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ABSTRACT
Online Social Networks (OSNs) have already attracted more than
half a billion users. However, our understanding of which OSN fea-
tures attract and keep the attention of these users is poor. Studies
thus far have relied on surveys or interviews of OSN users or fo-
cused on static properties, e. g., the friendship graph, gathered via
sampled crawls. In this paper, we study how users actually inter-
act with OSNs by extracting clickstreams from passively monitored
network traffic. Our characterization of user interactionswithin the
OSN for four different OSNs (Facebook, LinkedIn, Hi5, and Stu-
diVZ) focuses on feature popularity, session characteristics, and the
dynamics within OSN sessions. We find, for example, that users
commonly spend more than half an hour interacting with the OSNs
while the byte contributions per OSN session are relativelysmall.

Categories and Subject Descriptors
C.2.2 [Computer-communication networks]: Network pro-
tocols—Applications; C.2.3 [Computer-communication net-
works]: Network operations—Network monitoring

General Terms
Measurement, Performance

Keywords
Clickstream analysis, HTTP, Online social networks, Feature pop-
ularity, Network measurement, Session characteristics, User inter-
actions

1. INTRODUCTION
Online Social Networks (OSNs) such as Facebook, MySpace,

LinkedIn, Hi5, and StudiVZ, have become popular within the
last few years. OSNs form online communities among people
with common interests, activities, backgrounds, and/or friendships.
Most OSNs are Web-based and allow users to upload profiles (text,
images, and video) and interact with others in numerous ways. The
contemporaneous rise of Web 2.0 technology and user-generated
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content has resulted in over half a billion users being present on the
OSN ecosystem. Facebook alone adds over 377,000 users every
twenty-four hours and is expected to overtake MySpace in thetotal
number of users in 2009 [2].

This sheer number of users makes OSN usage interesting for dif-
ferent entities:(i) ISPs have to transport the data back and forth
and provide the connectivity,(ii) OSN service providers need to
develop and operate scalable systems, and(iii) researchers and de-
velopers have to identify trends and suggest improvements or new
designs. The questions this paper aims at answering therefore in-
cludeWhich features of OSNs are popular and capture the users at-
tention?, What is the impact of OSNs on the network?, What needs
to be considered when designing future OSNs?, Is the user’s behav-
ior homogeneous?

A recent study exploring the properties of OSNs worth exam-
ining and present methodologies available, discusses various chal-
lenges associated with measuring them [19]. Earlier work stud-
ied the graph properties of the online communities, high level
properties of snapshots of individual OSNs, and issues related to
anonymization and privacy. However, they can only capture the
state of an OSN as inferred by some specific measurement tech-
nique, e. g., crawling. Furthermore, there are no known studies
which document how users interact with various OSNs beyond
those that rely on surveys [1, 10, 35] and interviews [17]. More-
over, such techniques are limited in scope and cannot capture OSN
macro-level properties such as overall volume of traffic, its dynam-
ics, etc. or micro-level properties such as what happens within an
OSN when users interact with it. To analyze such properties one
has to capture the interactions of the user with the OSN over time
which is impossible via crawling.

This paper focuses exclusively on these understudied properties
by examining actual user clickstreams. We extract clickstreams
from several anonymized HTTP header traces1 from large user
populations collected at different vantage points within large ISPs
across two continents. We focus on OSNs whose primary content
are user maintained profiles. We chose Facebook, LinkedIn, Hi5,
and StudiVZ [12, 24, 16, 34] because they are popular, well known,
and well represented in our traces. We present a methodologythat
allows us to reverse engineer user interactions with OSNs from net-
work traces.

Unfortunately, currently available clickstream data setsare very
limited. In principle, there are three ways of gathering such data,
either on the server, on the client side, or at a proxy/aggregator.
As server-side data is considered proprietary, datasets are limited.
For search engines there are some examples [31, 32, 33]. How-

1All IP addresses are anonymized and HTTP content is excluded.
Furthermore, we apply anonymization to any other field that has
the potential to contain user related data before processing the data.



ever, none of the server-side data sets can include the full click-
stream as the full clickstream consists of all user accessesto all Web
pages related to the OSN or the search query. Previous work based
on client-side data gathering has focused on Web search click-
streams [18] or on asking volunteers to interact with the OSN[17].
Other approaches include surfing the Web using additional browser
plug-ins, e. g., [41], or enhancing HTTP proxies with extended log-
ging functionality, e. g., [3]. However, ISPs servicing residential
customers do not necessarily use proxies nor do volunteer interac-
tions with an OSN necessarily correspond to their natural behav-
ior. Recently, Benevenuto et al. [5] have analyzed clickstream data
from a Brazilian social network aggregator.

Using our methodology we are able to track the beginning and
ending of a user’s interaction with an OSN as well as various intra-
OSN actions performed by the user. We apply this methodologyto
each of the four selected OSNs and validate the results usingtraces
of manual interactions with these OSNs. We present results on
feature popularitywithin OSNs, OSN session characteristics, and
on dynamics within sessions. For example:

• We find that users commonly spend more than half an hour
interacting with the OSNs. For Facebook users, we verified
that while users interact with the OSN, only a minority of
them accesses any non-Facebook sites.

• While we selected OSNs based on the criterion that they fea-
ture profiles, profiles are only the most popular feature within
LinkedIn and StudiVZ. Within Facebook and Hi5 profiles are
among the popular features besides downloading photos and
exchanging messages. In addition, the most popular features
in terms of clicks usually do not contribute the most to the
traffic volume. With regards to volume, photos play a major
role, especially with regards to uplink bandwidth.

• We find that the number of accesses to profiles within the
session is highly skewed. While there are some sessions with
many accesses (> 100) most users only access a handful. In-
deed, in terms of unique profiles the number is even lower.
This indicates that the richness of the friendship graph is not
a good indicator on how many profiles will actually be ac-
cessed during a session.

This results in an in-depth understanding of what happenswithin
an OSN and also allows us to look for similarityacrossOSNs. Our
work complements the efforts of the OSN community towards a
better understanding of how OSNs are used. Service providers ben-
efit by knowing OSN features that are of significant interest to own
users and by understanding what else on the Web is important to
their users. This allows them to influence and improve their own
service offerings. Researchers can propose improvements or sim-
plifications for existing OSNs or design OSNs with novel features.
From an ISP viewpoint OSNs currently contribute a lot less than
peer-to-peer applications in terms of bytes. However, OSNsmight
add features that increase the per-user bandwidth demand. Given
this potential for traffic explosion (e. g., when video becomes pop-
ular within OSNs), it is imperative to understand the network-level
dynamics of OSNs.

The remainder of this paper is structured as follows: In Section 2
we give an overview of OSN features and introduce our terminol-
ogy. After giving a description of the data sets we use in Section 3,
we discuss our analysis methodology, Section 4. We then present
the results of our macro analysis with regards to feature popularity
analysis in Section 5, and session characteristics in Section 6, fol-
lowed by our micro-level analysis regarding the dynamics within

OSN sessions in Section 7. Finally, after reviewing relatedwork
in Section 8, we summarize our experience and suggest futurere-
search directions in Section 9.

2. OSN FEATURES AND TERMINOLOGY
Before delving into the user session and clickstream analysis we

introduce the terminology we use in the rest of the paper by dis-
cussing which features OSNs offer and how a sample OSN session
is seen from a network perspective.

2.1 OSN features
Most OSNs include features for creating user accounts and au-

thenticating users. A user’s basic profile includes entriesfor age
or home town. OSNs offer a variety of different features thatare
commonly accessible only to those users that are logged in. Users
can update their profiles (contact information, photographs, infor-
mation about hobbies, books, movies, music, etc.), browse other
users’ profiles by searching and subsequently obtaining lists of their
friends and narrowing them via categories like schools or work
sites. They can add friends, invite new friends, join groupsor net-
works, communicate with other users via OSN-internal emailser-
vices, writing on other users’ “walls” or on discussion forums, and
adjust their privacy settings.

