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Abstract. — In a companion paper, a mathematical formalism to describe the polarimetric response of a radio
interferometer was presented. Some of the instrumental parameters, however, are either unknown or poorly known.
Here we consider the determination of these parameters both by a traditional radio-interferometry instrumental
approach as well as by using optical polarimetry principles. In doing so, we establish links between the two fields.
We show that some degrees of freedom cannot be solved for with various calibration or self-calibration schemes.
These degrees of freedom are identified with instrumental parameters and physical source properties. The number of
unsolvable degrees of freedom is reduced for a long synthesis with alt-az antennas. We also consider the effect of errors
in the assumed instrumental parameters on the resultant calibrated data. The polarimetric calibration procedure for
some telescopes is reviewed in the context of this analysis.
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1. Introduction

Polarimetric properties of an astronomical source provide
important extra probes on the physical processes present.
Given the technical simplicity of making polarimetric mea-
surements at radio frequencies, many radio telescopes pro-
duce polarimetric images as a matter of course. However,
polarimetric calibration of the instrument remains impor-
tant. In the case of interferometer arrays, Morris et al.
(1964) were the first to address calibration issues. Al-
though various papers have appeared in the literature on
the polarimetric calibration of interferometers (e.g. Weiler
1973; Bignell 1982), they have concentrated on specific
instruments and receptor configurations. Their approach
has been based on instrumental parameters. This, in turn,
has resulted in a lack of generality — the limits of the po-
larimetric calibration of radio interferometers in general
have not been properly addressed.

In a companion paper (Hamaker et al. 1996, hereafter
Paper I), we describe an approach to describing the po-
larimetric response of an interferometer. This approach is
a generalization of a traditional optical approach, and so
helps unite optical and radio-interferometric polarimetry.
We consider the problem of polarimetrically calibrating
an interferometer array and show that results from optical
polarimetry can also be applied in this problem. We show
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that analogues with optical polarimetry help place limits
on the number of instrumental parameters that cannot
be determined by various calibration and self-calibration
approaches. In particular, three degrees of freedom can-
not be determined from a single calibrator observation,
and seven degrees of freedom cannot be determined in
self-calibration. We identify these degrees of freedom both
with some instrumental parameters and physical proper-
ties. For alt-az antennas (for long observations), the num-
ber of unsolvable degrees of freedom is reduced.

In the following, we consider an interferometric array
composed of N antennas. We will assume that each an-
tenna is equipped with two receptors which are sensitive
to nominally opposite polarizations (e.g. two circularly or
two linearly polarized receptors). We will also assume that
there are at least three antennas and that all four possi-
ble correlations between all antenna pairs are measured
simultaneously. We stress that Paper I generally consid-
ered a single baseline only. Some of our results do not
apply to calibrating a single baseline in isolation or when
all possible baselines and correlations are not measured
— closure of the array is necessary. We will not consider
off-axis polarimetric effects (strictly we consider the po-
larimetric response at just one part of the primary beam),
nor will we consider frequency variation of the response.

At times we will consider specific receptor con-
figurations. The two most commonly found in radio
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interferometry are the so-called ‘circular’ and ‘parallel-
linear’ configurations. These are arrays with circularly or
linearly polarized receptors. For simplicity we assume that
all receptors have the same alignment. More so, except
when considering alt-az antennas, we assume that this
alignment is along the vertical (in the convention of Pa-
per I, we assume no rotation). We also sometimes consider
the ‘crossed-linear’ configuration, which is an array of lin-
early polarized receptors where at least one receptor pair
is rotated by 45° relative to the others (Weiler 1973).

2. Summary and notation of Paper 1

Summarizing the results and notation of Paper I, for a
given baseline, the measured visibilities can be described
by a 4-element vector,

v=|"a|. (1)

Here subscripts p and q represent the two polarization
channels measured by each antenna. The vector is best
described as an instrument-based coherency vector.

This coherency vector is related to the so-called source
‘Stokes visibility vector’ !, s = (I,Q,U, V)T by a matrix
operation,

v=Ks. (2)

Here K is a 4 x 4 matrix. For the purposes of this paper,
it is convenient to replace K by its factors,

v=(J,®J;)Ss. (3)

Here S is a 4 x 4 matrix which converts a Stokes vec-
tor into a coherency vector (ignoring instrumental effects).
As with Paper I, where we need to specify a convention
for the output of S, we use an ‘xy’ representation in the
frame of the sky. This in no way limits the discussion to a
particular feed type. It is simply a convenient coordinate
system. The 2 x 2 matrices J; and J; are antenna-based
response matrices, which are known as Jones matrices in
optical polarimetry (the subscripts ¢ and j represent the
antenna numbers). The operator ® represents the matrix
outer product (also known as the direct, tensor or Kno-
necker product; see Paper I). In many ways the antenna
Jones matrix can be thought of as the polarimetric gen-
eralization of the simple antenna gain of non-polarimetric
interferometry.

! As Paper I stresses, in the sense that a vector is a representa-
tion of a physical quantity independent of a coordinate system,
the Stokes and coherency parameters are two alternative repre-
sentations of the one physical vector. Paper I’s terminology was
equally strict. Here we abandon this in favour of convenience
— we use the terms coherency vector and Stokes vector.
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The antenna Jones matrix can be further decomposed
into matrices which model various aspects of the signal
path, viz

Ji = GiDiCiPiFi. (4)

Here G;, D;, C;, P; and F; represent 2 x 2 antenna-based
gain, feed (which models the leakage process), nominal
feed configuration, parallactic angle rotation and Faraday
rotation matrices respectively. Paper I gives their form.

