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ABSTRACT

Context. This is Paper V in a series on polarimetric aperture synthesis based on the algebra of 2 × 2 matrices.
Aims. It validates the matrix self-calibration theory of the preceding Paper IV and outlines the algorithmic methods that had to be
developed for its application.
Methods. New avenues of polarimetric self-calibration opened up in Paper IV are explored by processing a simulated observation. To
focus on the polarimetric issues, it is set up so as to sidestep some of the common complications of aperture synthesis, yet properly
represent physical conditions. In addition to a representative collection of observing errors, the simulated instrument includes strongly
varying Faraday rotation and antennas with unequal feeds. The selfcal procedure is described in detail, including aspects in which it
differs from the scalar case, and its effects are demonstrated with a number of intermediate image results.
Results. The simulation’s outcome is in full agreement with the theory. The nonlinear matrix equations for instrumental parameters
are readily solved by iteration; a convergence problem is easily remedied with a new ancillary algorithm. Instrumental effects are
cleanly separated from source properties without reference to changes in parallactic rotation during the observation. Polarimetric
images of high purity and dynamic range result. As theory predicts, polarimetric errors that are common to all sources inevitably
remain; prior knowledge of the statistics of linear and circular polarization in a typical observed field can be applied to eliminate most
of them.
Conclusions. The paper conclusively demonstrates that matrix selfcal per se is a viable method that may foster substantial advance-
ment in the art of radio polarimetry. For its application in real observations, a number of issues must be resolved that matrix selfcal
has in common with its scalar sibling, such as the treatment of extended sources and the familiar sampling and aliasing problems. The
close analogy between scalar interferometry and its matrix-based generalisation suggests that one may apply well-developed methods
of scalar interferometry. Marrying these methods to those of this paper will require a significant investment in new software. Two
such developments are known to be foreseen or underway.

Key words. instrumentation: interferometers – instrumentation: polarimeters – methods: data analysis – methods: observational –
techniques: interferometric – techniques: polarimetric

1. Introduction

This article is the fifth in a series in which a physics-based
theory of polarimetric aperture synthesis is developed. Starting
from a detailed description of a single interferometer in Paper I
(Hamaker et al. 1996) and a qualitative investigation of a syn-
thesis array as a whole in Paper II (Sault et al. 1996), the main
line of our work progressed to the consideration of matrix-based
self-calibration1. Paper IV (Hamaker 2000) demonstrated that
such calibration is indeed possible; the paper considers in math-
ematical terms the ambiguities that the solution is subject to and
points out the close analogies with and important differences
from scalar selfcal. The theory, however, gives no answer to the
many questions one must ask about a practical implementation.
This paper seeks to fill that void, by studying a computer sim-
ulation in which an observation with instrumental errors of a
sky field containing unpolarized and polarized sources is self-
calibrated with matrix-based algorithms.

⋆ Appendices are only available in electronic form at
http://www.edpsciences.org

1 Paper III (Hamaker & Bregman 1996) considers the matter of
Stokes-parameter definitions which is of no relevance here.

It opens, in Sect. 2, with a brief summary of the results of
Paper IV that form the basis of the present work. It highlights
the distinction between the initial self-aligment, in which Sky
and Instrument Models are developed, and the subsequent post-
calibration in which the ambiguities left after self-alignment
must be resolved. The simulated Sky field and Instrument are de-
scribed in Sect. 3. Section 4 considers the matrix self-alignment
cycle in detail; post-calibration is discussed in Sect. 5. Various
complications along with expedients to deal with them are ex-
plained and illustrated with Sky images from the simulation. A
few side remarks are collected in Sect. 6. Section 7 sums up the
results and their possible consequences.

We assume that all antennas see the same “apparent” Sky, i.e.
they have identical primary antenna beams; this is a prerequisite
for all forms of self-calibration2.

2 One may question this assumption for antennas with different feed
orientations as appear in the simulation to be described. I assume here
that the primary beam is the product of independent scalar effects of
a circularly symmetric (pair of) reflector(s) (which is the same for all
antennas) and the polarimetric effects of the feeds.
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Table 1. Poljargon.

polxxx = polarization xxx
quasi-scalar refers to the conventional linearising approach to radio polarimetry
Stokes

I intensity

polvector p p = (Q,U,V)T

pre-calibration initial correction of an observation based on prior data
self-alignment proper name for what is traditionally called self-calibration
post-calibration calibrating the errors that self-alignment leaves undetermined
polconversion mutual conversion I ↔ p
polrotation rotation of p in QUV space
poldistortion product of polconversion and polrotation
poldeconversion correcting for polconversion

polvector leveling polrotating polvectors to minimise
∑

V2

Sky and Instrument Models joint solution of the self-align equations
heterogeneous array array in which antennas have identical optics but

polarimetrically different feeds

New terms introduced in this paper are italicised.

1.1. Notation and terminology

The notation for mathematical symbols is the same as in the pre-
ceding papers. Bold-faced capitals represent 2×2 matrices, bold-
faced lower-case characters are column 2-vectors. For hermitian
transposition or conjugation a dagger superscript is used. Roman
font is reserved for constants, variables are italicized3. Unless
noted otherwise, primed variables indicate estimates obtained by
model fitting.

