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Abstract.—Effective population size characterizes the genetic variability in a population and is a parameter of paramount
importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past
population dynamics directly from molecular sequence data, and researchers have developed a number of flexible
coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major
goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the
association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based
approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov
random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior
distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models.
Incorporating covariates into the demographic inference framework enables the modeling of associations between the
effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead
to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic
history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak.
Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count
data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with
HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally,
we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to
climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics;
population genetics.]

The effective population size is an abstract
parameter of fundamental importance in population
genetics, evolutionary biology, and infectious disease
epidemiology. Wright (1931) introduces the concept
of effective population size as the size of an idealized
Fisher–Wright population that gains and loses genetic
diversity at the same rate as the real population under
study. The Fisher–Wright model is a classic forward-time
model of reproduction that assumes random mating, no
selection or migration, and nonoverlapping generations.
Coalescent theory (Kingman 1982a, 1982b) provides a
probabilistic model for generating genealogies relating
samples of individuals arising from a Fisher–Wright
model of reproduction. Importantly, the coalescent
elucidates the relationship between population genetic
parameters and ancestry. In particular, the dynamics
of the effective population size greatly inform the
shapes of coalescent-generated genealogies. This opens
the door for the inverse problem of coalescent-based
inference of effective population size trajectories from
gene genealogies.

While the coalescent was originally developed for
constant-size populations, extensions that accommodate
a variable population size (Slatkin and Hudson 1991;
Griffiths and Tavaré 1994; Donnelly and Tavaré 1995)

provide a basis for estimation of the effective population
size as a function of time (also called the demographic
function). Early approaches assumed simple parametric
forms for the demographic function, such as exponential
or logistic growth, and provided maximum likelihood
(Kuhner et al. 1998) or Bayesian (Drummond et al.
2002) frameworks for estimating the parameters that
characterized the parametric forms. However, a priori
parametric assumptions can be quite restrictive, and
finding an appropriate parametric form for a given
demographic history can be time consuming and
computationally expensive. To remedy this, there
has been considerable development of nonparametric
methods to infer past population dynamics.

Nonparametric coalescent-based models typically
approximate the effective population size as a piecewise
constant or linear function. The methodology has
evolved from fast but noisy models based on
method of moments estimators (Pybus et al. 2000;
Strimmer and Pybus 2001), to a number of flexible
Bayesian approaches, including multiple change-point
models (Drummond et al. 2005; Opgen-Rhein et al.
2005; Heled and Drummond 2008), and models
that employ Gaussian process-based priors on the
population trajectory (Minin et al. 2008; Gill et al.
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2013; Palacios and Minin 2013). Extending the basic
methodological framework to incorporate a number
of key features, including accounting for phylogenetic
error (Drummond et al. 2005; Heled and Drummond
2008; Minin et al. 2008; Gill et al. 2013), the ability
to analyze heterochronous data (Pybus et al. 2000;
Drummond et al. 2005; Heled and Drummond 2008;
Minin et al. 2008; Gill et al. 2013; Palacios and Minin 2013),
and simultaneous analysis of multilocus data (Heled
and Drummond 2008; Gill et al. 2013) has hastened
progress.

In spite of all of these advances, there remains a
need for further development of population dynamics
inference methodology. One promising avenue is
introduction of covariates into the inference framework.
A central goal in demographic reconstruction is
to gain insights into the association between past
population dynamics and external factors (Ho and
Shapiro 2011). For example, Lorenzen et al. (2011)
combine demographic reconstructions from ancient
DNA with species distribution models and the human
fossil record to elucidate how climate and humans
impacted the population dynamics of woolly rhinoceros,
woolly mammoth, wild horse, reindeer, bison, and musk
ox during the Late Quaternary period. Lorenzen et al.
(2011) show that changes in megafauna abundance are
idiosyncratic, with different species (and continental
populations within species) responding differently to
the effects of climate change, human encroachment and
habitat redistribution. Lorenzen et al. (2011) identify
climate change as the primary explanation behind the
extinction of Eurasian musk ox and woolly rhinoceros,
point to a combination of climatic and anthropogenic
factors as the causes of wild horse and steppe bison
decline, and observe that reindeer remain largely
unaffected by any such factors. Similarly, Stiller et al.
(2010) examine whether climatic changes were related
to the extinction of the cave bear, and Finlay et al.
(2007) consider the impact of domestication on the
population expansion of bovine species. Comparison of
external factors with past population dynamics is also a
popular approach in epidemiological studies to explore
hypotheses about the spread of viruses (Lemey et al.
2003; Faria et al. 2014).

In addition to the association between past population
dynamics and potential driving factors, it is of
fundamental interest to assess the association between
effective population size and census population size
(Crandall et al. 1999; Liu and Mittler 2008; Volz et al.
2009; Palstra and Fraser 2012). For instance, Bazin et al.
(2006) argue that in animals, diversity of mitochondrial
DNA (mtDNA) is not reflective of population size,
whereas allozyme diversity is. Atkinson et al. (2008)
follow up by examining whether mtDNA diversity is
a reliable predictor of human population size. The
authors compare Bayesian Skyline (Drummond et al.
2005) effective population size reconstructions with
historical estimates of census population sizes and find
concordance between the two quantities in terms of
relative regional population sizes.

Existing methods for population dynamics inference
do not incorporate covariates directly into the model,
and associations between the effective population size
and potentially related factors are typically examined in
post hoc fashions that ignore uncertainty in demographic
reconstructions. We propose to fill this void by including
external time series as covariates in a generalized
linear model (GLM) framework. We accomplish this
task by building upon the Bayesian nonparametric
Skygrid model of Gill et al. (2013). The Skygrid
is a particularly well-suited starting point among
nonparametric coalescent-based models. In most other
comparable models, the trajectory change-points must
correspond to internal nodes of the genealogy, creating
a hurdle for modeling associations with covariates that
are measured at fixed times. The Skygrid bypasses such
difficulties by allowing users to specify change-points,
providing a more natural framework for our extension.
Furthermore, the Skygrid’s Gaussian Markov random
field (GMRF) smoothing prior is highly generalizable
and affords a straightforward extension to include
covariates.

We demonstrate the utility of incorporating covariates
into demographic inference on four examples. First, we
find striking similarities between the demographic and
spatial expansion of raccoon rabies in North America.
Second, we compare and contrast the epidemiological
dynamics of dengue in Puerto Rico with patterns of
viral diversity. Third, we examine the population history
of the HIV-1 CRF02_AG clade in Cameroon and find
that the effective population size is more reflective of
HIV incidence than prevalence. Finally, we explore the
relationship between musk ox population dynamics and
climate change during the Late Quaternary period. Our
extension to the Skygrid proves to be a useful framework
for ascertaining the association between effective
population size and external covariates while accounting
for demographic uncertainty. Furthermore, we show
that incorporating covariates into the demographic
inference framework can improve estimates of effective
population size trajectories, increasing precision and
uncovering patterns in the population history that
integrate the covariate data in addition to the sequence
data.

