
Understanding Peer Exchange in BitTorrent Systems
Di Wu†, Prithula Dhungel§, Xiaojun Hei‡, Chao Zhang§, Keith W. Ross§

† Sun Yat-Sen University, Guangzhou, China
‡ Huazhong University of Science and Technology, Wuhan, China

§ Polytechnic Institute of NYU, Brooklyn, NY, USA

Abstract—Peer Exchange (PEX), in which peers directly ex-
change with each other lists of active peers in the torrent,
has been widely implemented in modern BitTorrent clients for
decentralized peer discovery. However, there is little knowledge
about the behavior of PEX in operational systems. In this
paper, we perform both passive measurements and Planetlab
experiments to study the impact and properties of BitTorrent
PEX. We first study the impact of PEX on the download efficiency
of BitTorrent. We observe that PEX can significantly reduce the
download time for some torrents. We then analyze the freshness,
redundancy and spread speed of PEX messages. Finally, we
also conduct large-scale Planetlab experiments to understand the
impact of PEX on the overlay properties of BitTorrent.

Index Terms—BitTorrent, Peer Exchange, Measurement

I. INTRODUCTION

Today, BitTorrent is one of the most popular P2P file distri-
bution protocols, particularly for the distribution of large files
such as movies, television series, record albums, and open-
source software distributions. According to [1], the number
of downloads of .torrent files from a leading torrent-discovery
site MiniNova [2] reached about 7 billion in 2008.

To enable the trading of file chunks, it is essential for a
peer to discover other peers in the same torrent. A common
approach for peer discovery is to use a centralized tracker:
each peer in the torrent registers with the tracker, and any peer
can contact the tracker at any time to obtain a random subset
of other peers in the torrent. Modern BitTorrent clients (e.g.,
uTorrent, Azureus, BitComet) additionally provide decentral-
ized peer discovery using Distributed Hash Tables (DHTs)
and Peer Exchange (PEX). A DHT provides the same tracking
service as that of the central tracker in a distributed manner.
Peers can query the DHT interface to obtain peer lists.

Different from DHT, PEX allows peers in a torrent to
exchange lists of active peers directly with each other. PEX
has been first implemented in Azureus to reduce the load on
trackers and later also adopted by other popular clients (e.g.,
uTorrent, Mainline, etc). After initial bootstrapping, peers then
only depend on other peers implementing the same PEX
protocol to discover new peers. Currently, there is no official
standard of PEX protocol. Multiple versions of PEX protocols
have been developed and implemented by different clients.

Although PEX is widely deployed in BitTorrent systems,
there lacks a comprehensive study of PEX in operational
systems. In this paper, we perform both passive measurements
and Planetlab experiments to study the impact and properties
of BitTorrent PEX. We focus our study on the most popular

PEX protocol, UT PEX. Our main contributions and some
important observations are listed as below:

• Among the tested torrents, we observe that about 70%
of peers support UT PEX, 15-20% of peers support
AZ PEX and only about 5% of peers support BC PEX.
Peers supporting those three PEX protocols account for
95% of all the peers.

• Using instrumented clients, we collect detailed traces of
PEX activity as well as connection status. We observe
that PEX enables the client to quickly acquire a large
number of peers in the torrent and create more outgoing
connections. In our tested 100 torrents, we find that PEX
can increase the download speed of 40% torrents. The
average reduction of download time is about 7%.

• We design a set of experiments to evaluate the freshness,
redundancy and spread of PEX messages. We find that:
(1) about 30% of PEX messages are completely fresh
and over 80% of PEX messages have a freshness ratio
greater than 0.5; (2) there exists significant redundancy in
the PEX messages, and 20-40% of peers were repeatedly
observed over 5 times; (3) the spread of peer information
is not as fast as expected. It is difficult for peers to learn
the complete peer list in the torrent within a short period.

• To gain a deep understanding of PEX in BitTorrent, we
perform large-scale Planetlab experiments, in which we
set up our own tracker, seed and leechers. We observe that
PEX can enrich the connectivity of the whole BitTorrent
overlay to a certain degree. In our experiment, when PEX
is used, we do not observe the chain-like topology as
reported in [3].