The subscripts j, k denote the array’s antennas, in combina-
tion they indicate an interferometer. A third subscript t distin-
guishes the successive time intervals in which observed coheren-
cies are recorded. For consistency with the coherency E jkt, the
notation B(l) for the Sky brightness in Paper IV has been re-
placed with Bl.

Paper IV rather ineptly uses the “variance” function Var M
for what is known in linear algebra as the square of the Frobenius
norm, ||M||2. I now use the latter notation.

The concepts and associated terminology developed in
Paper IV play a crucial role in the present work. For the reader’s
convenience Table 1 summarises them here; a few new terms to
be coined in this paper are also included.

2. Synopsis of previous work

This section summarises those parts of Paper IV that are relevant
here; for full details, refer to that paper.

2.1. Coherency matrix and Measurement Equation (M.E.)

The electric field is represented by a column vector e in cartesian
or circular coordinates. Depending on whether the coherency is
represented as a 4-vector (Paper I) or a 2 × 2 matrix (Paper IV),
the interferometer transfer equation can take two different forms.
Here I use the coherency matrix

E jkt = 〈e jt e
†
kt
〉. (1)

With this definition, the interferometer equation, now widely
known as the Measurement Equation (M.E.), takes the form

W jkt = J jt E jkt J
†
kt
, (2)

3 Note the difference between Stokes parameters U,V and visibil-
ity/coherency coordinates u, v.

Table 2. Scalar-matrix analogies.

Scalar Matrix

Complex gain Jones matrix
Visibility Coherency matrix
Brightness Stokes I and p brightnesses
Sky image Quartet of images, one for each of

the 4 Stokes parameters

in which all symbols represent 2 × 2 matrices and {W jkt} are the
measured coherencies. This form emphasises an analogy with
the conventional scalar interferometer equation of which it is
a generalisation. The transfer matrices J are known as Jones
matrices.

Paper IV stresses the analogies between the algebras for
scalars and matrices, which may be very helpful in developing
an intuitive understanding of the latter. The most important cor-
respondences are listed in Table 2.

By default, in this paper each Jones matrix represents a com-
plete (dual) antenna path from the source down to the pair of
voltage inputs to the correlator. It includes not only scalar gain
and phase effects in parallel X and Y or L and R signal paths,
but also interactions between the two, notably rotations and the
cross-polarization in the feeds. (In the conventional quasi-scalar
approach, such effects must be separately accounted for.) The
set {J jt} of all Jones matrices will be called the Instrument.

Self-calibration operates entirely on the apparent Sky, i.e.
the Sky multiplied with the primary antenna beam; in the ma-
trix case, the latter is a Jones-matrix function of position l.
Correction for this is best postponed until self-calibration is
complete; it requires precise knowledge of the Jones-matrix pri-
mary beam – which is beyond the scope of this paper.

2.2. Stokes parameters: intensity and polvector

We introduce the Stokes parameters I,Q,U and V by represent-
ing the coherency matrix in the form4

E =

(

I + Q U − iV
U + iV I − Q

)

. (3)

4 The sign of V is given here as in Paper IV. R.J. Nijboer (priv.
comm.) has noted that it deviates from the definitions given in Papers I
and III (Hamaker & Bregman 1996). This is an unfortunate mistake, but
it is immaterial in the present context.
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Defining the polvector p = (Q,U,V)T, Paper IV introduces the
symbolic notation

E = [ I + p ] (4)

which summarises the well-known dichotomy of the Stokes-
parameter quartet in a concise form. In practice one often con-
siders linear polarisation separately; the corresponding linear
polvector is plin = (Q,U)T.

Since the coherency E and the Sky brightness B are related
by a Fourier transformation (van Cittert-Zernike theorem) the
above two equations also apply to B. I shall use the same nota-
tion for Stokes parameters, intensity and polvector in both do-
mains; the distinction will be clear from the context.

2.3. Self-alignment

The scalar/matrix analogy suggests that the hugely successful
scalar method of self-calibration can be generalized to the ma-
trix domain – which is indeed the case.

Given a set of observations {W jkt}, self-calibration seeks to
invert the M.E. to obtain values for {E jkt} and the correspond-
ing Sky brightness Bl (where l are Sky coordinates). This is
an ill-posed problem but, as in the scalar case, it can be reg-
ularized by the customary assumption that the Sky is “mostly
empty”. Along with the Sky Model B′

l
, the solution includes an

Instrument Model {J ′
jt
}.

In the case of scalar selfcal the solution is unique except for
an unknown positive multiplier5: in addition to the correct Sky
image B′

l
≡ Bl and the corresponding visibilities {E jkt}, all pos-

itive multiples of them also satisfy the M.E. provided one multi-
plies {J ′

jt
} with a compensating factor.