Several OSNs offer a platform to build third-party applications;
these are hosted on external servers by the individual application
writers and allow OSN users to exploit the social graph and down-
load and interact with each other through the application. Popular
applications are of the social utility variety (e. g., dating) or games.
There are also several applications that are internal to theOSN. We
do not explore specific application features in this paper.

2.2 A “sample” Facebook session
Next, we show how a sample OSN session is seen from a net-

work perspective. Users must login before accessing any Facebook
feature and this starts theOSN session; after logging in the user
is authenticated. At the end of the session alogout results in the
user becomingoffline. The time between login and logout is an
authenticated OSN session, while the time before logging in and
after logging out is anoffline OSN session. A subsequent logging
in ends the current offline OSN session and starts another authen-
ticated OSN session. The overall time from a first contact of the
OSN site or a logout to another logout is anOSN subsession.

Once authenticated, a user starts using the Facebook features—
we label these asactionsor clicks. Our sample OSN session (shown
in Table 1) has six actions (a)–(f); each of which corresponds to a
user click. We group actions intocategories—e. g., the category
“photos” includes managing, uploading, displaying, commenting
on, etc. of photos. Such interactions result in multiple HTTP re-
quest response pairs (rr-pairs) seen on the network. Table 1 lists
all rr-pairs towww.facebook.com. OSNs sometimes use HTTPS,
HTTP over SSL, rather than HTTP for rr-pairs carrying account
credentials or CAPTCHAs. For example Facebook uses HTTPS
for the login action—rr-pair 2 in Table 1. These are not easily ob-
servable and thus a HTTP rr-pair only log does not include this
request due to the SSL encryption. But, we do observe traffic over
a HTTPS connection at time 29.121.

Not all actionscorrespond to a single rr-pair. For example, the
“open friend list” action generates rr-pairs 4–6. Rr-pair 4is di-
rectly triggered by the user’s mouse click while rr-pairs 5 and 6
are generated by Facebook’s AJAX-based user interface. We call
the first kind of rr-pairsactiveand the othersindirect. The indi-
rect requests also include requests for loading embedded images,
JavaScript snippets, etc. (not shown in Table 1). An action refers



Table 1: Facebook interaction example: action and rr-pairsof the requests to the hostnamewww.facebook.com

Time [sec] Action/Click No. Proto Method URI

0.000 a) openwww.facebook.com
9.944 1 HTTP GET /

27.696 b) login, enter password
29.121 2 HTTPS POST /login.php?
31.012 3 HTTP GET /home.php?
45.513 c) open friend list
47.631 4 HTTP GET /friends/?ref=tn&quickling[version]=141637;0&_ecdc=check
48.672 5 HTTP GET /friends/ajax/friends.php?membership=1&_ecdc=check
48.675 6 HTTP GET /friends/ajax/filters.php?id=XXX&_ecdc=check
56.441 d) select profile of a friend
59.199 7 HTTP GET /profile.php?id=XXX&quickling[version]=141637;0&_ecdc=check
95.921 e) write “posted something on the wall” on friends wall
97.947 8 HTTP POST /ajax/profile/composer.php?_ecdc=false

102.841 f) logout
105.029 8 HTTP GET /logout.php?h=c909dd2db7b0a83b238ea70321d2041b&ref=mb
105.341 9 HTTP GET /index.php?lh=c909dd2db7b0a83b238ea70321d2041b&

Table 2: Overview of anonymized HTTP header traces.

ID start date dur sites size rr-pairs

A1 22 Aug’08 noon 24h all >5 TB >80 M
A2 18 Sep’08 4am 48h all >10 TB >200 M
A3 01 Apr’09 2am 24h all >6 TB >170 M
B1 21 Feb’08 7pm 25h OSNs >15 GB >2 M
B2 14 Jun’08 8pm 38h OSNs >50 GB >3 M
B3 23 Jun’08 10am >7d OSNs >110 GB >7 M

to the active and its associated indirect requests. Therefore, the
number of bytes in an action is the sum of bytes of all its requests.

Indirect requests are not limited to the main domainwww.
facebook.com. They can also be directed to other locations, e. g.,
Facebook utilizes a CDN; most Facebook images are retrieved
from static.ak.fbcdn.net. In addition, Facebook pushes in-
formation to their users via the serverschannel.[a-Z0-9]*.
facebook.com.

Table 1 shows that we can in principle identify OSN sessions and
the associated clickstream from a network perspective by passively
monitoring the rr-pairs.

3. DATA
In this section we describe the anonymized data sets gathered at

different vantage points representing actions of tens of thousands
of OSN users within two large international ISPs. We focus on
OSNs that allow users to maintain profiles and have differentcom-
munication mechanisms with Facebook as an obvious candidate.
Hi5 and LinkedIn are also popular in the U. S. StudiVZ is the most
popular OSN in Germany after YouTube (which focuses primar-
ily on video and has limited internal communication mechanisms)
and Facebook. We thus chose these four OSNs to study. Ac-
cordingly, the sites monitored for the OSNs were:facebook.com,
thefacebook.com, fbcdn.net, fbcdn.com (Facebook),hi5.
com, hi5modules.com, hi5networks.com (Hi5), linkedin.com,
lmodules.com, linkedinlabs.com, linkedin.custhelp.com
(LinkedIn), andstudivz.net, studivz.de, studivz.ivwbox.
de, imagevz.net (StudiVZ).

We had access to multiple sets of anonymized HTTP header
traces (see Table 2) from two commercial ISPs,ISP-A (tracesA1,
A2, and A3) and ISP-B (tracesB1, B2, B3). Each site connects

more than 20,000 DSL users to the Internet via at least a 1 Gbps
uplink. The monitoring infrastructure uses Endace DAG network
monitoring cards [36] for traffic capture. The data anonymization
and HTTP header extraction is performed immediately on the se-
cured measurement infrastructure via the HTTP analyzer of the Bro
IDS [30]. While some traces include all rr-pairs some only include
rr-pairs to the OSN sites (see Table 2). To resolve the sites to ap-
propriate IP addresses we did DNS resolutions at multiple vantage
points to exclude biases due to DNS load balancing or traffic flow
optimizations. Unfortunately, this restriction to OSN sites means
that we do not have HTTPS flow data available for some of these
traces. To compute the HTTPS flow records we use custom soft-
ware with a 15 second inactivity timeout. Table 2 gives an overview
of the data traces including when they were gathered (local time
zone, all in 2008/09) and approximate numbers on their overall size
before HTTP header extraction and the number of rr-pairs that they
contain.

In general, we observe that only a subset of the 20,000 DSL
users actually use any OSN during the trace collection period.
Overall we identified roughly 2500 (6000) users atISP-A (ISP-B)
who use any of the OSNs under study. We observed significant ac-
tivity for Facebook and StudiVZ inISP-A and Facebook, Hi5, and
LinkedIn in ISP-B—well beyond 1000 users and 100,000 rr-pairs.

As we cannot show all plots for all traces we pick representative
plots for presentation—usually either from traceA2 or B3 as these
are the ones with the largest number of rr-pairs. Unless stated dif-
ferently, similarities and differences between OSNs for one trace
are also observable in other traces from that ISP.

4. APPROACH
To understand how users interact with OSNs, we extractOSN

clickstreams from various anonymized HTTP header traces (see
Section 3). From this main data source we identify:

OSN session clickstreamsfor the subset of users who interact
with an OSN under study (Both ISPs).

All HTTP request/response pairs for all users who interact with
any Web server (ISP-A only).

Standard browsers, proxies, or social network providers cannot
provide us with this kind of data. After a short summary we present
our general analysis methodology and its validation in moredetail.



In summary, our methodology relies on identifying those HTTP
request response pairs (rr-pairs) that are part of an OSN session and
then grouping them into sessions utilizing the OSN session cook-
ies. Within a session, we separate the time that a user is actually
authenticated (online) from the period he is offline. Next, we sep-
arate direct user actions, called active rr-pairs, from follow-up re-
quests, called indirect rr-pairs. Finally, we associate a category,
e. g., photo, profile, or home, with each rr-pair. To cross check our
methodology we rely on a set of manual traces. The manual traces
include both, the action that the user performed on the OSN site and
the resulting rr-pairs. Therefore, the manual traces serveas ground
truth for the validation of our methodology.