This paper is structured as follows. Section II provides the
background information about main peer discovery mecha-
nisms. Section III presents the detailed results obtained from
passive measurement and Planetlab experiments. Section IV
describes the related measurement work on BitTorrent. We
summarize our work in Section V.

II. BACKGROUND

One major component of BitTorrent is the peer-discovery
component wherein a peer desiring to download a particular
file using a BitTorrent client, has to discover other peers that
are currently sharing the same file. This group of peers in the
same BitTorrent download are referred to as the torrent for

the file. Once a number of peers in the torrent are discovered,
a peer then establishes TCP connections with these peers and
starts trading for pieces of the file.

The conventional approach to discovering peers in a torrent
consists of requesting the list of peers in the torrent from
a centralized entity known as the tracker. This centralized
approach to peer discovery is not scalable, especially for
trackers that keep track of millions of peers for thousands of
files. The problem of scalability has already been observed for
some popular trackers such as Pirate Bay trackers, which often
require peers to send multiple requests due to TCP time-outs.

In order to alleviate the load on trackers, two decentralized
approaches to peer-discovery are being used by a number of
clients: Distributed Hash Tables (DHTs) and Peer Exchange
(PEX). A DHT is a database distributed over a network of
computers, referred to as nodes. All nodes can store (key,
value)-pairs on the DHT and later find values by searching
for keys. Store and search actions are performed by finding
the node responsible for the search key and then sending it
a STORE or FIND VALUE command. Note that, in order to
join a DHT, a peer should first know a bootstrapping node
in that DHT. Currently, the BitTorrent ecosystem consists of
two major DHTs: the Azureus DHT and the Mainline DHT.
The Azureus DHT is used only by Azureus clients and the
Mainline DHT is used by all the other clients that support the
DHT feature, including uTorrent, BitComet, and Mainline.

In the second decentralized method of peer discovery -
PEX - peers gossip with each other in regular intervals with
lists of active peers they know. However, this form of peer
discovery first requires a peer to know at least one other
peer using some other form of peer-discovery (e.g., using the
centralized tracker). Furthermore, like DHTs, peers support
exchanging peer lists only with other peers that use the same
PEX protocol. Since there is no official specification for the
peer exchange protocol, three major implementations of PEX
exist in the BitTorrent world as of now: AZ PEX [4] used
by Azureus clients; UT PEX [5] used by uTorrent, KTorrent,
Opera, qTorrent, libtorrent, Deluge, MooPolice, Transmission,
Aria clients; and BC PEX used by BitComet clients. For more
details about the PEX support of different clients, please refer
to the article [6].

III. MEASUREMENT

In our measurements, we first developed a Java-based peer
crawler to determine the distribution of BitTorrent clients that
support different versions of PEX protocol.

Our peer crawler collects peer lists from the tracker and
contacts each peer using the BitTorrent protocol. The success-
fully connected peers provide a random sample of the whole
torrent. From the results shown in Table I, we observe that
about 70% of peers support UT PEX, 15-20% of peers support
AZ PEX and only about 5% of peers support BC PEX. Peers
supporting those three types of PEX protocols account for 95%

of all the peers. Due to the prevailing usage of UT PEX, we
focus our attention on the measurement of UT PEX.

Torrent ID UT PEX AZ PEX BC PEX

Torrent 1 70.2% 19.8% 4.9%
Torrent 2 65.9% 22.7% 2.8%
Torrent 3 75.9% 13.7% 7.8%
Torrent 4 74.3% 15.9% 6.9%
Torrent 5 79.7% 15.3% 2.5%

TABLE I: Distribution of BitTorrent Clients

Our passive measurement of PEX is based on a modified
version of the LH-ABC 3.3.0.1 program [7], which is an
extended version of ABC BitTorrent client and supports the
UT PEX protocol. The program was modified to record all
the PEX messages, connections to and from other peers, and
the download and upload rates of the client. No modification
was made on other parts of the program.

A. Impact of PEX on Download Time

Our first experiment is to evaluate how the PEX impacts
the download efficiency of a BitTorrent client. We randomly
selected 100 torrents in different sizes, which were in the
steady state 1 at the time of our experiments, from two top
torrent-discovery sites - PirateBay [8] and MiniNova [2].

