
Understanding Probabilistic Programs⋆

Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen,
Benjamin Lucien Kaminski, and Federico Olmedo

{katoen, friedrich.gretz, nils.jansen,

benjamin.kaminski, federico.olmedo}@cs.rwth-aachen.de

RWTH Aachen University
Aachen, Germany

Abstract. We present two views of probabilistic programs and their
relationship. An operational interpretation as well as a weakest pre-
condition semantics are provided for an elementary probabilistic guarded
command language. Our study treats important features such as sam-
pling, conditioning, loop divergence, and non-determinism.

1 Introduction

Probabilistic programs are sequential programs with the ability to draw values at
random from probability distributions. Probabilistic programs are not new at all.
Seminal papers from the mid–eighties consider their formal semantics [16] as well
as their formal verification [25]. Variations of probabilistic propositional dynamic
logic [5] have been defined to enable reasoning about probabilistic programs.
McIver and Morgan [17] generalized Dijkstra’s weakest pre–conditions to weakest
pre–expectations (wp) so as to formally analyze pGCL—the probabilistic guarded
command language. Mechanized wp–reasoning has been realized [13, 3].

In the last years the interest in probabilistic programs is rapidly growing [8].
This is mainly due to their wide applicability. Probabilistic programs are used
in security to describe cryptographic constructions (such as randomized encryp-
tion) and security experiments [1], in machine learning to describe distribution
functions that are analyzed using Bayesian inference, and naturally occur in
randomized algorithms [18]. Other applications include [6] scientific modeling,
information retrieval, bio–informatics, epidemiology, vision, seismic analysis, se-
mantic web, business intelligence, human cognition, and more. The variety of
probabilistic programming languages is immense. Almost each programming lan-
guage, being it imperative, declarative, object–oriented or logical, has a proba-
bilistic counterpart. Probabilistic C [21] extends C with sampling, Church is based
on the λ–calculus, Figaro [22] is fully integrated in the Scala object–oriented lan-
guage, and CHRiSM is a probabilistic version of Prolog. Probabilistic programs
are not just of academic interest; they are highly relevant to industry; DARPA
invests 48 million US dollar on probabilistic programming for advanced machine
learning because:

⋆ This work was supported by the Excellence Initiative of the German federal and
state government.



“probabilistic programming is a new programming paradigm for man-
aging uncertain information. By incorporating it into machine learning,
we seek to greatly increase the number of people who can successfully
build machine learning applications, and make machine learning experts
radically more effective”.

Microsoft has recently started a large initiative to improve the usability of prob-
abilistic programming. New languages and approaches such as Infer.NET (akin
to C#), R2 [19] and Tabular [7] emerged.

What is special about probabilistic programs? They are typically just a few
number of lines, but hard to understand and analyze, let alone algorithmically.
For instance, the elementary question of almost–sure termination—for a given
input, does a probabilistic program terminate with probability one?—is as hard
as [14] the universal halting problem—does an ordinary program halt on all pos-
sible inputs? Loop invariants of probabilistic programs typically involve quantita-
tive statements and synthesizing them requires more involved techniques than for
ordinary programs [15, 2]. Modern probabilistic programming languages do not
just support sampling, but also have the ability to condition values of variables in
a program through observations. Conditioning blocks all program runs violating
its Boolean condition and prevents those runs from happening. Consequently,
the likelihood of the remaining runs is normalized. The latter effect makes ob-
servations differ from program annotations like probabilistic assertions [24].

Conditioning of variables through observations is less well–understood and
raises various semantic difficulties, in particular in the presence of possibly non–
terminating loops and non–determinism1. Previous works on semantics for prob-
abilistic programs with observations [19, 12] do not consider these important
features. In fact, many works on probabilistic programs ignore the notion of
non–termination and assume that loops always terminate—a property that is
unrealistic in practice and highly undecidable to establish. This paper sketches
the semantic intricacies, and presents ideas of providing a formal semantics of
pGCL treating conditioning in presence of possibly diverging loops and non–
determinism.

Much in the vein of Olderog’s view [20] that multiple semantic perspectives
are useful for a full understanding of programs and systems, we provide two se-
mantic views and study their relationship. We present an operational semantics
in terms of infinite–state parametric Markov decision processes [23] as well as a
weakest (liberal) precondition semantics à la McIver and Morgan [17] and Dijk-
stra [4]. The main result is a transfer theorem that establishes the relationship
between the two semantics. A program transformation is described to remove
conditioning and its correctness is established. The presentation is kept informal;
full technical details can be found in [11, 9, 10].

1 As stated in [8], “representing and inferring sets of distributions is more compli-
cated than dealing with a single distribution, and hence there are several technical
challenges in adding non–determinism to probabilistic programs”.