METHODS

We begin with an overview of coalescent theory and
follow with a detailed development of the Skygrid
inference framework before presenting its extension that
incorporates external covariate data. Readers interested
in previewing our approach to include covariates may
skip to the section Incorporating Covariates. However, we
encourage readers who are unfamiliar with the Skygrid
to proceed in order.

Coalescent Theory

Consider a random sample of n individuals arising
from a classic Fisher–Wright population model of
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constant size Ne. The coalescent (Kingman 1982a, 1982b)
is a stochastic process that generates genealogies relating
such a sample. The process begins at the sampling time
of all n individuals, t=0, and proceeds backward in
time as t increases, successively merging lineages until
all lineages have merged and we have reached the root
of the genealogy, which corresponds to the most recent
common ancestor (MRCA) of the sampled individuals.
The merging of lineages is called a coalescent event and
there are n−1 coalescent events in all. Let tk denote the
time of the (n−k)-th coalescent event for k =1,...,n−
1 and tn =0 denote the sampling time. Then for k =
2,...,n, the waiting time wk = tk−1 −tk is exponentially

distributed with rate k(k−1)
2Ne

.

Researchers have extended coalescent theory to model
the effects of recombination (Hudson 1983), population
structure (Notohara 1990), and selection (Krone and
Neuhauser 1997). We do not, however, incorporate any
of these extensions here. The relevant extensions for our
development generalize the coalescent to accommodate
a variable population size (Griffiths and Tavaré 1994) and
heterochronous data (Rodrigo and Felsenstein 1999). The
latter occurs when the n individuals are sampled at two
or more different times.

Let Ne(t) denote the effective population size as
a function of time, where time increases into the
past. Thus, Ne(0) is the effective population size at
the most recent sampling time, and Ne(t′) is the
effective population size t′ time units before the
most recent sampling time. We also refer to Ne(t) as
the “demographic function” or “demographic model.”
Griffiths and Tavaré (1994) show that the waiting time
wk between coalescent events is given by the conditional
density

P(wk|tk)=
k(k−1)

2Ne(wk +tk)
exp

[

−

∫ wk+tk

tk

k(k−1)

2Ne(t)
dt

]

. (1)

Taking the product of such densities yields the joint
density of intercoalescent waiting times, and this fact
can be exploited to obtain the probability of observing a
particular genealogy given a demographic function.

Skygrid Demographic Model

The Skygrid posits that Ne(t) is a piecewise constant
function that can change values only at pre-specified
points in time known as “grid points.” Let x1,...,xM
denote the temporal grid points, where x1 ≤x2 ≤···≤
xM−1 ≤xM. The M grid points divide the demographic
history timeline into M+1 intervals so that the
demographic function is fully specified by a vector θ=
(�1,...,�M+1) of values that it assumes on those intervals.
Here, Ne(t)=�k for xk−1 ≤ t<xk , k =1,...,M, where it
is understood that x0 =0. Also, Ne(t)=�M+1 for t≥xM.
Note that xM is the time furthest back into the past
at which the effective population size can change. The
values of the grid points as well as the number M of
total grid points are specified beforehand by the user.

A typical way to select the grid points is to decide
on a resolution M, let xM assume the value furthest
back in time for which the data are expected to be
informative, and space the remaining grid points evenly
between x0 =0 and xM. Alternatively, as discussed in the
next section, grid points can be selected to align with
covariate sampling times to facilitate the modeling of
associations between the effective population size and
external covariates.

Suppose we have m known genealogies g1,...,gm
representing the ancestries of samples from m separate
genetic loci with the same effective population size Ne(t).
We assume a priori that the genealogies are independent
given Ne(t). This assumption implies that the genealogies
are unlinked which commonly occurs when researchers
select loci from whole genome sequences or when
recombination is very likely, such as between genes in
retroviruses. The likelihood of the vector g= (g1,...,gm)
of genealogies can then be expressed as the product of
likelihoods of individual genealogies:

P(g|θ)=
m
∏

i=1

P(gi|θ). (2)

To construct the likelihood of genealogy gi, let t0i
be

the most recent sampling time of sequences contributing
to genealogy i and tMRCAi be the time of the MRCA for
locus i. Let x�i denote the minimal grid point greater
than at least one sampling time in the genealogy, and x�i

the greatest grid point less than at least one coalescent
time. Let uik =[xk−1,xk], k =�i +1,...,�i, ui�i

=[t0i
,x�i ],

and ui(�i+1) =[x�i
,tMRCAi ]. For each uik we let tkj, j=1,...,rk ,

denote the ordered times of the grid points and sampling
and coalescent events in the interval. With each tkj we

associate an indicator �kj which takes a value of 1 in the

case of a coalescent event and 0 otherwise. Finally, let vkj

denote the number of lineages present in the genealogy
in the interval [tkj,tk(j+1)]. Following Griffiths and Tavaré

(1994), the likelihood of observing an interval is

P(uik|�k) =
∏

1≤j<rk :�kj=1

vkj(vkj −1)

2�k

rk−1
∏

j=1

exp

[

−
vkj(vkj −1)(tk(j+1) −tkj)

2�k

]

, (3)

for k =�i,...,�i +1.
The product of interval likelihoods (3) yields the

likelihood of coalescent times given the sampling
times associated with genealogy gi. However, identical
coalescent times can arise from distinct genealogies.
Immediately prior to a coalescent time tk(j+1), there are

vkj distinct lineages and, therefore,
vkj(vkj−1)

2 different

pairs of lineages that can merge and result in a coalescent
event at time tk(j+1). The different possible mergings

correspond to different genealogies. To obtain the
likelihood of a particular genealogy we must account for
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the fact that a specific pair of lineages must merge at each
coalescent time. Let P∗(uik|�k) denote P(uik|�k) except

with factors of the form
vkj(vkj−1)

2�k
replaced by 2(2−1)

2�k
= 1

�k
.

Then,

P(gi|θ)=

�i+1
∏

k=�i

P∗(uik|�k). (4)

We introduce some notation that will facilitate
the derivation of a Gaussian approximation used
to construct a Markov chain Monte Carlo (MCMC)
transition kernel. If cik denotes the number of coalescent
events which occur during interval uik , we can write

P(gi|θ)=

�i+1
∏

k=�i

(

1

�k

)cik

exp

[

−
SSik

�k

]

, (5)

where the SSik are appropriate constants. Rewriting this
expression in terms of �k = log(�k), we arrive at

P(gi|γ) =

�i+1
∏

k=�i

e−�kcik exp[−SSike−�k ]

=

�i+1
∏

k=�i

exp[−�kcik −SSike−�k ]. (6)

Invoking conditional independence of genealogies, the
likelihood of the vector g of genealogies is

P(g|γ) =

m
∏

i=1

P(gi|γ) (7)

=

m
∏

i=1

�i+1
∏

k=�i

exp[−�kcik −SSike−�k ] (8)

= exp

⎡

⎣

M+1
∑

k=1

[

−�kck −SSke−�k
]

⎤

⎦ (9)

where ck =
∑m

i=1cik and SSk =
∑m

i=1SSik ; here, cik =SSik =
0 if k /∈[�i,�i +1].

