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Abstract

Galić et al. [33] have shown that compression based on edge-enhancing

anisotropic diffusion (EED) can outperform the quality of JPEG for medium

to high compression ratios when the interpolation points are chosen as ver-

tices of an adaptive triangulation. However, the reasons for the good perfor-

mance of EED remained unclear, and they could not outperform the more

advanced JPEG 2000. The goals of the present paper are threefold: Firstly,

we investigate the compression qualities of various partial differential equa-

tions. This sheds light on the favourable properties of EED in the context

of image compression. Secondly, we demonstrate that it is even possible to

beat the quality of JPEG 2000 with EED if one uses specific subdivisions on

rectangles and several important optimisations. These amendments include

improved entropy coding, brightness and diffusivity optimisation, and inter-

polation swapping. Thirdly, we demonstrate how to extend our approach to

3-D and shape data. Experiments on classical test images and 3-D medical

data illustrate the high potential of our approach.

1 Introduction

As the number and resolution of images is constantly increasing, image compres-

sion with high compression rates is becoming more and more important. In this

context, in particular lossy image compression algorithms are of interest, since

they achieve much higher compressions rates than their lossless counterparts.

Among the most popular lossy image compression algorithms are JPEG [53],

which uses a discrete cosine transform (DCT), and its successor JPEG 2000 [63],

which is based on biorthogonal wavelets.
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While these so-called transform-based methods mark the quasi-standards in mod-

ern applications, interesting alternatives have recently been proposed that proceed

in a completely different way: They are based on partial differential equations

(PDEs). The interpolation qualities of PDEs have become evident by an axiomatic

analysis [20], by applying them to image inpainting [51, 10, 22, 12, 66, 11] and

by utilising them for upsampling digital images [49, 7, 8, 3, 73, 58]. Extending

this to image compression drives inpainting to the extreme: Only a small set of

specifically selected pixels is stored, while the remaining image is reconstructed

using the filling-in effect of PDE-based interpolation. This idea has been pursued

in [32], and has later been extended with different amendments in [33]. By encod-

ing pixel locations in a binary tree that arises from an adaptive triangulation [28],

their algorithm can attain a quality that lies between JPEG and JPEG 2000 for

medium to high compression ratios.

Both in [32] and [33], a specific anisotropic diffusion process has been used that

is called edge-enhancing anisotropic diffusion (EED, [69]). Although the interpo-

lation qualities of EED have been compared to other partial differential equations

in [32] and [33], the real reason for the favourable performance of EED in the

context of compression has not been investigated: All comparisons have been

performed on a fixed, preselected set of pixels. This set has been extracted by

randomly choosing a specified percentage of pixels. Therefore, one has evaluated

the (scattered data) interpolation qualities. However, the theoretical results in [9]

for image inpainting with homogeneous diffusion demonstrate that it is of crucial

importance to choose an optimised set of interpolation points for compression.

This optimisation step is the fundamental difference between PDE-based interpo-

lation and PDE-based compression. Thus, one should also evaluate the compres-

sion qualities of the different PDEs for individually adapted sets of interpolation

points. This has not been investigated so far.

An additional problem is that all image compression algorithms described above

are only available for grey-valued 2-D images, while different image types such

as 3-D images or binary shapes are used in important real world applications such

as video coding, medical imaging [15], or geological applications.

For 3-D images, one possibility is to regard one dimension as time and employ

standard video compression algorithms. However, such algorithms typically in-

troduce a bias between successive frames, which is often undesired. Therefore,

medical image standards like DICOM [52] use 2-D compression methods such as

JPEG 2000. For this setting, we propose a natural extension of our compression

algorithm which allows to compress 3-D data inherently, i.e. without preferring a

certain direction.

Our Contribution. The goal of the present paper is threefold, namely to evaluate

inpainting operators within a compression framework, to introduce a PDE-based

compression algorithm that can outperform JPEG 2000, and to extend this ap-
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proach to shape coding and the 3-D setting.

To this end, we first investigate a number of different PDEs in some carefully se-

lected examples that illustrate the advantages and drawbacks of different inpaint-

ing algorithms based on partial differential equations. By comparing homoge-

neous diffusion, isotropic nonlinear diffusion, anisotropic nonlinear diffusion, ab-

solute minimal Lipschitz extension, biharmonic smoothing, triharmonic smooth-

ing, as well as PDE-based inpainting operators introduced by Tschumperlé [65],

and by Bornemann and März [11], we identify EED as a particularly useful PDE

for image compression. Experiments are presented that provide insights into the

particular qualities that distinguish EED from other PDEs. Thus, our paper puts

EED-based image compression on a more solid foundation.

Secondly, we show that it is even possible to exceed the quality of JPEG 2000 with

an EED-based compression algorithm if several carefully optimised concepts are

used that are not considered in [33]: First of all, we replace the adaptive trian-

gulation by a subdivision into a rectangular structure and evaluate different point

patterns on this adaptive structure. Furthermore, we use an improved entropy

encoding of the stored brightness values, an optimisation of the contrast parame-

ter within the diffusion process, and a swapping of the role of interpolation points

and interpolation domain in the decoding step. The resulting novel codec that uses

EED within a rectangular subdivision is called R-EED. We further validate our

result from the first part of the paper by comparing several inpainting operators in

our compression framework.

Finally, we carry over the introduced concepts to novel settings by performing

shape-encoding using quadrupoles, and by introducing a novel codec for 3-D data

that combines cuboidal subdivision with 3-D inpainting.

Organisation of the Paper. Our paper is structured as follows: Section 2 ex-

plains how to interpolate an image from single points and sketches several partial

differential equations that can be used for image interpolation. In Section 3, we

evaluate these methods and present a number of experiments that illustrate why

EED is well suited for compressing images. Section 4 introduces our complete

2-D image compression framework, which is evaluated in Section 5. Section 6

finally extends our framework to shape coding, as well as to coding of 3-D data.

The paper is concluded with a summary in Section 7.

Related Work. Let us now briefly mention some related papers that have not been

discussed so far.

In the context of image compression, PDEs and related variational techniques

have mainly been used as a preprocessing step before coding images or videos

(see e.g. [67, 40]) or as a postprocessing tool for removing coding artifacts (see

e.g. [31, 2]).

