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Abstract. — The measurement of polarized radiation uses entirely different methods at optical and radio wave-
lengths. As a result, the algebraic analysis of polarimeter performance differs and, in the case of radio interferometry,
is unnecessarily complicated. We demonstrate that the mathematical operation of outer matrix multiplication pro-
vides the missing link between the two approaches. Within one coherent framework, we then unite the concepts of
Stokes parameters and Wolf coherency matrix, the Jones and Mueller calculi from optics, and the techniques of radio
interferometry based on multiplying correlators. We relate the polarization performance of a complete radio interfer-
ometer to the (matrix) polarization properties of its successive signal processing stages, providing a clear view of how
a radio polarimeter works. Our treatment also clarifies the nature of and the relations between the various types of
transformations used in optical polarimetry. We develop the analysis from the radio interferometrist’s point of view,
but include enough background for a wider audience. In a companion paper, we discuss in more detail the application
to the calibration of radio interferometer systems; in a third paper we investigate the IAU (1973) radio definition of
the Stokes parameters and its precise translation into mathematical form.
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1. Introduction

The study of polarized electromagnetic radiation belongs
traditionally to the realm of optics. A century and a half
ago, the representation of polarization in terms of what are
now known as the four Stokes parameters was discovered
(Stokes 1852; modern treatments are to be found in most
advanced optics and radio-astronomy textbooks, such as
Born & Wolf 1964; Hecht & Zajac 1982; Thompson et al.
1986). In modern optical-instrument design, these param-
eters are treated as the components of the Stokes vector,
whose transmission through an optical element may be
described by multiplication with a 4 x 4 Mueller matrix
(Mueller 1948). Another approach is to consider the trans-
mission of the instantaneous (complex) optical vector am-
plitude; this formulation describes an optical element by
multiplication with a 2 x 2 Jones matrix (Jones 1941).
The Jones formalism assumes the quasi-monochromatic
case (cf. Sect. 6) and is, in its simplest form, less generally
applicable than the Mueller formalism. Several authors
indicate a connection between the Jones and Mueller ma-
trices which seems to be due originally to van de Hulst
(1957).
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Unlike optical detectors, radio antennas are inherently
fully polarized. Observers were therefore forced to con-
sider polarization from the very beginning. The instru-
mental techniques at radio wavelengths are too different
for the theories from optics to be directly applicable, so
radio observers had to develop a theory of their own. The
foundation was laid by Morris et al. (1964). They con-
sider two antennas, each with a single receptor, connected
to the two inputs of a device that correlates the input sig-
nals, i.e. multiplies them and time-averages the product.
They derive a lengthy formula showing the output in terms
of the Stokes visibilities (Appendix C) with the orienta-
tions and ellipticities of the dipoles (Born & Wolf 1964;
Thompson et al. 1986) as parameters in an otherwize
error-free system. We shall call this the black-boz formula
because it treats the entire interferometer as a black box
that converts input Stokes visibilities into an output corre-
lation coefficient. All observational work since the appear-
ance of this formula has been based, directly or indirectly,
upon it. Later theoretical work uses it as a starting point
for considering the impact of various instrumental errors
(e.g. Weiler 1973; Weiler & Raimond 1976; Thompson et
al. 1986).
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As a result of these efforts, radio polarimetrists now
understand quite well what they are doing. Yet a compre-
hensive framework in which all elements of the theory find
their natural place is lacking: The basic problem remains
that the black-box formula describes only the interferom-
eter in its entirety without providing an insight into its
inner workings.

This paper has several purposes. First and foremost,
it presents a theory that unifies the concepts of Stokes pa-
rameters, Jones and Mueller matrices and of radio inter-
ferometry in a single coherent framework. The key to this
unification is the observation (made earlier by opticists
but never brought to bear on radio polarimetry) that the
coherency matrix (Born & Wolf 1964) can be reformatted
as a coherency vector that is the outer matrix product of
two vector amplitudes 4 la Jones. The elegant properties
of the outer product then lead the way to a simple and
elegant theory.

In developing this theory, we emphasize some basic
concepts from the theory of linear algebra which are well
known in theory but appear to be often overlooked in prac-
tice. Our second aim, then, is to present the theory in a
semi-tutorial style that emphasizes the precise interpre-
tation of the mathematics. We start from the conceptual
framework of radio interferometry, but we try to explain
enough of the basics from that field to make the material
accessible to non-specialists.

In the third place, we indicate how previous work on
radio interferometry fits into the new framework.

Our theory is based on the theory of linear transfor-
mations. Like practically all previous work on radio po-
larimetry, it excludes one important aspect of practical
radio polarimetry, viz. the variation of instrumental po-
larization over the primary beam of the element antennas
which is induced by the feed/reflector geometry.