Paper IV derives the analogous property for the matrix case.
The Sky-image solution that one obtains is – apart from the con-
volution with a scalar synthesised beam – related to the true Sky
by a poldistortion transformation:

E′jkt = XE jkt X
† ∀ j, k, t (5)

B′l = X Bl X† ∀ l, (6)

where X is an arbitrary nonsingular matrix. Using mathematical
jargon, I shall refer to Eqs. (5) and (6) as the transformation X
of E jkt and Bl. To satisfy Eq. (2), the factor X in Eq. (5) must be

cancelled in the Instrument Model: {J ′
jt
} = {J jt X

−1}.
As argued in Paper IV, the solution B′ is not really calibrated,

since it includes the unknown factor X; we use the more percise
term self-alignment instead. The solution B′ self-aligns the ob-
servations to satisfy our prior assumptions about the Instrument
(no interferometer-based errors) and the Sky (“mostly empty”).
Note that Eq. (6) is an in-place transformation that operates in
the same way on every point in the image.

Like scalar selfcal, matrix self-alignment eliminates all the
variable errors in the Instrument and replaces them with one er-
ror factor X that is constant over all antennas j and times t. This
mechanism applies not only to gains and phases, but also to po-
larimetric errors such as polarization leakage and rotations of
linear polarization as well as intentional differences between an-
tenna feeds (heterogeneous array).

5 As in Paper IV, we ignore the loss of absolute position in the Sky
that self-calibration also entails.

2.4. Polconversion and polrotation

The transformation Eq. (6) can be factored as

B′l = |x|
2 H (Y Bl Y†) H†. (7)

Not surprisingly, the positive scale factor |x|2 reappears in the
matrix case. The new transformations H and Y are best described
in terms of the Stokes representation Eq. (4):

– The “positive hermitian” transformation H represents both
the well-known leakage of Stokes I flux into p and the con-
version of p to I flux that is its Siamese twin. The term pol-
conversion describes the combination of both.

– The “unitary” transformation Y describes a polrotation, i.e.
a rotation of p in QUV space. Polrotation does not affect I
and leaves |p| invariant.

Polrotation and polconversion operators can be interchanged:
Instead of Eq. (7) we may also write

B′l = |x|
2 Y (H′ Bl H′†) Y† (8)

where the polconversion H′ is different from H (cf. Eq. (B.9) in
the Appendix).

2.5. Post-calibration

Inverting the M.E. by self-alignment takes us only halfway;
while being consistent with the observations, the Sky image B′

that we obtain differs from the true one. Post-calibration is re-
quired to eliminate the spurious transformation X. Here the M.E.
is to no avail: all that we can extract from it is already in the self-
aligned solution B′. Instead, a priori external information must
be exploited to constrain X.

Self-alignment and post-calibration are, in principle, mutu-
ally independent. While inevitably and uncontrollably introduc-
ing unknown H and Y transformations in its solutions, self-
alignment is not affected by them. The latter is also true when
we transform the data mid-stream – probably with the intention
of making the process easier to control (cf. Sect. 5.1). In the the-
ory, self-alignment precedes post-calibration, but in practice we
may take an advance on the latter whenever we see fit to do so.

2.6. Persistence of poldistortion; pre-calibration

Self-alignment cannot eliminate poldistortion because it can-
not recognise it. More generally, a proper self-aligning algo-
rithm should have little tendency to change the poldistortion with
which it is initialised. Basically, one expects it to just transmit
what it is offered.

Thus poldistortion, once introduced, will be transferred to
the Instrument Model, hence to the Sky image and the Sky
Model extracted from it, after which the next self-aligment cycle
will transfer it to the next Instrument model, etc. To keep poldis-
tortion low, it is important to prevent it from being inadvertently
introduced. It is therefore important to apply a pre-calibration
using the best initial nominal Instrument Model that one can get
hold of.

2.7. Practical questions

The theory is clear on what we can and cannot expect self-
alignment to achieve, but it does not tell us how a solution is
obtained. In the scalar case the nonlinear selfcal equations can be
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Fig. 1. Synthesis-telecope geometry. Left: Antenna positions and feed
orientations. Right: uv coverage.

solved iteratively, or linearised by taking logarithms; both meth-
ods have been used sucessfully and the solutions are usually ro-
bust. The non-commutativity of matrix multiplication precludes
the use of logarithms, so solving the nonlinear equations directly
is our only option. Stability and robustness of this process must
be investigated.

Once we have a solution, we must consider post-calibration:
How can we bring in prior astronomical and instrumental know-
ledge to suppress the unknown poldistortion?

3. Processing a simulated observation

To answer these questions and develop practical algorithms,
an observation with realistic errors of various sorts was simu-
lated. The theory was used as a guideline in self-calibrating the
observation.

A major advantage of a simulation is that it can be set up
to focus on the polarimetric problem per se and sidestep the sev-
eral distracting complications that beset aperture synthesis in the
real world, such as interference, uv-convolution and aliasing, de-
ficiencies of CLEAN, Sky curvature and projection effects. The
following are the main features of the simulated observation:

– The telescope (Fig. 1) consists of 25 antennas on 5 spiral
arms. Observations are made at 11 equidistant hour angles
covering 2.4 h, to produce a uv coverage that is uniform
in position angle; radial coverage is less regular, but this in
unimportant for the point sources to be observed. The total
number of uv samples is 3300.

– The antennas are equipped with linearly polarized feeds in
orientations that are uniformly distributed but assigned at
random, as shown in Fig. 1. The choice for a heterogeneous
array was made with the aim to confirm theoretical predic-
tions in Paper IV. We shall return to this point in Sect. 6.2.
Position-angle and ellipticity errors are drawn from Gaussian
distributions centered on zero with an rms spread of some 2o.