4.1 Methodology
After using the typical tricks to extract clickstreams [18], e. g.,

the HTTP analyzer of the Bro IDS [30], we need to group the clicks
into OSN sessions and identify which of the OSN features are ac-
tually used. In principle, the approach outlined below can be used
for any web-based service that requires login and offers multiple
different features. However, understanding how users interact with
the OSN is of particular interest due to their popularity, their di-
versity, their complexity, and their continual evolution.Indeed, as
an OSN becomes more popular it get closer to certain scalability
limits of different parts of the Web service infrastructure. As such,
some OSNs delegate static content not only to separate servers but
to separate domains while others rely on CDNs to increase scalabil-
ity. Moreover, due to changes in feature sets they may restructure
their software interface, e. g., as Facebook did in early September
2008 [11]. Therefore, the analysis software needs to be easily cus-
tomizable and highly flexible.

OSN session handling
Web-based service sessions are much more complex than the sim-
ple one outlined in Table 1: Sessions from different users overlap,
users may utilize multiple OSN sessions in parallel with different
user names, users may not logout at the end of a session, or thetrace
may start in the middle of an OSN session, etc. We next address
how we identify an OSN session.

Since OSNs require login they must track their users via the ap-
propriate HTTP mechanism: Cookies. They can be set via standard
SET-COOKIE HTTP response headers and then the client returns the
cookie in subsequent HTTP requests via theCOOKIE request header.
OSNs typically rely on asession cookiewhich is assigned at the
start of the first OSN session. Even if it is changed during theses-
sion we can track such changes. In some OSNs, these cookies even
persist if the user logs back in after a logout. We can thus group
rr-pairs by the anonymized IP address and the anonymized session
cookie. However, OSNs are not standardized. Hence, each of them
uses different kinds of cookies. Most OSNs use separate cookies
in addition to the session cookie to refer to the OSN user and their
login, typically an email address. We refer to these asuser cookie
andlogin cookie.

Within such a group of rr-pairs we have to identify logins and
logouts to distinguish authenticated and offline periods ina session.
We refer to this process asstate handling. Most OSNs appear to use
separate scripts for handling login and logout; these update the user
and the login cookies.

For sessions that start and end in the middle of our traces we
can identify a login/logout process by looking for the specific URI
(e. g., Facebook logout URI is/logout.php?). Some OSNs, in-
cluding Facebook, LinkedIn, and StudiVZ, use HTTPS (see Ta-
ble 3) instead of HTTP for these scripts. The remainder of the
OSN session is typically not encrypted. Thus, we augment our

State:
undef

State:
authent icated

State:
offl ine

new session 
cookie 
|| new IP

login detected

logout detected

relogin detected

user/login cookie present

Figure 1: State handling diagram for OSN sessions.

anonymized HTTP header traces with flow traces2 of HTTPS ac-
tivity on port 443. Note, after login and logout, users are usually
redirected to a welcome/goodbye page. By checking for the spe-
cific URIs of these pages in combination with prior HTTPS activity
we can identify such logins/logouts.

For sessions that start before the beginning of the network-based
observation we can check if they are authenticated or offlineby
looking for the presence of the user/login cookie in the HTTPhead-
ers. If they are present the session is authenticated, else offline. For
sessions where no logout was detected within the network-based
observation we have no way to infer their ultimate duration;thus
we assume that they ended with the last observed request. Forthese
sessions we underestimate their durations and volume. Given the
fact that we do not have HTTPS data forISP-B and the smaller user
count for LinkedIn and Hi5, we only have reportable login/logout
data onISP-A for Facebook and StudiVZ: For StudiVZ, we hardly
observe any sessions that are missing the login, due to automated
logout after an idle timeout. However, we observe sessions that do
miss their logout. The numbers for StudiVZ and Facebook are in
the same order of magnitude, and around 13–19 %. For Facebook,
we find that 7–8 % of the authenticated sessions are missing both,
login and logout, while 10–15 % are missing only their login.The
principle state handling is shown in Figure 1.

Rr-pairs classification
Table 1 underscores our experience that it is possible to infer the
OSN feature (action) associated with each rr-pair by inspecting the
URI. This is true for all active rr-pairs and we built suitable pat-
terns. Classification of rr-pairs is complex due to embeddedobjects
and rather than finding patterns for all, we use the HTTPREFERER
header if set. These requests all include an active rr-pair in their
referrer chain. However, not all rr-pairs include the OSN session
cookie or a referrer; especially in requests to sites that are hosting
static helper objects and scripts. We associate these with the last ac-
tive rr-pair. This approach can lead to misclassification ifthe same
IP address is involved in multiple parallel OSN sessions. However,
if there are multiple concurrent ongoing sessions the likelihood that
another user issues a request while the first user is still retrieving all
embedded objects is low. If we are unable to find an action for an
rr-pair, it is classified asUNKNOWN.

OSN specifics
The OSN-specific parts include a combination of relatively sim-
ple pieces (e. g., identifying the OSN sites and cookies) andsome
more complex classifications of the rr-pairs (e. g., profile analysis,
specific login and logout determination). Section 3 lists the OSN-
specific sites while Table 3 lists the specific cookie names that we
use for each of the four OSNs.

2A flow summarizes a stream of packets that are selected by some
criteria such that the time between packets of a flow never exceeds
a specific timeout value. Our criterion is the five-tuple consisting
of anonymized IP addresses, transport protocol, and port numbers.
We use a timeout value of 15 seconds.



Table 3: OSN specific information: cookies and login/logoutprocedure.

OSN session user login login logout
cookie cookie cookie HTTPS HTTPS

Facebook datr= cuser= login_x= ✔ ✘
Hi5 JSESSIONID= Userid= Email= ✘ ✘
LinkedIn bcookie= leo_authi_token=LIM: n/a ✔ ✔
StudiVZ PHPSESSID= UserID1= n/a ✔ ✘

Table 4: Examples of OSN specific patterns for the classification of home and sending a message.

OSN category action method pattern

Facebook home index GET ^\/index\.php(\?(.*))*$
Hi5 home home GET ^\/friend\/displayHomePage\.do$
LinkedIn home home GET ^\/home(\?*(.*))$
StudiVZ home start GET ^\/Start(.*)$
Facebook messaging send message POST ^\/inbox\/(\?*(.*))$
Hi5 messaging send message POST ^\/friend\/mail\/sendMail\.do$
LinkedIn messaging send message POST ^\/msgToConns(\?*(.*))$
StudiVZ messaging send message POST ^\/Messages\/WriteMessage(.*)$

The first step in the rr-pair classification is to determine ifit is
hosted on the main site. The next step is to determine if a rr-pair
is active or indirect. Most requests not on the main site are in-
direct. However, not all other requests are active. For example,
requests triggered automatically by AJAX should not be classi-
fied as active. To identify those, we use the manual traces (see
Sec. 4.2) to develop specific patterns. For Facebook we initially
consider all URIs with the following patterns as active:.*\.php.*,
.*/\$, .*/\?.*. We then use specific patterns to exclude some
URIs, e. g.,^/js_strings.php, which enables word completion
for input fields. We again rely on pattern matching to identify the
action/click that caused the active rr-pair via a configuration file
which lists the OSN-specific patterns. Table 4 gives examplepat-
terns for all OSNs.

At this point we have identified an action for each rr-pair. How-
ever, given that the number of actions is of the order of 200–
300, we group actions into categories. We distinguish between
the following categories: profile, photos, friends, home, offline,
apps, messaging, search, video, groups, advertisement, osnspecific,
other, and UNKNOWN. While most of these are obvious, note that
home includes the login and logout rr-pairs, and osnspecificactions
are, e. g., notes for Facebook and account migration for StudiVZ.
Whenever the category of an active rr-pair is profile, we extract fur-
ther details on profile accesses. Specifically, we count how often a
user accesses his own profile, the profile of another user, andof
how many other users. To account for changes in the OSN archi-
tecture we distinguish between actions that have been verified via
a manual trace and rr-pairs for which the category is guessedgiven
the knowledge about the structure of the OSN site and the URI.

