder of this paper is structured as follows: Inise&
we give an overview of OSN features and introduce our termino
ogy. After giving a description of the data sets we use iniSeg,
we discuss our analysis methodology, Section 4. We thereptres
the results of our macro analysis with regards to featureilaoiy
analysis in Section 5, and session characteristics in @e6tifol-
lowed by our micro-level analysis regarding the dynamicthimi

is authenticated At the end of the sessionlagout results in the
user becomingffline The time between login and logout is an
authenticated OSN sessjarhile the time before logging in and
after logging out is amffline OSN sessiom subsequent logging
in ends the current offline OSN session and starts anothberaut
ticated OSN session. The overall time from a first contachef t
OSN site or a logout to another logout is@SN subsession

Once authenticated, a user starts using the Facebookdeatur
we label these aactionsor clicks. Our sample OSN session (shown
in Table 1) has six actions (a)—(f); each of which corresgaioda
user click. We group actions intcategories—e. g., the category
“photos” includes managing, uploading, displaying, comtimg
on, etc. of photos. Such interactions result in multiple BTE-
quest response pairg{pairs) seen on the network. Table 1 lists
all rr-pairs toww. f acebook. com OSNs sometimes use HTTPS,
HTTP over SSL, rather than HTTP for rr-pairs carrying ac¢oun
credentials or CAPTCHAs. For example Facebook uses HTTPS
for the login action—rr-pair 2 in Table 1. These are not gasil-
servable and thus a HTTP rr-pair only log does not includs thi
request due to the SSL encryption. But, we do observe traféc o
a HTTPS connection at time 29.121.

Not all actionscorrespond to a single rr-pair. For example, the
“open friend list” action generates rr-pairs 4—6. Rr-paiis4di-
rectly triggered by the user’s mouse click while rr-pairsrigl &
are generated by Facebook’s AJAX-based user interface. die c
the first kind of rr-pairsactive and the otheréndirect. The indi-
rect requests also include requests for loading embeddadeisy
JavaScript snippets, etc. (hot shown in Table 1). An actéfars



Table 1: Facebook interaction example: action and rr-pairsof the requests to the hostnamewwv. f acebook. com

Time [sec] | Action/Click  No. Proto  Method URI
0.000 | a) openmw. f acebook. com
9.944 1 HTTP GET /
27.696 | b) login, enter password
29.121 2 HTTPS  POST  /login.php?
31.012 3 HTTP CGET / hone. php?
45.513| c) open friend list
47.631 4 HTTP GET [ friends/?ref=tn&qui ckling[version]=141637; 0& ecdc=check
48.672 5 HTTP CGET /friends/ajax/friends. php?nenber shi p=1& ecdc=check
48.675 6 HTTP GET /friends/ajax/filters.php?i d=XXX& ecdc=check
56.441 | d) select profile of a friend
59.199 7 HTTP GET I profile.php?i d=XXX&qui ckl i ng[ ver si on] =141637; 0& ecdc=check
95.921| e) write “post ed sonething on the wal | ” on friends wall
97.947 8 HTTP PCST  /ajax/profilelcomposer. php?_ecdc=fal se
102.841| f) logout
105.029 8 HTTP CGET /I ogout . php?h=c909dd2db7b0a83h238ea70321d2041bé&r ef =nb
105.341 9 HTTP CGET /i ndex. php?l h=c909dd2db7b0a83h238ea70321d2041bh&

Table 2: Overview of anonymized HTTP header traces.

ID | startdate | dur| sites | size | rr-pairs
Al | 22 Aug’'08 noon| 24h all >5TB | >80M
A2 | 18 Sep’08 4am | 48h all >10TB | >200M
A3 | 01 Apr'09 2am | 24h all >6TB | >170M
Bl | 21 Feb’08 7pm | 25h | OSNs| >15GB >2M
B2 | 14 Jun’08 8pm | 38h | OSNs| >50GB >3M
B3 | 23Jun’'08 10am| >7d | OSNs| >110GB >7M

to the active and its associated indirect requests. Therefbe

number of bytes in an action is the sum of bytes of all its retgie
Indirect requests are not limited to the main domaimw.

facebook. com They can also be directed to other locations, e.g.,

more than 20000 DSL users to the Internet via at least a 1 Gbps
uplink. The monitoring infrastructure uses Endace DAG oekw
monitoring cards [36] for traffic capture. The data anonyation

and HTTP header extraction is performed immediately on ¢ie s
cured measurement infrastructure via the HTTP analyzéwoBto

IDS [30]. While some traces include all rr-pairs some oniglude
rr-pairs to the OSN sites (see Table 2). To resolve the sitept
propriate IP addresses we did DNS resolutions at multiphtage
points to exclude biases due to DNS load balancing or traéig fl
optimizations. Unfortunately, this restriction to OSNesitmeans
that we do not have HTTPS flow data available for some of these
traces. To compute the HTTPS flow records we use custom soft-
ware with a 15 second inactivity timeout. Table 2 gives amaesy

of the data traces including when they were gathered (loced t
zone, all in 2008/09) and approximate numbers on their td\@ze

Facebook utilizes a CDN; most Facebook images are retrieved before HTTP header extraction and the number of rr-pairstiiey

from stati c. ak. f bcdn. net. In addition, Facebook pushes in-
formation to their users via the servechannel .[a- Z0- 9] *.
facebook. com

Table 1 shows that we can in principle identify OSN sessiois a
the associated clickstream from a network perspective byiypaly
monitoring the rr-pairs.

3. DATA

In this section we describe the anonymized data sets gdthere
different vantage points representing actions of tens efishnds
of OSN users within two large international ISPs. We focus on
OSNs that allow users to maintain profiles and have diffecent-
munication mechanisms with Facebook as an obvious cardidat
Hi5 and LinkedIn are also popular in the U. S. StudiVZ is thesmo
popular OSN in Germany after YouTube (which focuses primar-
ily on video and has limited internal communication mechars)

contain.

In general, we observe that only a subset of theDQ0 DSL
users actually use any OSN during the trace collection gerio
Overall we identified roughly 2500 (6000) userd$®-A (ISP-B)
who use any of the OSNs under study. We observed significant ac
tivity for Facebook and StudiVZ irsP-A and Facebook, Hi5, and
LinkedIn in1SP-B—well beyond 1000 users and 1@00 rr-pairs.