2 Probabilistic Programs

This section introduces our programming language. Probabilistic programs are
presented by means of examples that elucidate the key insights behind them.

Main features. Roughly speaking, probabilistic programs are ordinary sequential
programs with two additional features:

(i) The ability to draw samples from a probability distribution. For simplicity,
we consider discrete probability distributions only, and model sampling by
means of a probabilistic choice 2 of the form:

{P1} [p] {P2} .

Here, P1 and P2 are programs and p is a probability value in [0, 1]. In-
tuitively, this construct behaves as P1 with probability p and as P2 with
probability 1−p.

(ii) The ability to condition the distribution of program states with respect to
an observation. This is done using statements of the form:

observe (G) ,

where G is a Boolean expression over the program variables. The effect
of such an instruction is to block all program executions violating G and
rescale the probability of the remaining executions so that they sum up
to one. In other words, observe (G) transforms the current distribution µ
over states into the conditional distribution µ|G.

To clarify these features consider the two simple sample programs given below:

1: {x := 0} [1/2] {x := 1}; 1: {x := 0} [1/2] {x := 1};

2: {y := 0} [1/2] {y := −1} 2: {y := 0} [1/2] {y := −1};

3: observe (x+ y = 0)

The left program flips two fair (and independent) coins and assigns different
values to variables x and y depending on the result of the coin flips. This program
admits four executions and yields the outcome

Pr[x=0, y=0] = Pr[x=0, y=−1] = Pr[x=1, y=0] = Pr[x=1, y=−1] = 1
4 .

The program on the right blocks two of these four executions as they violate the
observation x+y equals zero in the last line. The probabilities of the remaining
two executions are normalized. This leads to the outcome

Pr[x=0, y=0] = Pr[x=1, y=−1] = 1
2 .

2 Alternatively, one can use random assignments which sample a value from a distri-
bution and assign it to a program variable; see e.g. [8].



Remarks on conditioning. The observe statement is related to the well–known
assert statement: both statements observe (G) and assert (G) block all
runs violating the Boolean condition G. The crucial difference, however, is that
observe (G) normalizes the probability of the remaining runs while assert (G)
does not. This yields a sub–probability distribution of total mass possibly less
than one [1].

We also like to point out that an observation may block all program runs. In
this case the normalization process is not well–defined and the program admits
no feasible run. This is similar to the situation that conditional probabilities are
ill–defined when conditioning to an event of probability zero. Section 3 sheds
more light on this phenomenon. A possible way out is to only allow conditioning
at the end of the program, in particular not inside loops. Whereas this view
indeed simplifies matters, modern probabilistic programming languages [7, 19,
21] do not impose this restriction for good reasons. Instead, they allow the use
of observe statements at any place in a program, e.g. in loops. Section 4 presents
two program semantics that adequately handle such (infeasible) programs.

Loops. Let us now consider loops. Consider the following two loopy programs:

1: i := 0; 1: i := 0;

2: repeat 2: repeat

3: {b := heads} [p] {b := tails}; 3: {b := heads} [p] {b := tails};

4: i := i+ 1 4: i := i+ 1

5: until (b = heads) 5: until (b = heads);

6: observe (odd(i))

The left program tosses a (possibly biased) coin until it lands heads and tracks
the number of necessary trials. It basically simulates a geometric distribution
with success probability p and upon program termination we have

Pr[i = N ] = (1− p)N−1 p for N ≥ 1 .

The program on the right is as the left program but models the situation where on
termination we observe that the number of trials until the first heads is odd. The
set of program executions complying this observation has an overall probability
of

∑

N≥0 (1 − p)2Np = 1/(2−p). This follows from considering a geometric series
on even indices. Accordingly, the distribution of variable i is now governed by

Pr[i = 2N+1] = (1− p)2Np
(

2− p
)

Pr[i = 2N ] = 0
for N ≥ 0 .

As a final remark regarding the previous pair of loopy programs, observe that we
allow the probability value of probabilistic choices to remain unspecified. This
allows us to deal with parametric programs in which the exact values of the
probabilities are not known.



Non–determinism. Our programming model also accounts for the possibility
of non–determinism. Let {P1} � {P2} represent the non–deterministic choice
between the programs P1 and P2. Non–deterministic choices are resolved by
means of a so–called scheduler (akin: adversary). On the occurrence of the non–
deterministic choice {P1} � {P2} during a program run, a scheduler decides
whether to execute P1 or P2. This choice can in principle depend on the sequence
of program states encountered so far in the run. Consider, for instance

1: {i := 2j} � {i := 2j+1};

2: {i := i+1} [1/3] {i := i+2} .