In a companion paper (Paper II, Sault et al. 1996) of
a more specialist nature, we consider the application of
our theory to calibration problems of practical radio in-
terferometer arrays. That paper relies both on results from
the optical-polarimetry literature and on the material in
this paper. One important difference may be worth noting
from the outset: Here we treat the processing of the signal
and coherency vectors in a single two-element interferome-
ter. Paper II provides a broader view by investigating the
properties of a multi-element interferometer array as an
imaging device.

In a third paper (Paper III, Hamaker & Bregman 1996)
we consider the interpretation of the IAU (1973) radio
definitions of the Stokes parameters for radio astronomy
and seek to definitively clear up the confusion that seems
to beset their application. In the conventions it adopts, the
present paper anticipates the results of Paper III, which
are also in accord with the conventions used by Thompson
et al. (1986).
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Fig. 1. Interferometer block diagram

Figure 1 gives a schematic diagram of a polarization in-
terferometer, demonstrating the terminology we will use.
The incident electric field is described in terms of two
components (e.g. horizontal and vertical as shown in
the diagram, or right- and left-circular), each of which
is converted to an electric voltage by a receptor. In a
typical feed, the centres of the two receptors coincide
geometrically.! The receptors are usually labeled accord-
ing to the polarization component to which they are sen-
sitive, i.e. X and Y for linearly polarized receptors, R
and L for circularly polarized ones; to avoid such specific
connotations, we label them p and q. The interferome-
ter consists of two antennas which we label A and B,
connected to a correlator that measures the four cross-
correlations between a voltage from antenna A and one
from antenna B (cf. Eq. (10) below); this correlator is the
full-polarization equivalent of the multiplier mentioned in
Sect. 1. The complete signal chain from the atmosphere
down to the correlator inputs is called an interferometer
arm.

We note in passing that this model includes the single-
dish polarimeter as a special case, viz. where the two tele-
scopes A and B coalesce into one.

! Mechanical constraints sometimes force them some small dis-
tance apart along the line of sight; in the paraxial approxima-
tion used here such a shift is mathematically described by a
phase factor.
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3. The mathematical model of an interferometer
3.1. The signal in a single interferometer arm

A quasi-monochromatic signal propagating in space may
be characterized at some fixed point by its instantaneous
complex vector amplitude e(t). Along its path, the vector
undergoes transformations, each of which we represent by
an operator J:

€out (t) - Jein(t) (1)

The limits of validity of this representation are dis-
cussed in Sect. 6. We assume all operators of interest to
be linear; we also henceforth drop the explicit dependence
on time t and refer to e as the signal vector.

It is common practice to represent the vectors e as
columns of numbers, the coordinates; in this representa-
tion, Eq. (1) becomes a matrix multiplication. Note, how-
ever, that such a representation implicitly assumes a coor-
dinate system in which the coordinates are measured. The
distinction between a vector per se and its many possible
representations becomes important when we want to deal
with more than one coordinate system, - as is the case
here.

In an xyz coordinate system with the z axis along the
direction of propagation

=)

The matrices J describe the optical elements in the
path. They are known in optics as Jones matrices after
their inventor (Jones 1941; Azzam & Bashara 1987).

We now generalize the concept of a geometrical signal
path to include the feed and electronics of the antenna.
We define an electronics coordinate system by postulat-
ing that the voltages v,,, v, are the Cartesian components
of an electronic signal vector v. The transition from elec-
tromagnetic radiation to electric voltage pair occurs at the
feed:

v = Qe (2)

In terms of physical dimensions, @ converts an electric
field (V/m) to a voltage (V), so it has the dimension of a
length.

3.2. The coherency vector

The coherency properties of the electric field are described
by the coherency matrix (Born & Wolf 1964). An equiva-
lent form that is more convenient for our purposes is the
coherency vector; in xy coordinates it is defined as

€Az e*Ba:
6Aa:e*By
6Aye*Ba:
e Aye*By

e =<
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This vector form enables us to make the crucial step
of recognizing the coherency vector as the time-averaged
outer product of the two input signal vectors:

e=<e,Qes > (4)

Note that in Eq. (4) we are introducing a new
notational convention to distinguish quantities in the
2-dimensional signal domain from those in the 4-
dimensional coherency domain: The former refer to a sin-
gle antenna and must therefore be subscripted with either
A or B; the latter refer to the interferometer as a whole
and need no such subscripts.

The outer product is also known under other names,
e.g. direct, tensor or Kronecker product. A brief descrip-
tion is given in Appendix A. Its most important property
for our purposes is that for any four matrices A, B, A’, B’
of appropriate dimensions the following identity holds:

(A B)(A'®B') = (AA')® (BB’) (5)

The outer product provides us the missing link be-
tween the transformations of signals in the individual in-
terferometer arms and those of the coherency vector in
the interferometer as a whole. Indeed, consider some trans-
forming element J in each of the individual antenna paths:

eA,out = JAeA’il'l ) eB,out = JBeril'l

Then
€out =< eA,out ® e*B,out >
= (JA ® J*B) < (eA,in ® e*B,in) > (6)
=J €in

For simplicity, we henceforth drop the <> averaging signs.
The assumption that we make in doing so will be investi-
gated in Sect. 6.