As we cannot show all plots for all traces we pick represarmgat
plots for presentation—usually either from trasz or B3 as these
are the ones with the largest number of rr-pairs. Unlessdidif-
ferently, similarities and differences between OSNSs foe tnace
are also observable in other traces from that ISP.

4. APPROACH

To understand how users interact with OSNs, we ext@®N
clickstreams from various anonymized HTTP header traces (see

and Facebook. We thus chose these four OSNs to study. Ac-gection 3). From this main data source we identify:

cordingly, the sites monitored for the OSNs wefracebook. com
t hef acebook. com fhcdn. net, fbcdn. com (Facebook), hi 5.

com hi 5nodul es. com hi 5net wor ks. com(Hi5), | i nkedi n. com
| modul es. com |inkedinl abs. com |inkedin. custhel p.com
(LinkedIn), andstudi vz. net, studivz.de, studivz.ivwbox.

de, i magevz. net (Studivz).

We had access to multiple sets of anonymized HTTP header

traces (see Table 2) from two commercial ISB®-A (tracesAl,
A2, and A3) andISP-B (tracesB1, B2, B3). Each site connects

OSN session clickstreamdor the subset of users who interact
with an OSN under study (Both ISPs).

All HTTP request/response pairs for all users who interact with
any Web serveri§P-A only).

Standard browsers, proxies, or social network providennat
provide us with this kind of data. After a short summary wespre
our general analysis methodology and its validation in noeteil.



user/login cookie present logout detected

State: State:
authenticated offline

login detected relogin detected

In summary, our methodology relies on identifying those BTT  new session
request response pairs (rr-pairs) that are part of an O bseand cookie
then grouping them into sessions utilizing the OSN sessoark-c Il new 1P
ies. Within a session, we separate the time that a user ialgctu
authenticated (online) from the period he is offline. Nex, sep-
arate direct user actions, called active rr-pairs, fronofelup re-
quests, called indirect rr-pairs. Finally, we associatea&gory,
e.g., photo, profile, or home, with each rr-pair. To crosckhaur
methodology we rely on a set of manual traces. The manuadrac
include both, the action that the user performed on the O@Nad
the resulting rr-pairs. Therefore, the manual traces sas\ground
truth for the validation of our methodology.

Figure 1: State handling diagram for OSN sessions.

anonymized HTTP header traces with flow tréaceSHTTPS ac-

tivity on port 443. Note, after login and logout, users araally

redirected to a welcome/goodbye page. By checking for tke sp

4.1 Methodology cific URIs of these pages in combination with prior HTTPS\atti
we can identify such logins/logouts.

For sessions that start before the beginning of the netlvasged
observation we can check if they are authenticated or offline
looking for the presence of the user/login cookie in the HTERd-
ers. If they are present the session is authenticated, #lise oFor
sessions where no logout was detected within the netwaskeba
observation we have no way to infer their ultimate duratitmus
we assume that they ended with the last observed requeshesear
sessions we underestimate their durations and volume.nGie
fact that we do not have HTTPS data f6P-B and the smaller user
count for LinkedIn and Hi5, we only have reportable logigtat
data oniSP-A for Facebook and StudiVZ: For StudiVZ, we hardly
observe any sessions that are missing the login, due to atédm
logout after an idle timeout. However, we observe sessioaisdo
miss their logout. The numbers for StudiVZ and Facebook rare i
the same order of magnitude, and around 13-19 %. For Facebook
we find that 7—8 % of the authenticated sessions are missithg bo
login and logout, while 10-15 % are missing only their loglte
principle state handling is shown in Figure 1.

After using the typical tricks to extract clickstreams [18]g.,
the HTTP analyzer of the Bro IDS [30], we need to group thekslic
into OSN sessions and identify which of the OSN features ere a
tually used. In principle, the approach outlined below carubed
for any web-based service that requires login and offerdiphell
different features. However, understanding how usersantavith
the OSN is of particular interest due to their popularityeittdi-
versity, their complexity, and their continual evolutidndeed, as
an OSN becomes more popular it get closer to certain sciyabil
limits of different parts of the Web service infrastructufe such,
some OSNs delegate static content not only to separatersénve
to separate domains while others rely on CDNs to increadatsta
ity. Moreover, due to changes in feature sets they may resie
their software interface, e. g., as Facebook did in earlyte3eper
2008 [11]. Therefore, the analysis software needs to béyeas-
tomizable and highly flexible.

OSN session handling

Web-based service sessions are much more complex thamthe si

ple one outlined in Table 1: Sessions from different useeslap, Rr-pairs classification
users may utilize multiple OSN sessions in parallel withieddnt

user names, users may not logout at the end of a session toacke
may start in the middle of an OSN session, etc. We next address
how we identify an OSN session.

Since OSNs require login they must track their users via fhe a
propriate HTTP mechanism: Cookies. They can be set viaatdnd
SET- COOKI EHTTP response headers and then the client returns the
cookie in subsequent HTTP requests viaG@beK! E request header.
OSNSs typically rely on aession cookigvhich is assigned at the
start of the first OSN session. Even if it is changed duringsée
sion we can track such changes. In some OSNs, these cookies ev
persist if the user logs back in after a logout. We can thusigro
rr-pairs by the anonymized IP address and the anonymizeibses
cookie. However, OSNs are not standardized. Hence, eatleof t
uses different kinds of cookies. Most OSNs use separatei@®ok
in addition to the session cookie to refer to the OSN user hei t
login, typicallx an email address. We refer to theseiser cookie OSN specifics
andlogin cookie - ) o o

Within such a group of rr-pairs we have to identify logins and The OSN-specific parts include a combination of relativeiy-s
logouts to distinguish authenticated and offline periodssession.  Ple pieces (e. g., identifying the OSN sites and cookies)samae
We refer to this process afate handlingMost OSNs appeartouse ~ More complex classifications of the rr-pairs (e. g., profilelgsis,
separate scripts for handling login and logout; these epttetuser ~ SPecific login and logout determination). Section 3 lises @SN-
and the login cookies. specific sites while Table 3 lists the specific cookie namate

For sessions that start and end in the middle of our traces we Use for each of the four OSNs.

can identify a login/logout process by looking for the spedRI 2A flow summarizes a stream of packets that are selected by some

(e.g., Facebook logout URI id ogout . php?). Some OSNSs, in- criteria such that the time between
; . . packets of a flow nevezee
cluding Facebook, Linkedin, and StudiVZ, use HTTPS (see Ta- 4 gpecific timeout value. Our criterion is the five-tuple dstiisg

ble 3) instead of HTTP for these scripts. The remainder of the of anonymized IP addresses, transport protocol, and parbats.
OSN session is typically not encrypted. Thus, we augment our We use a timeout value of 15 seconds.