The papers [32, 33] as well as our present work differs from these strategies by

the fact that we use a PDE within encoding and decoding rather than applying it
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before encoding or after decoding. In that sense they are more related to [23] who

apply total variation regularisation in order to modify the coefficients in a wavelet

decomposition to reduce oscillatory artifacts.

Sometimes PDE-based interpolation strategies have been tailored to specific data

sets such as surface data in digital elevation maps [30, 60, 76]. Moreover, some

variational L1 minimisation ideas play an important role in recent compressed

sensing concepts [18].

The usefulness of inpainting concepts for image compression is studied in sev-

eral papers, where structure and texture inpainting ideas have been integrated into

standard codecs such as JPEG [44, 56, 77].

With respect to its intention to reconstruct an image from a small set of charac-

teristic data, our paper has some relations to publications where edge information

is used to represent the main image content. This has been done in many differ-

ent formulations [78, 19, 36, 50, 1, 5, 26, 29, 75, 48]. Methods of this type can

be seen as representatives of second-generation coding approaches that exploit

perceptually relevant features such as edge contours [42].

An alternative way to represent signals and images by a sparse set of significant

points consists of reconstructions from top points in scale-space, as has been in-

vestigated by [38] and [39]. More general discussions on how to reconstruct an

image from a suitable set of feature points and their derivatives (local jet) have

been presented by [43]. Impressive global reconstructions of natural images by

means of the local jet structure are reported in a classical technical report by [16],

in which is was suggested to stabilise this ill-posed process with Tikhonov regu-

larisation and directional filtering.

Regarding our subdivision strategy, many related variable block size image coding

algorithms exist, in particular methods based on quadtree decompositions; see

e.g. [61] and [62]. Interesting adaptive triangulation ideas can be found in [28],

[25], and [13].

In the 3-D setting, there have been no pure PDE-based compression methods so

far. However, 3-D diffusion was proposed as a pre- or postprocessing step within

transformation-based compression methods such as MPEG4; see e.g. [68] or [14].

A generalisation of image compression ideas with homogeneous diffusion to the

compression of surfaces is studied in [6].

The second part of our manuscript extends preliminary results of a conference

paper [59]. Substantial differences are, among other things, the comparison of

several differential operators within an image compression framework, the inves-

tigation of different point selection patterns within our rectangular subdivision, a

more refined quantisation, and an improved interpolation swapping step. We will

see that these modifications enhance the compression performance. The extension

to 3-D data is based upon the work in [55].
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2 PDE-Based Interpolation

As explained in the introduction, only the brightness of specific pixels and their

positions are stored in our image compression framework. In this section, we

explain how the image can be recovered from these sparse data using PDE-based

image interpolation.

Let Ω denote the complete domain. For images, we have Ω ⊂ R
2, while Ω ⊂ R

3

holds for volumetric data. Moreover, let K ⊂ Ω be the set of those locations for

which the image brightness is known, i.e. for which the brightness is stored in the

compressed image. Note that the equations presented in this section are valid for

both kinds of data. The set K is called the interpolation mask.

The goal behind PDE-based image inpainting is to compute a reconstruction u of

the original image f : Ω →R that fulfils the following two properties: First of all,

u should be identical to f at those locations for which the brightness is known, i.e.

u(xxx) = f (xxx) ∀ xxx ∈ K. (1)

Secondly, u should own some kind of regularity properties. Typically, u is as-

sumed to be smooth or piecewise smooth outside K. Both properties are fulfilled

when using the solution of the following PDE as reconstruction:

(1− cK)Lu− cK (u− f ) = 0, (2)

with reflecting (i.e. homogeneous Neumann) boundary conditions. Here L de-

notes some differential operator that guarantees the desired smoothness, and cK is

the characteristic function of K that is 1 at the specified set K, and 0 elsewhere.

Since the reconstructed image u does not change at the specified locations K, (2)

comes down to the simplified PDE

Lu = 0 (3)

on Ω \K, with Dirichlet boundary conditions (1) on K, and homogeneous Neu-

mann boundary conditions on the boundary of Ω. This equation can be solved by

computing the steady state of the evolution equation

∂tu = Lu, (4)

where t serves as an artificial time parameter. For t → ∞, we thus obtain the

reconstructed image.

In the remainder of this section, we give a short introduction on several possible

choices for the differential operator L. The simplest differential operator L that

can be used for inpainting is the linear diffusion operator [37, 72]:

Lu = ∆u = div(∇∇∇u). (5)
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We will also consider higher order linear operators such as the biharmonic opera-

tor

Lu =−∆2u, (6)

or the triharmonic operator

Lu = ∆3u. (7)

Another interpolation operator that we will evaluate is the absolute minimal Lips-

chitz extension (AMLE) introduced in [4]. This operator which has been axiomat-

ically justified for interpolation tasks by [20] is given by

Lu = uηη, (8)

where η denotes the normalised gradient. Since this operator interpolates only in

the direction of the gradient, it acts anisotropically.

In [54], it was proposed to prevent smoothing semantically important edges by re-

ducing the diffusion at edges of the evolving image, namely by using the operator

Lu = div(g(|∇∇∇u|2)∇∇∇u), (9)

where g is a nonnegative, decreasing function in its argument |∇∇∇u|2 for which

g(0) = 1 holds. In our experiments we use the Charbonnier diffusivity [24]

g(s2) :=
1

√

1+ s2

λ2

, (10)

where λ > 0 is a contrast parameter. Thus, we call the corresponding interpolation

operator Charbonnier diffusion. With this diffusivity we have observed better in-

terpolation results than for the more rapidly decaying diffusivities of [54]. For our

interpolation experiments it will be instructive to study also a regularised variant

of the Charbonnier operator. It is given by

Lu = div(g(|∇∇∇uσ|
2)∇∇∇u), (11)

where uσ := Kσ ∗u is the smoothed image obtained by convolving u with a Gaus-

sian Kσ with standard deviation σ. We call (11) the regularised Charbonnier op-

erator. In the context of diffusion filtering, this regularisation has been introduced

by [21] in order to make the Perona-Malik filter well-posed and more stable under

noise.