We emphasize that the coherency vector, too, exists
independently of the specific coordinate system that we
used to define it (cf. Appendix A). The Cartesian form Eq.
(3) is just a specific representation; we call it the geometric
xy representation.

3.3. Coordinate transformations

So far, we have described our vectors in terms of a specific
geometric coordinate system defined by x, y and z axes. If
we had chosen a different system, the same vector would
be represented by a different array of values. Given the
representation in one Cartesian system, one finds that in
another one through a matrix multiplication of the same
form as Eq. (1):

Lhew = Tmold

Along with the representation of all vectors, T' also
transforms the representation of linear operators such as
J in Eq. (1):

Jnew = TJoldfTi1 (7)
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In Sect. 3.1, Eq. (1) represents a physical transforma-
tion of the signal vector. The same expression may also
represent a linear coordinate transformation. We will en-
counter both types of transformations in practice. Where
necessary, we will use superscripts to indicate in which
particular coordinate system a vector or operator is rep-
resented: a ‘+’ for geometric xy coordinates, a ‘©@’ for
circular-polarization coordinates and an S for Stokes co-
ordinates (see Sect. 3.4 below).

Coordinate transformations between Cartesian sys-
tems are represented by unitary matrices, which have the
useful property that they can be inverted by transposition
and complex conjugation:

)(41 ::)(*T

The Cartesian coordinate systems of interest are not
limited to those representing physical space. Abstract co-
ordinate frames play a prominent role in polarization the-
ory, e.g. the circular-polarization frame in the signal do-
main and the Stokes frame in the coherency domain.

As a final point, we observe that formally there is no
difference between the two types of transformation. In
some cases this is physically obvious, e.g. a Faraday ro-
tation over an angle x is equivalent to rotating the feed
over —Y. In other cases there is no such obvious equiva-
lence.

One may ask whether the difference between the two
types of transformation is at all relevant if they are equiv-
alent in their mathematical expression. We suggest that
it is, because it provides an important clarifying perspec-
tive on the physics of the problem that is lacking in most
existing work.

3.4. The Stokes representation of the coherency vector

It is customary to analyse the source in terms of Stokes
visibilities I, Q, U, V, which in combination form a vector,
the Stokes vector; the connection with the more familiar
Stokes parameters from optics is outlined in Appendix C.
In terms of the zy representation of the coherency vector,
e', the Stokes vector is defined by

I 1 00 1

S_ Q _ +. _ 1 0 0_1

=g |=Te5 T=o 11 o0 (8)
1% 0—i i 0

From the viewpoint developed above, the Stokes vector
is not really a vector in its own right. It is just the represen-
tation of the coherency vector in an abstract frame, that
of Stokes coordinates, linked to the geometric xy frame
through the coordinate transformation 7T'. The notation
e’ introduced in Eq. (8) for the Stokes vector emphasizes
this view.

T is unitary except for a missing normalizing factor. In
this paper and its companions we will only use the inverse
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of T, S = T~ ', which we show here for future reference:

1 1.0 0
1{o 0o 1 4

5_5001—i (9)
1-1 0 0

4. The signal path in an interferometer

A radio interferometer measures the coherency by literally
perfoming the correlation operations of Eq. (3): It converts
the radiation vector amplitudes at two antennas A and B
into voltage amplitudes and submits these to a correlator
that multiplies and averages these voltages to deliver

vAxvgm
vAvay
vAvax
Uy UBy

> (10)

In the path between the source and the correlator in-
puts, a number of intentional and spurious signal transfor-
mations occur. The remainder of this paper is concerned
with the description of these transformations and their
effects.

In a practical correlator, the averaging occurs over a
number of variables including some that are outside the
scope of this paper. We will consider this matter a little
further in Sect. 6.

4.1. The interferometer equation

We consider a more detailed model of one interferometer
arm (antenna A) with the various elements that trans-
form the signal. A schematic is given in Fig. 2. The in-
cident electromagnetic signal is subject to the following
transformations:

— Faraday rotation in the Earth’s ionosphere, F'.

— A possible rotation P over a parallactic angle of the
feed system with respect to the incident field. This is a
transformation from the coordinate system of the ro-
tating sky to the system of the rotating antenna mount
on which the feed rides. For an equatorial mount the
parallactic angle is zero.

— If one were to consider the primary-beam polarization
caused by diffraction on the feed/reflector geometry of
our antennas, the appropriate transformation would be
placed here. The transformation would be a different
one for each different source position in the primary
beam, so for a distributed source we cannot represent
it in the simple form of Eq. (1). This is a fundamental
problem in radio interferometery that is only beginning
to be addressed by some observatories; here we simply
declare it to be outside the scope of this paper.
Another effect in the reflector geometry that we omit
from our equations is the sign reversal of Stokes V' that
occurs in each reflection (Simmons & Guttman 1970).