Table 1 underscores our experience that it is possible & thie
OSN feature (action) associated with each rr-pair by inspgthe
URI. This is true for all active rr-pairs and we built suitatpat-
terns. Classification of rr-pairs is complex due to embedidgects
and rather than finding patterns for all, we use the HREPERER
header if set. These requests all include an active rr-paineir
referrer chain. However, not all rr-pairs include the OSNssen
cookie or a referrer; especially in requests to sites trmhasting
static helper objects and scripts. We associate thesehethast ac-
tive rr-pair. This approach can lead to misclassificatichéf same
IP address is involved in multiple parallel OSN sessionswéler,
if there are multiple concurrent ongoing sessions theilikeld that
another user issues a request while the first user is stikvatig all
embedded objects is low. If we are unable to find an actionrior a
rr-pair, it is classified aNKNOWN




Table 3: OSN specific information: cookies and login/logouprocedure.

OSN session user login login logout
cookie cookie cookie HTTPS | HTTPS

Facebook| datr= cuser= login_x=| O a

Hi5 JSESSI ONI D= | Userid= Emai | = d d

LinkedIn | bcooki e= | eo_authi _token=LIM | n/a ad ad

StudiVZ | PHPSESSID= | User|Dl= n/a ad ad

Table 4: Examples of OSN specific patterns for the classificatn of home and sending a message.

OSN | category | action | method | pattern

Facebook| home index GET M [index\.php(\?2(.*))*$

Hi5 home home CGET M /friend\/displ ayHomePage\ . do$
LinkedIn | home home GET M /home(\?2*(.*))$

StudiVZ | home start GET MN/Start(.*)$

Facebook| messaging| send message POST M /inbox\/(\?*(.*))$

Hi5 messaging| send message POST M /friend\/mil\/sendMil\.do$
LinkedIn | messaging| send message POST M/ megToConns(\ ?*(. *)) $

StudiVZ | messaging| send message POST M [ Messages\/ Wi teMessage(.*)$

The first step in the rr-pair classification is to determiné i§
hosted on the main site. The next step is to determine if airr-p
is active or indirect. Most requests not on the main site afe i
direct. However, not all other requests are active. For gem
requests triggered automatically by AJAX should not be sitas
fied as active. To identify those, we use the manual traces (se
Sec. 4.2) to develop specific patterns. For Facebook weliwiti
consider all URIs with the following patterns as activé\ . php. *,
JX¥INS, L */\2.*%. We then use specific patterns to exclude some
URIs, e.g.,* js_strings. php, which enables word completion
for input fields. We again rely on pattern matching to idgntife
action/click that caused the active rr-pair via a configorafile
which lists the OSN-specific patterns. Table 4 gives exarppte
terns for all OSNs.

At this point we have identified an action for each rr-pairw-o
ever, given that the number of actions is of the order of 200—
300, we group actions into categories. We distinguish betwe
the following categories: profile, photos, friends, homélire,
apps, messaging, search, video, groups, advertisemaspexsfic,
other, and UNKNOWN. While most of these are obvious, noté tha
home includes the login and logout rr-pairs, and osnspeifions
are, e.g., notes for Facebook and account migration fori\6fd
Whenever the category of an active rr-pair is profile, weasttfur-
ther details on profile accesses. Specifically, we count Htena
user accesses his own profile, the profile of another userpfind

how many other users. To account for changes in the OSN archi-

tecture we distinguish between actions that have beenacrfa
a manual trace and rr-pairs for which the category is guegised
the knowledge about the structure of the OSN site and the URI.

4.2 Customization and validation approach

Table 5: Overview of manual traces.

OSN | traces| size | actions| rr-pairs
Facebook 11 32MB 344 5036
Hi5 6 50 MB 368 4413
LinkedIn 8 | 106 MB 411 6363
StudivZ 11 27 MB 354 3990

the OSN uses HTTPS for login/logout and identify corresomnd
handshakes for the state management, and construct tlzsiem
and patterns to identify active rr-pairs that corresponthéouser
actions within the OSN. Manual traces also help in validator
approach. We claim to successfully characterize a new O3\ on
when the analysis script can correctly identify the auticaied/of-
fline OSN sessions and classify the active rr-pairs accgrttirihe
user actions in manual traces. OSNs may reorganize thept scr
architecture during our analysis. This may require redujgshe
rr-pair classification patterns and new manual traces.

The different manual traces were collected Mi@dunp on our
local machine for each OSN. These included a trace that edver
login, some basic actions, and logout (Section 2.2 dissusseXx-
ample trace), one that covered all the actions offered \d@artitial
menu, including profile, search, messaging, photos, . ne,tbat
covers changing a user’s global and privacy settings, oateréy-
isters a new user, and a trace that has a long break of over half
an hour between basic actions. Finally, we included a trhae t
tests the state handling by including multiple login/logsteps; we
used multiple browser windows and/or multiple browseranses
in parallel to simulate activity of two different users frdlre same
IP address. Table 5 summarizes these manual traces. Typoal

We need to be able to customize our approach to a set of spe-manual traces cover roughly 95% of the actions recordedén th

cific OSNs and validate it. Therefore, we creatanualtraces for
which we know the ground truth—by recording the actions whil
passively monitoring our interactions with the specific O8When
collecting the manual traces we make a good faith effort phazr
the feature set of the OSN that users might execute.

Manual traces enable us to identify the site names that elon

traces, see Section 5.2.

4.3 Validation

For our manual traces, we know exactly what and how many
actions were performed in a session. Knowing this grourtti tne
applied our methodology to the manual traces; Figure 2 shiog/s

to an OSN such that we can narrow our trace collection processinferred OSN usage for Facebook as a stacked barplot. Fbr eac

to the relevant subset of traffic. We can also identify thaowsr
cookies that are used to track user sessions by the OSN, dheck

category, we distinguish between verified and guessed sesjard
within each class of requests between active and indirect.
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Figure 2: Histogram of categories for manual Facebook trace.