It admits the schedulers L andR, say. Scheduler L resolves the non–deterministic
choice in favor of the assignment i := 2j, whereas scheduler R selects the as-
signment i := 2j + 1. Evidently, imposing either the scheduler L or R on this
program yields a purely probabilistic program.

As in [17], we consider a demonic model to determine the probability of an
event in the presence of non–determinism. This amounts to resolving all non–
deterministic choices in a way that minimizes the probability of the event at
hand. In other words, we assume a scheduler that leads to the event occurring
with the least probability. For instance, the probability that i is odd in the above
program is computed as follows

Pr[odd(i)] = min
{

PrL[odd(i)], PrR[odd(i)]
}

= min
{

1
3 ,

2
3

}

= 1
3 .

By a similar reasoning it follows that the probability that i is even is also 1/3.
This shows that in the presence of non–determinism the law of total probability,
namely Pr[A] + Pr[¬A] = 1, does not hold.

Observe that our demonic model of non-determinism impacts directly on the
termination behavior of programs. This is because in the probabilistic setting, the
termination behaviour of a program is given by the probability of establishing
true, which—like the probability of any other event—is to be minimized. To
clarify this consider the following example. Assume that P is a program which
admits a scheduler that leads to a probability of termination zero, while all
other schedulers induce a probability of termination that is strictly positive. We
will then say that P is non-terminating, or more formally, that it diverges almost
surely, since according to our demonic model of non-determinism, the probability
of establishing true, i.e., termination, will be zero.

3 Semantic Intricacies

In this section, we investigate semantic difficulties that arise in the context of
non–deterministic and probabilistic uncertainty in probabilistic programs, in
particular in combination with conditioning. We do this by means of exam-
ples. Consider as a first example the following two ordinary (i.e. deterministic



and non–probabilistic) programs Pdiv (left) and Pterm (right):

1: repeat 1: repeat

2: x := 1 2: x := 0

3: until (x = 0) 3: until (x = 0)

While the left program never terminates as the variable x is always set to one,
the right program performs only one loop iteration. The right program is said
to certainly terminate.

Non–deterministic uncertainty. The first type of uncertainty we take a look at
is non–determinism. For that, consider the following program Pnd :

1: repeat

2: {x := 1} � {x := 0}

3: until (x = 0)

In each loop iteration, the variable x is set non–deterministically either to 1 or to
0. A natural question is whether this program terminates or not. Obviously, this
depends on the resolution of the non–deterministic choice inside the loop body.
For the scheduler that chooses the left branch x := 1 in each loop iteration, the
probability of termination is zero, while for any other scheduler the probability
of termination is one. (As Pnd contains no probabilistic choice, any event will
occur with probability either zero or one). In view of our demonic model of
non-determinism, the program presents a certain behavior: non-termination.

Probabilistic uncertainty. Consider now the following program Ppr , which is ob-
tained from the previous program Pnd by replacing the non-deterministic choice
by a random choice:

1: repeat

2: {x := 1} [1/3] {x := 0}

3: until (x = 0)

In each loop iteration, the variable x is set to 1 with probability 1/3 and to 0
with probability 2/3. Again we pose the question: does this program terminate?
The answer to that requires a differentiated view: there does exist a single non–
terminating program run, namely the one in which x is set to 1 in each loop
iteration. This infinite run, however, has probability 1/3 · 1/3 · 1/3 · · · = 0 . Thus,
the terminating runs have probability 1−0 = 1. In this case, the program is said
to terminate almost surely. Note that it does not terminate certainly though, as
it admits an infinite run.



Combining non–deterministic and probabilistic uncertainty. Let us consider the
two notions of uncertainty in a single program Pnd+pr :

1: repeat

2: {{x := 1} [8/9] {x := 0}} � {{x := 1} [1/9] {x := 0}}

3: until (x = 0)

In each loop iteration, the variable x is set to 0 with a certain probability, but
this probability is chosen non–deterministically to be 1/9 or 8/9. Again we pose
the question: does this program terminate almost–surely? As a matter of fact,
the scheduler cannot prevent this program from terminating almost–surely. In
fact the two programs

1: repeat 1: repeat

2: {x := 1} [1/9] {x := 0} 2: {x := 1} [8/9] {x := 0}

3: until (x = 0) 3: until (x = 0)

are semantically equivalent in both our semantic views [17, 11].
Still it seems natural to ask whether choosing 1/9 over 8/9 as the probability

of setting x to 0 would not be—so to say—more demonic as this would increase
the expected time until termination and therefore the right program converges
slower. To the best of our knowledge, however, existing semantics for proba-
bilistic programs with non–determinism do not take this convergence rate into
account (and neither do our two semantic views).