– Ionospheric Faraday rotation, identical for all antennas,
varies randomly during the observation by more than a full
turn with a characteristic time scale of about an hour. True
gains and phases differ from the nominal ones with a peak-
to-peak spread of 20% and 10o, and smooth time variations
ranging over 2% and 3o, respectively. (In retrospect, the
phase variations seem to be lower than one may expect in
a real instrument; in a later trial run phase errors were tripled
without jeopardising the self-calibration in any way.)

– In the Sky field, 130 point sources are randomly placed. The
fluxes have a realistic log N − log S distribution. 10 sources
are linearly polarized, degrees being in the lower % range

with one maximum of 10%; one source is also 0.3% circu-
larly polarized. Total I flux

∑

I = 42 units, total absolute
polarized flux

∑

|p| = 0.5 units.
– CLEAN deficiencies are avoided by simulating only point

sources at grid positions. For clusters of sources that CLEAN
could not disentangle, spurious sources in the Sky Model
were suppressed by jointly fitting fluxes for all positions in
the cluster area where a source had been found.

– uv-convolution and image-aliasing complications are
avoided by shifting antennas to grid positions for every
integration time interval – as if they were “manually” moved
over the Earth’s surface.

– Putting both the telescope and the source field on the North
Pole avoids projection deformations. Putting the antennas in
an Equatorial plane makes the van Cittert-Zernike relation
between brightness and coherency functions rigorously two-
dimensional.

– Gaussian noise was added at a level of 10−4 per image point
– as would be the case for a Sky field with strong sources; it
proved to be too low to noticeably affect the data processing.

Although some of these simplifications are obviously unrealistic
from an operational viewpoint, they are all physically valid and
do not detract from the purpose of the exercise.

4. Matrix self-alignment

4.1. Synopsis of quasi-scalar selfcal

The matrix-based self-align procedure is shown in the top half
of Table 3. It corresponds to conventional scalar self-calibration,
extended with a number of matrix-specific algorithms. In relat-
ing scalar and matrix self-alignment, one may utilise the corre-
spondences listed in Table 2.

The procedure simultaneously develops Models of the appar-
ent Sky B′

l
and the Instrument {J ′

jt
} that together satisfy Eq. (2)

given the observed coherencies {W jkt}. The following cycle is
repeated iteratively:

1. Make a dirty image of the Sky from the observed coherencies
corrected with the best available Instrument Model.

2. Extract from this image a Sky Model through some deconvo-
lution procedure; I refer to this process as CLEANing since
that is the algorithm that I used. Calculate the corresponding
Model Coherencies.

3. Assuming that the Model Coherencies were the actual input
to the observation, fit the Instrument Model that provides the
best match to the coherencies actually observed, per time in-
terval t. (Some writers understand “self-calibration” to refer
to this particular step rather than the iterative process as a
whole.)

4. Start a new cycle, using the newly acquired Instrument
Model.

4.2. Matrix extras

The elements in the self-alignment part of Table 3 that have no
counterpart in scalar self-alignment are shown in boldface.

4.2.1. Instrument fit

I used the relaxation algorithm (Appendix A.1 below) of
Paper IV. Alternatively, a general-purpose non-linear equation
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Table 3. Self-alignment and post-calibration in the simulation. Four iteration cycles are shown. Elements that deviate from, or are absent in, scalar
selfcal are set in boldface. Operation classes: i = making Instrument Model; m = making Sky image; p = post-calibration operation; s = making
Sky Model.

Notes Cycles Class Operation

1 2 3 4 ⇒ data

• • • • ⇒ Raw observed coherencies

SELF-ALIGNMENT

• • • • Enter next cycle
• m Pre-calibrate: Correct using prior Jones matrices
• • • m Correct using estimates of Jones matrices from previous cycle

• • • • ⇒ Corrected coherencies
• • • • m Convert to image in Stokes format
• • • • ⇒ I dirty image

1 • • • ⇒ p dirty images

• • • • s CLEAN Stokes I image
3 • • • • ⇒ I residual image

• • • • ⇒ I Sky Model: List of source positions and I fluxes
1 • • • s CLEAN p images jointly at I positions (Sect. 4.2.2)
1 • • • ⇒ p Sky Model: List including corresponding p fluxes

1, 3 • • • ⇒ p residual images

2 • (•) p Poldeconversion: Invert polconversion (Sect. 4.2.3)
• • p ⇒ “Leakage”-free Sky Model

• Exit to post-calibration

• • • Fourier-transform to coherency matrix form
• • • ⇒ Coherency Model

• • • i Fit Instrument to raw coherencies and Coherency Model
• • • ⇒ Improved estimates of Instrument
• • • Go to next cycle

p POST-CALIBRATION

2 • (•) p Poldeconversion: Invert polconversion (Sect. 5.1.1)
• p Polvector leveling (Sect. 5.1.2)

• • • ⇒ Sky Model with unknown rotation of plin

• p Factor Instrument model in terms of receiver hardware (Sect. 5.2)
• ⇒ Jones matrices representing antenna-channel stages
• p Compare these Jones matrices with prior knowledge about stages
• ⇒ Estimated errors in Jones matrices of stages
• p Correct coherency model for these errors
• m Convert to final image in Stokes format
• p Calibrate brightness on known brightness/flux calibrators
• p Verify/calibrate plin on known polarization calibrators (if any)

Notes:

1 No attempt is made in the first cycle to process p data: see Sect. 4.3.2.
2 This is an example of a post-calibration operation interjected into the self-alignment process. See Sect. 5.1.
3 Except possibly for the final one, the residual images are a by-product that is only used for judging the progress of the process.

solver routine may be used. In either case convergence turns out
to be a problem – to be discussed in Sect. 4.3.