The Skygrid incorporates the prior assumption that
effective population size changes continuously over time
by placing a GMRF prior on γ:

P(γ|�)∝�M/2exp

⎡

⎣−
�

2

M
∑

i=1

(�i+1 −�i)
2

⎤

⎦. (10)

This prior does not inform the overall level of the
effective population size, just the smoothness of the
trajectory. One can think of the prior as a first-order
unbiased random walk with normal increments. The
precision parameter � determines how much differences
between adjacent log effective population size values are
penalized. We assign � a gamma prior:

P(�)∝�a−1e−b�. (11)

In the absence of prior knowledge about the smoothness
of the effective population size trajectory, we choose
a=b=0.001 so that it is relatively uninformative.
Conditioning on the vector of genealogies, we obtain the
posterior distribution

P(γ,�|g)∝P(g|γ)P(γ|�)P(�). (12)

Incorporating Covariates

We can incorporate covariates into our inference
framework by adopting a GLM approach. Let Z1,...,ZP
be a set of P predictors. Each covariate Zj is observed
or measured at M+1 time points, s1,...,sM,sM+1. Here,
si denotes the units of time before the most recent
sequence sampling time s0 =0, and s0 <s1 < ···<sM <
sM+1. Alternatively, the covariate may correspond to
time intervals [s0,s1],...,[sM−1,sM],[sM,sM+1] rather
than time points (e.g., the yearly incidence or prevalence
of viral infections). In any case, Zij denotes covariate Zj

at time point or interval i. Skygrid grid points are chosen
to match up with measurement times (or measurement
interval endpoints): x1 =s1,...,xM =sM. Then Ne(t)=�k
for xk−1 ≤ t≤xk , k =1,...,M, and Ne(t)=�M+1 for t≥
xM. In our GLM framework, we model the effective
population size on a given interval as a log-linear
function of covariates

�k = log�k =�1Zk1 +···+�PZkP +wk. (13)

Here, we can impose temporal dependence by modeling
w= (w1,...,wM+1) as a zero-mean Gaussian process.
Adopting this viewpoint, we propose the following
GMRF smoothing prior on γ:

P(γ|Z,β,�)∝�M/2exp
[

−
�

2
(γ−Zβ)′Q(γ−Zβ)

]

. (14)

In this prior, Z is an (M+1)×P matrix of covariates and
β is a P×1 vector of coefficients representing the effect
sizes for the predictors, quantifying their contribution
to γ. Precision Q is an (M+1)×(M+1) tri-diagonal
matrix with off-diagonal elements equal to −1, Q11 =
QM+1,M+1 =1, and Qii =2 for i=2,...,M. Let γ−i denote
the vector obtained by excluding only the i-th component
from vector γ. Therefore, conditional on γ−i, �i depends
only on its immediate neighbors. Let Zi denote the i-th
row of covariate matrix Z. The individual components
of � have full conditionals

�1|γ−1 ∼ N

(

Z′
1β−Z′

2β+�2,
1

�

)

, (15)

�i|γ−i ∼ N

(

Z′
iβ+

�i−1 +�i+1 −Z′
i−1β−Z′

i+1β

2
,

1

2�

)

for i=2,...,M, (16)
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2016 GILL ET AL.—UNDERSTANDING PAST POPULATION DYNAMICS 1045

�M+1|γ−(M+1) ∼ N

(

Z′
M+1β−Z′

Mβ+�M,
1

�

)

. (17)

As in the original Skygrid GMRF prior, the precision
parameter � governs the smoothness of the trajectory and
is assigned a gamma prior

P(�)∝�a−1e−b�. (18)

To complete the model specification, we place a relatively
uninformative multivariate normal prior P(β) on the
coefficients β. This yields the posterior

P(γ,β,�|g,Z)∝P(g|γ)P(γ|Z,β,�)P(β)P(�). (19)

Missing Covariate Data

It is important to have a mechanism for dealing with
unobserved covariate values. This is particularly crucial
because the population history timeline, which ranges
from the most recent sampling time to the time of the
MRCA, necessitates observations from a wide and a
priori unknown time span. Let Zobs denote the observed

covariate values and Zmis the missing covariate values,

so that Z= (Zobs,Zmis). The missing data can be treated
as extra unknown parameters in a Bayesian model, and
they can be estimated provided that there is a model
that links them to the observed data and other model
parameters. We have the factorization

P(γ,Zmis|Zobs,β,�)=P(γ|Zobs,Zmis,β,�)P(Zmis|Zobs,β,�),
(20)

and the marginal density P(γ|Zobs,β,�) can be recovered
by integrating out the missing data. As a starting
point, we assume a “missing completely at random”
structure, meaning that the probability that a covariate
value is missing is independent of observed covariate
values and other model parameters. For the priors on
missing covariate values in (20), we can adopt uniform
distributions over plausible ranges.

Alternatively, we can formulate a prior on the missing
covariate data that makes use of the observed covariate
values. Here, we focus on a common scenario where
covariate j is observed at times x1,...,xK and unobserved

at times xK+1,...,xM+1. Thus, we can write Zobs
j =

(Z1j,...,ZKj)
′ and Zmis

j = (Z(K+1)j,...,Z(M+1)j)
′. We model

the joint distribution of the observed and missing
covariate values as multivariate normal,

(

Zobs
j

Zmis
j

)

∼N

(

(

µ1
µ2

)

,

(

P11 P12
P21 P22

)−1
)

, (21)

where

P=

(

P11 P12

P21 P22

)

(22)

is the precision matrix. To impose a correlation structure
that enforces dependence between covariate values
corresponding to adjacent times, we adopt a first-order
random walk with full conditionals

Z1j|Z−1j ∼ N

(

Z2j,
1

�

)

, (23)

Zij|Z−ij ∼ N

(

Z(i−1)j +Z(i+1)j

2
,

1

2�

)

(24)

for i=2,...,M,

Z(M+1)j|Z−(M+1)j ∼ N

(

ZMj,
1

�

)

. (25)

Let ZK denote a vector of dimension M−K with every
entry equal to ZKj. Then the distribution of missing
covariate values conditional on observed covariate
values is

P(Zmis
j |Zobs

j )∝�(M−K)/2exp
(

−
�

2
(Zmis

j −ZK)′P22(Zmis
j −ZK)

)

,

(26)
where

P22 =

⎛

⎜

⎜

⎜

⎜

⎝

−1 2 −1

. . .
. . .