Observations. Next, we turn towards the second characteristic feature of proba-
bilistic programs—conditioning—and take a look at termination in this context.
Consider the following two programs Pdiv (left) and Pobs (right):

1: repeat 1: repeat

2: x := 1 2: {x := 1} [1/2] {x := 0};

3: until (x = 0) 3: observe (x = 1)

4: until (x = 0)

As noted earlier, the left program certainly diverges. For the right program,
things are not so clear any more: On the one hand, the only non–terminating
run is the one in which in every iteration x is set to 1. This event of setting
x infinitely often to 1, however, has probability 0. So the probability of non–
termination would be 0. On the other hand, the global effect of the observe
statement within the loop is to condition on exactly this event, which occurs
with probability 0. Hence, the conditional termination probability is 0 divided
by 0, i.e. undefined.

Remark 1. Notice that while in this sample program it is immediate to see that
the event to which we condition has probability 0, in general it might be highly
non–trivial to identify this. Demanding from a “probabilistic programmer” to



condition only to events with non–zero probability would thus be just as (if
not even more) far–fetched as requiring an “ordinary programmer” to write only
terminating programs. Therefore, a rigorous semantics for probabilistic programs
with conditioning has to take the possibility of conditioning to zero–probability
events into account: To the program on the right such a semantics should assign
a dedicated denotation which represents undefined due to conditioning to a zero–
probability event.

Conditioning in presence of uncertainty. Our final example in this section blurs
the situation even further by incorporating both notions of uncertainty and
conditioning into the single program Pall :

1: repeat

2: {x := 1} [1/2] {x := 0};

3: {x := 1} � {observe (x = 1)}

4: until (x = 0)

This program first randomly sets x to 1 or 0. Then it either sets x to 1 or
conditions to the event that x was set to 1 in the previous probabilistic choice.
The latter choice is made non–deterministically and therefore the semantics of
the entire program is certainly not clear: If in line 3, the scheduler always chooses
x := 1, then this results in certain non–termination. If, on the other hand, the
scheduler always chooses observe (x = 1), then the global effect of the observe
statement is a conditioning to this zero–probability event. Which behavior of
the scheduler is more demonic? We take the point of view that certain non–
termination is a more well–behaved phenomenon than conditioning to a zero–
probability event. Therefore a demonic scheduler should prefer the latter.

4 Expectation Transformer and Operational Semantics

This section presents the two semantic views and their relationship. The first
perspective is a semantics in terms of weakest pre–expectations, the quanti-
tative analogue of Dijkstra’s weakest pre–conditions [4]. The second view is
an operational semantics in terms of Markov decision processes (MDPs) [23].
The relationship between the semantics is established by linking weakest pre–
expectations to (conditional) rewards in the MDPs associated to the programs.

4.1 Weakest pre–expectation Semantics

The semantics of Dijkstra’s seminal guarded command language [4] has been
given in terms of weakest preconditions. It is in fact a predicate transformer
semantics, i.e. a total function between two predicates on the state of a program.
The predicate transformer E = wp(P, F ) for program P and postcondition F
yields the weakest precondition E on the initial state of P ensuring that the
execution of P terminates in a final state satisfying F . There is a direct relation



with axiomatic semantics: the Hoare triple 〈E〉P 〈F 〉 holds for total correctness
if and only if E ⇒ wp(P, F ). The weakest liberal precondition wlp(P, F ) yields
the weakest precondition for which P either does not terminate or establishes
F . It does not ensure termination and corresponds to Hoare logic for partial
correctness.

Weakest pre–expectations. Qualitative annotations in predicate calculus are of-
ten insufficient for probabilistic programs as they cannot express quantities such
as expectations over program variables. To that end, we adopt the approach
by McIver and Morgan [17] and consider expectations over program variable
valuations. They are the quantitative analogue of predicates and are in fact
just random variables (over variable valuations). An expectation transformer is
a total function between expectations on the state of a program. Stated col-
loquially, the expectation transformer e = wp(P, f) for pGCL–program P and
post–expectation f over final states yields the least expected “value” e on P ’s
initial state ensuring that P ’s execution terminates with a “value” f . That is
to say, e(σ) = wp(P, f)(σ) represents the expected value of f with respect to
the distribution of final states obtained from executing program P in state σ,
where σ is a valuation of the program variables. The annotation 〈e〉P 〈f〉 holds
for total correctness if and only if e ≤ wp(P, f), where ≤ is to be interpreted in
a point–wise manner. The weakest liberal pre–expectation wlp(P, f) yields the
least expectation for which P either does not terminate or establishes f . It does
not ensure termination and corresponds to partial correctness.