We observe a perfect agreement between the ground truth and

our reverse-engineered user actions and their grouping<ate-
gories. In particular, Figure 2 shows that we have no rrspaithe
category UNKNOWN. Also, there are no rr-pairs in either of th
two subclasses “active—guessed” or “indirect—guessed’.s¥ch,
although these classes are shown in the legend they do netgho
in the stacked barplot. The plot shows a large number of éatlir
requests. This is not surprising given the large number dfeztn
ded rr-pairs. When monitoring actual user behavior, we cpe&t
to see less of these indirect requests because they can ledcac
and users, contrary to us, usually do not flush their browaehe
before visiting an OSN.

Manual inspection of the traces confirmed that all rr-paies a
correctly assigned to the appropriate category. The sardms
(not shown) hold for the manual traces from Hi5, Linkedindan
StudiVZ. However, some Web pages, eupdat est at us. php are
used as both: active and indirect. That is why, some reqtiests
are active are classified as indirect and the other way ardsinde
there are only a handful of these we are able to correctlytiigen
98 % of the requests as active or indirect.

4.4 Lessons learned

Starting from passive measurements it is possible to extissr
clickstreams. However, we learned several lessons al@gyaly:

e Reverse-engineering user interactions with OSNs from
HTTP traces is non-trivial: OSNs differ in their software ar

e The number of patterns (see Table 4) needed for each OSN
is relatively large. Allin all, we have 253, 218, 206, and 299
patterns for Facebook, Hi5, LinkedIn, and StudiVZ, respec-
tively. However, even if an OSN restructures its Web sitg the
usually do so in small steps. For example, the reorganizatio
of Facebook in 2008 only added around 50 patterns.

e If an OSN restructures its service the patterns have to be up-
dated. Detection is via the drastic increase in the number of
UNKNOWNSs. This can be reduced by capturing new man-
ual traces and then updating the patterns. For the Facebook
update this only took about 1 hour as there were no major
changes to the session handling which would have required
collecting more complicated manual traces.

e Analyzing data from multiple ISPs, each with their own se-
curity mechanisms in place, requires careful synchroiuinat
of the analysis software to ensure comparability of the re-
sults.

e Given our experiences with OSNs it should in principle be
possible to adjust the methodology to other WEB 2.0 sites.
However, it is not possible to do the same kind of analysis for
online shopping sites as these most likely use HTTPS rather
than HTTP.

e The Tamper Data plug-in for Firefox turned out to be very
useful to understand how an OSN is handling its sessions as
it is able to display all requests while browsing even those
sent via HTTPS.

5. FEATURE POPULARITY

A typical question that is of interest to both, OSN providass
well as ISPs, is which OSN features are so fascinating to skesu
that they spend so much time on the site. Does it differ across
OSNSs? In addition, both are interested in popularity stafteong
features, e.g., from photos to videos, or the impact of née@!
tures, e. g., live streaming. The ISP needs to care as it rimgiact
bandwidth demand and the OSN needs to care as it might impact
server resources. Therefore, we now explore the populafrityf-
ferent features provided and supported by the different O©SN

5.1 Clicks/active requests

Figures 3(a) and 3(b) show the histograms of the distributio
active rr-pairs (clicks) according to categories for Famdbfor A2
andB3. We observe that the popularity of features differs by lo-
cation. WithinISP-B, custom applications (apps) are more popular
than withinISP-A, but the opposite is true for the profile category.

chitectures, and the use of Web 2.0 features complicates mat This is consistent across the traces for the two ISPs. Atdhees

ters significantly due to short and multiple interactionatth
differ qualitatively and quantitatively from “normal” Web
traffic.

time, we also note strong similarities: Messaging, homefilgt
and photos are crucial categories at both locations. Cantp#ris
with the relative popularity of features within Hi5 for t@B3 (see
Figure 3(c)), we see that for Hi5 users photos are more irapart

e \We started the adaptation of our methodology with Facebook Similar observations hold for all traces at both ISPs. Iritiaid the

and then added LinkedIn and StudiVZ. Finally, we extended
the capabilities to Hi5. With each step the required cus-

tomization time decreased since we were able to better iso-

profiles together with friends play a role in Hi5. Surpridingven
though we selected OSNs whose primary content are user main-
tained profiles, the Facebook and Hi5 users’ main interestaat

late the OSN-specific elements. By now the major bottleneck on profiles as highlighted by their clickstream, which areeag

is gathering the manual traces for validation (3—6 hour®), t
adjustment of the cookie and session handling including val
idation (2—4 hours), and the classification of the rr-pairs a
cording to their features (2—6 hours depending on the featur
richness and how intuitive the Web site is organized). Note,
that this is a one-time cost per OSN.

among messaging, apps, photos, and eventually profiles.

While StudiVZ tried to clone Facebook, its users do use diffe
ent features (plot not shown). Here, profile is the most commo
category in alliSP-A traces with more than 25 % of the active rr-
pairs withinA2. This is followed by home with 18 % and then
by friends with 15%. Within LinkedIn the focus on profiles and



friends across all traces is even stronger. Wisstnwe have 31 %
of requests related to profiles and 22 % related to friends. iit-
triguing to see that the relationship between requestseiptbfile

and the friends categories are roughly the same for StudréZe- o active - guessed
book, and LinkedIn. Note, that the percentage of UNKNOWNs is _ ¥ ] B  cctive - verified
small. g

0

‘T O o\o N
5.2 All OSN requests R IS

Figure 4 shows the histograms of the distribution of all airp .| mm

rather than active requests for Facebook aad Again, we see o N
that the number of UNKNOWN rr-pairs is small—well under 5 %. %
Next, we note that the number of guessed rr-pairs, whichrare r ~ § g |
pairs classified with a pattern that could not be verified gishe & 8
manual traces, is also well below 3%, except for LinkedIn rehe 3
there are multiple guessed patterns in the friends cate@wsr all °- g o o w £ o £ S . g
traces and both ISPs we find that the number of UNKNOWNSs and g 8 % s £ é s 3 g o g g 8
guessed rr-pairs is each less than 7.5%. Note the drastifeat d § 85850658552 °5¢
ence in the distribution of the observed requests per catégom ° 2 ®

the manual traces (recall Figure 2). This highlights hoviiaift

it can be to approximate actual usage patterns of OSNSs vieeact
crawling, even though we acknowledge that our manual traees
collected for the purpose of exploring all OSN features.