1000 2000 3000 4000 5000 6000 7000

1000

2000

3000

4000

5000

6000

7000

Download Time when PEX is ON

D
ow

nl
oa

d
T

im
e

w
he

n
P

E
X

 is
 O

F
F

Fig. 1: Download time when PEX is ON vs. Download time
when PEX is OFF

For each torrent, we performed downloads on two machines
with the same OS and network configuration in parallel. These
two machines are located at the same location but in different
subnets. By turning the pex allowed option on and off, we can
control whether to allow peer exchange or not. In the experi-
ment, we turned on the pex allowed option of the BitTorrent

1Steady state refers to the state where the torrent size doesn’t change
radically during the experiments.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speedup Ratio

C
D

F

Fig. 2: CDF Distribution of the Speedup Ratio of all the tested
torrents

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Number of Connections when PEX is ON

N
um

be
r

of
 C

on
ne

ct
io

ns
 w

he
n

P
E

X
 is

 O
F

F

Fig. 3: Number of connections at the 5th minute with PEX ON
vs. Number of connections at the 5th minute with PEX OFF

client on one machine and turned off the pex allowed option
on the other machine. The torrent download was started at the
same time on two machines. Meanwhile, we also installed
a third-party software PeerGuardian [9] on each machine
to block data exchange between these two machines. The
comparison of the download time with PEX on and off is
shown in Figure 1. It is a scattering plot, in which each dot
represents a torrent with its x-axis and y-axis value being
the download time with PEX on and off respectively. From
the figure, we can observe that the download time of some
torrents can be significantly reduced when PEX is allowed.
However, for a majority of torrents, the reduction of download
time seems to be slight.

For a better understanding, let us define the Speedup Ratio
as

Speedup Ratio =
Td with PEX off − Td with PEX on

Td with PEX off

where Td is the download time of a torrent.

Among the tested 100 torrents, the mean value of speedup
ratio is 0.07, which means a reduction of 7% of the download
time when PEX is allowed. We further plot the CDF distribu-
tion of speedup ratio of tested torrents in Figure 2. It clearly
shows that about 40% of the torrents have a speedup ratio
greater than 0. Among the left torrents, 50% of the torrents
have a speedup ratio of 0, which implies that PEX is not
helpful for those torrents.

We also recorded the number of connections of our in-
strumented BitTorrent clients at different time slots. Figure 3
compares the number of connections at the 5-th minute when
PEX is on and off. The figure clearly shows that PEX can
enrich the connectivity of the client greatly, which can help
the client reduce its download time.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

Time (seconds)

N
um

be
r

of
 P

ee
rs

Peers from PEX (PEX ON)
Peers from Tracker (PEX ON)
Peers from Tracker (PEX OFF)

Fig. 4: Number of peers obtained from PEX and from the
tracker

To further understand how PEX reduces the download time
of a portion of torrents, we analyzed their download traces in
details. As the analysis results are similar, we only present the
results of one typical torrent here.

Figure 4 plots the number of unique peer addresses received
from PEX and the tracker. From the figure, we observe that
the client can quickly learn a large number of peer addresses
through PEX after initially contacting the tracker. After joining
the torrent for 15 minutes (900 seconds), the client obtained
about 250 unique peer addresses. To our surprise, for the LH-
ABC client, the use of PEX doesn’t reduce the number of
queries sent to the tracker. In the first 5000 seconds, when
PEX is on, the client sent as many queries (i.e., 4 queries) to

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30

Time (seconds)

N
um

be
r

of
 C

on
ne

ct
io

ns
Outgoing(PEX ON)
Incoming(PEX ON)
Outgoing(PEX OFF)
Incoming(PEX OFF)

Seeding
(PEX OFF)

Seeding(PEX ON)

Fig. 5: Incoming and outgoing connections when PEX is on and
off

1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Time (seconds)

D
ow

nl
oa

d
R

at
e

(K
B

ps
)

Download Rate(PEX ON)
Download Rate(PEX OFF)

Seeding
(PEX ON) Seeding

(PEX OFF)

Fig. 6: Download rate when PEX is on and off

the tracker as when PEX was off. Even when the client enters
the seeding state, it continues to send queries to the tracker.
This observation is somewhat contrary to one of the design
objectives of PEX, namely reducing the load on the tracker.