J.P. Hamaker et al.: Understanding radio polarimetry. I.

X, North

?z ’

/

7 %’
/

.

/

’

’
/j
’

y, East

/' Faraday rotation F
complex em. signal Parallactic rotation P
amplitude vectors
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Feed response:
dlectronic voltage nominal configuration C
amplitude vectors erors
Electronic gain G

Voo

Fig. 2. Schematic of the coordinate and vector transforma-
tions. The orientations of the z and y axes and the direction of
positive rotation shown are in accordance with the IAU radio
definition (cf. Paper III)

— The feed, Q of Eq. (2), may be quite complex to model
in detail. One may reduce it, however, to a product of
two matrices:

— An idealised nominal feed configuration, C: A coor-
dinate transformation from the frame of the rotat-
ing antenna mount to the electronic-voltage frame.

— The deviations of the actual feed from the ideal, D.
For an error-free feed, D = I, the identity matrix.

— Some systems include a hybrid that converts the
outputs from a linearly polarized feed into circular
components. The combination HDC' effectively
forms a circular feed with its errors. Appendix D.1
shows how we can convert this form to the combi-
nation of a configuration matrix and a feed matrix;
we further ignore H.

It is not obvious which of the components C and D
is responsible for the conversion from electromagnetic
field to elecrical voltage. Even though one may argue
that the conversion is part of the intended feed be-
haviour, the choice is actually quite arbitrary in that
it has no consequences.

— The complex receiver gains, G.

Where a permanent connection exists between the feed
and the receiver system, the feed and gain matrices always
appear in the combination GD. We may therefore repre-
sent them together as a single component, the receiver
matrix

RA = GADA
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For describing the system, it is the effect of R that
matters; the fact that it is the product of two other matri-
ces is irrelevant. (A familiar analogue of this is to be found
in the phase of an interferometer: One knows that it is the
sum of many contributions, but for the interferometer as
a whole only this sum matters.) In practical applications,
for various reasons one is often interested in the separate
contributions of D and G to system behaviour, so we will
consider the two matrices separately where appropriate.

The equation describing the signal path in antenna A
is then

va=Jpen; Ja=RyCy\P\F)y (11)

From the identity established in Eqgs. (5) and (6), it
follows that for the interferometer we have a correspond-
ing equation in the coherency domain; we add the Stokes
transformation to get:

v=JSeS=KeS; J=J,0J% (12)
K gives the overall system response as observed with a
radio interferometer; we call it the system matrix. J rep-
resents the part of K that can be factored; this factoring
is the basis of the self-calibration methods to be discussed
in Paper II.

J may be calculated as the outer product of two cumu-
lative matrix products or vice versa. The former is simpler
to evaluate because the matrices are only 2 x 2. The matrix
S cannot be represented as an outer product, so the final
multiplication is of two 4 x 4 matrices in the coherency do-
main. A technique to simplify this multiplication is shown
in Appendix B.

Figure 3 is a schematic showing the paths of the signal
and coherency vectors and the various coordinate systems
in which they are described.

As an aside we note that, because of the non-
decomposability of S and its inverse, it is impossible to
design a combination of feeds that measures the Stokes
visibilities directly.

4.2. The individual Jones matrices

We now consider the form of each of the matrices in
Eq. (11).

Both the Faraday and the parallactic rotations F', and
P, are simple rotations around the line of sight repre-
sented by rotation matrices

cos ¢ —sin ¢
sing cos¢
¢ is positive for a Faraday rotation as indicated in Fig. 2;
it is negative for a feed rotation in the same sense.
The configuration matrix C' is defined by the nomi-

nal properties of the feed, i.e. the intended transforma-
tion from input e.m. field to output voltage. It includes

(13)
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Fig. 3. Schematic showing the path of the signal and coherency
vectors in their respective domains. To the right the coordinate
systems are shown in which they are represented

both the effects of feed design (e.g. linearly or circularly
polarized) and of any deliberate rotation.

The feed-error matrix D (‘D’ for ‘dipole’) represents
the deviations of the true feed from its design. The general
form we shall use is

o 1 dAp
Da= <_qu 1 >

where d,,, represents the spurious sensitivity of the p re-
ceptor to the q polarization and vice versa. The justifica-
tion of Eq. (14) is given in Appendix D.

The electronic gain is represented by a simple diagonal
matrix

(14)

gp 0 0 O
gA 0 0 gpq 0 0

G, = p ; G=
A < 0 gAq> 0 0 ggp O
0 0 0 gy

4.3. Stokes parameters in an interferometer

Figure 2 shows the coherency vector in our interferometer
system represented in zy coordinates. One may equally
well represent it in the Stokes frame and consider the
propagation of the Stokes vector visibility through the
system; in this representation, the various 4 x 4 matrices
assume the form of the so-called Mueller matrices of op-
tics (Azzam & Bashara 1987; Simmons & Guttman 1970).
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However, in generalizing from traditional optical applica-
tions to the case of an interferometer, one must completely
abandon the customary interpretation of the Stokes pa-
rameters and the intuition based on it.

