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Abstract. — In two companion papers (Paper I, Hamaker et al. 1996; Paper II, Sault et al. 1996), a new theory
of radio-interferometric polarimetry and its application to the calibration of interferometer arrays are presented.
To complete our study of radio polarimetry, we examine here the definition of the Stokes parameters adopted by
Commission 40 of the IAU (1974) and the way this definition works out in the mathematical equations. Using the
formalism of Paper I, we give a simplified derivation of the frequently-cited ‘black-box’ formula originally derived by
Morris et al. (1964). We show that their original version is in error in the sign of Stokes V , the correct sign being that
given by Weiler (1973) and Thompson et al. (1986).
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1. Introduction

In a companion paper (Hamaker et al. 1996, Paper I) we
have presented a theory that describes the operation of a
polarimetric radio interferometer in terms of the proper-
ties of its constituent elements and in doing so unifies the
heretofore disjoint realms of radio and optical polarime-
try. In a second paper (Sault et al., Paper II) we apply
this theory along with theorems borrowed from optical
polarimetry to the problem of calibrating an interferome-
ter array such as an aperture-synthesis telescope.

In practical applications, the theory must be supple-
mented by precise definitions of the coordinate frames
and the Stokes parameters that are used. This problem
was first addressed by the Institute of Radio Engineers in
1942; the most recent version of their definition was pub-
lished in 1969 (IEEE 1969). For radio-astronomical ap-
plications, the IAU (1974) endorses the IEEE standard,
supplementing it with definitions of the Cartesian coordi-
nate frame shown in Fig. 1 and of the sign of the Stokes
parameter V .

Most published work on actual polarimetric interfer-
ometer observations infers the source’s Stokes-parameter
brightness distributions from a formula derived by Morris
et al. (1964). Weiler (1973) rederives their result, agreeing
except for the sign of Stokes V . Thompson et al. (1987)
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include his version in their textbook, even though they
suggest in their wording that they agree with Morris et al.
Clearly the situation needs to be clarified; starting from a
complete interpretation of the definitions, we are in a good
position to do so. We shall show Weiler’s version indeed
to be the correct one.

2. The Stokes parameters in a single point in the
field

The definition of the Stokes parameters most frequently
found in the literature is in terms of the auto- and cross-
correlations of the x and y components of the oscillating
electrical field vectors in a Cartesian frame whose z axis
is along the direction of propagation. Following the no-
tation of Paper I, we represent the components of the
electric field by their time-varying complex amplitudes
ex(t), ey(t). The Stokes parameters are then customarily
defined by (e.g. Born & Wolf; Thompson et al. 1986):

I = < |ex|2 + |ey|2 >
Q = < |ex|2 − |ey|2 >
U = 2 < |ex||ey| cos δ >

V = 2 < |ex||ey| sin δ > (1)
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where <> denotes a time average and δ is the phase dif-
ference between the two oscillating components, i.e. the
argument of exe

∗
y or its conjugate.
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Fig. 1. The IAU coordinate system. Left: The right-handed
xyz coordinate system seen from the position of the observer;
radiation from the source propagates in the positive z direction.
Right: The orientations of the electric amplitude vectors for
Stokes Q and U on the plane of the sky

From these equations, it is immediately clear that I, Q
and U are unambiguously defined once the xy coordinate
frame is chosen. The IAU (1974) defines a conventional
right-handed coordinate system (Fig. 1) with the x and y
axes in the plane of the sky toward the North and East,
respectively, and the positive z axis along the line of sight
toward the observer; position angle is measured counter-
clockwise from the North through the East. It immediately
follows from Eq. (1) that

– Positive Q is along the x axis.
– Positive U is along the bisectrix of the positive x and
y axes, in position angle π/4.

These results are graphically summarized in Fig. 1.
For the definition of V in Eq. (1) to be unambigu-

ous, we must somehow define the sign of δ. There are sev-
eral ways of doing this; most references either use an im-
plicit definition or leave the matter unresolved. As we shall
show, the same correct definition may result in different
formulae; it is the failure to clearly distinguish between
the physics of the problem and its mathematical repre-
sentation that makes many existing treatments of circular
polarization confusing.

The correct approach is shown by the IAU (1974) def-
inition, which stipulates:

– For right-handed circular polarization, the position an-
gle of the electric vector at any point increases with
time; this implies that the y component of the field
lags the x component. Also, the electric vectors along
the line of sight at any instant in time form a left-
handed screw.

– Stokes V is positive for right-handed circular
polarization.

How these definitions translate into mathematical for-
mulae depends on how one defines the harmonic exponen-
tial with which the amplitudes ex, ey are multiplied to ob-
tain the instantaneous field values (Simmons & Guttman
1970). Assuming ω to be positive, one has two choices:

exp±i(ωt − kz) (2)

Both choices are valid, provided

– One makes sure to define the imaginary parts of all
quantities appearing in the calculations with signs ap-
propriate to the sign selected in Eq. (2).

– One attaches the correct corresponding physical inter-
pretation to the results of the calculations.