Last but not least, let us also study a direction-dependent (and therefore anisotropic)

variant of a nonlinear diffusion operator which reduces smoothing across edges
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while still permitting diffusion along them. It has been introduced for diffusion

filtering in [69] and is named edge-enhancing (anisotropic) diffusion (EED). For

image compression it was first used in [32]. The differential operator of EED re-

places the scalar-valued diffusivity g(|∇∇∇uσ|
2) in (11) by a matrix-valued diffusion

tensor ggg(∇∇∇uσ∇∇∇u⊤σ ):

Lu = div(ggg(∇∇∇uσ∇∇∇u⊤σ )∇∇∇u). (12)

Thereby, we extend the scalar-valued function g(x) to a matrix-valued function

ggg(AAA) by applying g only to the eigenvalues of AAA and leaving the eigenvectors

unchanged. Again, we use the Charbonnier diffusivity given in (10). Since EED

is designed such that it smoothes along edges but very little across them, this

diffusion process respects not only the location but also the direction of sharp

edges. Moreover, the Gaussian smoothing within uσ = Kσ ∗u allows to propagate

this anisotropy also to the vicinity of the specified data. We will see that these are

important properties for interpolation.

Furthermore, we will evaluate two PDE-based inpainting algorithms introduced

by Tschumperlé [65], and by Bornemann and März [11], respectively. The ap-

proach by Tschumperlé is a tensor-driven PDE which takes the curvature of spe-

cific integral curves into account, while the second is an extension of Telea’s

single-pass algorithm [64] that uses an exponentially confining weight function.

Since a detailed explanation of these algorithms is beyond the scope of this paper,

we refer to [65], [11], and [64] for more details.

3 Comparison of Differential Operators

To evaluate the different PDE-based interpolation operators from Section 2, we

first compare them in several illustrative scenarios, starting with the example

shown in Fig. 1. From three black discs with white wedges given as initial data,

the remainder of the image is to be reconstructed. In this example, which is similar

to the well-known Kanizsa triangle, a human observer sees a triangle.

Even though only points within three small disks are given, EED yields an almost

perfect reconstruction of the entire triangle. This favourable performance can be

understood as follows: The anisotropy allows EED to create sharp edges, while

the Gaussian presmoothing within the diffusion tensor propagates a directional

preference also to areas outside the specified disks. Hence, EED features two

important qualities: anisotropy and semilocality (in the sense that it is not purely

local, but also involves the neighbourhood).

The method by Bornemann and März also creates an almost perfect triangle, as

this approach is good at connecting level lines. This explains why it works very

7



(a) input (b) linear diff. (c) biharmonic (d) triharmonic (e) AMLE

(f) Charb. (g) reg. Charb. (h) EED (i) BM (j) Tschumperlé

Figure 1: (a) First Image: Initial image, 189×189 pixels. The brightness values

inside the three disks are specified, while the remainder was initialised with uni-

form noise. (b)-(h) Remaining images: Reconstruction results with linear diffu-

sion interpolation (see (5)), biharmonic interpolation (see (6)), triharmonic inter-

polation (see (7)), AMLE (see (8)), Charbonnier interpolation (see (9), λ= 1), reg-

ularised Charbonnier interpolation (see (11), λ = 0.1, σ = 8), EED interpolation

(see (12), λ = 0.01, σ = 4), the method from [11] (ε = 5,κ = 100,σ = 4,ρ = 8),

and the method from [65] (30 global and local iterations, dt = 17.86,α= 2.81,σ=
0.27).

well for this example. However, one has to choose the parameters very care-

fully, as even slight variations significantly alter the results. The method by

Tschumperlé, which was created with the G’MIC plug-in for the GIMP, yields

rather poor results. Moreover, the algorithm is quite slow and did not converge

even after 5000 iterations. This is more than 20 times the number of iterations

used in the original paper. Thus, we do not further evaluate this method in our

compression framework.

The unsatisfactory results of the other interpolation operators show that the suc-

cess of EED lies in the combination of the two properties explained above. Apart

from AMLE, all other operators are isotropic. Unfortunately, AMLE prefers a

direction perpendicular to isophotes. The fact that biharmonic and triharmonic

interpolation create some blurry triangle-like structure is caused by their higher

degree of smoothness, not by any kind of anisotropy. Gaussian smoothing within

regularised Charbonnier interpolation gives a better propagation of structures than

unregularised Charbonnier interpolation. However, regularised Charbonnier inter-

polation cannot restore the triangle due to its lack of anisotropy.
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It is also interesting to observe that unregularised Charbonnier interpolation does

not propagate any white area of the disks. Since it approximates total variation

(TV) interpolation and most of the data at the boundary of the disks are black, the

total variation is minimised by a black interpolant. This shows that isotropic TV

ideas can be problematic for compression tasks, since TV may ignore a substantial

part of the data.

It should be noted that using TV in an anisotropic way can be highly success-

ful, though: EED combines linear diffusion interpolation along edges with (an

approximation of) TV interpolation across edges. A vanishing diffusion across

pronounced edges creates a segmentation of the interpolation problem into sub-

problems where the specified grey values are similar if they belong to the same

segment. Inside each segment, essentially isotropic linear diffusion interpolation

is performed. However, since the grey values are similar, the main problem of

isotropic linear diffusion interpolation, namely logarithmic singularities for fluc-

tuating data, is not present.

After we have investigated the differences between EED and isotropic second

order differential operators for interpolation, let us now study the difference to

higher order differential operators in more detail. This is done in Fig. 2, where

we interpolate a “dipole” image in which only two adjacent pixels of black and

white colour are specified. We see that both EED and biharmonic interpolation are

capable of segmenting the image plane into two halfplanes. However, EED creates

sharper boundaries due to its pronounced anisotropic behaviour and the property

of TV interpolation to admit jumps across the edge. Biharmonic interpolation, on

the other hand, aims at creating a smooth interpolant, also across edges. Moreover,

this smoothness is at the expense of violating a maximum-minimum principle, as

can be clearly seen from the over- and undershoots at both sides of the dipole.

Our dipole experiment has motivated us to perform another minimalist experi-

ment: Fig. 3 sheds light on the capabilities of EED to encode shapes by means of

a sparse set of pixels. We see that four dipoles are sufficient for EED interpolation

to reconstruct the shape of a disk. This illustrates that EED also has a tendency

to favour shapes of low curvature. The Gaussian smoothing within the diffusion

tensor encourages such rounding effects.