4.2 Customization and validation approach
We need to be able to customize our approach to a set of spe-

cific OSNs and validate it. Therefore, we createmanualtraces for
which we know the ground truth—by recording the actions while
passively monitoring our interactions with the specific OSN. When
collecting the manual traces we make a good faith effort to explore
the feature set of the OSN that users might execute.

Manual traces enable us to identify the site names that belong
to an OSN such that we can narrow our trace collection process
to the relevant subset of traffic. We can also identify the various
cookies that are used to track user sessions by the OSN, checkif

Table 5: Overview of manual traces.

OSN traces size actions rr-pairs

Facebook 11 32 MB 344 5036
Hi5 6 50 MB 368 4413
LinkedIn 8 106 MB 411 6363
StudiVZ 11 27 MB 354 3990

the OSN uses HTTPS for login/logout and identify corresponding
handshakes for the state management, and construct the signatures
and patterns to identify active rr-pairs that correspond tothe user
actions within the OSN. Manual traces also help in validating our
approach. We claim to successfully characterize a new OSN only
when the analysis script can correctly identify the authenticated/of-
fline OSN sessions and classify the active rr-pairs according to the
user actions in manual traces. OSNs may reorganize their script
architecture during our analysis. This may require readjusting the
rr-pair classification patterns and new manual traces.

The different manual traces were collected viatcpdump on our
local machine for each OSN. These included a trace that covered
login, some basic actions, and logout (Section 2.2 discusses an ex-
ample trace), one that covered all the actions offered via the initial
menu, including profile, search, messaging, photos, . . . ., one that
covers changing a user’s global and privacy settings, one that reg-
isters a new user, and a trace that has a long break of over half
an hour between basic actions. Finally, we included a trace that
tests the state handling by including multiple login/logout steps; we
used multiple browser windows and/or multiple browser instances
in parallel to simulate activity of two different users fromthe same
IP address. Table 5 summarizes these manual traces. Typically, our
manual traces cover roughly 95 % of the actions recorded in the
traces, see Section 5.2.

4.3 Validation
For our manual traces, we know exactly what and how many

actions were performed in a session. Knowing this ground truth we
applied our methodology to the manual traces; Figure 2 showsthe
inferred OSN usage for Facebook as a stacked barplot. For each
category, we distinguish between verified and guessed requests and
within each class of requests between active and indirect.
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Figure 2: Histogram of categories for manual Facebook traces.

We observe a perfect agreement between the ground truth and
our reverse-engineered user actions and their groupings into cate-
gories. In particular, Figure 2 shows that we have no rr-pairs in the
category UNKNOWN. Also, there are no rr-pairs in either of the
two subclasses “active–guessed” or “indirect–guessed”. As such,
although these classes are shown in the legend they do not show up
in the stacked barplot. The plot shows a large number of indirect
requests. This is not surprising given the large number of embed-
ded rr-pairs. When monitoring actual user behavior, we can expect
to see less of these indirect requests because they can be cached
and users, contrary to us, usually do not flush their browser cache
before visiting an OSN.

Manual inspection of the traces confirmed that all rr-pairs are
correctly assigned to the appropriate category. The same findings
(not shown) hold for the manual traces from Hi5, LinkedIn, and
StudiVZ. However, some Web pages, e. g.,updatestatus.php are
used as both: active and indirect. That is why, some requeststhat
are active are classified as indirect and the other way around. Since
there are only a handful of these we are able to correctly identify
98 % of the requests as active or indirect.

4.4 Lessons learned
Starting from passive measurements it is possible to extract user

clickstreams. However, we learned several lessons along the way:

• Reverse-engineering user interactions with OSNs from
HTTP traces is non-trivial: OSNs differ in their software ar-
chitectures, and the use of Web 2.0 features complicates mat-
ters significantly due to short and multiple interactions that
differ qualitatively and quantitatively from “normal” Web
traffic.

• We started the adaptation of our methodology with Facebook
and then added LinkedIn and StudiVZ. Finally, we extended
the capabilities to Hi5. With each step the required cus-
tomization time decreased since we were able to better iso-
late the OSN-specific elements. By now the major bottleneck
is gathering the manual traces for validation (3–6 hours), the
adjustment of the cookie and session handling including val-
idation (2–4 hours), and the classification of the rr-pairs ac-
cording to their features (2–6 hours depending on the feature
richness and how intuitive the Web site is organized). Note,
that this is a one-time cost per OSN.

• The number of patterns (see Table 4) needed for each OSN
is relatively large. All in all, we have 253, 218, 206, and 299
patterns for Facebook, Hi5, LinkedIn, and StudiVZ, respec-
tively. However, even if an OSN restructures its Web site they
usually do so in small steps. For example, the reorganization
of Facebook in 2008 only added around 50 patterns.

• If an OSN restructures its service the patterns have to be up-
dated. Detection is via the drastic increase in the number of
UNKNOWNs. This can be reduced by capturing new man-
ual traces and then updating the patterns. For the Facebook
update this only took about 1 hour as there were no major
changes to the session handling which would have required
collecting more complicated manual traces.

• Analyzing data from multiple ISPs, each with their own se-
curity mechanisms in place, requires careful synchronization
of the analysis software to ensure comparability of the re-
sults.

• Given our experiences with OSNs it should in principle be
possible to adjust the methodology to other WEB 2.0 sites.
However, it is not possible to do the same kind of analysis for
online shopping sites as these most likely use HTTPS rather
than HTTP.

• The Tamper Data plug-in for Firefox turned out to be very
useful to understand how an OSN is handling its sessions as
it is able to display all requests while browsing even those
sent via HTTPS.

5. FEATURE POPULARITY
A typical question that is of interest to both, OSN providersas

well as ISPs, is which OSN features are so fascinating to the users
that they spend so much time on the site. Does it differ across
OSNs? In addition, both are interested in popularity shiftsamong
features, e. g., from photos to videos, or the impact of novelfea-
tures, e. g., live streaming. The ISP needs to care as it mightimpact
bandwidth demand and the OSN needs to care as it might impact
server resources. Therefore, we now explore the popularityof dif-
ferent features provided and supported by the different OSNs.

5.1 Clicks/active requests
Figures 3(a) and 3(b) show the histograms of the distribution of

active rr-pairs (clicks) according to categories for Facebook for A2
andB3. We observe that the popularity of features differs by lo-
cation. WithinISP-B, custom applications (apps) are more popular
than withinISP-A, but the opposite is true for the profile category.
This is consistent across the traces for the two ISPs. At the same
time, we also note strong similarities: Messaging, home, profile,
and photos are crucial categories at both locations. Comparing this
with the relative popularity of features within Hi5 for trace B3 (see
Figure 3(c)), we see that for Hi5 users photos are more important.
Similar observations hold for all traces at both ISPs. In addition, the
profiles together with friends play a role in Hi5. Surprisingly, even
though we selected OSNs whose primary content are user main-
tained profiles, the Facebook and Hi5 users’ main interests are not
on profiles as highlighted by their clickstream, which are spread
among messaging, apps, photos, and eventually profiles.

While StudiVZ tried to clone Facebook, its users do use differ-
ent features (plot not shown). Here, profile is the most common
category in allISP-A traces with more than 25 % of the active rr-
pairs within A2. This is followed by home with 18 % and then
by friends with 15 %. Within LinkedIn the focus on profiles and



friends across all traces is even stronger. WithinB3 we have 31 %
of requests related to profiles and 22 % related to friends. Itis in-
triguing to see that the relationship between requests in the profile
and the friends categories are roughly the same for StudiVZ,Face-
book, and LinkedIn. Note, that the percentage of UNKNOWNs is
small.