−1 2 −1

−1 1

⎞

⎟

⎟

⎟

⎟

⎠

. (27)

This technique of positing a random walk covariate
distribution and recovering appropriate conditional
distributions can also be employed for other missing data
patterns.

MCMC Sampling Scheme

We use MCMC sampling to approximate the
posterior

P(γ,β,�|g,Z)∝P(g|γ)P(γ|Z,β,�)P(β)P(�). (28)

To sample γ and �, we propose a fast-mixing, block-
updating MCMC sampling scheme for GMRFs (Knorr-
Held and Rue 2002). Suppose we have current parameter

values (γ(n),�(n)). First, consider the full conditional
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density

P(γ|g,Z,β,�) ∝ P(g|γ)P(γ|Z,β,�)

∝ exp

⎡

⎣

M+1
∑

k=1

(−�kck −SSke−�k )

⎤

⎦�M/2

×exp
[

−
�

2
(γ−Zβ)′Q(γ−Zβ)

]

= �M/2exp

⎡

⎣−
�

2
(γ−Zβ)′Q(γ−Zβ)

−

M+1
∑

k=1

(�kck +SSke−�k )

⎤

⎦

= �M/2exp

⎡

⎣−
�

2
γ′Qγ+(Zβ)′�Qγ

−

M+1
∑

k=1

(�kck +SSke−�k )

⎤

⎦. (29)

Let hk(�k)= (�kck +SSke−�k ). We can approximate each
term hk(�k) by a second-order Taylor expansion about,
say, �̂k :

hk(�k) ≈ hk(�̂k)+h′
k(�̂k)(�k − �̂k)+

1

2
h′′

k (�̂k)(�k − �̂k)2

= SSke−�̂k

(

1

2
�̂k

2 + �̂k +1

)

+
[

ck −SSke−�̂k −SSke−�̂k �̂k

]

�k

+

[

1

2
SSke−�̂k

]

�2
k . (30)

We center the Taylor expansion about a point γ̂=
(�̂1,...,�̂M+1) obtained iteratively by the Newton–
Raphson method:

γ(n+1) =γ(n) −[d2f (γ(n))]
−1(df (γ(n)))

′ (31)

with γ(0) =γ(n), the current value of γ. Here,

f (γ)=−
1

2
γ′�Qγ+(Zβ)′�Qγ−

M+1
∑

k=1

(�kck +SSke−�k ) (32)

with

df (γ) = −γ′�Q+(Zβ)′�Q−[c1 −SS1e−�1 ,...,cM+1

−SSM+1e−�M+1] (33)

and

d2f (γ)=−�Q−diag[SSke−�k ]. (34)

Replacing the terms hk(�k) with their Taylor
expansions yields the following second-order

Gaussian approximation to the full conditional density
P(γ|g,Z,β,�) :

P(γ|g,Z,β,�)≈�M/2exp

[

−
1

2
γ′[�Q+Diag(SSke−�̂k )]γ

+(�QZβ)′γ−

M+1
∑

k=1

(ck −SSke−�̂k −SSke−�̂k �̂k)�k

⎤

⎦,

(35)

where Diag(·) is a diagonal matrix.

Starting from current parameter values (γ(n),�(n)), we
first generate a candidate value for the precision, �∗ =

�(n)f , where f is drawn from a symmetric proposal

distribution with density P(f )∝ f + 1
f

defined on [1/F,F].

The tuning constant F controls the distance between
the proposed and current values of the precision.
Next, conditional on �∗, we propose a new state γ∗

using the Gaussian approximation (35) to the full
conditional density P(�|g,Z,β,�∗). In the final step, the
candidate state (�∗,γ∗) is accepted or rejected according
to the Metropolis–Hastings ratio (Metropolis et al. 1953;
Hastings 1970).

Genealogical Uncertainty

In our development thus far, we have assumed the
genealogies g1,...,gm are known and fixed. However,
in reality we observe sequence data rather than
genealogies. It is possible to estimate genealogies
beforehand from sequence data and then infer the
effective population size from fixed genealogies.
However, this ignores the uncertainty associated with
phylogenetic reconstruction. Alternatively, we can
jointly infer genealogies and population dynamics from
sequence data by combining the estimation procedures
into a single Bayesian framework.

We can think of the aligned sequence data Y=
(Y1,...,Ym) for the m loci as arising from continuous-time
Markov chain (CTMC) models for molecular character
substitution that act along the hidden genealogies. Each
CTMC depends on a vector of mutational parameters
	i, that include, for example, an overall rate multiplier,
relative exchange rates among characters and across-site
variation specifications. We let �= (	1,...,	m). We then
jointly estimate the genealogies, mutational parameters,
covariate effect size coefficients, precision, and vector
of effective population sizes through their posterior
distribution

P(g,�,β,�,γ|Y,Z) ∝

[

m
∏

i=1

P(Yi|gi,	i)

]

×P(�)P(g|γ)P(γ|Z,β,�)P(β)P(�).

(36)

Here, the coalescent acts as a prior for the genealogies,
and we assume that � and g are a priori independent
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of each other. Hierarchical models are, however,
available to share information about � among loci
without strictly enforcing that they follow the same
evolutionary process (Suchard et al. 2003; Edo-Matas
et al. 2011). We implement our models in the open-source
software program BEAST v1 (Drummond et al. 2012).
The posterior distribution is approximated through
MCMC methods. We combine our block-updating
scheme for γ and � with standard transition kernels
available in BEAST to update the other parameters.
The extended Skygrid model will be included in the
next official release of BEAST v1. In the meantime,
it can be accessed by users through the BEAST v1
development branch source code, which is available at
https://github.com/beast-dev/beast-mcmc/. Example
BEAST XML input files are available as part of
the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.mj0hn.

EMPIRICAL EXAMPLES

Expansion in Epizootic Rabies Virus

Rabies is a zoonotic disease caused by the rabies
virus, and is responsible for over 50,000 human deaths
annually. In over 99% of human cases, the rabies virus
is transmitted by dogs. However, there are a number
of other important rabies reservoirs, such as bats and
several terrestrial carnivore species, including raccoons
(WHO 2015b). Epizootic rabies among raccoons was first
identified in the United States in Florida in the 1940s,
and the affected area of the subsequent expansion was
limited to the southeastern United States (Kappus et al.
1970). A second focus of rabies among raccoons emerged
in West Virginia in the late 1970s due to the translocation
of raccoons incubating rabies from the southeastern
United States The virus spread rapidly along the mid-
Atlantic coast and northeastern United States over the
following decades, and is one of the largest documented
outbreaks in the history of wildlife rabies (Childs et al.
2000).