4 Our Image Codec

After we have discussed the principles of PDE-based interpolation and evaluated

several differential operators in the previous sections, let us now introduce our

image compression framework that decides which pixels are kept. Moreover, we

will detail on how these pixels can be stored efficiently.
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(a) input image (b) biharmonic (c) EED

EED
Biharmonic Smoothing

 0  5  10  15  20  25  30  0
 10

 20
 30

-1500

-1000

-500

 0

 500

 1000

 1500

(d) results plotted as height field

Figure 2: (a) Top left: Input image, 32×31 pixels. Only the black and the white

pixels in the middle of the image are specified. (b) Top middle: Interpolation

result with the biharmonic operator. (c) Top right: Interpolation result with EED.

(d) Bottom: Results of the two interpolation approaches plotted as height field.

Biharmonic interpolation produces large over- and undershoots, while EED stays

within the specified grey value range [0,255].

4.1 Selecting and Encoding Pixel Locations

Deciding which pixels of a given image should be keep is a difficult task, as there

is little theoretical knowledge about how these pixels should be chosen. One no-

table exception is homogeneous diffusion, for which analytical answers to this

question have been derived using the continuous theory of shape optimisation

[9]. However, even in this case there are still remaining degrees of freedom de-

pending on the model assumptions and the discrete implementation of continuous

results [47]. Moreover, optimal interpolation in an approximation theoretic sense

may not be optimal for compression if there are suboptimal pixel masks that can

be encoded more efficiently.

One obvious possibility would be a simple subsampling approach, where all pixels

on a regular subgrid are kept. While this avoids additional costs for storing the

pixel locations, such a nonadaptive strategy usually does not give a satisfactory

reconstruction quality: In flat image areas, too many points are kept while they
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(a) input image (b) EED interpolation

Figure 3: (a) Left: Original image of size 63× 63 pixels, where 4 dipoles are

specified. (b) Right: After EED interpolation (λ = 0.01,σ = 1).

may be too sparse in more interesting areas, e.g. near edges.

Another natural idea is to try all possible subsets (with a specified number of

pixels) of the set of all pixels, and to choose the subset that yields the best results.

Since this is a finite combinatorial problem, we are guaranteed that an optimal

solution exists. However, for all but the smallest images, this is infeasible due

to the large amount of possible subsets: Selecting e.g. 10 % of the pixels of a

256×256 image leaves

(

65536

6554

)

≈ 3.8 ·109250 (13)

options. Moreover, saving the positions of the points is quite expensive in this

case, since there is no regular pattern behind the position of optimal points.

As a remedy, we now propose a method that restricts the search space by use of an

adaptive rectangular grid that allows to store the pixel positions in an inexpensive

way in a tree structure. We first approximate the image with a few points at fixed

positions, e.g. the four corners of the image, and reconstruct the image using one

of the inpainting schemes described in Section 2. If the reconstruction is not

accurate enough, the image is split into two subimages in the middle of the x or y

direction, whichever is larger, and the two subimages are saved recursively. This

splitting is illustrated in Fig. 4, and a final mask in Fig. 5.

In order to decide if the reconstruction quality is sufficient, i.e. whether a splitting

is performed, we compute the mean square error (MSE) between original and

11
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Depth 1
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Figure 4: Illustration of the rectangular subdivision scheme. The white parts

are the (sub)images being processed, while the circles show one example for the

points saved in this subimage. For this example, Pattern F from Fig. 6 was used.

Figure 5: Left: Input image “trui” used for several experiments. Right: Example

of an interpolation mask used for this image.
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Pattern A Pattern B Pattern C Pattern D Pattern E

Pattern F Pattern G Pattern H Pattern I Pattern J Pattern K

Figure 6: The eleven pixel selection patterns we evaluated in our image compres-

sion framework. In Pattern B, the two pixels shown are always along the longer

side of the rectangle. The same is true for the same two points in Pattern C, H,

and I.

reconstructed image part. The MSE is then compared with a threshold. If it

exceeds this threshold, we subdivide. The threshold T is given by T := aℓd , where

d is the recursion depth and where a and ℓ are free parameters (see [32]). To reduce

the size of the tree in the compressed file (see below), it often makes sense to use

these thresholds only for a limited recursion depth, i.e. all images are split up to a

certain level, and no split is done once a maximal recursion depth is reached.

In [59], we assumed that the complete subimage boundary is known when de-

ciding whether to subdivide a part of the image. However, since only a few key

points are stored, the actual reconstruction is not based on the whole boundary.

Thus, in the present article, we use only those points for the compression step that

are candidates for being saved.

The location of the stored pixels is uniquely determined by the splitting decisions

for the subimages, assuming the saved points in each rectangle are known. Thus,

instead of storing the position of each saved pixel individually, it is sufficient to

save the binary tree containing the splitting decisions. We store this tree by first

saving its minimal and maximal depth, followed by one bit for each tree edge

between these two depths. Note that the amount of space necessary to save the

minimal and maximal tree depths depend logarithmically on the image dimen-

sions.

Let us now discuss how to choose the mask points in each subimage. A straight-

forward idea would be to select the two endpoints on the line used to split the

image, as well as the point in the middle of this line, as done in [59]. Here we

investigate different alternatives for suitable point sets to be stored.

For our experiment we compare the quality obtained with the different point se-

lection patterns. Fig. 6 shows the different point patterns we evaluate, and Table 1

the best MSE obtained with each pattern for three different images. While each

novel line is approximated by three points in [59], which corresponds to Pattern

C, we observe that pattern F yields better results. This is due to two reasons: First

13
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of all, the number of points in the pattern serves as a tradeoff between accurate

point localisation and overhead necessary to store the binary tree: In patterns with

a low amount of points, more rectangles are necessary to store a certain amount

of point positions. Thus, a large tree is needed to encode the positions of a certain

number of points, resulting in too much overhead to obtain a good approximation.

In patterns with many points, there is little overhead (compared to the number of

pixels saved), but the point locations are more restricted, again giving suboptimal

results. This explains the ordering of all patterns except for Patterns E, G, and

J. Here, the problem is that the points are not distributed well over the complete

domain. As Patterns D and F have the right number of well distributed points,

they yield the best results. We should mention that Pattern D yields good results

especially for high compression ratios, as the tradeoff described above slightly

favours using less points in case of high compression ratios.