Because of its simplicity, the Paper IV algorithm is very suit-
able for experiments of the present type and cheap in execution.
However, M. Brentjens (priv. comm.) finds that it may easily
get stuck in a secondary minimum when many interferometers
are missing (e.g. because of interference). He patched a general-
purpose solver to deal with this problem. Whether the same can
be done for the Paper IV algorithm we do not know.

4.2.2. Polarization CLEAN

An obvious first step is to CLEAN the intensity image in the
standard way.

For an “empty” Sky, it is a valid assumption that polar-
ized flux can only exist where there is intensity6. The Q,U,V
images are actually three components of an image of the

6 Recent work has revealed the existence of extended structures that
may appear in interferometry to be more than 100% polarized; for such
situations not only our CLEAN method, but the entire selfcal paradigm
must be reconsidered.
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Fig. 2. Cycle-1 dirty images, made with nominal instrumental corrections; left V , right |p|. Circles represent positions and fluxes of true sources
(some being too weak to be shown), lines their linear polarization. Levels are to be compared with the peak source flux of 1. In the |p| image only
one source can be identified; its high flux must be accidental, since the other p sources do not show up.

polvector p. The way to CLEAN them jointly is motivated by
poldistortion theory: Apart from polconversion (to be discussed
later), the principal error that remains in the final self-alignment
cycles is a polrotation that leaves |p| invariant. Thus, we may
use a |p| image to indentify components, searching only the lo-
cations of I sources. Having identified a peak, we determine the
individual Q,U,V fluxes and subtract components multiplied by
the loop gain from the corresponding images.

This approach carries the obvious advantage that it is less
sensitive to noise than searches in the separate Q, U and V im-
ages would be. It proved to be quite effective even in the early
cycles, where errors other than polrotation might confuse the
situation.

4.2.3. Poldeconversion

For reasons to be discussed in Sect. 5.1, one may take an advance
on post-calibration by interjecting Poldeconversion (removing
polconversion) in the self-alignment procedure.

4.3. Pitfalls

4.3.1. Sluggish convergence

In the Instrument fit, residuals rapidly decrease in the initial
iterations. After that, the polrotation factor in the Instrument
model continues to be adjusted in minute steps in an attempt
to match the observed and Sky-Model polvectors; final conver-
gence may require tens of thousands of steps. Apparently the
polarized flux, totalling only about 1% of the intensity flux, is
too weak to effectively drive the algorithm7. A complementary
algorithm (Appendix A.2) addresses this problem.

7 S.J. Bhatnagar (priv. comm.) observed the same effect when using
an entirely different algorithm in AIPS++. This strongly suggests that
this behaviour is due to the nature of the problem rather than to a pecu-
liarity of either algorithm.

4.3.2. Persistence of image errors

I discussed above how errors once introduced may persist in the
further processing. Such errors may also be introduced through
the p Sky Model when it is extracted from a poor image.

Figures 2 and 3 illustrate a case seen in practice. The pre-
calibrated dirty image is of bad quality. The V image, that should
be almost empty, is indicative of the error level in all three of the
p images. Yet a few sources were extracted from the p image
and included in the Sky Model. Several self-align cycles later,
Stokes U was noted to have the wrong sign; the error was traced
back to the very first p model.

In a re-run, p modeling was postponed. An I-only Sky from
the first cycle served in cycle 2 to correct most of the complex-
gain errors8. This improved the p images to the point where the
major polarized sources could be reliably identified (Fig. 3).

5. Post-calibration

Post-calibration is the process of eliminating the spurious
poldistortion X that appears in Eq. (6). Prior knowledge, both
astrophysical and instrumental, may be harnessed for this pur-
pose. The methods to be described rely on X being the same for
the entire Sky field, as was discussed above.

5.1. Exploiting prior astrophysical information

While Stokes I is necessarily positive, p approaches zero
when summed over many (independent) sources; also, usually
|V | ≪ |plin| (although important exceptions exist, see Fender &
Macquart 2003). Imposing these empirical findings as prior con-
straints on our Sky image, we can estimate the polarimetric er-
rors and correct the image and our Sky and Instrument Models
for them.

8 This is similar to although not the same as the separate self-
calibration of the X and Y or L and R channels with which quasi-scalar
polarization processing starts up (see Paper II).
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Fig. 3. Cycle-2 dirty images, corrected for instrumental errors fitted with the I-only Sky Model of cycle 1; left V , right |p|. Circles represent
positions and fluxes of the true sources, lines their linear polarization. Note the difference in intensity scales whith Fig. 2. The peak levels of .002
in the V image and .025 in the |p| image are to be compared with the peak source flux of 1. Several polarized source now stand out; their fluxes are
still too low by a factor 4 because polrotations at the successive hour angles are misaligned (cf. Sect. 6.3).