We will be particularly interested in the matrices mod-
elling the gains and leakages,

= <gép 9?q> )

o= (4,7 ) o

The gain and leakage coefficients are complex valued
(‘gain’ will always imply a complex-valued gain — gain
amplitude and gain phase). We stress that, contrary to
the suggestion in some references, modelling feed errors
by leakages does not involve any small-error approxima-
tion. The leakage model is based on the assumed linearity
of the response of the receptor to emission, and models
large receptor errors equally well — see Paper I for the
argument.

and

3. Analogues with optical polarimetry

Here we demonstrate some connections of the calibration
problem with optical polarimetry (see Paper I; Azzam &
Bashara 1987, pages 148-158, or many texts on optical
polarimetery for background which is helpful with this
section). We consider a radio interferometer array, its cor-
relator and imaging hardware and software as a single po-
larimetric optical system; given a source in the sky, polari-
metric images are formed on our computer displays. Lin-
earity of the system is the key property here (non-linear
deconvolution, for example, is forbidden — undeconvolved
images are adequate for the arguments we will make). The
optical results we will use in this section rely only on the
linearity of the optical system. For simplicity, we will con-
sider the problem of estimating the Stokes parameters of
a point source at the phase centre. These estimates will
simply be the sum of the Stokes visibilities (whether these
visibilities have had calibration applied is not relevant at
this stage). Because of the linearity of the overall process,
the relationship between the true Stokes parameters and
the estimates can be represented by a matrix. In optics,
this 4 x 4 matrix is known as the Mueller matrix, M; it
describes the polarimetric response of a system.

Note that the Mueller matrix describes the polarimet-
ric response only. A full characterization of an instrument
would include a point-spread function and (for a spectral
instrument) a spectral response function. Although they
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could be included in the treatment, they are not important
to the argument.

To determine the Mueller matrix of an interferometer
array, consider the effective Jones matrix of each antenna
of the array after calibration. In non-polarimetric radio-
interferometry, the calibration solution step consists of es-
timating the antenna gains, and then correcting the data
for these gains. Likewise in polarimetric interferometry,
calibration can be thought of as estimating the antenna
Jones matrix, and then correcting the data for this Jones
matrix. The effective Jones matrix of an antenna after
calibration is then

Ji,eff = J‘il Ji,true' (7)

2,est

Ideally, our estimate will be completely correct, and the
effective Jones matrix of the antenna will be the identity
matrix.

Assuming equal weights for all visibilities (i.e. natural
weighting), the Mueller matrix for a nominally calibrated
system is then (for a point source at the phase centre)

1 N N
M = NN =1 Z leil(‘]i,eﬁf @ J5.x)S  (8)
i g7
(note that, to get a real output, this sums over both a
baseline and its conjugate baseline).

One of the results of optical polarimetry is that a
Mueller matrix which describes a pure system (a system
which does not depolarize fully polarized emission — see
Paper I for a fuller discussion) can be equivalently ex-
pressed in terms of a single Jones matrix, J:

M =S"1J®J)S. (9)

A system which is not pure will partially depolarize some
fully polarized emission. Obviously a system that does not
change the polarization state of the emission is pure (J
and M are the identity matrices). However to say a system
is ‘pure’ does not mean that the output has the same
polarization as the input — the polarization state can be
changed. For example a system which rotates the position
angle of linear polarization is pure.

Note that, as the Jones matrix J contains four complex
coefficients, and as the phase of one of these is arbitrary,
the Mueller matrix of a pure system has only seven degrees
of freedom — the 16 numbers in a pure Mueller matrix are
not independent. This is not saying that the internal state
of the optical system is describable by just seven numbers,
but that its overall polarimetric response is.

Under what circumstances is our interferometric imag-
ing system pure? If it is perfectly calibrated, then clearly
it is pure. Indeed, even if it is not perfectly calibrated,
but if the effective Jones matrices of all antennas are the
same, then the system will be pure. In general, however,
an uncalibrated interferometer array is not a pure system.
It is the calibration process which makes it pure.
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Consider trying to calibrate an interferometer array
from an observation of a point source, at the phase cen-
tre, whose polarization and flux density is completely un-
known. Because the source’s polarimetric characteristics
are unknown, any set of instrumental parameters which is
consistent with a pure system is a feasible solution. That
there are other consistent pure solutions is easy to show.
If all the estimates for antenna Jones matrices are in error
by a constant Jones matrix,

Ji,true = Ji,estJern (10)

then, after calibration is applied, the effective Jones ma-
trix of all antennas is constant:

Ji,eff - Jerr7 (11)

and then Eq. (8) shows the Mueller matrix of the system
to be
M=8"'J,,®J:

err err

)S.

The fact that there are many consistent solutions has
an equivalent in non-polarimetric calibration. Consider
calibrating an interferometer array with an observation
of a point source of unknown flux density. In this case
we cannot determine the absolute flux gain. In the non-
polarimetric case, reflecting that we do not know the cal-
ibrator flux density, the antenna gain can be multiplied
by an arbitrary gain factor and a consistent solution is
retained. In the polarimetric case, reflecting that we do
not know the calibrator flux density or polarization, the
antenna Jones matrix can be multiplied by an arbitrary
Jones matrix and a consistent solution is retained.