Note how including the indirect requests drastically clenthe
relative importance of the categories. For Facebook, nygssand
apps decrease by 50 % while home increases. Also, phota rath
than profiles is now the top category in StudiVZ. Such shifts a
important to keep in mind when partitioning OSN sites amoifig d
ferent servers, e. g., one for handling the active requigigcélly
PHP scripts) and others for handling the embedded objects.

LinkedIn differs from the other OSNSs in that it has maintaiiite
strict focus on profiles. In LinkedIn (plots not shown) pregiland
friends account for more than 50 % of the rr-pairs. Crosschéar
the other traces (not shown) show that this effect is not dubée
different locations but rather the different focus of Lidke users. o

To understand the impact of popularity shifts on traffic weeha
to compare the histogram of the request distributions tedtud the
byte contributions (see Figures 4(b) for Facebook and Across
all traces and all OSNs we see that the relevance of photos in-
creases, as one might expect. Moreover, they contributents (b) Facebook categorieB3
to the upload activity. The only other categories with sompkead
activity are apps for Facebook, profile for StudiVZ, andrids for
Hi5. In addition, the relative importance of the guessed ldhd
KNOWN categories decreases even further for all OSNs. Ratra
lating this, enabling the use of higher quality photos omevieeos
which contribute a tiny number of requests may change thd-ban
width demand of OSNs quite drastically. Currently, they stin-
tribute no more than 0.3 % of the requests witl8R-A but more
than 1% of the bytes. Recall, how the popularity of YouTubg ha
increased the bandwidth demand.

(a) Facebook categoriea2
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5.3 Difference across time

To assess if OSN user activity differs from other HTTP atyivi
we plot histograms of the relative frequency of rr-pairs elicks in
Figure 5. We see the expected time of day behavior for resaen %
customers. We observe a similar trend for Facebook usergi- Ho ' 3 2
ever, there are some notable differences. For example agiegs Z
increases during lunch time and in the early evenings. Alkotos
and apps are much more popular in the afternoon to early myeni (c) Hi5 categoriesB3

advertisement 0 %

5.4 Differences between users Figure 3: Category popularity for active requests for Facelmok
So far, we have only considered how the overall user pojulati (A2 and B3) and Hi5 (B3) trace: Histogram.

of an OSN behaves. Next, we ask if users of a given OSN behave

in a similar manner or if some users only use one or two of the
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Figure 5: Distribution of Facebook clicks (top) and total HTTP

rr-pairs (bottom) for A2 across time.

g,
® e download - guessed e. g., with respect to apps usage, can be traced to the belafo
9 % S . upload - guessed few users while other differences, e. g., with respect tosagisg,
2 e S"}’(‘J";E’fdv;n"f?;g'ed are caused by the overall user population.
9 % N P Our previous observation that users use different featuhen
—

interacting with different OSNs (Figure 3) also holds on ages-
sion basis, e. g., see Figure 6(b) and 6(c) for StudiVZ anes@uk

for A2. User actions of StudiVZ and Hi5 users (not shown) appear
to be more homogeneous then those of Facebook users adéadica
by many outliers in Figures 6(a) and 6(b) when compared tsetho
in Figure 6(c). Over all traces and both ISPs we see that O8N us

10

Percentage of HTTP Payload Bytes [%)]
15
Il
6.2%

S o
p % consistently use the popular features of the OSN such adgwofi
o - R - . = S photos, messaging, etc.
g % s 8 229 ] g s s} g8 & g One implication of this analysis is that there are some Bjpic
23§ %% 28§32 3 ¥ g2 % § OSN users that use the popular features of that OSN. However,
E 2 ° ® OSN usage is also heavily influenced by some users who like a
) specific feature a lot, e. g., the application feature of Baok or
(b) Facebook categories by bytee the groups feature of StudiVZ.
Figure 4: Category popularity for Facebook and A2: His- 5.5 Profile usage

togram of rr-pairs/bytes. Lastly, we are interested in a further breakdown of a popzaér

egory such as profile. Whenever a user issues an active teques
for a profile we record if it is for his own, for another profilleat

is publicly accessible, or for an OSN internal profile. Fgi(a)
shows a stacked barplot of the relative number of accesstbe to
different profile categories. We note strong differencesvben

the OSNs that we observed across the different traces. le-Fac

. . . book, LinkedIn, and StudiVZ the majority of the requests tre
Figures 6(a) and 6(b) show the resulting plots for authatet 1, yfijes of friends. Only about 25-35 % are to the users’ ova pr
subsessions with at least 20 active requests for Facebotlates file. Within Facebook, about 10-15 % of the accesses are ticpub
B3 andA2. We can see that among all the considered subsessions,proﬁleS and 20—25 % in Linkedin. This feature is not avaisinl
the features profile, home, messaging, and friends mattecap-

different features offered by the OSN. To this end, we relypor-
plots® for plotting the percentage of user requests for each catego
within an authenticated session. This means, a user thdtth#s
and 90 % of his requests within home and profiles, respegtivel
will contribute one data point at 10 % for the boxplot for hoamel

90 % for the boxplot for profile.

! > A StudiVZ and Hi5. One reason why LinkedIn might have a larger
tured by the whiskers and outliers, for some of the sessiuuss, number of requests to public profiles is that some people hese t
tomer applications play a major role. More than 50% of thesise 1, \pjic | inkedin profile as their professional home page. Hif5

do not use any custom apps. But there is a substantial fractio ferg from the other OSNs in that most profile requests invehee
which is almost exclusively focused on apps. We find that B®Ss | ;sers own profile. In part this is due to the way how Hi5 orgesiz

ing is more crucial withinSP-B. The same observations hold for i< site. The profile page is a major component of the na\gati
the other traces. In general, we note that some of the diftes The distribution across the different profile categorielslimot