To begin with, Stokes visibilities may assume complex
values. Moreover, the traditional notion that a signal can-
not be more that 100% polarized is no longer valid. This
may be demonstrated by a simple example. Consider an
interferometer with Faraday rotations of o and (3, respec-
tively, in its two arms. Then in Stokes coordinates

FS=8"YF,®F%)S =

cos(a — ) 0 0 isin(a — )
0 cos(a + B) —sin(a + ) 0
0 sin(a + )  cos(a+ ) 0
isin(a — ) 0 0 cos(a — )

If « = 7/2, B = 0, then an unpolarized input signal,
e® = (1,0,0,0) will emerge as (0,0,0,17).

Most if not all existing software packages for the pro-
cessing of radio-polarimetric observations make the as-
sumption of weak polarisation, i.e. Q, U, V <« I. This
assumption, along with that of small receptor errors, al-
lows one to suppress higher-order terms in the interfer-
ometer equation and simplify the non-linear problem to a
linear one, cf. Sect. 5 below. It is, however, fundamentally
incorrect: Indeed, it is quite possible for a source that is
weakly polarized in its brightness to appear strongly po-
larized in its visibilities on particular baselines or with
particular feed configurations. Where this happens, the
linearized interferometer equations will produce incorrect
results. The impact of such errors on the images of the sky
that are eventually produced needs to be investigated.

A spectacular example where the observed visibilities
are much more strongly polarised than the source bright-
ness is to be found in the recent observations of galactic-
foreground Faraday rotation by Wieringa et al. (1993).
In these observations, brightness polarizations well above
100% are seen; this may happen because the distribution
of Stokes I is so smooth that only a small fraction of it is
picked up by the interferometers.

5. Practical applications

The main reasons why the black-box formula of Morris et
al. (1964) is unsatisfactory in practice are a) it does not
clarify the contributions of individual components of the
interferometer system to its overall behaviour, and b) it
does not include the effect of instrumental errors (apart
from the orientations and ellipticities of the receptors).
In Egs. (11) and (12) each system component retains its
identity and can be modified to include errors. We discuss
here a few examples of the use of our formalism.
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5.1. The number of free parameters

The first point to note is that Eq. (12) contains the two
matrices J, and Jy that contain unknown errors. These
two matrices between them contain 8 complex elements,
so the number of complex parameters to be determined
by calibration is at most 7; indeed the number is one less
than 8 because we may arbitrarily define one element and
scale the remaining ones accordingly. This result is anal-
ogous to a theorem on Mueller matrices in optics (Azzam
& Bashara 1987; O’Neill 1963).

In practice, the number of relevant complex param-
eters may become less when certain approximations are
introduced. It is customary to assume that the feed er-
rors are small, i.e. the off-diagonal elements of D, and
Dy are < 1. In the limited context of the examples to
be discussed below, we also assume that the Stokes vis-
ibilities are weakly polarized, ignoring for a moment the
objections of Sect. 4.3.

5.2. The output of an interferometer with parallel linear
feeds

Several radio telescopes consist of interferometers with
parallel linear feeds. With the above approximations it
is a simple exercise to work out the matrix product
K*tt = G(D, ® D%)S, assuming no rotation effects.
Dropping products of small terms, one obtains

9pp gpp O 0
1 IpgA 0 g ig
Kt~ = paBpq pa 9pq 15
2 | —9apQgp 0 9gap —i9qp (15)
9aq —9qq O 0
where

qu = (dAp - d*Bq) ) qu = (qu - d*Bp)

This result is equivalent to that given for the Wester-
bork telescope by Weiler & Raimond (1976). Note that the
number of relevant complex parameters to be determined
has been reduced from 7 to 6.

5.3. The output of an interferometer with ‘crossed’ linear
feeds

The Westerbork Telescope has also been operated in a
so-called ‘crossed-dipole’ mode (Weiler 1973). The salient
feature of this mode is that each interferometer combines
linear feeds differing by 7/4 in position angle (Weiler 1973;
Thompson et al. 1986). It is not difficult to work out the
complete system matrix for this case, but we may take
a shortcut: We first derive K for the error-free case; we
then introduce the errors as perturbations and show that
we can absorb them in the gain factors G.
We assume the feed of antenna B to be rotated:

o=y 1)

143
and find
9pp  Ypp —Ypp Z:gpp
+X 1 9pa  9pq  Ypq _Z.gpq (16)
2v2 | =9ap  9ap  Yap *Jap
9aq —9qa  Yaqa  '9qq

The errors enter as small increments to the elements
of D; it is readily verified that consequently each element
ki; is multiplied by some factor (1 +€;;):

ki1 = gpp(1 +€1q) , et

where the €,;s are combinations of off-diagonal elements
from D, and Dy. Following Weiler (1973), we now intro-
duce the approximation
€ij = €15 4,7 =1,2,3,4

The first-order small errors that we so introduce are re-
duced to a negligible level in the multiplication with @,
U, and V which we assume to be small as before. We may
then absorb the factors €;; in the gain factors, gy, etc.,
which brings us back to Eq. (16). This equation, however,
now represents the system matrix including feed errors to
first order. In this approximation, the number of relevant
complex parameters for this configuration is only 4.