Determining weakest pre–expectations. We explain the transformation of expec-
tations by means of an example. Consider the program P :

{{x := 5} � {x := 2}} [p] {x := 2}

We would like to find the (least) average value of x produced by this program.
This quantity is given by

wp(P, x) = wp({{x := 5} � {x := 2}} [p] {x := 2}, x) .

The expectation of the probabilistic choice is given by the weighted average of
the expectations of its sub–programs, thus we obtain

p · wp({x := 5} � {x := 2}, x) + (1− p) · wp(x := 2, x) .

As non–determinism is resolved in a demonic manner, it yields the expectation
given by the minimum between the expectations of the sub–programs

p ·min{wp(x := 5, x),wp(x := 2, x)}+ (1− p) · wp(x := 2, x) .

In the last step we apply the assignments and evaluate the expression

p ·min{5, 2}+ (1− p) · 2 = p · 2 + (1− p) · 2 = 2 .

For loops, the semantics is as usual defined by a least fixed point; in our case,
over the domain of expectations with partial order the point–wise ordering ≤ on
expectations.



Conditioning. Let wp(observe(G), f) = wlp(observe(G), f) = [G] · f , where
[G] stands for the characteristic function of the Boolean expression G over the
program variables. For probabilistic programs with observations we define a
transformer to determine the conditional expectation cwp(P, f). Intuitively, the
conditioning takes place on the probability that all observations in the program
are successfully passed. The conditional expectation of program P with respect
to post–expectation f is given as a pair:

cwp(P, f) =
(

wp(P, f), wlp(P, 1)
)

.

The first component gives the expectation of the random variable f , whereas
wlp(P, 1) is the probability that no observation has been violated (this includes
non–terminating runs). The pair

(

wp(P, f), wlp(P, 1)
)

is to commonly be inter-
preted as the quotient

wp(P, f)

wlp(P, 1)
.

It is possible though that both wp(P, f) and wlp(P, 1) evaluate to 0. In that case,
the quotient 0

0 is undefined due to division by zero. The pair (0, 0), however, is
well–defined. Let us give an example. Consider the program P from Section 2:

1: {x := 0} [1/2] {x := 1};

2: {y := 0} [1/2] {y := −1};

3: observe (x+ y = 0)

Assume we want to compute the conditional expected value of expression x given
that observation x+ y = 0 is passed. This expected value is given by cwp(P, x)
and its computation is sketched below. During the computation we use Pi−j to
denote the fragment of program P from line i to line j. For the first component
of cwp(P, x) we have:

wp(P, x)

= wp(P1−2, [x+ y = 0] · x)

= 1/2 · wp(P1−1; y := 0, [x+ y = 0] · x) + 1/2 · wp(P1−1; y := −1, [x+ y = 0] · x)

= 1/2 · wp(P1−1, [x = 0] · x) + 1/2 · wp(P1−1, [x = 1] · x)

= 1/2 · (1/2 · 1 · 0 + 1/2 · 0 · 1) + 1/2 · (1/2 · 0 · 0 + 1/2 · 1 · 1)

= 1/4

For the second component of cwp(P, x) we derive:

wlp(P, 1)

= wlp(P1−2, [x+ y = 0] · 1)

= 1/2 · wlp(P1−1; y := 0, [x+ y = 0]) + 1/2 · wlp(P1−1; y := −1, [x+ y = 0])

= 1/2 · wlp(P1−1, [x = 0]) + 1/2 · wlp(P1−1, [x = 1])

= 1/2 · (1/2 · 1 + 1/2 · 0) + 1/2 · (1/2 · 0 + 1/2 · 1)

= 1/2



Thus the conditional expected value of x is

wp(P, x)

wlp(P, 1)
=

1/4
1/2

=
1

2
.

Revisiting the purely probabilistic example programs of Section 3 (i.e. those not
containing any non–deterministic choices), with respect to post–expectation x+5
we would obtain the following conditional expectations and according quotients:

Pdiv (0, 1) 0
1 = 0

Pterm (5, 1) 5
1 = 5

Ppr (5, 1) 5
1 = 5

Pobs (0, 0) 0
0 = undefined

In particular notice that Pdiv and Pobs diverge due to different reasons and that
our semantics discriminates these two programs by assigning different denota-
tions to them.

Remark 2. Note that the example for the weakest pre–expectation semantics for
programs with conditioning does not contain non–determinism. This is deliber-
ate as it is impossible to treat non–determinism in a compositional manner [9].
The problem is that determining the conditional expectation in a compositional
fashion is not feasible.