5.2 All OSN requests
Figure 4 shows the histograms of the distribution of all rr-pairs

rather than active requests for Facebook andA2. Again, we see
that the number of UNKNOWN rr-pairs is small—well under 5 %.
Next, we note that the number of guessed rr-pairs, which are rr-
pairs classified with a pattern that could not be verified using the
manual traces, is also well below 3 %, except for LinkedIn where
there are multiple guessed patterns in the friends category. Over all
traces and both ISPs we find that the number of UNKNOWNs and
guessed rr-pairs is each less than 7.5 %. Note the drastical differ-
ence in the distribution of the observed requests per category from
the manual traces (recall Figure 2). This highlights how difficult
it can be to approximate actual usage patterns of OSNs via active
crawling, even though we acknowledge that our manual traceswere
collected for the purpose of exploring all OSN features.

Note how including the indirect requests drastically changes the
relative importance of the categories. For Facebook, messaging and
apps decrease by 50 % while home increases. Also, photos rather
than profiles is now the top category in StudiVZ. Such shifts are
important to keep in mind when partitioning OSN sites among dif-
ferent servers, e. g., one for handling the active requests (typically
PHP scripts) and others for handling the embedded objects.

LinkedIn differs from the other OSNs in that it has maintained its
strict focus on profiles. In LinkedIn (plots not shown) profiles and
friends account for more than 50 % of the rr-pairs. Crosschecks for
the other traces (not shown) show that this effect is not due to the
different locations but rather the different focus of LinkedIn users.

To understand the impact of popularity shifts on traffic we have
to compare the histogram of the request distributions to those of the
byte contributions (see Figures 4(b) for Facebook andA2). Across
all traces and all OSNs we see that the relevance of photos in-
creases, as one might expect. Moreover, they contribute themost
to the upload activity. The only other categories with some upload
activity are apps for Facebook, profile for StudiVZ, and friends for
Hi5. In addition, the relative importance of the guessed andUN-
KNOWN categories decreases even further for all OSNs. Extrapo-
lating this, enabling the use of higher quality photos or even videos
which contribute a tiny number of requests may change the band-
width demand of OSNs quite drastically. Currently, they still con-
tribute no more than 0.3 % of the requests withinISP-A but more
than 1 % of the bytes. Recall, how the popularity of YouTube has
increased the bandwidth demand.

5.3 Difference across time
To assess if OSN user activity differs from other HTTP activity

we plot histograms of the relative frequency of rr-pairs andclicks in
Figure 5. We see the expected time of day behavior for residential
customers. We observe a similar trend for Facebook users. How-
ever, there are some notable differences. For example, messaging
increases during lunch time and in the early evenings. Also,photos
and apps are much more popular in the afternoon to early evening.

5.4 Differences between users
So far, we have only considered how the overall user population

of an OSN behaves. Next, we ask if users of a given OSN behave
in a similar manner or if some users only use one or two of the
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Figure 3: Category popularity for active requests for Facebook
(A2 and B3) and Hi5 (B3) trace: Histogram.
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(b) Facebook categories by bytes:A2

Figure 4: Category popularity for Facebook and A2: His-
togram of rr-pairs/bytes.

different features offered by the OSN. To this end, we rely onbox-
plots3 for plotting the percentage of user requests for each category
within an authenticated session. This means, a user that has10 %
and 90 % of his requests within home and profiles, respectively,
will contribute one data point at 10 % for the boxplot for homeand
90 % for the boxplot for profile.

Figures 6(a) and 6(b) show the resulting plots for authenticated
subsessions with at least 20 active requests for Facebook for traces
B3 andA2. We can see that among all the considered subsessions,
the features profile, home, messaging, and friends matter. As cap-
tured by the whiskers and outliers, for some of the sessions,cus-
tomer applications play a major role. More than 50 % of the users
do not use any custom apps. But there is a substantial fraction
which is almost exclusively focused on apps. We find that messag-
ing is more crucial withinISP-B. The same observations hold for
the other traces. In general, we note that some of the differences,

3Boxplots are used to display the location, the spread, and the
skewness of several data sets in one plot: The box shows the limits
of the middle half of the data; the dot inside the box represents the
median; whiskers are drawn to the nearest value not beyond a stan-
dard span from the quartiles; points beyond (outliers) are drawn
individually.
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Figure 5: Distribution of Facebook clicks (top) and total HTTP
rr-pairs (bottom) for A2 across time.

e. g., with respect to apps usage, can be traced to the behavior of a
few users while other differences, e. g., with respect to messaging,
are caused by the overall user population.

Our previous observation that users use different featureswhen
interacting with different OSNs (Figure 3) also holds on a per ses-
sion basis, e. g., see Figure 6(b) and 6(c) for StudiVZ and Facebook
for A2. User actions of StudiVZ and Hi5 users (not shown) appear
to be more homogeneous then those of Facebook users as indicated
by many outliers in Figures 6(a) and 6(b) when compared to those
in Figure 6(c). Over all traces and both ISPs we see that OSN users
consistently use the popular features of the OSN such as profiles,
photos, messaging, etc.

One implication of this analysis is that there are some typical
OSN users that use the popular features of that OSN. However,
OSN usage is also heavily influenced by some users who like a
specific feature a lot, e. g., the application feature of Facebook or
the groups feature of StudiVZ.

5.5 Profile usage
Lastly, we are interested in a further breakdown of a popularcat-

egory such as profile. Whenever a user issues an active request
for a profile we record if it is for his own, for another profile that
is publicly accessible, or for an OSN internal profile. Figure 7(a)
shows a stacked barplot of the relative number of accesses tothe
different profile categories. We note strong differences between
the OSNs that we observed across the different traces. In Face-
book, LinkedIn, and StudiVZ the majority of the requests areto
profiles of friends. Only about 25–35 % are to the users’ own pro-
file. Within Facebook, about 10–15 % of the accesses are to public
profiles and 20–25 % in LinkedIn. This feature is not available in
StudiVZ and Hi5. One reason why LinkedIn might have a larger
number of requests to public profiles is that some people use the
public LinkedIn profile as their professional home page. Hi5dif-
fers from the other OSNs in that most profile requests involvethe
users own profile. In part this is due to the way how Hi5 organizes
its site. The profile page is a major component of the navigation.

The distribution across the different profile categories holds not
just for the overall traces across the ISPs but also roughly within
each user’s OSN subsessions. This is shown in Figure 7(b) for
Facebook andA2, where for a subset of the authenticated sessions4,

4We selected those with the largest number of profile requestsper
subsession.
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Figure 6: Boxplot of # of active requests per authenticated ses-
sion by OSN features for Facebook and StudiVZ.
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Figure 7: Profile usage for traceA2: All OSNs (a), profiles (b)
and unique profiles (c) per session for Facebook.
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Figure 8: CCDF of Bytes per OSN subsession for Facebook and
StudiVZ for A2.

a stacked barplot is used to depict the number of accesses to auser’s
own profile, to public profiles, or to another user’s internalprofile.
We see the skewed nature of the resulting profiles per sessiondis-
tribution. A few users access a lot of profiles (> 100) while others
access only a few. The plot also shows that the distribution of pro-
file accesses across the three categories roughly translates to the
sessions themselves. This is also confirmed by the boxplot ofthe
same data (not shown). We find that the variation across sessions
with respect to the percentages of own, public, or internal profiles
does not vary by much.

We next compare the number of profile accesses to the number
of accesses to unique profiles. We find that while the average num-
ber of profile access is 6 for Facebook andA2 the average number
of unique profile accesses is only 3. The median reduces from 3
to 2. Moreover, the distribution across the different profile classes
changes to predominantly Facebook internal profile. This ishigh-
lighted by Figure 7(c) which again plots a stacked barplot for the
subsessions with the largest number of unique profile requests. One
contributor is that the user’s own profile only counts once. Overall,
these numbers are drastically lower than the size of the friendship
graphs may indicate. Golder et al. [15] report that the mean/me-
dian number of friends is 144/180 while Joinson et al. [17] report
85/124.