4.2 Quantising and Encoding the Brightness Data

Up to now we have only stored the locations of the points that are kept in a lossless

way. In the following we explain a lossy strategy for storing the corresponding

brightness values. They are obtained by scanning the interpolation mask from top

left to bottom right.

For each point in the mask, the corresponding brightness value is first requantised.

Reducing the quantisation levels from the original 256 levels of bytewise coding

to a smaller amount allows to save many bytes. These savings can be invested

in additional pixels that are stored. There is of course a tradeoff, since a coarser

quantisation also deteriorates the approximation quality in the individual pixels.

For simplicity we use an equidistant quantisation. In our current implementation

this quantisation step may use any integer number of quantisation levels, while

this number was restricted to a power of 2 in [59]. Renouncing powers of 2 is no

problem, if we apply some suitable entropy encoding of the grey levels. Let us

discuss this next.

The quantised pixel values are encoded in a lossless way using a general purpose

entropy coder. We tested several different entropy coders including Huffman cod-

ing [35], arithmetic coding with static or adaptive model [57], Lempel-Ziv-Welch

coding [74], gzip (version 1.3.5), bzip2 (version 1.0.3), and a slightly modified

version of PAQ (version paq8o8z-feb28, [45]). Except for gzip and bzip2, which

are standard tools, and PAQ, the source code of which is available at [46], we used

the implementations from [27] here.

A comparison of the performance of the different entropy coders can be found in

Table 2. In the experiments shown in Section 5 and 6, we always use the best

entropy coder for a given problem (it is stored in the header which coder must

be used to decompress the data). This was either PAQ, or, for very small files,
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arithmetic coding with an adaptive model.

Allowing an MSE of 54.46 for the image “trui”, we obtain a compression ratio of

40.02 : 1 using arithmetic coding with an adaptive model as entropy coder for the

brightness values. Using PAQ, the compression ratio even rises to 47.46 : 1. In

the following sections, we use this as ongoing example to demonstrate the effect

of each of our optimisation steps.

4.3 Diffusion Parameter Optimisation

The differential operators from nonlinear diffusion methods involve a contrast

parameter λ. It helps to distinguish between high contrast locations where the

diffusion is reduced and low contrast regions where one is interested in approx-

imating homogeneous diffusion. While [33] used a constant λ, we noticed that

the results can be improved by adapting λ to the image and the desired compres-

sion ratio. Therefore, we search for the contrast parameter which yields the best

reconstruction result and store it in the header of the compressed image.

The contrast parameter is always positive by construction, and the optimal values

have a limited range. Thus, we can quantise this range into 256 values in a lin-

ear way, and use one byte to store it. Note that the range differs depending on

whether Charbonnier interpolation, regularised Charbonnier interpolation or EED

interpolation is considered. For example, the interval [0,1] is a useful range when

applying EED to images with greyvalue range [0,255]. In this case we are fairly

close to TV interpolation across edges. Here, we tested each of the 256 possible

values to find the best λ, but using a golden section search yields only slightly

worse results.

In the image “trui”, optimising the contrast parameter improves the MSE from

54.46 to 53.35. In this example, this is only an incremental gain. For other images,

however, this step may lead to larger improvements.

Since we optimise the contrast parameter λ, a natural question would be if it makes

sense to optimise also the regularisation parameter σ. It determines the amount

of Gaussian smoothing within the diffusivity of regularised Charbonnier interpo-

lation and within the diffusion tensor of EED interpolation. We have also tried

this and experienced that even variations by a factor 10 have only a very limited

impact on the compression quality. It seems that the pure presence of some reg-

ularisation is more important than its precise amount. Thus, in our compression

experiments with pixel size 1 we have decided to fix σ to 0.8.

4.4 Brightness Optimisation

It is possible to significantly improve the reconstructed image by adapting the

brightness of the stored pixels. Obviously, this step introduces an additional error
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at these pixels. However, the resulting image has a much higher overall recon-

struction quality.

We currently use a straightforward approach: Our programme looks at each pixel

in the mask in a random order, and checks if increasing or decreasing its brightness

to the next quantisation level reduces the reconstruction error. If this is the case,

the new brightness value is stored. The algorithm stops if no single point can be

optimised any more. More advanced optimisation schemes are also possible, as

shown in [47].

Modifying the brightness values of the selected pixel set K can lead to remarkable

improvements: Optimisation in a single pass reduces the MSE of our example im-

age “trui” from 53.35 to 36.48. With multiple optimisations, the MSE improves

further to 31.08.

4.5 Interpolation Swapping

If we use the above mentioned steps, an interesting phenomenon can be observed:

It can happen that the reconstruction quality within the “interpolation” set K is

worse than in the inpainting domain Ω\K, especially for high compression ratios.

There are three reasons for this behaviour:

(i) A coarser quantisation of the stored brightness values creates errors.

(ii) Higher errors are accepted in the interpolation set K if this is beneficial for

the approximation quality within the inpainting domain Ω\K.

(iii) In the domain Ω \K, data are inpainted by PDEs that average information

from K. Even if the stored brightness values in K are erroneous due to

requantisation and brightness optimisation steps, a blend of them averages

the errors and may lead to improved results in the inpainting domain Ω\K.

This resembles variational optic flow estimation where the results at loca-

tions with a large data term are worse than in areas where the smoothness

term with its inpainting effect dominates [17].

Moreover, for isotropic linear and nonlinear diffusion interpolation it can be ob-

served that inpainting results may become singular when approaching an isolated

pixel from the set K. In the linear case this can be explained with the well-known

logarithmic singularity of the Green’s function of the 2-D Laplacian.

Interestingly there is a relatively simple remedy for all these problems: In [6] it

is proposed to perform an additional inpainting step in which the role of known

and unknown pixels is swapped. That is, after reconstructing the image with in-

painting, one regards the reconstructed points in Ω\K as known and the specified

points in K as unknown. Then one inpaints the data in K using the information
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from Ω\K. This leads to an overall solution that is smoother and propagates the

high quality solution from Ω \K to the more erroneous data in K. While this

strategy may appear ad hoc at first glance, it can be justified as a numerically con-

sistent approximation of the inpainting PDE in the sense of so-called Hopscotch

schemes [34].