Weiler’s result differs from ours in the signs of most of
the matrix elements. This is because he assumes feed A
to be in position angle 7/2 rather than 0.

5.4. The similarity between linear- and circular-feed
interferometers

There is a well-known similarity between the parallel-
linear interferometer of Sect. 5.2 and one having two cir-
cularly polarized feeds: Their behaviour with respect to
the Stokes visibilities is identical except for a permutation
of @, U and V.

Our formalism can be used to prove this in a sim-
ple and elegant way. We begin by noting that the linear
and circular feeds differ by the presence of the linear-to-
circular coordinate transformation

1 /1 4
ox=0s=7 (i )
Again assuming no rotation effects, we transform C' to the
Stokes coordinate frame:

RCS =RSC®; c3=58"'cs

(17)

(We have discussed the transformation of an operator in
Sect. 3.3. Transforming a coordinate transformation has
no obvious physical interpretation, but there is nothing
mathematically to prevent us from making such a trans-
formation when it suits us.) The result is

C5=8"HCA®CE)S = (18)

o O O
o= OO
= O O O
o O = O



144

Post-multiplication with this matrix amounts to the
permutation of columns already mentioned.

6. Limitations of the Jones formalism: Decorrela-
tion and depolarization

In Sect. 3.1 we postulated our signals to be quasi-
monochromatic without stating what this means. We now
want to examine the foundations of the Jones formalism
more precisely.

An electromagnetic signal propagating in space may
be represented at some fixed point as an integral of
monochromatic components over its bandwidth Aw:

€(t) = / dw a(w) e™* (19)
Aw
where a(w) is a vector with complex components. We may
rewrite this equation in the form

0= eth/ dw a(w) e’ 0" = e(t) et
Aw

i.e. we represent it as a monochromatic signal with a vary-
ing amplitude. In principle, any signal can be represented
in this way. According to the Nyquist sampling theorem, e
is essentially constant over time intervals < 7w/Aw. Thus,
e(t) will vary slowly with respect to the oscillation period
if the relative bandwidth 2Aw/w < 1; this is the common
definition of a quasi-monochromatic signal (see e.g. Born
& Wolf 1964).

Consider a linear optical element in the signal path
represented by an operator J(w), converting the signal
€(t) of Eq. (19) into

€(t) = / dw J(w)a(w) e™* (20)
Aw
If J is independent of w (except for delays which we ig-
nore), then

€(t) = Je(t)
and consequently
e'(t) = Je(t)

We conclude that the Jones formalism is valid for arbi-
trarily large relative bandwidths, as long as the operators
J are frequency-independent.

Many real systems do not conform to this restriction.
It is, however, possible, to conceptually subdivide the fre-
quency band of interest into a number of subbands that
each individually satisfy the requirement; this is in fact
what Eq. (20) does. To obtain the correlator output, we
must then sum over these subbands; substituting Egs. (6)
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from Sect. 3 and (20) above in Eq. (10), we get

v =
<Y Talw) © Jp(w)) ap(wi) © af(w;)e’ @) > =
<Y Jalwi) @ Jg(wi) ap(wi) ® ag(wi) >

Without investigating this sum in detail, we may qualita-
tively understand an essential property by pretending for
a moment that the vector variables in it are scalars. It is
then clear that v will be maximal if all subband products
JaJB apap add in phase. Failure to meet this results in
a loss of signal which in scalar interferometer theory is
known as bandwidth decorrelation.

In radio interferometers this effect is preempted by,
firstly, eliminating differential delays between the signals
e, and ef and, secondly, matching the frequency depen-
dencies of J, and Jg as closely as possible. Where this is
not possible (for fundamental reasons beyond the scope of
this paper), the division into subbands is performed lit-
terally: The wide-band input signal is distributed over a
number of parallel narrower-band channels, each with its
own correlator.

Depolarization is the more general appearance that
bandwidth decorrelation assumes in a vector theory of in-
terferometry and image formation. It may result not only
from the integration over frequency that we just discussed,
but also from other integrations, e.g. over the cross-section
of a beam of radiation or over a source of finite extent.
Faraday depolarization due to finite spatial resolution is
a familiar effect in radio astronomy, and in optics depo-
larizing optical elements are well known. Such elements
cannot be described by a Jones matrix, but do have a
4 x 4 Mueller matrix which describes the transmission of
the Stokes vector.