There is a significant difference between the non-
polarimetric and polarimetric cases in terms of degrees of
freedom. In the non-polarimetric case, there is one degree
of freedom unspecified. In the polarimetric case, the error
Jones matrix has seven degrees of freedom. This means
that, with a calibrator of unknown polarization, at least
seven (possibly more) degrees of freedom cannot be deter-
mined in the solution process. There is also a significant
difference in the astrophysical importance of these degrees
of freedom. A small error in the absolute flux may not
be important, whereas corruption of V' by I may be of
paramount importance.

What is possible if the polarization of the source is
known? If the source’s polarization is known, then four
extra degrees of freedom (corresponding to the four Stokes
parameters of the source) are constrained in the solution
process. This does not provide enough information to con-
strain the (at least) seven degrees of freedom. Thus we see
that a single observation of a point-source calibrator can-
not determine at least three degrees of freedom.

(12)

4. Solving with an unpolarized calibrator

In this section we will show that, from an observation
of an unpolarized calibrator, the instrumental parameters
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can be solved to within three degrees of freedom. That
is, the limit derived by the optical analogue argument is
achieved.

We consider an unpolarized calibrator, not so much
because calibrators are unpolarized, but because most cal-
ibrators are only weakly polarized (typically a few percent
linearly polarized and much less than one percent circu-
larly polarized), and the polarized emission is insufficiently
strong to be useful for calibration purposes.

Initially our approach will be intuitive rather than for-
mal, with only a sketch given of the proof for a partially
linearized system for parallel-linear or circular configura-
tions. In this we assume a near-ideal instrument with gains
near 1, and small leakages. We will use Ag as the devia-
tion of the gains from 1 (if the gains were not normalized
to 1, we would have defined Ag as the fractional deviation
of a gain from its nominal value).

Using the formalism of Paper I, we arrive at what
might be called the ‘basic equations’ giving the response
of an interferometer. For the parallel-linear configuration

Upp gipg;p(l +Q) (13)
Upq = Gipdiq((d &)+ U+1iV) (14)
Ugp = gzqg;p((d*p —d; ) I +U —iV) (15)
Vqq = giqg;q(l_ Q), (16)

and for a circular configuration

Vpp = GipGip(L +V) (17)
Upq = YipJjq((dip — dj)I + Q +1iU) (18)
Vap = 9iq9yp((djp — dig)I + Q —iU) (19)
Vgq = GiqdiqL — V). (20)

Here we have ignored products of @, U and V with leak-
ages and non-linear terms in the leakages. Note that, apart
from a permutation of the Stokes parameters, the two sets
of equations are identical.

We note in these basic equations that the leakages only
appear in pairs such as d;,—d7 . Consequently the equality
of the basic equations is not affected if, to all antennas,
an arbitrary offset is added to d;, and the conjugate of the
offset is added to dq:

d, =
4
d, =

d, +
dg + 5.

(21)
(22)

That is, the equations cannot be used to solve for the ab-
solute level of the leakages — two of the degrees of freedom
that cannot be determined are a complex-valued offset to
the leakages. For the parallel-linear configuration this has
a simple physical interpretation for the real part: as the
real part of the leakage roughly corresponds to a receptor
alignment error, an observation of an unpolarized calibra-
tor cannot determine the absolute alignment between the
rotation frames of the antennas and the sky — an entirely
reasonable result.
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The third degree of freedom that is unsolvable is the
phase relationship between the p and q gains — a single
phase difference, v, cannot be determined between the two
sets of channels. That this phase cannot be determined is
clear if the leakages are assumed to be zero and we con-
sider an unpolarized source. In this case, the gains in the
equations for the p and q channels are totally decoupled.
Although absolute phase has little meaning in interferome-
try, there is a relative phase relationship between the p and
q channels, which an observation of an unpolarized cali-
brator does not provide. For circular configurations, this
inability to determine the phase relationship also has a
simple physical interpretation: for circular configurations,
a rotation of the frame of the antenna with respect to the
sky results only in a change in the p-q phase difference.
Again the inability to measure the phase relationship with
an unpolarized calibrator reflects the inability to set the
absolute alignment between the rotation frame of the an-
tennas and the sky.

If this undetermined phase is arbitrarily equally shared
by the p and q channels, then equality in the basic equa-
tions is not affected by the change:

Gp = gpexp(+it/2)
Jq = 9aexp(—i)/2).
We will find the ‘small error’ versions of these two equa-

tions useful in later analysis. Assuming near-ideal anten-
nas, these are

1

Agy = Agy + 50 (25)
1

Agy = Agy— 3. (26)

Calibration practice and our numerical analysis con-
firm that there are three (and only three) degrees of free-
dom that are not solvable. Note that this assumes at least
three antennas, and that all possible baselines and corre-
lations are measured (the practical case, where a few base-
lines or correlations may be missing will also usually have
only three unsolvable degrees of freedom). In cases where
these requirements are not satisfied, there may be more
than three unsolvable degrees of freedom. For example,
trying to calibrate a single baseline in isolation will result
in more than three unsolvable degrees of freedom. Trian-
gles of baselines are required to provide cross-coupling in
the equations to aid solution.

The above instrumental sketch shows only that three
degrees of freedom are not solvable in a simple linearized
case, for two particular configurations. One must always
be aware of the shortcomings of linearization, particularly
when terms cancel out, etc. This, however, is not a prob-
lem in this instance. A fuller analysis shows that, for ar-
bitrary receptors, the three unsolvable degrees of freedom
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can be expressed as an error Jones matrix (as in Eq. (10)):

g < cos 6 sin9> <cos¢) isind)) <ei4 0 >

e \ —sinf cosf ising cos¢ 0 e %

(27)
This is easily verified by computing the Mueller matrix
S—1(J,,, ® J:.)S, and noting that the response to an
unpolarized source is independent of 6, ¢ and (. Intu-
itively, we can interpret 6, ¢ and ( as absolute alignment
and ellipticity errors and an unknown phase offset.