Here we propose a modification that extends the interpolation swapping of [6]:

Instead of only recomputing the known points, we also allow the possibility to

recompute more points. More precisely, we reconstruct all points within a certain

radius around the saved mask points. The radius for which the best reconstruction

is achieved is stored in the file header.

Since the best brightness values and the optimal contrast parameter λ can change

during these optimisations, brightness optimisation, diffusivity optimisation, and

finding an optimal interpolation swapping are interleaved.

The radius that yields the best result is stored in the header of the compressed file

and used in the reconstruction step. For our test image “trui” this step reduces the

MSE from 31.08 to 28.29.

4.6 Colour Images

Very little is necessary to extend our algorithm to colour images. Here, we simply

save the R, G, and B value of each pixel indicated by the inpainting mask in an in-

terleaved way. The file containing all colour channels is then compressed together

using the chosen entropy coder. An additional bit in the file header indicates

whether a grey-scale or colour image has been stored. In the decompression step,

we reconstruct all three channels simultaneously using vector-valued inpainting

operators [71]. Note that this yields different results than inpainting each channel

separately when using a nonlinear inpainting process, since the argument of the

diffusion tensor depends on all channels.

4.7 Decoding Algorithm

In the decoding step our codec creates the inpainting mask from the splitting in-

formation and the image size. The pixel values at these positions are obtained

by decoding the pixel data with the entropy coder and inserting them at the ap-

propriate positions. Then the remainder of the image is inpainted using the same

inpainting method as in the compression step. Finally, interpolation swapping is

performed.
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4.8 Numerical Implementations

The PDEs we consider have been implemented using a variety of numerical

schemes. Most of them are based on finite difference discretisations of the evolu-

tion equation given in (4). To allow for large time steps for the diffusion schemes,

(semi-)implicit time discretisations have been implemented which are solved us-

ing e.g. SOR or conjugate gradients. AMLE interpolation has been implemented

with an explicit scheme, and for the biharmonic and triharmonic interpolation

methods also pseudospectral methods are used. The actual CPU times depend

strongly on the choice of the differential operator, the numerical scheme, the op-

timisation strategy, and the hardware. Since the present paper focusses on mod-

elling and quality issues, a detailed numerical evaluation will be presented in a

forthcoming paper that is entirely devoted to these aspects. It should be men-

tioned that it was already demonstrated in [41] that one can achieve real-time

performance for diffusion-based codecs on a Playstation 3 with images of size

320×240 pixels.

4.9 File Format

The file format of our image compression framework has the following structure:

• image size (between 10 and 34 bits)

• type of inpainting differential operator (3 bits)

• colour flag (1 bit)

• type of entropy coder (4 bits)

• contrast parameter (1 byte)

• type of interpolation swapping (4 bits)

• number of quantisation levels (1 byte)

• minimal / maximal depth of tree (at most 2 bytes)

• splitting information of the tree (variable size)

• compressed brightness values (variable size)

Ignoring the splitting information of the tree, our header thus occupies less than

10 bytes.
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(a) linear diffusion (b) biharmonic (c) triharmonic (d) AMLE

(e) Charbonnier (f) reg. Charbonnier (g) EED (h) BM

Figure 7: Reconstruction from optimised point masks with linear diffusion inter-

polation (see Equation (5)), biharmonic interpolation (see Equation (6)), trihar-

monic interpolation (see Equation (7)), AMLE (see Equation (8)), Charbonnier

interpolation (see Equation (9)), regularised Charbonnier interpolation (see Equa-

tion (11)), EED interpolation (see Equation (12)), and the method by Bornemann

and März (BM). Each point mask is optimised such that the smallest MSE for a

compression ratio of 45 : 1 is obtained. A quantitative evaluation of these images

is given in Table 3.

5 Evaluation of our Compression Framework

In this section, we first compare the performance of different PDE-based inpaint-

ing operators within our image compression framework. Afterwards, a compari-

son against various image compression algorithms is performed.

5.1 Comparison of the Differential Operators in Our Compres-

sion Framework

To further evaluate the different PDE-based interpolation operators from Section

2, we used them to compress images with our compression framework introduced

in the last section. Here, the image “trui” with a compression rate around 45 : 1

is used. All parameters have been chosen in such a way that optimal point masks,

quantisation levels, and tree depths for each method are obtained. The results are
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shown in Fig. 7 and Table 3.

We see that the best results are obtained with EED. This is true with respect to the

MSE (see first rows in Table 3) as well as visually: The method by Bornemann

and März creates too many edges, i.e. it oversegments the image. The results from

biharmonic or triharmonic interpolation show visible fluctuations due to over- and

undershoots at edges. This is characteristic for higher-order differential operators

that violate a maximum-minimum principle. The other second-order operators

(linear diffusion interpolation, AMLE, standard or regularised Charbonnier inter-

polation) suffer from the fact that the information in the selected pixels seems to

be too sparse to create regular edge contours that do not appear blurry.

The implicit segmentation performed by EED (see Section 3) explains the absence

of point-like singularities in the EED interpolation of Fig. 7(h), which can be

found by carefully examining the results of the isotropic second-order operators

in Fig. 7(b),(f),(g). The singular behaviour of EED interpolation is restricted to

singularities across pronounced edges, which is desirable in image processing.

Analysing Table 3 indicates that EED needs a smaller number of points to create

good results. Moreover, a precise localisation (given by a high depth range in

the tree) seems to be less important than for the other methods. For a specified

compression ratio, these savings can be invested in a larger number of quantisation

levels that allow a better approximation quality.

5.2 Comparison to Other Compression Methods

Next we compare our compression algorithm with the one proposed by Galić et

al. [33] and with the image compression standards JPEG and JPEG 2000. Fig. 8

shows the results for the image “trui”. We used the tool “convert” (version Im-

ageMagick 6.6.0-4 2012-05-02 Q16) to create the JPEG and JPEG 2000 images

shown here.

Although “convert” uses optimised entropy coding parameters when saving JPEG

files, we observe that JPEG is clearly outperformed by the other approaches.

Moreover, block artifacts become visible. They are characteristic for JPEG re-

sults at high compression rates, since JPEG subdivides the image into 8×8 pixel

patches and quantises the coefficients of the discrete cosine transform within each

patch.