Figure 5 depicts the incoming and outgoing connections
when PEX is on and when it is off. From the figure, we
find that the client can quickly establish about 25 outgoing
connections with other peers when PEX is used. On the
contrary, the client only has about 5 outgoing connections
when PEX is not used. Although it is not necessarily true that
more connections imply higher download rate, the client with
more connections has more opportunities to be optimistically
unchoked by other peers. When PEX is on, after staying in
the torrent for about 2200 seconds, there is a clear drop in the
number of outgoing connections. This is because the client
has completed the download of the file and has released half
of the outgoing connections.

The download rate of the client is shown in Figure 6. We
can observe from the figure that, during the period [0, 1000],
even when PEX is used and the client has many outgoing
connections (see Figure 5), the download rate is not very high.
But once the client has received a sufficient number of chunks,
it can trade chunks with more peers, and the download rate is
increased rapidly.

In summary, PEX can help the client quickly acquire a large
number of peer addresses in the torrent and thus establish
more connections with other peers. With more connections,
it is possible for the client to obtain more unchoked upload
slots, which in turn speeds up the download rate accordingly.

B. Freshness and Redundancy of PEX Information

In this section, we conducted an experiment to evaluate
the freshness of the information in PEX messages. In the
experiment, we implemented a tracker crawler, which obtains

the complete peer list of a given torrent every 2 minutes. It
enables us to obtain multiple snapshots of the peer list in the
torrent. Let T (ti) be the set of peers obtained from the tracker
at time ti (i = 1, 2, ...) with t1 = 0 second and ti+1 = ti+120
seconds.

Suppose the client receives a PEX message at time t, which
satisfies ti−1 < t ≤ ti. Let P (t) be the set of peers contained
in the message. We define the Freshness Ratio of the PEX
message as below:

Freshness Ratio =
|P (t) ∩ T (ti)|

|P (t)|

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Freshness Ratio

C
D

F

Torrent 1
Torrent 2
Torrent 3

Fig. 7: CDF Distribution of the freshness ratio of all the PEX
messages

The intuition behind the above metric is that, when a peer
in the PEX message also appears in the peer list obtained from

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of peers in the PEX message

C
D

F

Torrent 1
Torrent 2
Torrent 3

Fig. 8: Distribution of the number of peers in PEX messages

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Observations

C
D

F

Torrent 1
Torrent 2
Torrent 3

Fig. 9: Distribution of the number of repeated peer observations

the tracker crawling immediately after t, it is highly possible
that the peer is a live peer. It also indicates to what degree
PEX can replace the role of the tracker. Indeed, if all the
peers contained in the PEX messages also appear in the peer
list obtained from the tracker, there is no need to contact the
tracker for peer lists after initial bootstrapping.

We conducted experiments for three torrents in different
sizes. Figure 7 provides the distribution of freshness ratio of
all the received PEX messages in three tested torrents. From
the figure, we observe that about 20-30% of PEX messages
are completely fresh and about 10% of PEX messages have
a freshness ratio of zero. Over 80% of PEX messages have
a freshness ratio greater than 0.5. Thus, PEX can potentially
replace the role of the tracker in discovering new peers.

Figure 8 plots the distribution of the number of peer
addresses contained in the PEX messages. 80-90% of PEX
messages contain less than 30 peer addresses and less than
10% of PEX messages contain more than 50 peer addresses.
According to the UT PEX specification [5], the maximum
number of peer addresses that can be put into a PEX message
is 50. However, we observe that some BitTorrent clients do
not follow the specification. In the log files, we even find that
several PEX messages contain over 300 peer addresses.

For all the received PEX messages, we also calculate the
number of repeated peer observations for the same peer and
show the results in Figure 9. It is found that 20-40% of peers
were observed more than 5 times. This indicates that there
exists a large degree of redundancy during peer exchange.