To interpret Jepp in terms of instrumental parameters
of an antenna, we have to refer the error to the appro-
priate place in the signal path: we effectively have to per-
form a coordinate transformation. Ignoring parallactic and
Faraday rotation, the equivalent error as seen from the
feed of the ith antenna is

CiJenC;" (28)
(recall C; is the nominal feed configuration matrix for
the ith antenna). For the parallel-linear case, where the
nominal feed configuration matrix is the identity matrix,
referring J ., to the feed has no effect — 6, ¢ and ¢ can still
be interpreted as alignment, ellipticity and phase errors.
Indeed the unsolvables in the previous linearized sketch
can be seen as approximations of Je., (€.g. 5 corresponds
to sin 8+isin ¢ and ¥ /2 to ). For a circular configuration,
referring Jep to the feed gives the well-known result that
an absolute alignment error (rotation error) manifests it-
self as an instrumental phase error between the different
polarization channels.

Despite there being three unsolvable degrees of free-
dom, this does not mean that useful calibration corrections
cannot be obtained. In many cases, solving for instrumen-
tal parameters is just finding the small deviations from
the nominal values, and so ‘reasonable’ constraints can be
added to confine the solution. For example, as the leak-
ages are small, and probably randomly distributed, Brouw
(1994) advocates the constraint that the average value of
the leakages is 0, e.g.

N
> dy, +di =0.

This confines 8 — two of the degrees of freedom. Unfortu-
nately, for parallel-linear and circular configurations, there
is no good arbitrary assumption that allows the phase dif-
ference 1) to be constrained — it must be measured in some
way. Appendix A considers some approaches using unpo-
larized sources.

It is worth noting that, although all receptor configura-
tions must suffer from three unsolvable degrees of freedom,
not all configurations are the same — the manifestation of
the degrees of freedom changes with receptor type. For ex-
ample, with the crossed-linear configuration (Weiler 1973),
the three degrees of freedom are perhaps best described as
an alignment-error offset, an ellipticity offset for receptors

(29)
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with no rotation, and an ellipticity offset for the receptors
which are rotated by 45°. The phase difference parameter
can be determined. Thus for the crossed-linear configura-
tion, the three unsolvable parameters can be confined to
parameters (leakages in this case) where good assumptions
can be made. In this way, Weiler was able to determine
useful calibration corrections with simply an unpolarized
calibrator.

5. Effects of errors in the solutions

The aim of the calibration process as a whole is generally
not to determine instrumental parameters of the anten-
nas, but to form corrected data. To this end, the interest
in instrumental parameters goes only as far as is needed
to correct data. Does adding ‘reasonable constraints’ to
the solution process produce astrophysically adequate re-
sults? What errors are introduced into the final result by
these unsolvable degrees of freedom? Small-error analysis
is the most effective tool for this. To this end, we will con-
sider the effect of the three unsolvable degrees of freedom
discussed in the previous section on the calibrated data.
In addition, we will also consider errors in the four degrees
of freedom used in the calibration process — the assumed
calibrator Stokes parameters.

Let us assume a near-ideal instrument where a weakly
polarized point source is used to determine the instrumen-
tal parameters. If the calibrator was assumed unpolarized
during the calibration solution process, there will be an
error in the resultant estimates of the instrumental pa-
rameters. Using small-error approximations and the basic
equations, we find that the estimated gains and leakages
are offset from their true values. For a parallel-linear con-
figuration,

Ag, = Agy + ;2—1 (30)
Ady = Agy— o, (1)
d, = dp+ %, (32)
d, = dq— v ;IW. (33)

The primed quantities are the instrumental parameters
estimated by the calibration solution process, whereas the
unprimed quantities are the true values. Apart from ex-
changing @, U and V with V, @ and U respectively, the
results for the circular configuration are identical. We also
consider another possible error in the calibrator charac-
teristics — the assumed flux density of the calibrator may
be incorrect. Such an error will result in the determined
gains being offset according to the fractional error in the
flux density:

AT
Ag, = Agp+ ——

= (34)
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AT
r_
qu = qu + ﬁ
To show how errors in the instrumental parameter esti-
mates affect the data after calibration is applied, we follow

Kesteven’s (1984) approach, and define

(35)

Y++ = (Ag;p +Agi) + (Agj, + Agj)  (36)
Y- = (Agi, — Agiy) + (Agj, — Agjy)  (37)
V-— = (Ag;, — Agiy) — (Agj, — Agjy)  (38)
bt = (dip +diq) + (df, + d3y) (39)
br— = (dip —dig) + (d;p o d;q) (40)
by = (dip +diq) — (df, +d5g) (41)
b—— = (dip — dig) — (df, — dj). (42)

Note that there are seven parameters (there is no v_4).
Using the small-error approximations detailed in Ap-
pendix B, the errors in the deduced Stokes visibilities, As,
for a parallel-linear configuration, are

Y4+ V- O —ib_4

1 Voo Oy —ib__
2 Op— =04t Y4t Y- (43)

=04 W0 —iy—— s

The circular case is the same except that there is a per-
mutation to interchange @, U and V in the above with V|
Q@ and U respectively.