In particular, the following mathematical representa-
tions must follow the choice of the sign in Eq. (2):

– For a right-handed circular wave, the y component lag-
ging the x component is represented by

ey = ∓iex
In other words, a unity-amplitude right-circular signal
vector is given in xy coordinates by

e+ =
1√
2

(
1
∓i

)
(3)

– We want a definition of Stokes V equivalent to Eq.
(1) but avoiding the complications of dealing with the
phase difference δ. To this end we recast the equa-
tion in an equivalent form and adjust its sign to yield
V correctly, i.e. positive for the right-circular wave of
Eq. (3):

V = ∓i < (exe
∗
y − eye∗x) > (4)

The adjustment (i.e. taking ∓ rather than ±) is equiv-
alent to defining the sign of δ in Eq. (1).

– As discussed in Born & Wolf (1964) and Thompson et
al. (1986), a receptor is characterized by its orienta-
tion φ and ellipticity ε. The sign of φ is defined by the
IAU convention. The references quoted formulate the
definition of ε in terms of equations using the upper-
sign convention of Eq. (2). We complete this defini-
tion by postulating that the ellipticity thus defined is
a physical parameter whose sign is independent of the
mathematical representation used.
Thompson et al. (1986) show that, for the IAU defini-
tions listed above, a receptor with positive ε is more
sensitive to a left-circular wave traveling in the posi-
tive z direction; for ε = π/4, the response to a right-
circular wave is zero. Thus, the receptor response for
orientation φ = 0 is defined by a row vector dA:

vA = dA eA ; dA = (cos ε,∓i sin ε) (5)

and we see that indeed vA = 0 for ε = π/4 and a
right-circular wave as defined by Eq. (3).

In the expressions given, the upper signs are the ones
used in Papers I and II and by other authors quoted.
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3. The circular-polarization coordinate frame

Another point to be settled is the order of the coordinate
axes in the circular coordinate frame. This choice can be
made independently of the preceding considerations. The
order used in Paper I is (right, left) and this determines
the form of the linear-to-circular transformation. In the
notation of Paper I, this transformation is given by

CA =
1√
2

(
1 ±i
1 ∓i

)
Indeed, for a right-circular signal, Eq. (3), we have

e�A = CA

1√
2

(
1
∓i

)
=

(
1
0

)
To remind the reader of the particular order chosen,

we follow Paper I in referring to these coordinates as
circular-rl.

4. Stokes visibilities in an interferometer

An interferometer is modelled by the positions of its two
antenna elements A and B. The generalization of the
Stokes-parameter definitions for a single point in the radi-
ation field to those for an interferometer is then straight-
forward: All we have to do is to refer the two terms in
each correlation product in Eqs. (1) and (4) to the two
antennas:

I = < eAxeB
∗
x + eAyeB

∗
y >

Q = < eAxeB
∗
x − eAyeB

∗
y >

U = < eAxeB
∗
y + eAyeB

∗
x >

V = ∓i( < eAxeB
∗
y − eAyeB

∗
x >)

(6)

and note that, for a source at infinite distance, these pa-
rameters depend only on the relative position r of the
antennas, the baseline vector. Equation (6) is the defi-
nition used in Paper I, where we refer to these general-
ized Stokes parameters as Stokes visibilities. Appendix C
of that paper discusses their Fourier-transform relation-
ship to the Stokes-parameter brightness distributions of
the source observed.

The Stokes visibilities are complex quantities and as
such are subject to the sign ambiguity discussed in Sect.
2. According to a well-known theorem from Fourier the-
ory, conjugating the visibilities results in an inversion of
the corresponding sky image, i.e. a replacement of B(l)
with B(−l) for all positions l in the image. This inver-
sion may be compensated for by selecting the appropriate
sign in the Fourier kernel or, equivalently, in the defini-
tion of the baseline vector between telescopes A and B.
That selection can be made independently of our choice
of the sign of ωt, and may take into account additional
conjugations that may occur in the hardware (e.g. phase
reversals in frequency conversions). In practice it is often
made empirically.

5. The black-box formula of Morris et al.

All radio polarimetry work has until now been based on a
formula published first by Morris et al. (1964). This for-
mula gives the response to an input Stokes visibility of
a simple interferometer consisting of two receptors, with
given orientations and ellipticities, and a voltage multi-
plier. We call it the ‘black-box formula’ because it treats
the entire interferometer as a black box without illumi-
nating its inner workings.

Rederiving the formula, Weiler (1973) finds an unex-
plained difference with Morris et al. in the sign of Stokes
V . Thompson et al. (1986) obtain the same result, yet
their text suggests that they agree with Morris et al. To
settle the controversy, we give an independent derivation
of the formula on the basis of the definitions discussed
above and show it in more detail than the other authors
did. We conclude that Weiler’s form is the correct one.
Our derivation is also of interest in its use of circular-rl
coordinates to simplify the calculations.

We recall from Paper I that for each signal vector and
transformation matrix in the two-dimensional signal do-
main there is a corresponding four-dimensional entity in
the coherency domain, which is related to the former by an
outer multiplication. The notational convention for distin-
guishing the two- and four-dimensional entities is to use
antenna subscripts A and B for the former and no sub-
scripts for the latter. Superscripts are used to distinguish
between representations in different coordinate systems:
+ for geometric-xy, � for circular-rl and S for Stokes co-
ordinates.