To understand the message overhead incurred by peer
exchange, using the traces obtained in the first experiment,
we plot the CDF of the number of PEX messages received in
the first hour for all 100 torrents in Figure 10. The number of
received PEX messages varies greatly for different torrents,
ranging from 0 to 1476. However, even considering the
maximum value, the client only received 0.41 PEX message

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of PEX messages received in the first hour

C
D

F

Fig. 10: CDF of the number of PEX messages received in the
first hour

per second on average, which is not a heavy burden for the
client.

In summary, the fresh ratio of PEX messages is pretty
high and PEX can potentially provide the functionality of the
tracker after bootstrapping. There also exists a large degree
of redundancy of PEX information during peer exchange, and
the message overhead of PEX is not very high.

C. Spread of PEX Information

In this section, we evaluate how fast the peer information
can spread via peer exchange. In the beginning of our ex-
periment, we crawl both the centralized tracker and DHT to
obtain two sets of peers. Define T0 and D0 be the set of peers
obtained from the tracker and DHT respectively.

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

F
ra

ct
io

n

Observed Tracker Peers
Observed DHT Peers

(a) small torrent

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

F
ra

ct
io

n

Observed Tracker Peers
Observed DHT Peers

(b) large torrent

Fig. 11: Fraction of observed peers (a) small torrent; (b) large torrent

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

C
D

F

Torrent 1 (~500 peers)
Torrent 2 (~3000 peers)
Torrent 3 (~5000 peers)

Fig. 12: Distribution of the first observation time of peers

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First Observation Time

C
D

F

Fig. 13: CDF of the time to observe the IP of another machine

In Figure 11, we plot the fraction of peers in T0 (D0) that
were also observed from PEX messages. For both small (with
∼ 500 peers) and large torrent (with ∼ 5000 peers), we find
that it is difficult for the client to learn all the peers in T0 and
D0 within a short period. In the very beginning, the client
can quickly obtain about 30-40% of the peers in T0 and D0.
But the fraction increases slowly with time. Observe that the
client discovers less than 60% of peers in T0 and D0 even
after running for over 3000 seconds.

Possible reasons include: (1) some peers in D0 or T0 have
already left the torrent. (2) the normal frequency of sending
out PEX messages to neighboring peers is once per minute,
which is not very frequent; (3) in the PEX messages, the
client only propagates connected peers to its neighbors, instead
of all the received peers. This improves the freshness of

PEX information, but hinders the rapid spreading of peer
information.

For all the observed peers in T0∪D0, we plot the distribution
of the first observation time of each peer in Figure 12. We find
that for small-size torrents, most of the peers were observed
within a short period, e.g., for Torrent 1, 70% of all the
observed peers were learned by the client within 200 seconds.
However, for large-size torrents, it may take quite a long time
to observe a peer in the set T0 ∪ D0.

Using the 100-torrent traces obtained in the first experiment,
we also performed another analysis about the spread of PEX
information. In the first experiment, we have two machines that
joined the torrent at the same time, with one machine equipped
with PEX capacity. We check the traces of PEX messages to

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

N
od

e
In

de
x

Node Index

(a) PEX ON

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

N
od

e
In

de
x

Node Index

(b) PEX OFF

Fig. 14: Connectivity matrix when PEX is on and off

see how long it takes for the machine with PEX on to learn
the address of another machine via PEX messages from other
peers. The CDF distribution of the time to observe the address
of another machine is plotted in Figure 13. Among all the 100
tested torrents, the machine can learn the address of another
machine within 100 seconds for 50% of torrents, and within
2000 seconds for 90% of torrents. For the left 10% torrents,
the machine cannot detect the address of another machine in
the whole experiment period.

To summarize, we observe that the spread of PEX informa-
tion is not as fast as we expected. It is difficult for the client to
observe all the other peers in the torrent within a short period.

D. Impact of PEX on Topology Properties

To study the impact of PEX on the BitTorrent overlay, we
create our own torrent on the Planetlab testbed. We installed
LH-ABC clients on 200 Planetlab nodes and set up our own
tracker using BitTornado. The data file to be distributed among
peers is 500 MB. Instead of letting nodes join randomly, we
let the 200 nodes join the torrent in batches. In the beginning,
50 nodes join the torrent; every 10 minutes, we let 50 more
nodes join the torrent until all the nodes have joined. The
experiments were run for about 2 hours. We downloaded all
the logs after the experiments were completed. 2

Figure 14 presents the connectivity matrix of peer connec-
tions 5 minutes after all the peers join the torrent. A point
(x, y) on the plot indicates that peer x is connected to peer
y. Node indexes are sorted in ascending order based on their
joining time.