6. OSN SESSION CHARACTERISTICS
While OSNs are not yet universal they are rapidly adding users

and change the way that users interact with each other. We now
ask if their general traffic characteristics differ from other Web ser-
vices in terms of top-level characteristics such as sessionsizes and
durations. For example, this is useful for developing test cases for
evaluating the performance of new P2P-based OSNs, such as Peer-
SoN [6].

6.1 Bytes per OSN session
We start by examining how much OSNs are contributing to the

total traffic in terms of volume. We find that the contributionis still
relatively small. Figure 8 plots the Cumulative Complementary
Distribution (CCDF) of the number of bytes per OSN subsession
for Facebook and StudiVZ forA2 on a log-log scale. All plots for
all OSNs and both ISPs show that bytes per session are consistent
with a heavy-tailed distribution and not with an exponential one.
This implies that a small fraction of all OSN sessions is respon-
sible for most of the bytes imposed on the network by this OSN.

However, the tail of the distributions is by far not as heavy as those
of all HTTP services. Indeed, we find that a Weibull distribution
with a shape parameter of 0.5 yields a visually reasonable fit for
Facebook. The tail of the sessions from all Web services are not
well matched by a Weibull distribution. Here, a Pareto distribution
with anα between 1.1 and 1.3 visually fits better.

The plots indicate and inspection of the other traces confirms that
“heavy hitters” in Facebook impose the most load, followed by Stu-
diVZ, and then LinkedIn users. We point out that a typical Face-
book session size is between 200 KB and 10 MB, a typical StudiVZ
session size between 50 KB and 5 MB, and a typical LinkedIn ses-
sion size between 10 KB and 1 MB. Figure 8 highlights that there
are some differences between the load imposed by authenticated
vs. overall OSN sessions especially for StudiVZ. Typically, we see
a shift in the probability distribution to a smaller number of bytes
and sometimes a mode at OSN specific values, e. g., for StudiVZat
10KB, occur. Note, that such volume demands are well within the
capabilities of mobile data-service offerings.

6.2 OSN session durations
Figure 9(a) plots the CCDF of the duration of OSN subsessions

and authenticated sessions for Facebook and StudiVZ forA2, re-
spectively, on a log-log scale. The plot shows that OSN sessions
exhibit high variability, with many lasting a very short period of
time and a few lasting for hours, with a mean of about 40 min-
utes for both, authenticated and total OSN subsessions. Themean
durations for other OSNs and traces is roughly of the same order.
Only the mean duration of Facebook usage atISP-B is significantly
longer. Note, the total OSN subsessions last just slightly longer
than the authenticated OSN subsessions which is the case forboth
ISPs and all OSNs. This agrees with our expectation that users do
not spend much time on the OSN site without logging in. Over
all traces and both ISPs we find that the session duration distribu-
tions are not consistent with an exponential distribution,but have
significantly heavier tails.

Figure 9(b) plots the Probability Density Function (PDF) ofthe
logarithm5 of the same durations as shown in Figure 9(a). We again
see that the total duration is only slightly longer than the authenti-
cated duration. Indeed, more than 10 % of the authenticated ses-
sions and 12.5 % of the total sessions last longer than one hour. We
also observe a peak between 5 sec and 2 min which appears to come
from sessions where users only briefly check in with the OSN. In-
deed, we find that most of them consist of only one or two actions.
Comparing the durations of Facebook sessions to those of StudiVZ
within the traces atISP-A, we see there are more longer as well as
shorter lasting sessions in Facebook than in StudiVZ. In Facebook
we have a clear mode between 10 sec to 1 min while the mode is at
1–5 minutes for StudiVZ.

Figure 9(c) shows the PDF for Facebook and Hi5 for the 7-day
traceB3. We again see that the usage of different OSNs by users
of the same ISP differs. For Facebook we notice more shorter con-
nections as well as many longer lasting ones than for Hi5 across all
ISP-B traces. The session durations for LinkedIn (not shown) for
all traces fall between those of Facebook and Hi5. Some Facebook
sessions last as long as 24 hours and thus increase the mean dura-
tion for Facebook atISP-B. But there is also a significant fraction
between one to ten minutes.

When comparing the durations of Facebook across ISPs, i. e.,by
comparing Figure 9(b) with Figure 9(c), we see that withinISP-B

5Coupled with a logarithmic scale on thex-axis, plotting the den-
sity of the logarithm of the data facilitates direct comparisons be-
tween different parts of the graphs based on the area under the
curve.
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Figure 10: Histogram of authenticated Facebook subsessions
per IP address for A2 and B3.

Facebook has more shorter connections as well as many longerlast-
ing ones. It appears, that users at this ISP stay active on Facebook
for significantly longer time periods. We observe this difference
across all traces. We also note the spike at 1 day—likely due to
automatic renewal of IP addresses which ends the session. Maier
et al [25] show that withinISP-A there is a large fraction of users
that use idle disconnects6. This explains the shorter durations. On
the other hand, the shape of the distributions for Hi5 and StudiVZ
are similar even though these are different OSNs at different ISPs.

6.3 Number of subsessions within a session
Lastly, we explore how often a single user has multiple subses-

sions with an OSN. Figures 10(a) and 10(b) show histograms ofthe
number of subsessions per anonymized IP address for Facebook
within A2 andB3. We observe that it is common to have multiple
sessions per IP. This can have multiple reasons, e. g., multiple com-
puters using a single DSL line via NAT box; multiple users using
the same computer; and reuse of IP addresses to different DSLsub-
scribers. WithinISP-A we see a smaller number of subsessions per
anonymized IP address than inISP-B. Given that IP addresses are
assigned dynamically one can expect the number of sessions per IP
address to increase with the length of the trace. We, for example
see this across OSNs withinISP-B when we compare results from
B2 to those ofB3. Nevertheless, this effect does not fully explain
the difference between Figures 10(a) and 10(b). There are also dif-
ferences between OSNs. For example, atISP-A there are more ses-
sions per IP address for Facebook than for StudiVZ in both traces.
Moreover, atISP-B Hi5 has a higher likelihood of two sessions than
Facebook across all traces atISP-B.

To differentiate between multiple subscribers and multiple users,
we also checked how many subsessions a single session (usingthe
same session cookie) has. While there are many sessions thathave
only a single subsession, there are a number of users (as identified
by the session cookie within Facebook) that repeatedly login/logout
from Facebook. Indeed, 15 % of all Facebook sessions recorded
at ISP-A include more than 3 subsessions. In addition, we have
observed a session with more than 387 subsessions. WithinB2
andB3 a single IP address which has many authenticated sessions
skews the results. For other OSNs we see a smaller number of
subsessions per session, i. e., for Hi5 and LinkedIn we see less than
5 % of the sessions with more than 3 subsessions. Unfortunately,
this kind of analysis cannot be extended to StudiVZ as StudiVZ
assigns a new session cookie for each authenticated subsession.

6An idle disconnect is a feature of home routers (NAT boxes) that
disconnects its DSL connection when the user is idle for sometime.
Usually, such routers automatically reconnect the DSL connection
whenever there is new activity. This usually implies a change in the
IP address for the line.
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Figure 11: Actions after inactivity period for Facebook andA2.

7. DYNAMICS WITHIN OSN SESSIONS
Next, we delve into the OSN sessions and ask how users behave

within a session. This is crucial for deriving detailed models for
OSN evaluations.

7.1 Active vs. inactive time
In principle, we notice that the durations of Facebook sessions

are longer than those of other OSNs. We next examine if the users
are actually continuously interacting with the OSN or if this dura-
tion is an artifact of the session handling. Therefore, we compute
OSN action sequencesby grouping all actions from the same OSN
session as long as the time between actions never exceeds a timeout
value of 5 minutes. Then, we use this information to calculate the
percentage of time users are active on the OSN and the percentage
of time they are inactive. An inactive user is authenticatedwith the
OSN but is currently not interacting with it.

When we consider all sessions users are typically active during
the whole session. If we only consider those sessions that last more
than 1 minute, only 50 % of the users remain active the whole time.
Once we consider only those sessions that last for at least 40min-
utes we find that hardly any users continuously interact withFace-
book.