Biek et al. (2007) examine the population dynamics of
the rabies epizootic among raccoons in the northeastern
United States starting in the late 1970s. In a spatiogenetic
analysis, Biek et al. (2007) compare a coalescent-based
Bayesian Skyline estimate (Drummond et al. 2005) of
the demographic history to the spatial expansion of
the epidemic. In a post hoc approach, the authors find
very similar temporal dynamics between the effective
population size and the 15-month moving average
of the area (in square kilometers) of counties newly
affected by the rabies outbreak each month. The effective
population size exhibits stages of moderate and rapid
growth, as well as plateau periods with little or no
growth. Population expansion coincides with time
periods during which the virus invades new areas at a
generally increasing rate. On the other hand, the effective
population size shows little, if any, growth during
periods when the virus invades new areas at a declining

rate. Notably, Biek et al. (2007) demonstrate through their
analysis that the largest contribution to the population
expansion comes from the wave front, highlighting the
degree to which the overall viral dynamics depend on
processes at the wave front. We observe the same trends
in a Skygrid demographic reconstruction based on the
Biek et al. (2007) sequence data (Fig. 1).

We build upon the analysis of Biek et al. (2007) by
incorporating the spatiotemporal spread of rabies into
the demographic inference model through the Skygrid.
The sequence data consist of 47 sequences sampled from
rabid raccoons between 1982 and 2004. They encompass
the complete rabies nucleoprotein (N) genes as well
as large portions of the glycoprotein (G) genes. As
a covariate, we initially adopt the 15-month moving
average of the log-transformed area of all counties newly
affected by the raccoon rabies virus each month from
1977 to 1999 (Biek et al. 2007). We infer a posterior
mean covariate effect size of 0.24 with a 95% Bayesian
credibility interval (BCI) of (−0.77, 1.27), implying that
there is not a significant association between the log
effective population size and the covariate. This is not
surprising, considering the patterns of growth and
decline in the covariate compared with the essentially
monotonic trend in the log effective population size
(Fig. 1).

Graphically comparing the rate at which the virus
invades new areas with population dynamics clearly
illustrates the relationship between the demographic
and spatial expansion of the raccoon rabies outbreak.
In modeling the association between the population
dynamics and a covariate, however, we relate the
covariate to the total effective population size (as
opposed to the change in the effective population size).
In this case, the cumulative affected area is a more
suitable covariate than the newly affected area. We
conduct an additional Skygrid analysis and use the log
transform of the cumulative area (in square kilometers)
of counties affected by raccoon rabies at various time
points between 1977 and 1999 as a covariate. The area of
a county is added to the cumulative total for the month
during which rabies is first reported in that county. There
are 175 months for which the cumulative affected area
changes, and we specify the grid points to coincide with
these change-points.

The Skygrid analysis with the log cumulative affected
area covariate yields a posterior mean estimate of 1.30 for
the coefficient β, with a 95% BCI of (0.18, 2.86), implying
a significant, positive association between the effective
population size of the raccoon rabies virus and the
cumulative area affected by the outbreak (Fig. 2). Periods
of demographic expansion are marked by relatively
rapid rates of increase in the affected area, whereas
plateaus in the effective population size coincide with
more modest rates of increase in the affected area. The
effective population size trajectory estimated from both
sequence and covariate data displays nearly identical
patterns to the trajectory estimated only from sequence
data, except from 1990 to 1996, when its rate of increase is
more modest. Notably, the dark gray BCI region inferred
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FIGURE 1. Skygrid demographic reconstruction of raccoon rabies epidemic in the northeastern United States. The gray line is the posterior mean
log effective population size trajectory estimated only from sequence data without incorporating covariate data. The shaded gray region is the
95% BCI region for the log effective population size. The black line represents the covariate, the 15-month moving average of the log-transformed
area of all counties newly affected by the raccoon rabies virus each month.

FIGURE 2. Demographic history of raccoon rabies epidemic in the northeastern United States. The black line that extends outside the shaded
regions represents the covariate, the log cumulative area of counties affected by raccoon rabies virus. The black line contained within the shaded
regions is the posterior mean log effective population size trajectory from the Skygrid analysis with the covariate, and the surrounding shaded
dark gray region is its 95% BCI region. The white line is the posterior mean log effective population size trajectory from the Skygrid analysis
without the covariate, and the surrounding shaded light gray region is its 95% BCI region. The two BCI regions overlap considerably, and the
dark gray BCI region is almost entirely contained within the light gray BCI region.
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from the sequence and covariate data is narrower than
and virtually entirely contained within the light gray
BCI region inferred only from the sequence data. Thus
including the covariate in this analysis not only yields an
estimate consistent with what we infer from the sequence
data alone, but also a more precise estimate.

Epidemic Dynamics in Dengue Evolution

Dengue is a mosquito-borne viral infection that causes
a severe flu-like illness in which potentially lethal
syndromes occasionally arise. Dengue is caused by the
dengue virus, DENV, an RNA virus which comes in
four antigenically distinct but closely related serotypes,
DENV-1 through DENV-4. (WHO 2015a). A recent
estimate places the worldwide burden of dengue at 390
million infections per year (with 95% confidence interval
284–528 million), of which 96 million (67–136 million)
manifest clinically (with any level of disease severity)
(Bhatt et al. 2013). Dengue is found in tropical and sub-
tropical climates throughout the world, mostly in urban
and semi-urban areas (WHO 2015a).

Dengue incidence records often show patterns of
periodicity with outbreaks every 3–5 years (Cummings
et al. 2004; Adams et al. 2006; Bennett et al. 2010).
Studies have shown that the epidemiological dynamics
of dengue transmission in Puerto Rico are reflective of
changes in the viral effective population size (Bennett
et al. 2010; Carrington et al. 2005). Bennett et al. (2010)
explore the dynamics of DENV-4 in Puerto Rico from
1981 to 1998. By post hoc comparing dengue isolate counts
to effective population size estimates obtained using
the Skyride model (Minin et al. 2008), Bennett et al.
(2010) show that the pattern of cyclic epidemics is highly
correlated with similar fluctuations in genetic diversity.
We build upon their analysis by inferring the effective
population size of DENV-4 in Puerto Rico with DENV-4
isolate counts as a covariate.