2Some PL nodes have difficulty in connecting with the tracker. These nodes
were removed during analysis.

From the figure, we can see that PEX enriches the connec-
tivity among peers, especially in the regions within the boxes.
However, the increase is not as significant as we expected. This
is possibly because the number of Planetlab nodes is limited,
and all the Planetlab nodes have public reachable IPs.

Even without PEX, the client can still discover enough
reachable peers and establish connections with them. In case
that the torrent is dynamic and nodes are heterogeneous, the
peer list returned by the tracker would contain a larger fraction
of stale or NATed/firewalled peers. In those cases, simply by
querying the tracker once in the beginning, it is difficult for
the peer to establish enough outgoing connections. With peer
exchange, the client is able to discover more reachable peer
addresses.

Moreover, unlike the simulation experiments in [3], we
never observed the formation of chain-like topologies in our
experiments.

IV. RELATED WORK

In recent years, there have been extensive studies on the
measurement of BitTorrent. Izal et al. [10] analyzed the
behavior of a single torrent over a five-month period. Pouwelse
et al. [11] investigated the torrents hosted by Supernova. Guo
et al. [12], [13] measured torrent evolution, service availability,
and client performance in BitTorrent by analyzing a number
of tracker traces from [14] and torrent file download traces.
Neglia et al. [15] investigated the availability of BitTorrent
systems by collecting about 22,000 torrents from two torrent-
discovery sites and mainly focused on tracker reliability issues.
Legout et al. [16], [17] studied the peer selection strategy in
BitTorrent and observed the clustering of similar-bandwidth

peers. Dale et al. [18] investigated the topology properties of
the BitTorrent overlay via Planetlab experiments.

There have also been several measurement studies on DHTs.
In [19], [20], [21], Steiner et al. performed a measurement
study of the KAD DHT to investigate the characteristics of
its peers. In [22], Falkner et al. crawled the Azureus DHT
and provided characterizations of churn, overhead, and perfor-
mance and also proposed a modified DHT lookup algorithm.
Stutzbach et al. [23] measured the lookup performance of
KAD DHT used by eMule file-sharing systems.

However, there have been very few studies on the peer
exchange feature in BitTorrent. To our knowledge, the only
related work is [3], in which Al-Hamra et al. used a simulation
based approach to analyze the impact of peer exchange on the
overlay topology of BitTorrent.

Our paper differs in that, instead of using simulation, we
perform Internet measurements and Planetlab experiments to
examine the behavior of PEX in operational systems. To the
best of our knowledge, this is the first detailed measurement
study of the impact of peer exchange in real swarms using
real client implementations.

V. CONCLUSION

In this paper, we have presented an extensive passive
measurement and Planetlab-based experimental study of the
BitTorrent Peer Exchange (PEX) protocol. We have studied the
impact of PEX on download time and analyzed the PEX and
connection logs closely. Our results indicate that PEX enables
peers to quickly acquire a large number of peer contacts, and
reduce the download time by 7% on average. We also designed
experiments to evaluate the freshness, redundancy and spread
of PEX messages. We found that, over 80% of PEX messages
have a freshness ratio greater than 0.5, but there exists a large
degree of redundancy in PEX messages. We also observed
that the spread of PEX messages is not very fast. In particular,
PEX does not allow a peer to discover all other peers in a short
time. Finally, by using the Planetlab platform, we examined the
impact of PEX on the BitTorrent overlay topologies. We found
that PEX can enrich the connectivity of BitTorrent overlay, but
we didn’t observe the chain-like topology reported in [3].

This paper presents an initial study of BitTorrent’s PEX
protocol. In the next step, we plan to perform a more complete
measurement study. We will test how useful PEX is under
a high-churn environment, and understand how PEX impacts
other graph parameters of BitTorrent topologies, such as the
diameter and other spectral moments.