Each of the seven 7 and § parameters are potentially
affected by an error in the assumed calibrator polarization
or by one of the unsolvable degrees of freedom. That is,
there are seven error mechanisms. These are summarised
in Table 1. Of these seven error mechanisms, only either
the real part or the imaginary part of each coefficient con-
tributes to the error. That is, there are seven degrees of
freedom in these error mechanisms. That there are seven —
the same number of degrees of freedom in a pure Mueller
matrix — is not by chance. This merely reflects that there
are seven ‘self-consistent’ ways for a pure polarimetric sys-
tem to be in error.

It is interesting, and intuitively reasonable, to note
that an error in the assumed calibrator polarization re-
sults in a spurious polarized source of the same type and
percentage but of opposite sign in the data after calibra-
tion. Indeed these are the only causes of I corrupting @,
U and V. Note also that the degrees of freedom that are
not solvable with an unpolarized calibrator do not cause
I to corrupt @, U or V (again intuitively correct).

It should be stressed that these seven error mechanisms
result in self-consistent images. Although the images are
in error, the error is not apparent. The dynamic range of
the images is not affected by the errors. This is not a con-
sequence of the small-error analysis. The errors may or
may not be of astrophysical significance. For example, a
misalignment of 1° in the position angle of linear polariza-
tion is possibly not important, whereas a small corruption
of V by I is possibly of paramount importance.
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6. Solving with polarized calibrators

The previous sections showed that a single observation
of a point-source calibrator could not, at best, solve for
three degrees of freedom in the instrumental parameters.
Furthermore, this limit was achieved with an unpolarized
calibrator. Not unreasonably, this can also be shown to be
true for an arbitrarily polarized calibrator. Interestingly,
although one observation leaves three degrees of freedom
unsolvable, if the calibrator has significant linear polariza-
tion, three ‘reasonable’ constraints on the leakages can be
used to allow ‘reasonable’ estimates of the instrumental
parameters (including 1) to be determined. For example,
using Eq. (29) and

N
> dip+dig=0 (44)

are sufficient constraints for the purpose (note that these
two complex-valued equations constrain only three degrees
of freedom — the constraints on the real parts of the two
equations are the same). Combining these constraints with
a polarized calibrator fixes ¥ and (.

If we do not choose to make such assumptions, a nat-
ural question to ask is what observations are needed to
completely determine the instrumental parameters. This
is the same as asking what observations are needed to de-
termine the parameters of a pure optical system. From
the optical literature, we find the counter-intuitive re-
sult that three ‘distinct’ observations are needed (Azzam
& Bashara 1987). This is somewhat counter-intuitive be-
cause simplistic arguments suggest that two observations
(with four Stokes parameters specified per observation)
will potentially uncover the seven degrees of freedom in a
pure Mueller matrix. Unfortunately the structure of this
form of Mueller matrix makes this simplistic argument
false.

An alternative way of determining this result is to con-
sider the § and v matrix of Eq. (43). Let us expand the
matrix into linear equations, with the Stokes parameters
as the coefficients and the § and = parameters as the un-
knowns. How many separate sets of Stokes parameters
are needed to solve for the § and = parameters? A small
amount of analysis shows that three sets of Stokes param-
eters are required to make this system of linear equations
non-singular. Furthermore it will be non-singular if, and
only if, the three Stokes vectors are linearly independent.

What types of observations suffice? Clearly no amount
of re-observing unpolarized sources (whether point sources
or extended) will help; they only provide one ‘distinct’
observation. At least two of the observations must be po-
larized with at least one of these being linearly polarized
(a circularly polarized calibrator is not essential). Interest-
ingly, a long observation of a linearly polarized source with
alt-az antennas (i.e. significant parallactic angle rotation
— see Sect. 7) suffices for the three distinct observations.
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Table 1. Summary of corrupting influences in polarimetric calibration. Each of the seven v and é terms are potentially affected
by a wrong assumption of the calibrator or a poorly determined parameter in the calibration process. This causes a corrupting
influence. Most commonly this results in one Stokes parameter corrupting another, and vice versa. We symbolise this with <.

For example, I < @ means “I corrupts @, and @ corrupts I”

Error term  Corrupting cause Relevant Effect on parallel-linear Effect on circular
equations configuration configuration

Y+ Wrong calibrator flux 34, 35 Incorrect flux scale Incorrect flux scale

Y- Wrong calibrator Q or V' 30, 31 I < @Q corruption I & V corruption

Y—— Poor ¢ 25, 26 U & V corruption Error in angle of linear pol’'n
Ot Real leakage offset 21, 22 Error in angle of linear pol'n @ < V corruption

O4— Wrong calibrator U or Q 32, 33 I & U corruption I < @Q corruption

o_ 4 Wrong calibrator V or U 32, 33 I &V corruption I & U corruption

6__ Imaginary leakage offset 21, 22 Q < V corruption U & V corruption

Additionally, a single observation of an extended source
(at least three resolution cells in size), with varying (non-
zero) fractional polarization, may also suffice.

7. Rotation

So far, for simplicity, we have assumed receptors with no
rotation. We have not lost any generality in doing so. In-
cluding rotation of the receptors from the vertical merely
causes () and U to be replaced with a rotated @) and U.
Paper I shows that this is straightforward to include.

However, rotating a receptor relative to the sky, such
as the parallactic angle rotation of a feed on an alt-az
mount, can be used to good advantage when solving for
instrumental parameters that are constant with time. This
is because the instrumental parameters are in the frame
of the antennas, whereas the source parameters are in the
frame of the sky. By allowing rotation between the two,
and assuming good parallactic angle coverage, instrumen-
tal parameters (within limits) and calibrator linear polar-
ization can be solved for simultaneously (see Conway &
Kronberg 1969). As many calibrators will often have small
linearly polarized components, which vary with timescales
of months, it is often best to treat the linear polarization
of a calibrator as an unknown.