Fig. 4. Poldeconversion. Shown are the differences of Q (left) and I (right) images after poldeconversion with those before. Circles mark the
true source positions with areas proportional to intensity, bars indicate orientation and strength of true linear polarization. Note the flux scales.
The Q image shows that poldeconversion has removed Q flux from every source. In the I image differences exist only where the source is truly
polarized; positive and negative I differences reflect the bipolar nature of Q.

5.1.1. Poldeconversion

Polconversion adds to all sources in a Sky image a polarization
component with one and the same relative polarization p/I. This
makes it quite conspicuous in a comparison of the I Sky Model
and the CLEAN-residual p images.

Poldeconversion is the operation of correcting for the pol-
conversion matrix H in Eq. (6). The simplest method is to keep
polconverted p flux out of the Sky Model, which one may do by
stopping CLEAN before it starts picking it up significantly. In
the immediately following Instrument fit, the polconversion-free
Sky Model will then force the Instrument model to comply.

Alternatively, one may use the Sky Model to subtract the
sources identified as truly polarized from the newest dirty im-
ages. The p flux in the remainder must then be polconverted
I flux and the polconversion matrix H can be determined by a
comparison (Appendix B.1). An example is shown in Fig. 4.

In any method of separating instrumental artifacts from true
object features, some measure of human intervention may be
necessary. In matrix selfcal, true source polarization must be
distinguished from polconverted intensity. Since self-alignment
produces very pure p images, this was simple in my sim-
ulations; it may be less so with more complicated source
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Table 4. The effect of polvector leveling. Shown is a list of the polar-
ized sources in the final Sky Model. The true V fluxes are compared
with those obtained through self-alignment before and after the level-
ing. Leveling reduces all of them to near-zero except for one source
which is indeed the one that is truly polarized.

I flux P flux V flux V flux V flux
true true true polrotated p-leveled

0.9660 0.1323 0.0000 –0.0054 –0.0002
1.0000 0.1200 0.0000 0.0051 0.0003
0.6071 0.0685 0.0000 –0.0029 –0.0002
0.9107 0.0608 0.0000 –0.0009 –0.0002

0.6221 0.0365 –0.0030 –0.0009 –0.0025

0.2008 0.0293 0.0000 0.0011 –0.0001
0.2718 0.0266 0.0000 –0.0012 –0.0001
0.6301 0.0196 0.0000 –0.0007 0.0000
0.2319 0.0178 0.0000 –0.0000 –0.0000
0.0436 0.0069 0.0000 0.0002 –0.0001
0.0402 0.0023 0.0000 –0.0000 –0.0000
0.0493 0.0007 0.0000 0.0000 0.0000
0.0027 0.0003 0.0000 0.0000 0.0000

morphologies – but probably much simpler than with quasi-
scalar methods (e.g. Leppanen et al. 1995).

Poldeconversion should be applied as early as possible, lest
CLEAN mistakenly consolidates some polconverted I flux in the
Sky Model.

5.1.2. Polvector leveling

The linear polvectors for the true Sky reside in the QU plane
(usually represented as “horizontal”). Polrotation may rotate
them in this plane but also tilt the plane as a whole, giving rise to
a V component for every plin source. We may “level” all polvec-
tors in the Sky Model by rotating the V axis to the vertical axis,
minimising

∑

V2 (Appendix B.2). If any significant V values re-
main, they are probably real. Table 4 demonstrates the effect.

Out of an infinite set of possible rotations I choose the one
that requires a minimal rotation angle: it achieves the required
leveling with a minimal effect on plin

9.
As noted earler, the polconversion and polrotation operators

may be represented in either order. Consequently, the order of
the corrections can also be freely chosen. In Table 3 poldecon-
version comes first; after that, there is no polconverted p flux
left that could be affected by polvector leveling. (If there were,
it could be neutralised by another poldeconversion run.)

5.2. Comparing fitted with prior instrumental parameters

Self-alignment produces an Instrument model that includes the
inverse of the poldistortion matrix X. One may estimate it by
comparing the model with prior knowledge of the Instrument.

A typical antenna channel can be described (Paper I) by a
product of Jones matrices

J
j
= G

j
C

j
D

j
R

j
, (9)

9 This does not entirely rule out the possibility that one flips the en-
tire QUV space “upside down”. This possibility is in fact inherent in
any method that relies on zeroing V , e.g. the XY phase-difference de-
termination in the quasi-scalar calibration of linearly polarized arrays
(Paper II). This seems never to have happened in practice, which shows
that the usual pre-calibration is an effective prophylactic.

where

– G
j

is a diagonal matrix,

(

gp 0
0 gq

)

, where the g are complex

gains and p and q represent the two receiver channels;
– C

j
is a known matrix describing the nominal feed configura-

tion;
– D

j
, representing the feed errors, is close to the identity ma-

trix I;
– R

j
is a rotation matrix of the form Yv(φ) (Paper IV).