Interestingly the more recent and more advanced JPEG 2000 standard also pro-

duces a noticeably larger mean square error than our R-EED approach: For the

shown compression ratios around 56 : 1 it is 106% worse. As visible in the graph

shown in Fig. 8, the advantages of R-EED over JPEG and JPEG 2000 increases

with the compression rate.

Although it was claimed in [33] that this approach was not able to beat the quality

of JPEG 2000 for classical test images, recent experiments demonstrate that this is
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JPEG Galić et al. JPEG 2000 R-EED

MSE=111.01 MSE=75.81 MSE=69.66 MSE=33.79

at 54.4 : 1 at 57.5 : 1 at 56.5 : 1 at 56.5 : 1

Figure 8: First row: Images obtained with JPEG, the method of Galić et al. [33],

JPEG 2000 and with the proposed method (R-EED) with a compression rate close

to 56 : 1. Bottom row: Plot showing the MSEs of different compression algo-

rithms and compression rates.

possible when considering very high compression ratios. However, the results of

our algorithm outperform this method. For the shown compression ratio, the MSE

is 124% worse. Since both algorithms are based on EED as the differential oper-

ator of choice, this clearly demonstrates the importance of the additional features

of our algorithm, such as rectangular instead of triangular subdivision, diffusion

parameter optimisation, more advanced entropy encoders, improved brightness

optimisation, and interpolation swapping.

While the performance of PDE-based inpainting methods is known to deteriorate

in highly textured regions, it is remarkable that R-EED still gives a better visual

impression than JPEG 2000 in the textured regions of the scarf. Obviously, the

distinctive advantages of EED near edges allow to spend more points in order to

reconstruct highly textured regions more faithfully.

The previous experiment suggests that R-EED is particularly useful for obtaining

high compression rates with good quality. This is studied in more detail in Fig. 9

that displays results with compression ratios of up to 211 : 1. Although the visual

quality deteriorates, one can still recognise the essential image contents. Higher

compression rates are also possible with R-EED.

Finally we evaluate our image compression algorithm with two additional stan-
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(a) R-EED (b) R-EED (c) JPEG 2000 (d) JPEG 2000

113 : 1 211 : 1 113 : 1 202 : 1

(MSE=87.6) (MSE=157.7) (MSE=193.8) (MSE=547.5)

Figure 9: Results with very strong compression with R-EED (top row) and JPEG

2000 (bottom row).

dard test images: an image of Walter Cronkite (“walter”) and a subimage of

the colour image “peppers”. Both images are available from the SIPI webpage

http://sipi.usc.edu/database of the University of Southern Califor-

nia. In all cases, the proposed R-EED compression algorithm outperforms JPEG

and JPEG 2000 for medium to high compression rates. Details are given in Table

4 and Fig. 10. In this table, one can also see that the MSE difference between

our novel results and our preliminary results from [59] can even exceed 20 % for

some images.

6 Extensions

In the third and final part of this paper, we introduce two extensions suitable for

shape coding as well as for coding of 3-D data.

6.1 Shape Coding

Due to our rectangular subdivision scheme, the stored points are always (more or

less) spread along the whole image domain. However, placing a point exactly to

a certain position is very costly. This is no big problem for natural images. When

encoding shape data, most points are far away from the contour of the shape,

though. This results in a high overhead. Thus, we propose an extension suitable

for shape coding that can position the stored information arbitrarily.

First of all, we note that a single point is insufficient to encode a meaningful

contour information, and that even dipoles do not provide enough flexibility to

encode arbitrary lines. In general, they can only be considered to encode vertical

or horizontal directions. In order to encode lines with arbitrary directions, we thus
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Input image R-EED, 49.32 : 1 R-EED, 72.97 : 1 R-EED, 95.07 : 1

Input image R-EED, 83.46 : 1 R-EED, 107.56 : 1 R-EED, 132.41 : 1
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Figure 10: Compression results of the images “walter” (256×256 pixels) and of

a 256×256 subimage of the image “peppers”. The first two rows show the input

images and images created by the proposed algorithm with different compression

ratios. The last line shows two plots that compare the quality obtained with JPEG,

JPEG 2000, our algorithm (R-EED). For the first image, the results of Galić et al.

are additionally given.
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(a) (b) (c) (d) (e)

Figure 11: Illustration of the EED shape coding capabilities with 4% of all

quadrupoles (67 of 1672); the red rectangles in (a) and (b) mark a difficult area for

our algorithm, which is zoomed in (c), (d), and (e). From left to right: (a) Orig-

inal shape (400× 380 pixels). (b) Interpolation result with EED, MSE: 77.79.

After thresholding, the binary images only differ in 464 pixels, i.e. in approxi-

mately 0.3% of the pixels. (c) Zoom into marked area of (a). (d) Corresponding

selected quadrupoles for zoomed region. (e) Zoom into marked area of (b).

introduce so-called quadrupoles. A quadrupole consists of a 2×2 block of pixels.

The line which should be represented by it is assumed to pass through its centre.

Two of the pixels, namely the ones lying completely to the left and the right side

of the line, take the minimal and maximal grey value, i.e. black and white. The

other two pixels, which are split by the line, are shaded in grey corresponding to

the fractions of black and white within those pixels. Examples illustrating such

quadrupoles are shown in Fig. 11(d).

A shape as depicted in Fig. 11(a) can now be encoded by placing quadrupoles

along its contour. Since quadrupoles on the one hand encode lines, EED on

the other hand has the tendency to reduce the curvature, we should set more

quadrupoles at contour regions with higher curvature. Therefore, we suggest the

following algorithm to distribute the quadrupoles along the contour: We first com-

pute the magnitude of the curvature,

|κ(u)|=

∣

∣

∣

∣

∣

u2
xuyy −2uxuyuxy +u2

yuxx

|∇∇∇u|3

∣

∣

∣

∣

∣

,

in every point along the smoothed shape contour. We rescale the result such that

the average curvature value of the contour pixels corresponds to the fraction of

pixels which should be kept as quadrupole positions. Then we use one-dimen-

sional error diffusion to binarise the curvature signal along the contour and obtain

the positions for our quadrupoles. In this way, we set the number of quadrupoles

along the contour in proportion to its curvature. This approach also resembles the

method presented in [9], in which the density of the interpolation data is chosen

proportionally to the Laplacian magnitude. Note that the density of quadrupoles

at corners can be tuned by replacing |κ| by |κ|p, with p ∈ R
+. In our example we
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use p = 0.5.