Qualitatively, the concept of depolarization is easy to
understand. From the preceding discussion it is clear that
components representable by Jones matrices will not suf-
fer from it. For this reason, such components are also re-
ferred to as mon-depolarizing ones. This term is, however,
a dangerous one because it too strongly suggests the naive
interpretation that in transmission the fractional polariza-
tion

V(@2 + U2 +V2)/I

does not decrease. That this interpretation is incorrect,
can easily be demonstrated by a counter-example:
Consider the Jones matrix

10
7= (03)
The corresponding Mueller matrix is

ST (T 0J4) S =

O O = Ut
O O U
O W o o
w o oo
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This element converts a partially polarized signal, 5 =
(5,4,0,0), to an unpolarized one, 5 = (9,0,0,0).

The correct definition of the term ‘non-depolarizing’ is
given by Ditchburn (1976), who states that a Jones oper-
ator converts a fully polarized signal into another one; i.e.
if for the input signal

12_Q2_U2_V2:0

then the same is true for the output. A proof of this prop-
erty is shown in Appendix E. In Paper II, we will follow
Hovenier (1994) in using the term pure for the Mueller
matrix of an optical element representable by a Jones
matrix.

(21)

7. Conclusions

The formalism developed in this paper puts radio-
interferometric polarimetry on a solid theoretical foot-
ing. It provides a coherent picture of what happens
polarization-wise in a radio interferometer and allows in-
clusion of the various instrumental effects in a straight-
forward way. It bridges an existing gap between the theo-
retical methods of optical and radio polarimetry in a very
satisfactory way.

Crossing this bridge, one may borrow well-established
results from the optical theories and bring then to bear on
radio interferometry. Rather than looking at the mecha-
nisms inside an interferometer as we have done here, one
may consider an aperture-synthesis instrument as a whole
and consider its properties as an imaging instrument. The
insights that this viewpoint provides into the fundamental
limitations on calibration schemes for synthesis arrays will
be the subject of our Paper II (Sault et al. 1996).

In this paper we have assumed definitions for several
relevant entities in the theory. Selecting the correct signs
in these definitions appears to be a problem that has not
been addressed in a systematic and complete way so far.
As a complement to the present work, we have studied
the problem in depth; the results and a critical review of
earlier writings on the problem will be presented in Paper
IIT (Hamaker & Bregman 1996).

An important point noted in this paper is that weak
polarization in the brightness of a source does not nec-
essarily imply the same for its observed visibilities. This
point seems to have been overlooked heretofore, and its
impact on the data reduction procedures that are rou-
tinely used in aperture synthesis should be investigated.
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A. The outer matrix product

A discussion of outer (also known as direct, tensor or
Kronecker) products can be found in medium- and
advanced-level matrix or linear algebra texts. This prod-
uct, A ® B, is defined as a new matrix in which each ele-
ment a;; of A is replaced by a;; B. Thus the outer product
of 2-element column vectors a and b is

a1by
a1bz
azby
azbs

a®b=

and the outer product of two 2 x 2 matrices A and B is

ai12b12
a12b22
agabi2
az2bao

a12b11
a12b21
az2b11
a22b21

a11b12
a11b22
az1b12
a21b22

a11bi1
a11b21
az1b11
az1b21

A®B =

To us the most important property of the outer prod-
uct is the redistribution relation Eq. (5). From it, a num-
ber of other properties can be proven by elementary ma-
nipulations:

— The transpose (inverse) of an outer product is the outer
product of the transposes (inverses) of the factors.

— If the factors of an outer product are symmetric (her-
mitian, unitary), so is their outer product.

Note that our definition is based on a particular rep-
resentation of the product’s factors. It is not obvious that
the product is invariant under coordinate transformations.
It is easy to show, though, that if we transform the factors
by transformations T', and T'g, respectively, the product
is transformed by T = T, ® T'z. We satisfy ourselves
with this simple observation, knowing that a proper ax-
iomatic definition exists in the theory of tensor algebra.
See e.g. Korn & Korn (1961) or Pipes & Harvill (1958) for
a very formal introduction; for a more tutorial treatment
one must refer to an appropriate textbook, e.g. Myskis
(1975).

B. A decomposition of matrix S

In computing the system matrix, it is advantageous to
work in the signal domain as much as possible, because
the matrices to be multiplied are only 2 x 2 there. Even
the multiplication by S can be circumvented by writing S
as the sum of two outer products, multiplied with a trivial
4 x 4 matrix

oSO O
o o= O
o= O O
o O O
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= (102 (a)+(00)=( 1)

=I®X+JQY

This allows us to cast the multiplication by S’ of an outer
product W , ® W into a form that is both easier for hand
calculations and more economic in computer evaluation:

(Wy@Wg) 8 = (W)@ (W5X)
+ (WaJ)® (WgY)

Another merit of this expression is that it puts into
evidence certain symmetries to be expected in a system
matrix.