Prior knowledge consists of pre-calibrated values for the com-
plex gains g, the feed parameters and the rotation φ (apart from
Faraday rotation which is often not very well known).

For a comparison, we must extract corresponding values
from our Instrument model J

j
. The method for doing this is out-

lined in Appendix B.3. By correcting those differences that one
finds, one may hope to further reduce the poldistortion left by
the methods of Sect. 5.1.

Faraday polrotation remains as an error that can only be
calibrated from external data. Note that antennas separated by
large distances may experience different polrotations; these dif-
ferences are absorbed by self-alignment, but one absolute polro-
tation must be determined otherwise in all cases.

6. Side issues

Along with the main experiment discussed above, a number
of side issues were explored to check the robustness of my
approach.

6.1. Stability

The self-align algorithm was tested with various pre-calibrations
of the Instrument, such as the nominal values, the model from the
previous cycle or an arbitrary matrix constant such as one of the
Pauli matrices (Paper IV). In all cases the residuals in the fit were
the same and the speeds of convergence differed only marginally.
Obviously, the poldistortion introduced did depend on the initial
value set. As discussed above, one should preferably start with
values that are close to those expected: Use the pre-calibrated
Instrument Model in the first, and the freshly updated one in all
following self-align cycles.

6.2. Heterogeneous versus homogeneous arrays

A heterogeneous array was chosen for simulation because
it represents an innovative concept proposed by Paper IV.
Notwithstanding its advantages, there are sound practical rea-
sons why such an array has hitherto not been attractive. Firstly,
for non-polarimetric observations a heterogeneous array needs
four correlator channels per interferometer where two would suf-
fice. Secondly, if the primary beams of the antennas have non-
circular symmetry, the combination of such beams in different
orientations adds to the complexity of synthesis imaging in a
formidable way.

Yet the heterogeneous array is of more than academic inter-
est. Indeed, in the context of this paper Faraday rotation is part of
the Instrument, and since it is inherently variable with distance
it will make any array heterogeneous that extends over “large”
distances. Under such conditions, every array must observe the
full coherency even for unpolarized sources.



J. P. Hamaker: Understanding radio polarimetry. V. 403

Fig. 5. Alignment of the linear polvectors observed at successive hour-
angle intervals by self-alignment.
(a) Initially, the polvectors for successive hour angles are scattered
in random directions by time-varying Faraday rotation. In the pre-
calibrated image of cycle 1, their sum is much too small and badly
misoriented. Most sources in the p images are drowned in scattered
radiation due to instrumental errors (Fig. 2). We satisfy ourselves with
making a Sky Model for I only.
(b) In the self-alignment of cycle 2, that Sky Model serving as reference
provides no clue for the alignment of the observed polvectors; they are
scattered once more, in random directions. Their sum is changed but re-
mains weak. Yet, since gain and phase errors have been much reduced,
the strongest polarized sources are now clearly identifiable (Fig. 3).
(c) The plin flux in the Sky Model is now strong enough to serve as ref-
erence for aligning the observed plin fluxes at the end of cycle 3. The
polrotation of this reference is “frozen into” the model (cf. Sect. 4.3.2).
The polvectors for all hour angles are aligned to this reference with only
very small errors left; |plin| fluxes get close to their correct values.
(d) Further cycles will reduce the remaining errors at a level that is not
visible on the scale of this diagram.

The differences between a heterogeneous and a homoge-
neous array are amply discussed in Paper IV: The weak connec-
tion between the sets of X and Y (or L and R) channels makes the
homogeneous system vulnerable to a spurious phase difference
between the two, resulting in a polrotation in the Sky Model (cf.
Paper II). For the linearly polarized array this is a U ↔ V rota-
tion that can be elimated by polvector leveling. For a circularly
polarized array that will not work, because the RL phase differ-
ence engenders a Q ↔ U rotation on which we have no a-priori
handle.

6.3. Faraday rotation

Faraday self-alignment is an important novelty. In quasi-scalar
polarimetry, variable Faraday rotation can only be corrected by
approximate estimates. The remaining variation mixes Q and U
in such a way that effectively every polarized source is imaged
with a different instrumental beam of poor quality. Matrix self-
alignment suppresses this effect, makes the p beams identical to
the I beam and restores the images to their full dynamic range.
Self-aligned Q and U images look even better than their I coun-
terparts because there are fewer sources and hence less confusion
of sidelobes; this can be seen in Fig. 3 (but the reproduction is
probably not good enough to show it quite convincingly).

The mechanism of the Faraday alignment is sketched
in Fig. 5.

7. Conclusion

I and p fluxes in the final Sky Model agree (apart from a flux-
scale factor) with the true Sky within .001 of the flux of the
strongest source; having made my point, I did not try to improve
this any further. I attach no great significance to this number. In
the simulations, only the Instrument Model pretends to be real-
istic; other aspects of the observation were deliberately oversim-
plified in order to focus on the polarimetry issues.