For each of the selected quadrupoles, we finally need to determine the direction

which it should encode. This is done by exploiting the dominant eigenvector

of the diffusion tensor (see equation (12)) at the centre of the quadrupole. It

is pointing in the direction of highest contrast within some neighbourhood, i.e.

across the contour. Therefore, by choosing the orthogonal direction, it allows a

robust estimation of the tangential direction of the contour at the corresponding

location.

Figure 11(d) shows a zoom into the sparse version of the original shape (see

Fig. 11(a)) when applying the afore mentioned method. The reconstruction us-

ing EED interpolation is depicted in Fig. 11(b).

Obviously, EED is able to encode arbitrary shapes by exploiting simple concepts

as provided by quadrupoles. This emphasises once more the excellent interpola-

tion properties of EED. Exploring the shape coding properties of EED in more

detail is part of our ongoing research.

6.2 3-D Data

A simple method often used to compress 3-D images is to treat them as a sequence

of 2-D image slices. Each slice is then compressed using an established 2-D

compression algorithm. However, this approach results in unnecessary overhead

and ignores significant potentials for improvement by exploiting redundancies that

arise due to the additional dimension. Our 3-D codec C-EED differs from this

naive approach in four key aspects:

First of all, file headers are largely redundant for most of the slices. For example,

the image dimension is always the same. This overhead can be easily avoided

by defining a novel 3-D file format that eliminates header redundancy. Thus, our

header has the same structure as in the 2-D case (see Section 4.9), except for the

additional image size value which has to be stored for the third dimension.

Secondly, entropy coders typically handle large, cohesive data blocks more effi-

ciently than individually coded segments. Therefore, we use global entropy cod-

ing of the whole image data instead of treating slices separately.

Thirdly, we use a 3-D version of EED instead of performing 2-D diffusion in each

slice to improve the interpolation quality. Even though the third dimension of the

original image may have been sampled coarser (e.g. for medical image data), it

still offers valuable information that can be exploited for more efficient inpainting.

The mathematical theory behind EED in 3-D is very similar to the 2-D case: The

only difference is that two eigenvalues of the smoothed diffusion tensor are set to

1 instead of only one [55].

Finally, the rectangular subdivision scheme used in R-EED is naturally extended

to 3-D by replacing rectangles by their 3-D counterpart, i.e. cuboids. Analo-
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gously to the 2-D case, the image is split in the middle of its largest dimension,

which yields two cuboidal subimages. Thus, the binary tree structure from the

two-dimensional case is preserved. Again, many different point patterns can be

defined. According to our experiments, using the centre and corners of each 3-D

subimage yields very good results. This choice of points can be regarded as the

natural 3-D extension of the 2-D point pattern F (see Fig. 6).

In the 3-D setting, we use real world medical data acquired by computerised to-

mography (CT) to evaluate the performance of our 3-D codec C-EED. We first

compare C-EED to a modified version of R-EED to assess the influence of the

3-D diffusion on compression quality. The only difference between R-EED and

C-EED is the application of 2-D EED to image slices (R-EED) instead of 3-D

diffusion on the whole image (C-EED). Other influences such as the effects of

global entropy coding and header redundancies are avoided. As expected, the 3-D

diffusion offers a significant advantage over its 2-D counterpart (see Fig. 12).

Furthermore, we compare our results to a widely-used transformation-based im-

age coding standard for medical images, the DICOM standard [52]. In particular,

we apply the most efficient compression standard allowed by DICOM, namely

JPEG 2000. Just as for R-EED, we eliminate header redundancies and disadvan-

tages due to slice-wise entropy coding by applying JPEG 2000 to a single 2-D

image that contains all slices. As the 2-D experiments with R-EED already sug-

gest, C-EED performs significantly better than DICOM.

7 Conclusion

In this article, we have contributed to the advancement of PDE-based image com-

pression in three ways:

First of all, we have gained a substantially deeper understanding why the edge-

enhancing anisotropic diffusion (EED) operator is ideally suited for interpolating

missing data in compression applications: Its anisotropy in conjunction with its

semilocal behaviour offers specific advantages for this task. It can create edges

that are smooth along the edge, but permits contrast jumps across the edge. This

allows to model realistic edge contours by specifying only a very small number

of pixels. By avoiding singularities at interpolation points as well as over- and

undershoots near edges, it combines distinctive advantages of second and higher

order interpolation operators.

Our second contribution consists of an improved EED-based codec that outper-

forms not only the recent EED-based codec from Galić et al. [33], but also so-

phisticated compression standards such as JPEG 2000. Its high quality is caused

by a careful optimisation of a number of intermediate steps, such as rectangular

subdivision, selection of diffusion parameters, adaptation of the brightness values,
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Original DICOM R-EED C-EED

MSE=39.63 MSE=29.12 MSE=25.58

at 89.2 : 1 at 90.3 : 1 at 89.7 : 1

MSE=65.02 MSE=49.44 MSE=38.66

at 206.0 : 1 at 207.9 : 1 at 206.4 : 1

Figure 12: Images obtained with DICOM (using JPEG 2000), R-EED, and C-

EED with compression rates close to 90:1 (top row) and 207:1 (bottom row). The

test data set “trab64” (size 256 × 256 × 64) consists of the first 64 slices of a

femured bone CT. The images above depict the last 2-D slice of “trab64”.

entropy encoding, and interpolation swapping.

Thirdly, we have demonstrated that EED-based compression is also applicable for

shape coding, and that the concepts of our EED-based codec translate well to the

3-D setting. Especially, we showed that the use of 3-D EED offers significant

advantages over slice-wise 2-D diffusion, and that our 3-D codec C-EED outper-

forms R-EED as well as the DICOM/JPEG 2000 standard on medical data.

It is evident that the basic ideas behind EED-based image compression generalise

in a straightforward way to tensor data sets, if one uses the corresponding EED

operators from [70]. It is more challenging to adapt our methods to the efficient

compression of image sequences and surface data, see e.g. [6]. A more advanced

handling of colour images and shapes is also on our agenda. Moreover, we are go-

ing to focus on approaches that pay specific attention to highly textured images.

On an algorithmic side, we are currently evaluating a number of efficient numer-

ical methods, and we are also studying parallel implementations on multi-core

architectures such as GPUs.
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