We analyze a data set of 75 DENV-4 sequences,
compiled by Bennett et al. (2003) through sequencing
randomly selected DENV-4 isolates from Puerto Rico
from the US Centers for Disease Control and Prevention
(CDC) sample bank. Each sequence contains gene
regions amounting to 40% of the viral genome, including
all structural genes (capsid: C; membrane: M; and
envelope: E), a subset of nonstructural genes (NSI, NS2A,
and NS4B), and the noncoding 3′ NTR region. The
sampling dates include 1982 (n=14), 1986/1987 (n=
19), 1992 (n=15), 1994 (n=14), and 1998 (n=13). The
covariate data consist of the number of DENV-4 isolates
recorded over every six-month period from 1981 to 1998.
DENV-4 isolate counts are transformed via the map
x 
→ log(x+1) (this specific logarithmic transformation
is chosen to accommodate the transformation of isolate
counts of zero).

The patterns in the Skygrid demographic
reconstructions are generally consistent with the
isolate count fluctuations, and suggest a periodicity of
three to five years (Fig. 3). This concordance is supported

by a positive, statistically significant estimate of the
coefficient β relating the effective population size to
isolate counts: a posterior mean of 0.90 with 95% BCI
(0.36, 1.69).

The effective population size trajectory inferred from
both sequence and covariate data is similar to the
trajectory estimated only from sequence data, but there
are some notable differences. The black-colored estimate
that incorporates covariate data closely reflects the
DENV-4 isolate count patterns, but the white-colored
trajectory inferred entirely from sequence data diverges
from the isolate count trends during certain periods.
First, the white trajectory shows a dramatic increase
in effective population size in 1981, consistent with a
rise in DENV-4 isolates. However, the white trajectory
decreases during 1982 while the DENV-4 isolate counts
remain at a high level. Second, the period from late
1986 to late 1988 begins and ends with relative peaks
in DENV-4 isolates, with a trough in between. In
contrast, the white curve reaches a peak during the
isolate trough and is on the decline during the late-
1988 peak. Third, the white trajectory shows a trough
in the effective population size during 1994 that occurs
about a year before a similar trough in DENV-4 isolates.
These discrepancies may be due to biased sampling in
isolate counts and reflect limitations of epidemiological
surveillance. Isolate counts are a rough measure of
incidence, and their error rates are subject to accurate
diagnostic rates by medical personnel, reporting rates,
and the rate at which suspected cases are submitted for
isolation (Bennett et al. 2010). On the other hand, the
epidemiological trends are not necessarily incompatible
with the effective population size trajectory estimated
entirely from sequence data when the latter’s uncertainty
is taken into account. The black-colored trajectory
inferred from both sequence and isolate count data
does not deviate from the isolate count data in the
ways that the white trajectory does. However, the black
trajectory lies entirely inside the light gray 95% BCI
region. Furthermore, apart from a 1.5-year period in 1981
to 1982, the dark gray 95% BCI region is virtually entirely
contained within, and is narrower than, the light gray
95% BCI region. Therefore, the Skygrid estimate that
incorporates the DENV-4 isolate count covariate yields
a demographic pattern that reflects epidemiological
dynamics, and is more precise than, but not incompatible
with, the effective population size estimate inferred only
from sequence data.

Demographic History of the HIV-1 CRF02_AG Clade in
Cameroon

Circulating recombinant forms (CRFs) are genomes
that result from recombination of two or more different
HIV-1 subtypes and that have been found in at
least three epidemiologically unrelated individuals.
Although CRF02_AG is globally responsible for only
7.7% of HIV infections (Hemelaar et al. 2011), it accounts
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FIGURE 3. Population and epidemiological dynamics of DENV-4 virus in Puerto Rico. The top plot depicts Skygrid effective population
size estimates. The black line is the posterior mean log effective population size trajectory from the Skygrid analysis with the covariate, and the
surrounding shaded dark gray region is its 95% BCI region. The white line is the posterior mean log effective population size trajectory from
the Skygrid analysis without the covariate, and the surrounding shaded light gray region is its 95% BCI region. The two BCI regions overlap
considerably, and the dark gray BCI region is almost entirely contained within the light gray BCI region. The bars in the bottom plot represent
DENV-4 isolate count covariate data.

for 60–70% of infections in Cameroon (Brennan et al.
2008; Powell et al. 2010).

We investigate the population history of the
CRF02_AG clade in Cameroon by examining a
multilocus alignment of 336 gag, pol, and env CRF02_AG
gene sequences sampled between 1996 and 2004 from
blood donors from Yaounde and Douala (Brennan et al.
2008). Faria et al. (2012) infer the effective population
size from this data set with a parametric piecewise
logistic growth-constant demographic model. Their
results point to a period of exponential growth up
until the mid 1990s, at which point the effective
population size plateaus. Gill et al. (2013) follow up
with a nonparameteric Skygrid analyis that reveals
a monotonic growth in effective population size that
peaks around 1997 and is then followed by a decline
(rather than a plateau) that persists up until the most
recent sampling time. We build upon these analyses
by introducing two covariates: the yearly prevalence of
HIV in Cameroon among adults ages 18–49, and the
yearly HIV incidence rate in Cameroon among adults
ages 18–49 (UNAIDS 2015). UNAIDS prevalence and
incidence estimates for Cameroon only go back to 1990,
so we integrate out the missing covariate values as

described in (26) by modeling the covariate values as a
first-order random walk.

The HIV prevalence increases up until 2000, stays
constant for four years, and then declines slightly in
2004. This differs markedly from the effective population
size temporal pattern (Fig. 4), and this discordance
is reflected in the GLM coefficient quantifying the
prevalence effect size. The coefficient has a posterior
mean of 0.85 with 95% BCI (−0.18, 2.03), indicating no
significant association between the effective population
size and prevalence.

The coefficient quantifying the effect size for the
incidence rate covariate has a posterior mean of 9.20 with
95% BCI (1.43, 16.17), implying a significant association
between the population history of the CRF02_AG clade
and the HIV incidence rate among adults ages 18–
49 in Cameroon. The effective population size and
incidence rate display similar dynamics: both increase
up until a peak around 1997, then decline (Fig. 5).
The posterior mean log effective population size and
95% BCI under the Skygrid model without covariates
are virtually the same as the Skygrid estimates that
incorporate the incidence data. This is in contrast to
the previous examples we have seen, where inclusion of
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FIGURE 4. Demographic history of HIV-1 CRF02_AG clade in Cameroon. The black line is the posterior mean log effective population size
trajectory, and its 95% BCI region is shaded in gray. The bars represent HIV prevalence estimates for adults of ages 18–49 in Cameroon.

FIGURE 5. Demographic history of HIV-1 CRF02_AG clade in Cameroon. The black line is the posterior mean log effective population size
trajectory, and its 95% BCI region is shaded in gray. The bars represent HIV incidence rate estimates for adults of ages 18–49 in Cameroon.

covariates affects effective population size estimates, and
it may reflect the larger amount of sequence data relative
to covariate data in this example. It is notable that in this
example the effective population size is more reflective
of incidence than prevalence. This is in accordance
with expectations put forth by recent epidemiological
modeling of infectious disease dynamics (Volz et al. 2009;
Frost and Volz 2010).