C. Stokes parameters and Stokes visibilities

We briefly outline the concept of Stokes visibilities here;
more thorough treatments exist in the literature (Conway
& Kronberg 1969; Thompson et al. 1986).

Classical interferometry considering brightness alone
is based on the van Cittert-Zernike theorem, which states
that the spatial autocorrelation function of the electro-
magnetic field is the Fourier transform of the brightness
distribution. This function is known as the visibility V (r);
its argument is the vector separation between the two sam-
pling points.

Extending this concept to include polarization, one
recognizes that the visibility function is now a vector en-
tity whose four components coincide with those of the co-
herency vector in our paper. In other words, we identify
the coherency vector e™ measured in geometric xy coordi-
nates with the value of the vector visibility function when
we take for its argument the vector separation between
antennas A and B.

The classical definition of the Stokes parameters refers
to the electric field at a single point in the radiation field,
i.e. » = 0. The generalization to include the dependence
on 7 is obvious and leads to the concept of the Stokes
visibility functions:

e’ (r) = Se™(r)

Unlike the classical parameters which are real, the Stokes
visibilities are complex functions. It is readily apparent
that they are Hermitian, i.e.

Fourier-transforming this function back to sky bright-
nesses, we get the real brightness distributions in each of
the four Stokes parameters. Since both the Stokes and
Fourier transformations are linear, one could also first
Fourier transform the vector visibility function and ap-
ply the Stokes transformation afterwards for each point
on the sky.
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D. The feed model

The feed consists of two receptors. Each is designed to be
sensitive to only one of two mutually opposite polariza-
tions. Defining the coordinate axes in which we represent
the incident radiation to coincide with these two polar-
izations, the feed would ideally be represented by a unit
matrix. In practice, there is some leakage of the opposite
polarization into either receptor, so the actual feed matrix

for antenna A is
/ U
< DAp Ap >
U /
“YAq DAq

The two rows of this matrix represent the p and q re-
ceptors, respectively. For a well-designed feed, the off-
diagonal leakage terms are small and the diagonal terms
are close to unity.

We decompose this matrix, writing d , for d /D),

to get
() (4, %) o0
0 D, —dpg 1
Of these two matrices, G’ represents a gain factor that we
may absorb in the gain matrix G. The feed characteristics
are then adequately represented by D, cf. Eq. (14).

It is important to realize that this model depends on
first principles only and does not involve any approxima-
tions. Some references start from the specific model that
describes a receptor in terms of its orientation and elliptic-
ity (Born & Wolf 1964; Thompson et al. 1986), suggesting
that Eq. (14) is valid only in first order if the errors in
these quantities are small. This assertion results from fail-
ing to recognize the possibility of factoring off the gain
term, G’. See Sault et al. (1991) for a correct treatment
of the orientation/ellipticity model in accordance with our
description.

The first-order approximation is often helpful, how-
ever, by associating the real and imaginary parts of a d
term with orientation and ellipticity errors, respectively.
However, effects other than just orientation and ellipticity
errors may also produce leakage.

D.1. Linear feeds with a linear-to-circular converter

In Sect. 4.1 we state that the combination of a linearly po-
larized feed and linear-to-circular hybrid converter can be
represented in the more desirable form of a configuration
and a feed matrix. This is important because conceptually
the converter is part of the configuration and we do not
want two configuration matrices.

Let the ideal hybrid be represented by H and the real
one by H’. Then

H'DC = (H'DH™') (HC)=D'C’

The new configuration matrix C’ now includes the trans-
formation to circular-rl coordinates and thus describes a
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fiducial, nominally circularly polarized feed; D’ describes
the errors of this fiducial feed.

E. Pure Mueller matrices

That a Jones matrix is non-depolarizing in the sense de-
fined by Ditchburn (1976), cf. Sect. 6), is easily shown. We
start by noting that, for a fully polarized signal (Azzam
& Bashara 1987)

e,/e, =c, a constant (E1)

The value of ¢ determines the type of polarization, e.g. for
¢ = 0 we have a signal linearly polarized in the y direction,
for ¢ = +i we have a left- or right-circularly polarized
signal, etc. The Jones matrix converts this constant ratio
into another ratio which is again a constant, i.e. the output
signal is again fully, albeit in general differently, polarized.

To see the relation to Eq. (21), we transform that equa-
tion to the geometric xy coordinate frame by substituting
Eq. (8), which yields a corresponding relation between the
xy components of the coherency vector. We express this
relation in terms of signal-vector components in order to
explicitly show the averaging involved:

< enzear>< A er,> — < eagep,>< e e, >=0
(E2)

It is clear that condition Eq. (E1) is sufficient for this con-
dition to hold. It is also necessary: Indeed, Eq. (E2) repre-
sents the boundary case of a Cauchy-Schwarz inequality;
the required equality exists only if Eq. (E1) holds (Korn
& Korn 1961).
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