4.2 Operational Semantics

MDPs. Markov decision processes (MDPs [23]) serve as a model for probabilistic
systems that involve non–determinism. An MDP is a state–transition system in
which the target of a transition is a discrete probability distribution over states.
As in state–transition systems, several transitions may emanate from a state. An
MDP thus reduces to an ordinary state–transition system in case all transitions
are equipped with a Dirac distribution. In the sample MDP in Figure 1 there is
a choice in state s0 between distributions (or: transitions) α and β. Choosing α
results in a probabilistic choice of moving either to state s1 or to state s2 with
probability 1/2 in each case. Choosing β results in going to s3 with probability
9/10 and to s1 with probability 1/10. Additionally, in state s1 a reward (also
referred to as cost) of 10 is earned; all other states have reward zero, which is
omitted from the figure. The expected reward of reaching s1 from state s0 equals
the reward that on average will be earned with respect to the overall probability
of reaching state s1.

These MDPs serve as an operational model for our probabilistic programs.
The MDP states are tuples of the form 〈P, σ〉 where P denotes the remaining
program to be executed (or equals 〈sink 〉 if the program successfully terminated),
and σ is the current valuation of the program variables. Executing a program
statement is mimicked by a state change in the MDP. By equipping the MDP
states with rewards it is possible to express the expected outcome of a program



〈s0〉

〈s1〉 10

〈s2〉〈s3〉

0.5

0.5

α

0.9

0.1

β

1

11

Fig. 1. Sample MDP with four states and a non–deterministic choice between α and β

variable as an expected reward on the MDP. This will become more explicit
when discussing the relationship to the weakest pre-expectation semantics at
the end of this section. Note that the resulting MDP of a probabilistic program
is in general countably infinite (as the variable domains can be infinitely large)
and parametric (as probabilistic choices can be parametric).

The structure of MDPs for probabilistic programs. Let us examine the different
kinds of runs a program can have. First, we have terminating runs where—in
presence of conditioning—one has to distinguish between runs that satisfy the
condition and those that do not. In addition, a program may have diverging
runs, i.e. runs that do not terminate. Schematically, the MDP of a probabilistic
program has the following structure:

〈init〉 X

〈 〉

〈sink 〉

diverge

X
X X

X
X

For terminating runs of the program, we use a dedicated 〈sink 〉 state where
all terminating runs will end. All diverging runs never reach 〈sink 〉. A program
terminates either successfully, i.e. a run passes a X–labeled state, or terminates
due to violating an observation, i.e. a run passes 〈 〉. Squiggly arrows indicate
reachability via possibly multiple paths and states; the clouds indicate that there
might be several or even infinitely many states of the particular kind. The X–
labeled states are the only ones where one is allowed to assign positive reward
as this corresponds to a desired outcome of the program when subsequently
terminating. Note that the sets of paths that eventually reach 〈 〉, eventually
reach X, or diverge, are pairwise disjoint.

As an example, consider the following program:

{{x := 5} � {x := 2}} [q] {x := 2};

observe (x > 3)



With parametrized probability q, a non–deterministic choice either assigns x with
2 or 5. With probability 1−q, x is directly assigned 2, so in this program branch
no non–deterministic choice occurs. The event that x exceeds 3 is observed.
For the sake of readability, let: P1 = {x := 5} � {x := 2}, P2 = x := 2,
P3 = observe (x > 3), and P4 = x := 5. Figure 2 shows the resulting MDP,
where σI denotes some initial variable valuation for x. Let σI [x/y] denote the
variable valuation that is obtained from σI by replacing x by y. Starting in

〈P, σI〉

〈P1; P3, σI〉 〈P2; P3, σI〉〈P4; P3, σI〉

〈↓; P3, σI [x/2]〉〈↓; P3, σI [x/5]〉

〈P3, σI [x/2]〉

〈P3, σI [x/5]〉

〈↓, σI [x/5]〉5

〈 〉〈sink 〉

q 1 − q

left right

Fig. 2. Reward MDP for the example program

the initial state 〈P, σI〉, the probabilistic choice takes place. With probability
q, the next state is 〈P1; P3, σI〉 while with probability 1−q, the next state is
〈P2; P3, σI〉. The non–deterministic choice in state 〈P1; P3, σI〉 is indicated by
left and right . Note that non–deterministic choices yield a choice in the MDP
between Dirac distributions.

Conditional expected rewards. The operational semantics of a probabilistic pro-
gram P , a program state σ and an expectation (i.e. random variable) f is the
reward MDP R

f
σJP K constructed as described in the paragraph above. Note that

in the context of MDPs, the random variable f can also be seen as a reward func-
tion which adds a positive real–valued reward to certain states of the MDP. In
our previous example, the only state with positive reward (5) is s′ := 〈↓, σI [x/5]〉;
all other states have reward zero. In absence of conditioning, we are interested
in the expected reward to reach a 〈sink 〉–state from the MDP’s initial state σI :

er(P, f)(σI) = ExpRew
R

f
σI

JP K (♦ sink ) .