Population Dynamics of Late Quaternary Musk Ox

Population decline and extinction of large-bodied
mammals characterize the Late Quaternary period
(Barnosky et al. 2004; Lorenzen et al. 2011). The causes of
these megafaunal extinctions remain poorly understood,
and much of the debate revolves around the impact of
climate change and humans (Stuart et al. 2004; Lorenzen
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et al. 2011). Demographic reconstructions from ancient
DNA enable clarification of the roles of climatic and
anthropogenic factors by providing a means to compare
demographic patterns over geologically significant time
scales with paleoclimatic and fossil records (Shapiro
et al. 2004; Lorenzen et al. 2011).

Campos et al. (2010) employ the Skyride (Minin
et al. 2008) and Bayesian Skyline (Drummond et al.
2005) models to reconstruct the population dynamics
of musk ox dating back to the late Pleistocene era
from ancient DNA sequences. The musk ox population
was once widely distributed in the Holarctic ecozone
but is now confined to Greenland and the Arctic
Archipelago, and Campos et al. (2010) explore potential
causes of musk ox population decline. The authors
find that the arrival of humans into relevant areas
did not correspond to changes in musk ox effective
population size. On the other hand, Campos et al.
(2010) observe that time intervals during which musk ox
populations increase generally correspond to periods of
global climatic cooling, and musk ox populations decline
during warmer and climatically unstable periods. Thus
environmental change, as opposed to human presence,
emerges as a more promising candidate as a driving force
behind musk ox population dynamics.

We apply our extended Skygrid model to assess the
relationship between the population history of musk ox
and climate change. Oxygen isotope records serve as
useful proxies for temperature in ancient climate studies.

Here, we use ice core 
18O data from the Greenland Ice
Core Project (GRIP; (Dansgaard et al. 1989, 1993; GRIP
Members 1993; Grootes et al. 1993; Johnsen et al. 1997).

18O is a measure of oxygen isotope composition. In the

context of ice core data, lower 
18O values correspond
to colder polar temperatures. As a covariate, we adopt

a mean 
18O value, taking the average of 
18O values
corresponding to each 3000-year interval. The sequence
data consist of 682 bp of the mitochondrial control
region, obtained from 149 radiocarbon dated specimens
(Campos et al. 2010). The ages of the specimens range

from the present to 56,900 radiocarbon (14C) years
before present (YBP). The sampling locations span the
demographic range of ancient musk ox, with samples
from the Taimyr Peninsula (n=54), the Urals (n=26),
Northeast Siberia (n=12), North America (n=14), and
Greenland (n=43).

During each time period that coincides with a
monotonically increasing effective population size, the


18O covariate undergoes a net decrease (Fig. 6), which
suggests a general trend of cooling. On the other hand,
periods of monotonic demographic decline coincide
with either a covariate increase (indicative of a warming
climate) or covariate fluctuations without any clear
trends (suggesting climatic instability). These patterns
are consistent with the observations of Campos et al.
(2010). However, the covariate effect size has a posterior
mean of −0.09 with a 95% BCI of (−0.50, 0.35), indicating
that there is not a significant association between the

log effective population size and the 
18O covariate.

This is not surprising upon further reflection. The net
change in the covariate from the beginning to the end of
each monotonic phase of the population trajectory lends
some support to the hypothesis of a negative relationship

between the effective population size and the 
18O
covariate. However, there are numerous fluctuations in
the covariate value during most of the aforementioned
phases that render the relationship insignificant.

There are more than 5000 
18O measurements in the
GRIP data corresponding to different time points in
the musk ox population history timeline. Our default
approach is to specify Skygrid grid points so that the
trajectory has as many piecewise constant segments
as there are covariate measurement times. To avoid
having an inappropriately large number of change-

points, however, we have used the average of 
18O values
corresponding to each 3000-year interval in the timeline
as a covariate. Notably, adopting averages over intervals
of lengths 1000, 5000, or 10000 years as covariates yields
the same basic outcome: the effect size of the covariate
is not statistically significant.

While we do not infer a significant association between

the log effective population size and 
18O covariate
values, this does not rule out climate change as a
driving force behind musk ox population dynamics.
The musk ox is known to be very sensitive to
temperature and is not able to tolerate high summer
temperatures (Tener 1965). Using species distribution
models, dated fossil remains and paleoclimatic data,
Lorenzen et al. (2011) demonstrate a positive correlation
between musk ox genetic diversity and its climate-driven

range size over the last 50,000 years. The 
18O data
we use here do not account for geographic variability
in temperature. Furthermore, we have not controlled
for any potential confounders, such as population
structure, range size, or proportion of range overlap
with humans. If significant population structure exists,
then appropriate geographic coverage of the sampling
will also be important. Nevertheless, our analysis serves
as a precaution against oversimplification in the search
for explanations of megafaunal population decline and
extinctions. Incorporating additional covariate data into
future studies may reveal a more complete, nuanced
story of large mammal population dynamics during
the Late Quaternary period. Finally, the sequence data
in our analysis consist entirely of mitochondrial DNA.
Including data from additional genetic loci may enhance
our understanding of musk ox demographic history and
provide some clarification.

Performance and Mixing

To confirm sufficient mixing within MCMC chains in
our empirical examples, we monitor effective sample size
(ESS) estimates of model parameters and adopt chain
lengths that yield ESS estimates greater than 200 for
the effective population size, precision, and covariate
effect size parameters. We summarize performance in
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FIGURE 6. Demographic history of ancient musk ox. The axis is labeled according to radiocarbon YBP. The gray line is the posterior mean log

effective population size trajectory, and its 95% BCI region is shaded in light gray. The black line represents the 
18O covariate. We do not infer
a significant relationship between the effective population size and the covariate.

terms of ESS per minute (Table 1). Furthermore, we
demonstrate the improvement in mixing by reporting the
fold-increase in ESS per minute that the block-updating
MCMC algorithm affords over more basic Metropolis–
Hastings transition kernels. The block-updating scheme
exploits the structure of the GMRF smoothing prior.
Under the more basic approach, we consider a random
walk transition kernel for effective population size
parameters that proposes new values by adding a
random value within a specified window size to the
current parameter value. For the precision, we generate
candidate values by multiplying the current parameter
value by a random scaling factor drawn from a specified
window size. The block-updating algorithm consistently
outperforms the random walk and rescaling transition
kernels. Notably, the MCMC chain generated under the
more basic transition kernels fails to generate sufficient
ESS after 100 million iterations in the case of the rabies
example. All analyses were conducted on a 2.7 GHz Intel
Core i5 processor with 8 GB of RAM.