Physically rotating the receptors can also be used as a
calibration technique. However, as Weiler & Wilson (1977)
note, the act of rotating the receptors does affect the po-
larimetric response, and so should be used with caution.

For a calibrator with significant linear polarization,
with sufficient parallactic angle coverage this technique
can be used to solve for two of the degrees of freedom
that cannot be determined with an unpolarized calibrator
(appropriate analysis of multiplying the matrix of Eq. (43)
by a rotation Mueller matrix will show that 6__ and ~v__
can be determined). The one remaining ‘unsolved’ degree
of freedom is, very reasonably, the absolute alignment be-

tween the antenna and sky rotation frames (corresponding
to 644 in Eq. (43)).

No equivalent technique exists to determine V. That
V' is insensitive to rotation follows immediately from its
physical definition (the methods of Paper I, or most other
interferometer response equations, show this formally).

Apart from parallactic rotation, the Faraday effect in
the ionosphere may also introduce a significant apparent
rotation between the sky and an antenna. However, unlike
parallactic angle rotation, it is not known and so is not a
tool for, but rather a hindrance to, the calibration process.

As Faraday rotation is not a part of the interferome-
ter hardware, and as we have shown that interferometer
errors could be identified as the three degrees of freedom
that cannot be determined from a single observation of a
calibrator, it is apparent that the effects of Faraday ro-
tation cannot be disentangled from interferometer errors.
That is, Faraday rotation effects can be subsumed into the
gain and leakage matrices. This is somewhat like antenna
phase, where we cannot distinguish between the atmo-
spheric and instrumental components.

For the circular configuration, Faraday rotation can be
subsumed into the phase difference v, whereas for the lin-
ear configuration it can be subsumed into the real part
of the leakages (at least in a small-error sense — for the
leakage model used here, large Faraday rotations will af-
fect both the leakages and gains). In general, if all the
‘instrumental parameters’ are solved for astronomically
(from a source above the ionosphere), then the ionospheric
Faraday rotation component will have been accounted for.
In this case, however, it is not appropriate to assume
that the leakages are small (linear configuration) or that a
noise-injection system provides a good estimate of ¢ (cir-
cular configuration). As Faraday rotation typically varies
during the course of a long synthesis, regular observations
of a linearly polarized calibrator would be needed to track
the changes.
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Faraday rotation can often be estimated by other
methods — see Thompson et al. (1986) for a summary.

8. Practical calibration strategies

The preceding sections have concentrated on limits to de-
termining the instrumental parameters. Here we review
the more practical issue of actual solution strategies.

In the solution process, the leakage and gain coeffi-
cients form coupled non-linear equations. They contain
products between leakages, products between gains and
products between these leakages and gains. For an N-
antenna array, as the gain and feed matrices are antenna-
based, we will have only of the order of N unknown matri-
ces, but we have measurements of N(N — 1)/2 baselines.
That is, as with normal non-polarimetric “antenna gain”
calibration, there will be more measured quantities than
unknowns. Consequently the appropriate way to solve for
the parameters is by a least-squares approach (or simi-
lar). In principle, the full, coupled, non-linear equations
should be solved. With appropriate algorithms, the com-
putational penalty for such an approach is often insignifi-
cant. However, most current packages use various approx-
imations or assumptions to linearize or partially linearize
the equations, or to decouple the gain and leakage solution
process.

In the solution process, often some of the instrumental
parameters can be assumed to remain constant over the
observation, whereas others can not. For example, leakages
(mostly mechanical in origin) are generally stable over the
length of an observation, whereas gains (electronic and at-
mospheric in origin) vary more rapidly. With good elec-
tronic design, it may be reasonable to assume that the
phase difference 1 is also constant over an observation. If
Faraday rotation is significant and time-variable, then the
manner in which it is treated will affect whether leakages
(for linear configurations) or ¢ (for circular configuration)
can be assumed constant over an observation.

Whereas the polarization calibration for the parallel-
linear and circular configurations show great mathemati-
cal similarity, there are significant practical differences be-
tween the two. This arises because it is usually reasonable
to assume that a calibrator will have negligible circular
polarization (V < 0.2%), whereas the fractional linear po-
larization will typically be a few percent (e.g. Weiler & de
Pater 1983).

For the circular configuration, assuming that the cal-
ibrator is not strongly linearly polarized (< 10%) and/or
that the leakages are small (< 3%), the gain (excluding 1)
and leakage solutions are separable, and the polarization
of the calibrator can be ignored during the gain solution.
Fomalont & Perley (1989) provide a good description of
the calibration of the Very Large Array (VLA — an alt-az
circular configuration). Observations of the phase calibra-
tor are used to first deduce gains, and then to determine
the leakages. The gains are a function of time, whereas

R.J. Sault et al.: Understanding radio polarimetry. II.

the leakages are assumed constant. In this process, the
phase difference v is constrained to be zero and a leakage
constraint is added. Because of parallactic angle rotation,
calibrator linear polarization can also be deduced for a
long synthesis. A final step is to determine the phase dif-
ference by observing a strongly linearly polarized source.
This overall procedure does not try to fully determine the
leakages.