The right-hand side denotes the sum over all (countably many) paths in the
reward MDP R

f
σI
JP K where for each path its likelihood is weighed with its



reward. The reward of a path is simply the sum of the rewards of the states it
contains.

In the presence of conditioning (i.e. for programs having observe–statements),
we consider the conditional expected reward to reach a 〈sink 〉–state without in-
termediately passing the 〈 〉–states:

cer(P, f)(σI) =
ExpRew

R
f
σI

JP K (♦ sink ∩ ¬♦ )

Pr(¬♦ )
.

Let us illustrate these two notions by our example reward MDP in Figure 2.
Consider a scheduler choosing action left in the state 〈P1; P3, σI〉. Then, the
only path accumulating positive reward is the path π going from 〈P, σI〉 via s′

to 〈sink 〉; it has reward 5 and occurs with probability q. This gives an expected
reward

er(P, f)(σI) = 5 · q .

The overall probability of not reaching 〈 〉 is q. The conditional expected reward
of eventually reaching 〈sink 〉 given that 〈 〉 is not reached is hence

cer(P, f)(σI) =
5 · q

q
= 5 .

Consider now the scheduler choosing right at state 〈P1; P3, σI〉. In this case,
there is no path with positive accumulated reward, yielding an expected reward
of 0. The probability of not reaching 〈 〉 is also 0. The conditional expected
reward in this case is undefined (0/0). Thus, the right branch is preferred over
the left branch by a demonic scheduler, as discussed in Section 3.

4.3 Relating the Two Semantic Views

A key insight is that the operational program semantics in terms of MDPs and
the semantics in terms of expectation transformers, as explained in the previous
section, correspond in the following sense:

Theorem 1 (Transfer theorem [11]). For a probabilistic program P without
observations, a random variable f , and some initial state σI :

wp(P, f)(σI) = er(P, f)(σI) .

Stated in words, this result asserts that the weakest-pre-expectation of program
P in initial state σI wrt. post-expectation f coincides with the expected reward
in the MDP of P where reward f is assigned to successfully terminating states.
For probabilistic programs with observations but without non–determinism we
can establish a correspondence between the conditional expected reward on the
MDP of a program and its conditional pre–expectation:



Theorem 2 (Transfer theorem for conditional expectations [9]). For a
purely probabilistic program P (with observations), a random variable f , and
some initial state σI , let cwp(P, f) = (g, h). Then

g(σI)

h(σI)
≃ cer(P, f)(σI) ,

where x ≃ y holds iff either x = y or both sides of the equation are undefined.

For weakest liberal pre-expectations, we obtain a similar pair of theorems, where
the notions of (conditional) liberal expected reward also takes the mere probabil-
ity of not reaching the target states into account. For further details, the reader
is referred to [11, 9, 10].

5 Program Transformations

In this section, we use the semantics to show the correctness of a program trans-
formation aimed at removing observations from programs. The program trans-
formation basically allows removing observations from programs through the
introduction of a global loop. It is motivated by a well–known technique to sim-
ulate a uniform distribution in some interval [a, b] using fair coins [26, Th. 9.2].
The technique is illustrated by a program simulating a six–sided die:

1: repeat

2: {a0 := 0} [1/2] {a0 := 1};

3: {a1 := 0} [1/2] {a1 := 1};

4: {a2 := 0} [1/2] {a2 := 1};

5: i := 4a0 + 2a1 + a0 + 1

6: until (1 ≤ i ≤ 6)

The body of the loop simulates a uniform distribution over the interval [1, 8],
which is repeatedly sampled (in variable i) until its outcome lies in [1, 6]. The
effect of the repeated sampling is precisely to condition the distribution of i to
1 ≤ i ≤ 6. As a result, Pr[i = N ] = 1

6 for all N = 1, . . . , 6.
Our program transformation follows the same idea. Given a program P with

observations, we repeatedly sample executions from P until the sampled exe-
cution satisfies all observations in P . To implement this, we have to take into
account three issues. First, we introduce a flag that signals whether all obser-
vations along a program execution were satisfied or not. Let variable flag be
initially true and replace every observation observe (G) in the original program
by the assignment flag := flag ∧ G. In this way, the variable flag is true un-
til an observation is violated. Secondly, since a program execution is no longer
blocked on violating an observation, we need to modify the program to avoid
any possible divergence after an observation has been violated. This is achieved



by adapting the loop guards. For instance loop while (G) {P} is transformed
into while (G∧flag) {P}, whereas loop repeat {P} until (G) is changed into
repeat {P} until (G ∨ ¬flag). Finally, observe that we need to keep a perma-
nent copy of the initial program state since every time we sample an execution,
the program must start from its original initial state. In general, the transformed
program will have the following shape:

1: s1, . . . , sn := x1, . . . , xn;

2: repeat

3: flag := true;

4: x1, . . . , xn := s1, . . . , sn;

5: modified version of original program;

6: until (flag)

Here x1, . . . , xn denote the set of variables that occur in the original program
and s1, . . . , sn are auxiliary variables used to store the initial program state; note
that if the original program is closed (i.e. independent of its input), Lines 1 and
4 can be omitted. Line 5 includes the modified version of the original program
which accounts for the replacement of observations by flag updates and, possibly,
the adaptation of loop guards.