ACKNOWLEDGEMENTS

This work has been in part supported by NFS grant CNS-
0917767, the Fundamental Research Funds for the Central

Universities, Sun Yat-Sen University (grant no. 2009-35000-
3161425/09LGPY56) and Sun Yat-Sen University “Hundred
Talents Program” (grant no. 35000-3226138). Xiaojun Hei’s
research work was supported by the National Science Foun-
dation of China under Grant No. 60972014, the Technology
Support Plan of the National ‘Eleventh Five-Year-Plan’ of
China under Grant No. 2006BAK11B04-3 and Grant No.
2006BAJ07B06-3.

REFERENCES

[1] “Mininova’s Torrent Downloads Double to 7 Billion in a Year,”
http://torrentfreak.com/mininovas-torrent-downloads-doubled-in-a-year-
090105.

[2] “MiniNova,” http://www.mininova.org/.
[3] A. Al-Hamra, A. Legout, and C. Barakat, “Understanding the Properties

of the BitTorrent Overlay,” in Technical Report, INRIA, Sophia Antipolis,
2007.

[4] “AZ PEX protocol,” [Online]. Available: http://www.azureuswiki.com/
index.php/Azureus messaging protocol.

[5] “UT PEX protocol,” [Online]. Available: http://www.rasterbar.com/
products/libtorrent/extension protocol.html.

[6] “Wikipedia - Peer Exchange ,” [Online]. Available:
http://en.wikipedia.org/wiki/Peer exchange.

[7] “LH-ABC BitTorrent Client,” [Online]. Available: http://code.google.
com/p/lh-abc/.

[8] “The Pirate Bay,” http://thepiratebay.org.
[9] “PeerGuardian,” http://phoenixlabs.org/pg2.

[10] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra, and
L. Garces-Erice., “Dissecting BitTorrent: five months in a torrent’s
lifetime,” in Passive and Active Measurements, Antibes Juan-les-Pins,
France, Apr. 2004.

[11] J. A. Pouwelse, P. Garbacki, D. H. Epema, and H. Sips, “The BitTor-
rent P2P file-sharing system: Measurements and analysis,” in Proc. of
International workshop on Peer-To-Peer Systems (IPTPS), Ithaca, NY,
Feb. 2005.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, analysis, and modeling of bittorrent-like systems,” in Internet
Measurement Conference (IMC 05), Berkeley, California, USA, Oct.
2005.

[13] L. Guo, S. Chen, Z. Xiao, E. T. X. Ding, and X. Zhang, “A Performance
Study of BitTorrent-like Peer-to-Peer Systems,” in IEEE Journal on
Selected Areas in Communications (JSAC), Vol. 25, No. 1, pp. 155-169,
2008.

[14] A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the use of
bittorrent as the basis for a large trace repository.” in Tech. Rep. 04-
41, University of Massachusetts Amherst, Jun. 2004.

[15] G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and
J. Danaher, “Availability in BitTorrent Systems,” in IEEE INFOCOM,
2007.

[16] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing
incentives in bittorrent systems,” in Proc. ACM SIGMETRICS, San
Diego, CA, Jun. 2007.

[17] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke
Algorithms Are Enough,” in ACM SIGCOMM/USENIX IMC, 2006.

[18] C. Dale, J. Liu, J. Peters, and B. Li, “Evolution and Enhancement of
BitTorrent Network Topologies,” in IEEE IWQoS’08, 2008.

[19] M. Steiner, T. En-Najjary, and E. W. Biersack, “A Global View of KAD,”
in Proc. of ACM Internet Measurement Conference (IMC), 2007.

[20] M. Steiner, D. Carra, and E. W. Biersack, “Faster Content Access in
KAD,” in IEEE Conference on Peer-to-Peer Computing (P2P), 2008.

[21] M. Steiner, T. En-Najjary, and E. W. Biersack, “Long Term Study of Peer
Behavior in the KAD DHT,” IEEE/ACM Transactions on Networking,
2009.

[22] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson,
“Profiling a Million User DHT,” in Proc. of ACM Internet Measurement
Conference (IMC), 2007.

[23] D. Stutzbach and R. Rejaie, “Improving Lookup Performance over a
Widely-Deployed DHT,” in IEEE INFOCOM’06, 2006.