Following the authors cited, we consider two antennas,
each with one receptor. Let the oriention and ellipticity
for the A receptor be φA and εA, respectively. Including
these two parameters and setting φA = 0 to begin with,
we reproduce Eq. (5) in the form:

dA(εA, 0) = (cos εA,∓i sin εA)

For considering receptors at arbitrary position angles
φ, it is convenient to transform our problem to circular-rl
coordinates where the rotation matrix is a diagnonal one.
Recall from Paper I that

e�A = CAe
+
A (7)

For the response vector d the representations in the
linear and circular-rl coordinate systems are related by

d�A(εA, 0) e�A = d+
A(εA, 0) e+

A

Substituting

αA = εA + π/4 , (8)

and Eq. (7) we get

d�A (αA, 0) = d+
A (εA, 0) C−1

A = (cosαA, sinαA)
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The simplest way to represent a rotation of the recep-
tor over an angle φA is by noting that it is equivalent to
rotating the incident signal over an angle −φA. For the
rotation matrix we have

R�A(−φA) = CA

(
cosφ sinφ

− sin φ cosφ

)
C−1

A =

(
e∓iφA 0
0 e±iφA

)
We can easily see that this form is correct: Rotation of

the receptor in the direction in which the electric vector
of the right-circular wave rotates will result in a phase
retardation of the received signal for such a wave.

The response vector for arbitrary φA now becomes:

d�A(αA, φA) = d�A(αA, 0) R�A(−φA)

= (e∓iφA cosαA, e
±φA sinαA)

The interferometer response vector d� is the direct
product of the responses d�A and d�B :

d�( αA, αB, φA, φB) = d�A(αA, φA) ⊗ d�B∗(αB, φB) =

( e∓i(φA−φB) cosαA cosαB, e∓i(φA+φB) cosαA sinαB,

e±i(φA+φB) sinαA cosαB, e±i(φA−φB) sinαA sinαB)

(9)

The response v in terms of the Stokes representation
eS of the coherency vector is then

v = d�S�eS (10)

where S� is the matrix that converts from Stokes to
circular-rl coordinates. From Paper I we take the result

S� = SCS =
1

2


1 0 0 1
0 1 ±i 0
0 1 ∓i 0
1 0 0 −1

 (11)

Substituting Eqs. (9) and (11) in Eq. (10) we obtain

2v =

I [e∓i(φA−φB) cosαA cosαB + e±i(φA−φB) sinαA sinαB]

+Q [e∓i(φA
+φ

B
) cosαA sinαB + e±i(φA

+φ
B

) sinαA cosαB]

+U i[e∓i(φA+φB) cosαA sinαB − e±i(φA+φB) sinαA cosαB]

+V [e∓i(φA−φB) cosαA cosαB − e±i(φA−φB) sinαA sinαB]

Expanding exponentials, regrouping the terms, and
substituting the identies

αA − αB = εA − εB
cos(αA + αB) = − sin(εA + εB)

sin(αA + αB) = cos(εA + εB)

that follow from Eq. (8), we finally obtain

2v =

I[cos(φA − φB) cos(εA − εB)

±i sin(φA − φB) sin(εA + εB)]

+Q[cos(φA + φB) cos(εA + εB)

±i sin(φA + φB) sin(εA − εB)]

+U [sin(φA + φB) cos(εA + εB)

∓i cos(φA + φB) sin(εA − εB)]

+V [− cos(φA − φB) sin(εA + εB)

∓i sin(φA − φB) cos(εA − εB)]

(12)

For the upper signs, this result is identical with that of
Weiler (1973). We may verify the correctness of the sign
of V by considering two simple examples.

In the first one, we assume two right-circular receptors
(ε = −π/4) in position angle 0:

dA = dB =
1√
2

(1, ±i)

The responses to right-circular radiation are vA =
vB = 1, so the cross-corration v = 1; the same result
follows from Eq. (12).

In the second example, we rotate receptor A over π/2
to obtain

vA =
1√
2

(1,±i)
(

0 1
−1 0

)
1√
2

(
1
∓i

)
= ∓i

The cross-correlation with vB gives v = ∓i; again, this
agrees with Eq. (12).

We emphasize once more that the sign ambiguities do
not represent ambiguities in the physics, but only reflect
the fact that it admits of two mutually equivalent mathe-
matical representation.

6. Conclusion

In this paper we have presented a unified treatment of
both the physical definitions pertaining to the description
of polarized radiation and their precipitation in mathe-
matical form. We have shown that, even though the phys-
ical definitions of the IAU (1974) when combined with
the standard formulae for I, Q and U define the Stokes
parameters uniquely, they leave room for two similar but
distinct mathematical representations. By clearly distin-
guishing between the physical and mathematical aspects
of the definitions, we hope to have eliminated the con-
fusion that has long surrounded the literature on radio
polarimetry.

In particular, we have settled a long-standing question
concerning the ‘black-box’ formula of Morris et al. (1964),
two versions of which had lived in a peaceful yet unsatis-
factory coexistence for over twenty years.
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