We notice that during active periods, Facebook users usually do
not visit any other sites. Only 7 % of all sessions forA2 visit other
sites. Among the most popular domains aremsn.com and photo
community sites. While the users are inactive on Facebook, sites
such as Google, YouTube, and Apple are popular. Other users ad-
ditionally visit other OSNs, news sites, the ISP home page, etc.

Next, we explore the features with which users resume their us-
age of Facebook after a period of inactivity. Figure 11 showsthe
relative histograms for inactivity breaks of length 5, 10, and 20 min-
utes. The distribution changes drastically. After a short break, mes-
saging is dominant. However, after a 10 minute break, home and
offline take over in importance. This trend continues if we con-
sider 20 minute breaks. However, for longer breaks the plotsstay
the same as for 20 minutes. In addition, we note that relevance of
photos, profile, search, friends also increase slightly.

7.2 Feature sequences
Given the above observation regarding which features are popu-

lar after a break, we now explore the relative popularity of feature
sequences within the user clickstreams for Facebook sessions with
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Figure 12: Typical click sequences for Facebook andA2 (only
transitions > 1 % are shown).
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Figure 13: PDF of inter-action times within Facebook cate-
gories (A2).

at least ten active requests. The corresponding transitiondiagram
is shown in Figure 12 for traceA2. We find that the prominent fea-
ture categories, seen in Figure 3(a), are also dominant here. A few
categories account for 50 % of the transitions and they indicate that
users tend to stay within their feature category, i. e., frommessag-
ing to messaging (20 %), from home to home (9 %) from photo to
photo (8 %), and from profile to profile (5 %). However, it is also
interesting to see that from home, messaging is the most likely cat-
egory followed by profile. From profile, the users switch to home,
photos, or messaging.

For StudiVZ we see a similar trend—users tend to stay within
their feature categories. But for Facebook the dominant features
are profiles (9 %), friends (7 %) and photos (7 %). The transitions
between features are from friends to profiles (6 %) and from pro-
files to home, photos, and friends (4–6 %).

Then, we explore how much time a user needs for such transi-
tions. Figure 13 shows a density of the inter-arrival time for se-
lected feature groups. We focus on home, messaging, profile,pho-
tos, and offline as they are among the most popular features and
their inter-arrival time distributions differ. The distributions for of-
fline differs the most from the others. This is not that surprising
given the previous discussions about periods of inactivity. Messag-
ing also has some larger inter-arrival times. One possible explana-
tion is that users need some time to compose their texts. Profiles
typically have shorter inter-arrival times and photos are still shorter.
A user is likely to stay within the same category while exploring



different profiles/photos. For photos this is usually simplified by
photo album features. Home has a bimodal distribution. The very
short inter-arrival times are likely due to triggered actions. The
other mode is likely due to its use as navigation site.

8. RELATED WORK
In the past, social network analysis was the domain of sociolo-

gists and anthropologists [40]. Their typical tools are surveys and
interviews which have the drawback that they can usually only cap-
ture a small user base. Nowadays, with the advent of online social
networks, the networking community is capable of gatheringlarge-
scale data sets from OSNs, e. g., by crawling the OSN, by passively
monitoring user interactions, or by collaborating with an OSN op-
erator.

In this paper, we examined actual traffic across multiple OSNs,
both at a macro as well as at a micro-level, to understand userbe-
havior. Therefore, our work is related to the efforts that rely on
surveys [10, 35, 1] and interviews [17]. Our findings regarding
the feature popularity match well with the findings of Joinson [17]:
OSN users focus on messaging, browsing profiles, and sharingof
photos. Hence, one can conclude that the users impression about
how they use OSNs agrees with how they actually use them. In
addition, we have a significantly larger user base, explore multiple
OSNs, and explore within session characteristics.

Other efforts use network traces to characterize individual OSNs
or individual features of OSNs. For example, Gill et al. [13]study
patterns of access to YouTube from a campus perspective. Zink
et al. [42] also study YouTube using passive traces from a campus
network. They explore the popularity of video clips and showthat
local and global popularity of video clips differ which supports the
case of local caching. Nazir et al. [28] focus on a specific feature
of Facebook: Third party applications. By offering different kinds
of applications on their own servers they are able to monitorand
characterize their usage. By further studying the interactions be-
tween Facebook, external applications, and the OSN users Nazir et
al. [29] identify some potential performance bottlenecks within the
Facebook server infrastructure. Using network data of an extended
time period from Facebook messages and pokes sent by college
students Golder et al. [15] are able to characterize anotherpiece
of Facebook: The messaging activity. We in contrast focus onthe
larger picture and can examine transaction sequences.

By collaborating with specific OSN operators Chun et al. [9] are
able to compare the structural characteristics of the activity network
with the friends network relying on guestbook logs from Cyworld.
Kumar et al. [21] explore how path properties, including diameter
and density, of the social network change over time for Flickr and
Yahoo 360! based on timegraphs from these networks. As such,
both of these studies focus on the graph properties rather than on
how users use the OSN.

A few studies have tried to explore the differences and common-
alities between OSNs. For example, Backstrom et al. [4] study how
groups form in social networks across LiveJournal and DBLP;Ku-
mar et al. [21] explore how path properties, including diameter and
density, of the social network change over time for Flickr and Ya-
hoo 360!; and Mislove et al. [27] explore the degree and cluster
coefficient of the embedded networks and confirm the power-law,
small-world, and scale-free properties of online social networks for
Flickr, LiveJournal, YouTube, and Orkut. While the previously
mentioned studies focus on the graph properties of the online com-
munities Krishnamurthy and Wills [20] characterize privacy set-
tings and their usage across Facebook, MySpace, Bebo, and Twit-
ter while Cha et al. [7] study how the popularity of video content
changes with the age of the content for YouTube and Daum UCC.

However, all of these studies can only study the static relation-
ships in the OSN rather than how the users actually interact with
the OSN.

By crawling specific OSNs other studies have focused on the
topology of the OSN. For example, the study by Mislove et al. [26]
focuses on the growth of the Flickr’s network and if it adheres to the
preferential attachment property. This is complemented byCha’s
work on social cascades in Flickr [8] and Liben-Nowell’s work on
the relationship between geography and online friendshipsin Live-
Journal [23]. Gjoka et al. [14] crawl Facebook user profiles to study
high-level characteristics of application users and the growth pat-
terns of applications. Lampe et al. [22] crawl Facebook to deter-
mine the popularity of specific profile elements. We in contrast ex-
amine how many profiles in general and how many unique profiles
are actually accesses by users within an OSN session.

Recent work has focused on understanding how users interact
with the OSN or with other users using crawls of the OSN sites.
For example Viswanath et al. [39] repeatedly crawled the walls of
specific Facebook users and used the differences to determine com-
munication patterns. Valafar et al. [38] examine interactions within
Flickr between the photo owners and their fans. Torkjazi et al. [37]
find that a large fraction of the MySpace user IDs are inactiveor
deleted by inspecting the last login time.

In concurrent work, Benevenuto et al. [5], also analyzed click-
stream data to develop models of OSN user behavior. Their data
source is a Brazilian social network aggregator. Their analysis fo-
cuses on Orkut as it is the most popular OSN within their data set.
Overall, their study identifies similar trends to ours.

9. SUMMARY
We successfully reconstructed OSN clickstreams from

anonymized HTTP header traces obtained from passively
monitored network traffic with tens of thousands of users at
different ISPs. We present a customizable methodology for
identifying OSN sessions and user actions within the OSN. We
apply our methodology to four OSNs: Facebook, Hi5, LinkedIn,
and StudiVZ. Our methodology enables us to extract OSN usage
information across a wide range of features, from coarse infor-
mation like session duration to minute details about the kinds of
profiles the user accesses. For example, we find:

• Users tend to stay within the same activities (feature cate-
gory). Moreover, we find that users are “trapped” in some
categories, e. g., photos and messaging.