With a parallel-linear configuration the gains and lin-
ear polarization cannot be decoupled — a joint solution
process is required. Sault et al. (1991) describe the cal-
ibration procedure of the Australia Telescope Compact
Array (ATCA - an alt-az parallel-linear configuration).
They constrain their solution process so that the leak-
age in one receptor is zero, and they use a noise-injection
approach (see Appendix A) to determine the phase differ-
ence. They offer two basic strategies — one for a long and
one for a short synthesis. For a long synthesis, they solve
for the calibrator linear polarization, the antenna gains
and the leakages simultaneously. The gains are assumed
to vary with time, whereas the leakages are assumed con-
stant over an observation. The strategy for a short synthe-
sis is to assume that the leakages are already known (e.g.
by observing another calibrator whose linear polarization
is well known) — the linear polarization of the phase cal-
ibrator can then be determined simultaneously with the
gain solution. Again, neither of these strategies attempts
to fully determine the leakages.

For a number of reasons, polarimetric calibration in
VLBI is somewhat more involved (e.g. Cotton 1993; Kem-
ball et al. 1995). However, the fundamental limits dis-
cussed in the previous sections are not affected by an array
with varying antenna mounts, parallactic angles or even
receptor types (the details differ, of course).

9. Self-calibration issues

Considering an antenna’s Jones matrix as the polarimet-
ric equivalent of an antenna gain in non-polarimetric in-
terferometer (e.g. Eq. (3)) makes the applicability of self-
calibration apparent. Indeed Cotton (1993) and Sault &
Wieringa (1994) report using forms of polarimetric self-
calibration. In principle, a self-calibration procedure could
solve for the 4 complex coefficients of each antenna Jones
matrix for each integration. In this case, the nominal Jones
matrix of the antenna (and any parallactic angle rotation)
becomes irrelevant. In practice, of course, some instrumen-
tal parameters are assumed constant with time, and so
decomposing the Jones matrix into different effects (e.g.
Eq. (4)) is useful.

Because a polarimetric observation measures four cor-
relations per baseline, it does measure extra closure quan-
tities. Assuming that leakages are negligible, a simple ex-
ample is the product of correlations v;j pp, Vjk,pq and Vi qp
forms an extra phase closure quantity (ignoring leakage is,
of course, ignoring half the polarimetric problem — closure
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quantities independent of leakage will be more involved
than a simple triple product). The extra closure quan-
tities will always involve both v,q and vg, correlations,
which will have poorer signal-to-noise ratio for circular
or parallel-linear configurations for most sources. In this
case, the advantages of polarization self-calibration may
be more related to including leakage and using a source
model involving polarimetric properties rather than the
extra closure information.

When the advantage of parallactic angle rotation can-
not be used, it is clear that the error mechanisms of Sect. 5
cannot be determined by self-calibration. Expressed in an-
other way, the seven degrees of freedom inherent in a pure
Mueller matrix cannot be determined by self-calibration.
In optical terms, the Mueller matrix of a pure system is
not constrained at all if we only know the polarization
state of the output (not input).

As a Mueller matrix is concerned only with the po-
larimetric properties of an optical system, there are other
degrees of freedom, in addition to the above seven, that
self-calibration cannot determine. For example, absolute
position gives two more degrees of freedom, which are not
part of a Mueller matrix, that self-calibration cannot de-
termine.

As redundancy and self-calibration share the same fun-
damental limits in this respect, polarimetric redundancy
calibration is also not capable of determining these seven
degrees of freedom. Although Noordam (1991) attempted
to perform polarimetric redundancy calibration, it is un-
clear what constraints he added.

There are sometimes astrophysical constraints that can
be useful to help eliminate some of these seven degrees of
freedom. For example, for a parallel-linear configuration,
de Bruyn (1995) has found, for observations containing
strong U, that minimizing V' (when it is known to be astro-
physically unlikely) is a useful technique for determining
1. Another possible astrophysical constraint is that the
position angle of linear polarization of the source should
be in some particular direction.

Because of parallactic angle rotation, the number of
unsolvable degrees of freedom in self-calibration is reduced
for long observations with alt-az antennas (assuming sta-
ble instrumental parameters). We can again analyze the
form of Eq. (43) to show that for a source with significant
linear polarization, self-calibration can potentially deter-
mine four more of the seven degrees of freedom for alt-az
antennas. If there is no significant linear polarization, al-
though the four extra degrees of freedom cannot be deter-
mined, they cause no corruption in the I and V images.
The remaining three degrees of freedom that can never be
determined by self-calibration are the absolute flux level,
the absolute alignment of linear polarization, and the term
which causes I to corrupt V' (and vice versa). These must
be calibrated externally.
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This paper has ignored off-axis polarization of an an-
tenna even though this is a significant effect for some ar-
rays. If the off-axis response is the same for all antennas
in an array, and there is no parallactic angle rotation,
then the polarimetric errors can be corrected in the im-
age plane. This is the polarimetric equivalent of primary
beam attenuation and, similarly, the correction can be de-
layed until the final analysis stage. This is not the situa-
tion when there is parallactic angle rotation, as the off-axis
polarization will be far from circularly symmetric. In this
case, the resultant polarimetric errors cannot be handled
in a straightforward way (see Holdaway et al. 1992 for
some approaches), and the usefulness of polarimetric self-
calibration may be significantly limited for large sources.

10. Conclusions

A natural question to ask is what are the relative merits of
various polarimetric designs, particularly if we can ignore
engineering and economic considerations. Clearly an alt-
az mount (or any mount where the sky and feed assembly
rotate relative to each other) has a number of advantages
for a long synthesis. For wide-field imaging, however, these
advantages may need to be balanced against the problems
introduced by the off-axis polarimetric response rotating
on the sky.