3Boxplots are used to display the location, the spread, aed th just for the overall traces across the ISPs but also rougfilyirw

skewness of several data sets in one plot: The box showsniite li ~ €ach user's OSN subsessions. This is shown in Figure 7(b) for
of the middle half of the data; the dot inside the box represte Facebook and2, where for a subset of the authenticated ses$jons
median; whiskers are drawn to the nearest value not beyotatha s

dard span from the quartiles; points beyond (outliers) aesvd 4We selected those with the largest number of profile requmsts

individually. subsession.
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Figure 6: Boxplot of # of active requests per authenticatedess-

sion by OSN features for Facebook and StudiVZ.
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Figure 7: Profile usage for traceA2: All OSNs (a), profiles (b)

and unique profiles (c) per session for Facebook.
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Figure 8: CCDF of Bytes per OSN subsession for Facebook and
StudiVZ for A2.

a stacked barplot is used to depict the number of accessesér'a
own profile, to public profiles, or to another user’s interpaifile.
We see the skewed nature of the resulting profiles per sed&en
tribution. A few users access a lot of profiles {00) while others
access only a few. The plot also shows that the distributfqura
file accesses across the three categories roughly trasistatbe
sessions themselves. This is also confirmed by the boxplibteof
same data (not shown). We find that the variation acrossogessi
with respect to the percentages of own, public, or internaliles
does not vary by much.

However, the tail of the distributions is by far not as heasytwse

of all HTTP services. Indeed, we find that a Weibull distribat
with a shape parameter ofRyields a visually reasonable fit for
Facebook. The tail of the sessions from all Web services are n
well matched by a Weibull distribution. Here, a Pareto disttion
with ana between 11 and 13 visually fits better.

The plots indicate and inspection of the other traces cosfihat
“heavy hitters” in Facebook impose the most load, followg®hu-
divZ, and then LinkedIn users. We point out that a typicald=ac
book session size is between 200 KB and 10 MB, a typical StadiV
session size between 50 KB and 5 MB, and a typical Linkedln ses
sion size between 10 KB and 1 MB. Figure 8 highlights thateher
are some differences between the load imposed by authtattica
vs. overall OSN sessions especially for StudiVZ. Typicallg see
a shift in the probability distribution to a smaller numbérbgtes
and sometimes a mode at OSN specific values, e. g., for StuativVZ
10KB, occur. Note, that such volume demands are well withén t
capabilities of mobile data-service offerings.

6.2 OSN session durations

Figure 9(a) plots the CCDF of the duration of OSN subsessions
and authenticated sessions for Facebook and StudiVAZpre-
spectively, on a log-log scale. The plot shows that OSN eessi
exhibit high variability, with many lasting a very short pmt of
time and a few lasting for hours, with a mean of about 40 min-
utes for both, authenticated and total OSN subsessionsniEae
durations for other OSNs and traces is roughly of the samerord
Only the mean duration of Facebook usagesatB is significantly
longer. Note, the total OSN subsessions last just sligluthgér
than the authenticated OSN subsessions which is the cabetfor

We next compare the number of profile accesses to the number|SPs and all OSNs. This agrees with our expectation thasuker

of accesses to unique profiles. We find that while the average n
ber of profile access is 6 for Facebook amlthe average number

not spend much time on the OSN site without logging in. Over
all traces and both ISPs we find that the session duratioritist

of unique profile accesses is only 3. The median reduces from 3tions are not consistent with an exponential distributiout, have

to 2. Moreover, the distribution across the different peoilasses
changes to predominantly Facebook internal profile. Thiggh-

lighted by Figure 7(c) which again plots a stacked barplottie

subsessions with the largest number of unique profile régu@se
contributor is that the user’s own profile only counts onceei@ll,

these numbers are drastically lower than the size of thadsieip

graphs may indicate. Golder et al. [15] report that the mean/
dian number of friends is 144/180 while Joinson et al. [1pore

85/124.

6. OSN SESSION CHARACTERISTICS

While OSNs are not yet universal they are rapidly addingsuser
and change the way that users interact with each other. We now

ask if their general traffic characteristics differ from etfweb ser-
vices in terms of top-level characteristics such as sessm@s and
durations. For example, this is useful for developing teses for

evaluating the performance of new P2P-based OSNSs, sucleas Pe

SoN [6].
6.1 Bytes per OSN session

We start by examining how much OSNSs are contributing to the

total traffic in terms of volume. We find that the contributierstill
relatively small. Figure 8 plots the Cumulative Complenagnt

Distribution (CCDF) of the number of bytes per OSN subsessio

for Facebook and StudiVZ fox2 on a log-log scale. All plots for

all OSNs and both ISPs show that bytes per session are @mtsist

with a heavy-tailed distribution and not with an expondntiae.
This implies that a small fraction of all OSN sessions is oesp

significantly heavier tails.

Figure 9(b) plots the Probability Density Function (PDF}toé
logarithn® of the same durations as shown in Figure 9(a). We again
see that the total duration is only slightly longer than th#hanti-
cated duration. Indeed, more than 10 % of the authenticaed s
sions and 12.5 % of the total sessions last longer than orre Wau
also observe a peak between 5 sec and 2 min which appearséo com
from sessions where users only briefly check in with the O8N. |
deed, we find that most of them consist of only one or two astion
Comparing the durations of Facebook sessions to those di\&Giu
within the traces alSP-A, we see there are more longer as well as
shorter lasting sessions in Facebook than in StudiVZ. IreBagk
we have a clear mode between 10 sec to 1 min while the mode is at
1-5 minutes for StudiVZ.

Figure 9(c) shows the PDF for Facebook and Hi5 for the 7-day
traceB3. We again see that the usage of different OSNs by users
of the same ISP differs. For Facebook we notice more shaoter ¢
nections as well as many longer lasting ones than for HiSsacabt
ISP-B traces. The session durations for LinkedIn (not shown) for
all traces fall between those of Facebook and Hi5. Some leageb
sessions last as long as 24 hours and thus increase the maan du
tion for Facebook alSP-B. But there is also a significant fraction
between one to ten minutes.

When comparing the durations of Facebook across ISPsby e.,
comparing Figure 9(b) with Figure 9(c), we see that witt8R-B

5Coupled with a logarithmic scale on theaxis, plotting the den-
sity of the logarithm of the data facilitates direct comparis be-
tween different parts of the graphs based on the area under th

sible for most of the bytes imposed on the network by this OSN. curve.
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Figure 9: CCDF and PDF of durations of total and authen-
ticated OSN subsessions: Facebook and StudivVZ (CCDF and
PDF for A2) and Facebook and Hi5 (PDF forB3.)
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Figure 10: Histogram of authenticated Facebook subsessien
per IP address for A2 and B3.