We illustrate the program transformation on the left program below:

1: {x := 0} [1/2] {x := 1}; 1: repeat

2: {y := 0} [1/2] {y := −1}; 2: flag := true;

3: observe (x+ y = 0) 3: {x := 0} [1/2] {x := 1};

4: {y := 0} [1/2] {y := 1};

5: flag := flag ∧ (x+ y = 0)

6: until (flag)

The transformed—observe–free—program is given on the right. Using the oper-
ational semantics from Section 4 we establish that the transformation is semantic-
preserving:

Theorem 3 (Correctness of the program transformation). Let P be a
probabilistic program and let P ′ be the result of applying the above transformation
to program P . Then for initial state σI and reward function f ,

cer(P, f)(σI) = er(P ′, f)(σI) .

In some circumstances it is possible to apply a dual program transformation
that replaces program loops with observations. This is applicable when there
is no data flow between loop iterations and the samplings across iterations are
thus independent and identically distributed. This is the case, e.g. for the earlier
program that simulates a six-sided dice. One can show that this program is



semantically equivalent to the program

1: {a0 := 0} [1/2] {a0 := 1};

2: {a1 := 0} [1/2] {a1 := 1};

3: {a2 := 0} [1/2] {a2 := 1};

4: i := 4a0 + 2a1 + a0 + 1;

5: observe (1 ≤ i ≤ 6)

6 Conclusion

We have presented two views on the semantics of probabilistic programs and
showed their relationship for purely probabilistic programs. Whereas the opera-
tional semantics can cope with all features—loops, conditioning, non–termination,
and non–determinism—the weakest pre–expectation approach cannot be directly
applied to handle non–determinism in this setting. We believe that formal se-
mantics, verification, and program analysis has much to offer to improve modern
probabilistic programming, and consider this as an interesting and challenging
avenue for further research.

Acknowledgement. We thank the reviewers for their valuable feedback.

References

1. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

2. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Proc. of SAS. LNCS, vol. 8723, pp. 85–100. Springer
(2014)

3. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. El. Proc. in
Th. Comp. Sc. 102, 167–178 (2012)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
5. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proc. of STOC. pp.

181–195. ACM (1982)
6. Gordon, A.D.: An agenda for probabilistic programming: Usable, portable, and

ubiquitous (2013), http://research.microsoft.com/en-us/projects/fun
7. Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgström, J., Guiver, J.:

Tabular: a schema-driven probabilistic programming language. In: Proc. of POPL.
pp. 321–334. ACM Press (2014)

8. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proc. of FOSE. pp. 167–181. ACM Press (2014)

9. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A., Olmedo, F.: Con-
ditioning in probabilistic programming. In: Proc. of MFPS. pp. 1–12. ENTCS
(2015)

10. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A., Olmedo, F.: Con-
ditioning in probabilistic programming. CoRR (2015)



11. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

12. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: Proc. of PLDI. pp. 133–144. ACM Press (2014)

13. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346(1), 96–112 (2005)

14. Kaminski, B.L., Katoen, J.P.: On the hardness of almost-sure termination. In:
Proc. of MFCS. LNCS, vol. 9234. Springer (2015)

15. Katoen, J.P., McIver, A., Meinicke, L., Morgan, C.C.: Linear-invariant generation
for probabilistic programs. In: Proc. of SAS. LNCS, vol. 6337, pp. 390–406. Springer
(2010)

16. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

17. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Sys-
tems. Springer (2004)

18. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

19. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient MCMC sampler
for probabilistic programs. In: Proc. of AAAI. AAAI Press (2014)

20. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and their Relationship. Cambridge Tracts in Theoretical Computer Science, Cam-
bridge Universoty Press (1990)

21. Paige, B., Wood, F.: A compilation target for probabilistic programming languages.
In: Proc. of ICML. JMLR Proceedings, vol. 32, pp. 1935–1943. JMLR.org (2014)

22. Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech-
nical report, Charles River Analytics (2000)

23. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons (1994)

24. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: Proc. of PLDI. p. 14. ACM
(2014)

25. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM Jour-
nal on Computing 13(2), 292–314 (1984)

26. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press (2009)