The question: “Is one receptor configuration better
than another?” is somewhat more difficult to answer. If
anything, this paper has shown the commonality in the
fundamental limits of different receptor configurations.
However, receptors do differ in practice. For example, rea-
sonable assumptions allowed Weiler (1973) to almost com-
pletely calibrate the crossed-linear configuration by simply
observing an unpolarized calibrator. In contrast, for the
parallel-linear or circular configurations, a linearly polar-
ized calibrator is needed to determine the phase difference
1 (although a noise-injection system can be used to derive
a good estimate of v).

In cases where gain instability is the largest uncor-
rected error in an observation, it is worth noting that for
the circular configuration, gain instability causes I to cor-
rupt V, whereas for the parallel-linear configuration, de-
pending on the mount type and alignment of the receptors,
I will corrupt @ and/or U. So to measure high-accuracy
linear or circular polarization, a circular or parallel-linear
configuration, respectively, is desirable. In the crossed-
linear configuration, gain instability causes I to corrupt
all the other parameters, and so from this viewpoint, it
is undesirable. However, errors caused by gain instability
will be less of an issue when self-calibration is possible.

Although the equations which describe the polarimet-
ric response of circular and parallel-linear configurations
are identical apart from a permutation of the Stokes pa-
rameters, the sky is not. It is usually a reasonable assump-
tion that circular polarization of many sources is negligi-
ble, but the same is often not true for linear polarization.
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This means that a single correlation, vy, or vqq, is a good
measure of [ for the circular configuration, but not for lin-
ear ones. This results in a number of significant practical
advantages for the circular configuration:

— experiments which are not interested in polarimetry
need measure only a single correlation.

— gain and leakage calibration solutions can often be de-
coupled.

— the calibration strategy is often simpler.
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A. Determining the phase difference

As the phase difference v is the only large parameter
that cannot be determined from an unpolarized calibrator
for parallel-linear and circular configurations, we consider
some additional techniques to estimate it.

For the Westerbork Synthesis Radio Telescope (WSRT
— an equatorial array), which now normally observes in the
parallel-linear configuration, a nominal value for the phase
difference is determined after each array move by tem-
porarily converting the array to a crossed-linear configu-
ration (the feed assemblies of the antennas are rotatable).
This approach was first used by Weiler & Raimond (1976).
For polarimetric observations, observers should determine
the error in this nominal value (resulting from, for ex-
ample, changes with time) by observing a calibrator with
strong U. The resultant phase difference is then assumed
to remain constant during an observation.

The ATCA uses a noise-injection approach — a noise
signal is injected (nominally) symmetrically into the p and
q channels in the feed horn. The correlation between the
p and q channels on a single antenna is then used to de-
rive the phase difference. Receiver-noise arguments imply
that this measurement should give 1 to a small fraction of
a degree. Current experience suggests that although the
measured ¢ tracks the true (astronomically determined)
1, because of asymmetries in the noise injection, there is
an offset of a degree or so between the two.

A final, rather intriguing, approach is to exploit an off-
axis artifact of antennas. For certain antenna/feed designs,
an unpolarized source appears polarized, possibly strongly
so, when observed off-axis (e.g. Christiansen & Hégbom
1985, page 67; Ghobrial 1976). As this is a characteristic
of the mechanical design of the antenna and feed, it is sta-
ble and uniform across antennas of the same design. From
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this artifact, it would be possible to synthesize a polar-
ized source from an unpolarized one — and hence 1 could
be determined. Note that this effect cannot be used to
determine the absolute alignment or Faraday rotation, as
the effect is in the rotation frame of the antennas and not
the sky. The accuracy of determining v will also probably
be limited by the accuracy of the knowledge of off-axis
characteristics.

B. Errors in the calibrated Stokes visibilities

Here we determine the effects of errors in the estimated
instrumental parameters. In this appendix, estimates of
quantities will be primed, whereas the true values will be
unprimed. Using the notation of Paper I, we define the
antenna-based receiver matrix as the produce of the gain
and leakage matrices,

R, = G;D;, (B1)
and the baseline-based receiver matrix as

Let us assume that the receiver matrix derived from the
calibration procedure is in error by AR

R = R+ AR

= (I, + ARR™Y)R.

Here I, is the 4 x 4 identity matrix. The resultant error
in the estimated Stokes vector, As, is

As = s —s (B5)
= (K '(I, +ARR ') "'K - 1,)s (B6)
~ -K'ARR 'Ks. (B7)

Here we have assumed that AR is small, and used the
approximation

(I, +ARR ) '~I,- ARR . (BS)

To simplify the analysis further, we assume an ideal in-
strument (gains of 1 and no leakages, i.e. R = I;). Such
an assumption loses no generality; it is in essence simply
a renormalization. We are interested in expressing AR in
terms of the errors in the gains and leakages. We define
these error matrices, AG; and AD;, as

L, + AG;
I, + AD;.

(B9)
(B10)

If Ag is the deviation of a gain from 1 (i.e. the error in
the gain), then

R gip 0

AG; = <AO :giq>, (B11)
o 0 dip

AD, = <—diq ; > (B12)
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Because the coefficients of the A matrices are small, we
can ignore second-order terms to derive

AR=AG;®1,+1,® AG; + AD,® I, + I, ® ADj.
(B13)

Evaluating As for the parallel-linear case, and using the

definitions of Eqgs. (36)—(42), results in Eq. (43).
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