Facebook has more shorter connections as well as many l@asger
ing ones. It appears, that users at this ISP stay active cgbBak

for significantly longer time periods. We observe this diffiece
across all traces. We also note the spike at 1 day—likely due t
automatic renewal of IP addresses which ends the sessioier Ma
et al [25] show that withinSP-A there is a large fraction of users
that use idle disconneétsThis explains the shorter durations. On
the other hand, the shape of the distributions for Hi5 andliSf

are similar even though these are different OSNs at diffd&fPs.

6.3 Number of subsessions within a session

Lastly, we explore how often a single user has multiple sstbse
sions with an OSN. Figures 10(a) and 10(b) show histogrartteeof
number of subsessions per anonymized IP address for Fdceboo
within A2 andB3. We observe that it is common to have multiple
sessions per IP. This can have multiple reasons, e. g. pieuttom-
puters using a single DSL line via NAT box; multiple usersngsi
the same computer; and reuse of IP addresses to differensGtsL
scribers. WithinSP-A we see a smaller number of subsessions per
anonymized IP address thaniBP-B. Given that IP addresses are
assigned dynamically one can expect the number of sesséoihB p
address to increase with the length of the trace. We, for plam
see this across OSNs withi@P-B when we compare results from
B2 to those of83. Nevertheless, this effect does not fully explain
the difference between Figures 10(a) and 10(b). There aoedift
ferences between OSNSs. For examplasatA there are more ses-
sions per IP address for Facebook than for StudiVZ in bottesa
Moreover, atSP-B Hi5 has a higher likelihood of two sessions than
Facebook across all tracesiap-B.

To differentiate between multiple subscribers and mudtigers,
we also checked how many subsessions a single session tlasing
same session cookie) has. While there are many sessiormtleat
only a single subsession, there are a number of users (affietn
by the session cookie within Facebook) that repeatedIyltgjout
from Facebook. Indeed, 15 % of all Facebook sessions redorde
at ISP-A include more than 3 subsessions. In addition, we have
observed a session with more than 387 subsessions. Véthin
andB3 a single IP address which has many authenticated sessions
skews the results. For other OSNs we see a smaller number of
subsessions per session, i. e., for Hi5 and LinkedIn we ssdhan
5% of the sessions with more than 3 subsessions. Unfortynate
this kind of analysis cannot be extended to StudiVZ as StddiV
assigns a new session cookie for each authenticated sidrsess

6An idle disconnect is a feature of home routers (NAT boxea) th
disconnects its DSL connection when the user is idle for stime
Usually, such routers automatically reconnect the DSL eotion
whenever there is new activity. This usually implies a cleimghe
IP address for the line.
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Figure 11: Actions after inactivity period for Facebook andA2.

DYNAMICS WITHIN OSN SESSIONS
Next, we delve into the OSN sessions and ask how users behave
within a session. This is crucial for deriving detailed misdier
OSN evaluations.

7.

7.1 Active vs. inactive time

In principle, we notice that the durations of Facebook sessi
are longer than those of other OSNs. We next examine if thesuse
are actually continuously interacting with the OSN or ifstkiura-
tion is an artifact of the session handling. Therefore, wamate
OSN action sequencéy grouping all actions from the same OSN
session as long as the time between actions never exceeauscati
value of 5 minutes. Then, we use this information to caleuthe
percentage of time users are active on the OSN and the pageent
of time they are inactive. An inactive user is authenticatét the
OSN but is currently not interacting with it.

When we consider all sessions users are typically activiaglur
the whole session. If we only consider those sessions thianiare
than 1 minute, only 50 % of the users remain active the whole.ti
Once we consider only those sessions that last for at leasti#0
utes we find that hardly any users continuously interact Wwébe-
book.

We notice that during active periods, Facebook users ysdall
not visit any other sites. Only 7 % of all sessions Aarvisit other
sites. Among the most popular domains as@. comand photo
community sites. While the users are inactive on Facebdtds s
such as Google, YouTube, and Apple are popular. Other uders a
ditionally visit other OSNs, news sites, the ISP home patge, e

Next, we explore the features with which users resume ttseir u
age of Facebook after a period of inactivity. Figure 11 shtves
relative histograms for inactivity breaks of length 5, 26820 min-
utes. The distribution changes drastically. After a shoetk, mes-
saging is dominant. However, after a 10 minute break, honde an
offline take over in importance. This trend continues if wa-co
sider 20 minute breaks. However, for longer breaks the siatg
the same as for 20 minutes. In addition, we note that relevanc
photos, profile, search, friends also increase slightly.

7.2 Feature sequences

Given the above observation regarding which features gua-po
lar after a break, we now explore the relative popularityeattire
sequences within the user clickstreams for Facebook sesswiith

arrows without
labels are 1%

Figure 12: Typical click sequences for Facebook an@z2 (only
transitions > 1 % are shown).
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Figure 13: PDF of inter-action times within Facebook cate-
gories (A2).

at least ten active requests. The corresponding transitamram

is shown in Figure 12 for tracs2. We find that the prominent fea-
ture categories, seen in Figure 3(a), are also dominant Aciev
categories account for 50 % of the transitions and they aidithat
users tend to stay within their feature category, i. e., froessag-
ing to messaging (20 %), from home to home (9 %) from photo to
photo (8 %), and from profile to profile (5%). However, it isals
interesting to see that from home, messaging is the mosy ldee-
egory followed by profile. From profile, the users switch tortey
photos, or messaging.

For StudiVZ we see a similar trend—users tend to stay within
their feature categories. But for Facebook the dominartufea
are profiles (9 %), friends (7 %) and photos (7 %). The tramsdti
between features are from friends to profiles (6 %) and from pr
files to home, photos, and friends (4—6 %).

Then, we explore how much time a user needs for such transi-
tions. Figure 13 shows a density of the inter-arrival time ge-
lected feature groups. We focus on home, messaging, proffite,
tos, and offline as they are among the most popular featuis an
their inter-arrival time distributions differ. The digbritions for of-
fline differs the most from the others. This is not that swwipd
given the previous discussions about periods of inactikityssag-
ing also has some larger inter-arrival times. One possiaeaa-
tion is that users need some time to compose their texts. | ofi
typically have shorter inter-arrival times and photos diteshorter.