DISCUSSION

We present a novel coalescent-based Bayesian
framework for estimation of effective population size
dynamics from molecular sequence data and external
covariates. We achieve this by extending the popular
Skygrid model to incorporate covariates. In doing so,
we retain the key elements of the Skygrid: a flexible,
nonparametric demographic model, smoothing of the
trajectory via a GMRF prior, and accommodation of
sequence data from multiple genetic loci.

TABLE 1. Mixing of model parameters in terms of ESS estimates
per minute and fold improvement in mixing due to a block-updating
MCMC algorithm

ESS per min. Fold improvement

Example Eff. pop. size Precision Effect size Eff. pop. size Precision

Rabies 12.6–53.0 35.7 33.1 165.6–252.0× 649.7×
Dengue 2.2–36.2 16.7 2.0 3.5–4.2× 22.9×
HIV 0.3–4.4 4.3 1.1 1.2–2.4× 4.2×
Musk ox 5.1–66.7 19.1 13.0 1.6–3.3× 5.3×

Notes: For effective population size parameters, we report min–max
range of ESS per minute. Fold-improvement due to block-updating is
relative to more basic transition kernels.

Effective population size is of fundamental
interest in population genetics, infectious disease
epidemiology, and conservation biology. It is crucial to
identify explanatory factors, and to achieve a greater
understanding of the association between the effective
population size and such factors. In the context of
viruses, it is important to assess the relationship
between effective population size and epidemiological
dynamics characterizing the number of infections
and the spatiotemporal spread of an outbreak. Our
extended Skygrid framework enables formal testing
and characterization of such associations.

We showcase our methodology in four examples.
Our analysis of the raccoon rabies epidemic in the
northeastern United States uncovers striking similarities
between the viral demographic expansion and the
amount of area affected by the outbreak. We reconstruct
a cyclic pattern for the effective population size of
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DENV-4 in Puerto Rico, coinciding with trends in
viral isolate count data. Comparing the population
history of the HIV-1 CRF02_AG clade in Cameroon
with HIV incidence and prevalence data reveals a
greater alignment with the HIV incidence rate than the
prevalence rate. Finally, we consider the role of climate
change in ancient musk ox population dynamics by
using oxygen isotope data from the GRIP ice core as
a proxy for temperature. We do not find a significant
association, but our analysis demonstrates the need for
a more thorough examination with additional covariates
to follow up on previous investigations of the causes of
ancient megafaunal population dynamics that consider
a number of different factors.

Simultaneous inference of the effective population
size and its association with covariates enables the
uncertainty of the effective population size to be
taken into account when assessing the association.
Post hoc analyses comparing the mean effective
population size trajectory with covariates (employing a
standard linear regression approach, for example) are
possible. However, such approaches may erroneously
rule out significant associations by overemphasizing
incompatibilities between the covariates and mean
population trajectory. Furthermore, in the case of
significant associations, regression coefficient estimates
that disregard demographic uncertainty may have
inflated precision.

Integrating covariates into the demographic inference
framework not only enables testing and quantification
of associations with the effective population size, it also
provides additional information about past population
dynamics. In two of our four examples, effective
population size trajectories inferred from both sequence
and covariate data differ markedly from trajectories
inferred only from sequence data. In the rabies and
dengue examples, the estimates based on sequence
and covariate data are essentially consistent with the
estimates from the sequence data (in terms of the former
having BCI regions almost entirely contained in the
BCI regions of the latter), but more precise and more
reflective of covariate trends.

It is possible that, in the presence of a statistically
significant association between a covariate and the
effective population size, the demographic trajectory
estimated from sequence and covariate data will
exhibit patterns inconsistent with the estimate based
strictly on sequence data during a portion of the
evolutionary history. This prospect raises concerns
that a strong association between a covariate and
the effective population size during one time period
could cause the demographic history to be poorly
estimated during another time period. However, such
a scenario will correspond to one of two situations.
First, the inconsistency between the two demographic
reconstructions occurs for a relatively brief period
of time. Second, the inconsistency occurs during a
period for which the sequence data provide relatively
little information about the population dynamics.
Importantly, adding covariates to the model will not

distort an originally precise demographic estimate. In
our analysis of HIV population dynamics in Cameroon,
for example, there is a strong association between
the prevalence covariate and demographic history up
until the late 1990s that nevertheless does not yield
a significant effect size. The sequence data are highly
informative about the population dynamics during the
early 2000s and do not allow for a significant effect
size, which would result in a demographic estimate that
diverges from the sequence data-based estimate during
this period. In general, we recommend performing
a sensitivity analysis by estimating the effective
population size both with and without covariates and
taking note of the duration and nature of inconsistencies
between the two estimates. Also, Bayes factors (Jeffreys
1935, 1961) can be employed to formally compare the fit of
different Skygrid models to observed data (Y,Z). A Bayes
factor quantifies the evidence in favor of model M1 over
model M0 by taking the ratio of marginal likelihoods:

BF10 =
P(Y,Z|M1)

P(Y,Z|M0)
=

P(M1|Y,Z)

P(M0|Y,Z)

/

P(M1)

P(M0)
. (37)

The more general Skygrid model that incorporates
covariates includes the more basic Skygrid model as
the special case where the effect size β=0, affording
straightforward computation of Bayes factors.

Our extension of the Skygrid represents a first
step toward a more complete understanding of past
population dynamics, and the utility of the approach
as demonstrated in the real data examples is promising.
Our examples have only involved one or two covariates,
but our implementation can support a large number of
predictors. Furthermore, we plan to equip the Skygrid
with efficient variable selection procedures to identify
optimal subsets of predictors (George and McCulloch
1993; Kuo and Mallick 1998; Chipman et al. 2001).
There is considerable potential for further development.
For example, there is a prominent correspondence
between spatial distribution and genetic diversity in
the raccoon rabies example, and in previous studies of
megafauna species (Lorenzen et al. 2011). We envision
combining the Skygrid with phylogeographic inference
models (Bloomquist et al. 2010) to simultaneously
infer relevant measures of a population’s geographic
distribution from sampling location data and use them
as predictors to model the effective population size.
Such approaches would need to rely on appropriate
sampling not only through time, but also through
geographic space. Attempts to infer associations between
covariates and effective population size dynamics can
be hampered by a scarcity of covariate data. Fortunately,
there may exist measurements of the same covariates
corresponding to different, but similar, genetic sequence
data sets. We may, for example, have drug treatment data
corresponding to several different HIV patients and wish
to assess the relationship between the drug and intrahost
HIV evolution. In such a setting, Bayesian hierarchical
modeling could enable pooling of information from
multiple data sets. Finally, it may be fruitful to develop
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inference frameworks similar to the Skygrid that are
based on generalized coalescent models that incorporate
population structure (Notohara 1990), recombination
(Hudson 1983), and selection (Krone and Neuhauser
1997) to account for different reproductive phenomena
and model their associations with external covariates.
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