• While user sessions can be quite long (typically> 30 min-
utes), we find, e. g., for Facebook, that for long sessions
(> 10 minutes) users do not continuously interact with the
OSN.

• While we selected the specific set of OSNs based on the cri-
terion that they feature profiles, they are the most popular
feature only within LinkedIn and StudiVZ. With regards to
transfer volume, photos are currently the most important cat-
egory, although the volume is significantly lower than that of
typical Web sessions.

We are able to identify the features that are important to theusers
and point out differences from other Web services. In addition, we
gathered some insights on how to generate workloads for evaluat-
ing novel OSNs.

The next steps involve customizing our methodology for a larger
set of OSNs. Moreover, we are planning to dig even deeper intothe
intra-session characteristics. In addition, we are starting a collab-
oration with researchers in the social sciences to better understand
the implications of our observations.



10. REFERENCES

[1] ACQUISTI, A., AND GROSS, R. Imagined communities:
Awareness, information sharing, and privacy on the
Facebook. InPrivacy Enhancing Technologies(2006).

[2] A RRINGTON, M., 2009.http://www.techcrunch.com/
2009/01/22/facebook-now-nearly-twice\
-the-size-of-myspace-worldwide/.

[3] ATTERER, R., WNUK , M., AND SCHMIDT, A. Knowing the
user’s every move—user activity tracking for website
usability evaluation and implicit interaction. InProc. World
Wide Web Conf.(2006).

[4] BACKSTROM, L., HUTTENLOCHER, D., KLEINBERG, J.,
AND LAN , X. Group formation in large social networks:
Membership, growth, and evolution. InProc. ACM SIGKDD
(2006).

[5] BENEVENUTO, F., RODRIGUES, T., CHA , M., AND

ALMEIDA , V. Characterizing user behavior in online social
networks. InProc. ACM IMC(2009).

[6] BUCHEGGER, S., SCHIÖBERG, D., VU, L. H., AND

DATTA , A. PeerSoN: P2P social networking – early
experiences and insights. InProc. ACM Workshop on Social
Network Systems(2009).

[7] CHA , M., KWAK , H., RODRIGUEZ, P., AHN, Y.-Y., AND

MOON, S. I tube, you tube, everybody tubes. InProc. ACM
IMC (2007).

[8] CHA , M., M ISLOVE, A., ADAMS, B., AND GUMMADI ,
K. P. Characterizing social cascades in Flickr. InProc. ACM
SIGCOMM WOSN(2008).

[9] CHUN, H., KWAK , H., EOM, Y.-H., AHN, Y.-Y., MOON,
S.,AND JEONG, H. Comparison of online social relations in
volume vs. interaction: A case study of Cyworld. InProc.
ACM IMC (2008).

[10] ELLISON, N., STEINFELD, C., AND LAMPE, C. Spatially
bounded online social networks and social capital: The role
of Facebook. InProc. Int. Communication Assoc.(2006).

[11] FACEBOOK, 2008.http://blog.new.facebook.com/
blog.php?post=30074837130.

[12] FACEBOOK, 2009.http://www.facebook.com.
[13] GILL , P., ARLITT, M., L I , Z., AND MAHANTI , A.

YouTube traffic characterization: A view from the edge. In
Proc. ACM IMC(2007).

[14] GJOKA, M., SIRIVIANOS , M., MARKOPOULOU, A., AND

YANG, X. Poking Facebook: Characterization of OSN
applications. InProc. ACM SIGCOMM WOSN(2008).

[15] GOLDER, S., WILKINSON , D., AND HUBERMAN, B. A.
Rhythms of social interaction: Messaging within a massive
online network. InInt. Conf. on Communities and
Technologies(2007).

[16] HI5, 2009.http://www.hi5.com.
[17] JOINSON, A. N. Looking at, looking up or keeping up with

people? Motives and uses of Facebook. InProc. ACM CHI
(2008).

[18] KAMMENHUBER, N., LUXENBURGER, J., FELDMANN , A.,
AND WEIKUM , G. Web search clickstreams. InProc. ACM
IMC (2006).

[19] KRISHNAMURTHY, B. A measure of online social networks.
In Proc. COMSNETS(2009).

[20] KRISHNAMURTHY, B., AND WILLS , C. E. Characterizing
privacy in online social networks. InProc. ACM SIGCOMM
WOSN(2008).

[21] KUMAR , R., NOVAK , J.,AND TOMKINS, A. Structure and
evolution of online social networks. InProc. ACM SIGKDD
(2006).

[22] LAMPE, C. A., ELLISON, N., AND STEINFIELD, C. A
familiar face(book): Profile elements as signals in an online
social network. InProc. ACM CHI(2007).

[23] L IBEN-NOWELL, D., NOVAK , J., KUMAR , R.,
RAGHAVAN , P.,AND TOMKINS, A. Geographic routing in
social networks. InProc. National Academy of Sciences
(2007).

[24] L INKED IN, 2009.http://www.linkedin.com.
[25] MAIER, G., FELDMANN , A., PAXSON, V., AND ALLMAN ,

M. On dominant characteristics of residential broadband
internet traffic. InProc. ACM IMC(2009).

[26] M ISLOVE, A., KOPPULA, H. S., GUMMADI , K. P.,
DRUSCHEL, P.,AND BHATTACHARJEE, B. Growth of the
Flickr social network. InProc. ACM SIGCOMM WOSN
(2008).

[27] M ISLOVE, A., MARCON, M., GUMMADI , K. P.,
DRUSCHEL, P.,AND BHATTACHARJEE, B. Measurement
and analysis of online social networks. InProc. ACM IMC
(2007).

[28] NAZIR , A., RAZA , S.,AND CHUAH , C.-N. Unveiling
Facebook: A measurement study of social network based
applications. InProc. ACM IMC(2008).

[29] NAZIR , A., RAZA , S., GUPTA, D., CHUAH , C.-N.,AND

KRISHNAMURTY, B. Network-level footprints of Facebook
applications. InProc. ACM IMC(2009).

[30] PAXSON, V. Bro: A system for detecting network intruders
in real-time.Computer Networks 31, 23–24 (1999).

[31] SILVERSTEIN, C., HENZINGER, M., MARAIS, H., AND

MORICZ, M. Analysis of a very large AltaVista query log.
Tech. rep., SRC Technical Note 014, 1998.

[32] SPINK, A., KOSHMAN, S., PARK , M., FIELD , C., AND

JANSEN, B. J. Multitasking web search on vivisimo.com.
[33] SPINK, A., WOLFRAM, D., JANSEN, B., AND SARACEVIC,

T. Searching the web: The public and their queries. In
American Society for Information Science and Techn.(2001).

[34] STUDIVZ, 2009.http://www.studivz.net.
[35] STUTZMAN , F. An evaluation of identity-sharing behavior in

social network communities.iDMAa Journal(2006).
[36] SYSTEMS, E. M. http://www.endace.com/, 2009.
[37] TORKJAZI, M., REJAIE, R., AND WILLINGER , W. Hot

today, gone tomorrow: On the migration of MySpace users.
In Proc. ACM SIGCOMM WOSN(2009).

[38] VALAFAR , M., REJAIE, R., AND WILLINGER , W. Beyond
friendship graphs: A study of user interactions in Flickr. In
Proc. ACM SIGCOMM WOSN(2009).

[39] V ISWANATH , B., MISLOVE, A., CHA , M., AND

GUMMADI , K. On the evolution of user interaction in
facebook. InProc. ACM SIGCOMM WOSN(2009).

[40] WASSERMAN, S.,AND FAUST, K. Social network analysis.
Cambridge University Press, 1994.

[41] WEINREICH, H., OBENDORF, H., HERDER, E., AND

MAYER, M. Off the beaten tracks: Exploring three aspects
of web navigation. InProc. World Wide Web Conf.(2006).

[42] ZINK , M., SUH, K., GU, Y., AND KUROSE, J. Watch
global, cache local: YouTube network traces at a campus
network – measurements and implications. InIEEE MMCN
(2008).