A user is likely to stay within the same category while exjigr



different profiles/photos. For photos this is usually siifigd by
photo album features. Home has a bimodal distribution. g v
short inter-arrival times are likely due to triggered acto The
other mode is likely due to its use as navigation site.

8. RELATED WORK

In the past, social network analysis was the domain of sociol
gists and anthropologists [40]. Their typical tools areveys and
interviews which have the drawback that they can usually cap-
ture a small user base. Nowadays, with the advent of onlicilso
networks, the networking community is capable of gatheldange-
scale data sets from OSNSs, e. g., by crawling the OSN, byyedgsi
monitoring user interactions, or by collaborating with aBNDop-
erator.

In this paper, we examined actual traffic across multiple SN
both at a macro as well as at a micro-level, to understandhgser
havior. Therefore, our work is related to the efforts thdy i@n
surveys [10, 35, 1] and interviews [17]. Our findings regagdi
the feature popularity match well with the findings of Joim§b7]:
OSN users focus on messaging, browsing profiles, and shafing
photos. Hence, one can conclude that the users impressiart ab
how they use OSNs agrees with how they actually use them. In
addition, we have a significantly larger user base, explaikipfe
OSNs, and explore within session characteristics.

Other efforts use network traces to characterize indilid&Ns
or individual features of OSNs. For example, Gill et al. [$8}dy
patterns of access to YouTube from a campus perspectivek Zin
et al. [42] also study YouTube using passive traces from gpoam
network. They explore the popularity of video clips and stibat
local and global popularity of video clips differ which supis the
case of local caching. Nazir et al. [28] focus on a specifituiea
of Facebook: Third party applications. By offering diffat&inds
of applications on their own servers they are able to moratar
characterize their usage. By further studying the intévastbe-
tween Facebook, external applications, and the OSN usezis &ta
al. [29] identify some potential performance bottleneclhin the
Facebook server infrastructure. Using network data of aenebed

However, all of these studies can only study the static iclat
ships in the OSN rather than how the users actually interé&bt w
the OSN.

By crawling specific OSNs other studies have focused on the
topology of the OSN. For example, the study by Mislove et28] [
focuses on the growth of the Flickr’s network and if it adtseiethe
preferential attachment property. This is complemente€hg’s
work on social cascades in Flickr [8] and Liben-Nowell’s wan
the relationship between geography and online friendships/e-
Journal [23]. Gjoka et al. [14] craw! Facebook user profitestudy
high-level characteristics of application users and ttavgn pat-
terns of applications. Lampe et al. [22] crawl Facebook teide
mine the popularity of specific profile elements. We in costtiex-
amine how many profiles in general and how many unique profiles
are actually accesses by users within an OSN session.

Recent work has focused on understanding how users interact
with the OSN or with other users using crawls of the OSN sites.
For example Viswanath et al. [39] repeatedly crawled thdsngfl
specific Facebook users and used the differences to deteomin-
munication patterns. Valafar et al. [38] examine intexatiwithin
Flickr between the photo owners and their fans. Torkjazl.§8&]
find that a large fraction of the MySpace user IDs are inaative
deleted by inspecting the last login time.

In concurrent work, Benevenuto et al. [5], also analyzedkeli
stream data to develop models of OSN user behavior. Their dat
source is a Brazilian social network aggregator. Theirysigifo-
cuses on Orkut as it is the most popular OSN within their deta s
Overall, their study identifies similar trends to ours.

9. SUMMARY

We successfully reconstructed OSN clickstreams from
anonymized HTTP header traces obtained from passively
monitored network traffic with tens of thousands of users at
different ISPs. We present a customizable methodology for
identifying OSN sessions and user actions within the OSN. We
apply our methodology to four OSNs: Facebook, Hi5, LinkedIn
and StudiVZ. Our methodology enables us to extract OSN usage

time period from Facebook messages and pokes sent by colleggnformation across a wide range of features, from coarser-nf

students Golder et al. [15] are able to characterize angtieee
of Facebook: The messaging activity. We in contrast focuthen
larger picture and can examine transaction sequences.

By collaborating with specific OSN operators Chun et al. j&] a
able to compare the structural characteristics of theiactietwork
with the friends network relying on guestbook logs from Cyldo
Kumar et al. [21] explore how path properties, includingnaer
and density, of the social network change over time for Flarkd
Yahoo 360! based on timegraphs from these networks. As such,
both of these studies focus on the graph properties ratherdh
how users use the OSN.

A few studies have tried to explore the differences and commo
alities between OSNs. For example, Backstrom et al. [4]}yshav
groups form in social networks across LiveJournal and DB{R;
mar et al. [21] explore how path properties, including ditenand
density, of the social network change over time for Flickd &fa-
hoo 360!; and Mislove et al. [27] explore the degree and elust
coefficient of the embedded networks and confirm the power-la
small-world, and scale-free properties of online sociaivoeks for
Flickr, LiveJournal, YouTube, and Orkut. While the prewstu
mentioned studies focus on the graph properties of the@obm-
munities Krishnamurthy and Wills [20] characterize priyaset-
tings and their usage across Facebook, MySpace, Bebo, atd Tw
ter while Cha et al. [7] study how the popularity of video camt
changes with the age of the content for YouTube and Daum UCC.

mation like session duration to minute details about thelkiaf
profiles the user accesses. For example, we find:

e Users tend to stay within the same activities (feature cate-
gory). Moreover, we find that users are “trapped” in some
categories, e. g., photos and messaging.

While user sessions can be quite long (typicaly80 min-
utes), we find, e.g., for Facebook, that for long sessions
(> 10 minutes) users do not continuously interact with the
OSN.

While we selected the specific set of OSNs based on the cri-
terion that they feature profiles, they are the most popular
feature only within LinkedIn and StudiVZ. With regards to
transfer volume, photos are currently the most important ca
egory, although the volume is significantly lower than tHat o
typical Web sessions.

We are able to identify the features that are important taifees
and point out differences from other Web services. In addjtive
gathered some insights on how to generate workloads fouatval
ing novel OSNs.

The next steps involve customizing our methodology for gdar
set of OSNs. Moreover, we are planning to dig even deepethisto
intra-session characteristics. In addition, we are siguai collab-
oration with researchers in the social sciences to bett@enstand
the implications of our observations.
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