The outcome of this study must be judged in relation to its
purpose, which is validation of the theory of Paper IV and the de-
velopment of supporting algorithms. On this count the results are
entirely satisfactory. The poldistortion effects predicted have all
been observed in (simulated) practice – sometimes as expected,
sometimes as a surprise although they could have been expected.
The latter cases in particular confirm the notion that poldistortion
is an unavoidable artifact spawned by matrix self-alignment, in
precisely the way that Paper IV foretells. On the practical side,
a number of algorithms have been created that effectively deal
with side problems which that paper hardly addresses.

Polarimetric errors in the self-aligned Sky image can be rep-
resented as a product of two poldistortion transformations. These
are independent of each other and of spatial scattering by beam
sidelobes, and both operate on all image points in the same way.
The latter is a particularly valuable property, because it allows
one to consider the statistics of the set of all (or a selected group
of) Sky sources. By comparing them to the prior astrophysical
knowledge that both linear and circular polarizations are zero on
the average, one may estimate polconversion and polrotation and
correct for them, without reference to external measurements
such as a separate observation of a calibrator source. In this way,
the great benefits of scalar intensity self-calibration get extended
to polarimetry10. As a complement, statistical comparison of the
Instrument model to prior estimates of Instrument parameters
gives us another handle on the poldistortion. The latter idea is,
of course, not new but is given a broader scope here.

The (pol)rotation of parallactic angle in azimuth/elevation-
mounted antennas has often been suggested as a mechanism
to separate intrumental effects from the observed Sky. Cotton
(1993) and Roberts et al. (1994) have investigated this option at
length. They show that it can be made to work to some extent,
under suitable conditions, and with considerable manual labour.
Matrix self-alignment and post-calibration replace such artisan
methods by separating time-varying polrotation from the Sky
in a clean, systematic and generally applicable way, using algo-
rithms that require little more manual steering than simple scalar
selfcal does.

The virtues of Faraday self-alignment have already been
highlighted in Sect. 6.3. They are of particular importance for
polarimetry toward lower frequencies since the rotation and its
temporal variation increase with λ2. At long baselines, each an-
tenna moreover experiences its own Faraday rotation, effectively
making an array heterogeneous even if it had been built homoge-
neous. This possibility has not been explicitly considered here,
but it is no more than a trivial departure from the static hetero-
geneity that has been simulated.

Notwithstanding the complications of practical aperture syn-
thesis, scalar self-calibration has proven to be very effective
with observing geometries and source morphologies much more
complicated than those simulated here. With the ground rules

10 In the past, experienced polarimetrists have occasionally derived
crude “manual” Faraday alignment and polvector-leveling corrections
by visual inspection of their quasi-scalarly self-calibrated Sky images
(A. G. de Bruyn, private comm.).
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for polarimetric selfcal now firmly established, and given the
close analogies between the scalar and matrix domains, one
may expect matrix selfcal likewise to be applicable in real-life
situations.

Polarimetry is a nasty complication to the subject of
Aperture Synthesis, which is already far from simple in itself.
Although many observers are using them to obtain their astro-
physical results, quasi-scalar methods have certainly not helped
to endear the subject to them. To some, the Jones-matrix repre-
sentation appears like a way of making things even more diffi-
cult. This notion is mistaken. Rather than complicating the mat-
ter, matrix methods simplify it, if only one is willing to accept
matrix algebra as a tool. (A simple but characteristic measure
of this simplification is the compactness of the formulas in the
papers of this series as compared to that in the typical paper on
quasi-scalar polarimetry.)

The matrix formulation provides a precise description of
the physics of our receiver systems. Its awkward features re-
flect properties that are real but overlooked by the quasi-scalar
method; for example, the non-commutativity of matrix multi-
plication reminds us that, in a dual-polarization signal path, the
order of ionosphere, antenna, feed and receiver stages cannot be
arbitarily changed in the way it can for a scalar chain. Such com-
plexity is the inevitable consequence of very basic physics. The
quasi-scalar method approaches it from the bottom up by split-
ting the problem into isolated morsels, treating them in mutual
isolation, and ignoring the higher-order effects that do not fit.
Matrix self-calibration proposes a top-down alternative that has
no need for approximations: Each of the steps described above
is motivated by the overall view that the Measurement Equation
provides, and fits seamlessly into one coherent grand picture.

Further development in observing practice will depend
on the creation of suitable software. Having endorsed the
Measurement Equation as one of its foundations, AIPS++
would seem to be the foremost place to look for that, and it
indeed already includes many of the matrix software mecha-
nisms required. However, its present implementation of matrix
selfcal was created too early to benefit from the concepts that

Papers IV and V have now firmly put in place. As a first step
forward, the development group is engaged in a code cleanup
that will pave the way for self-calibration upgrades in the fu-
ture (G. Moellenbrock, priv. comm.). Another development is
to be looked for in the Netherlands, where AIPS++ infrastruc-
ture is built into the new software for the LOFAR phased-array
telescope. In order to deal with the unprecedented complexity of
that instrument, full deployment of matrix-based data reduction
methods is foreseen.

With this paper, the program of the series, Understanding
radio polarimetry, has been successfully completed. Further de-
velopment of polarimetric theory and practice will most likely
take place in the context of applications.
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Appendix A: Self-alignment algorithms

Most of the algorithms sketched below rely on the quaternion
representation of matrices and the quaternion algebra that are
introduced in Paper IV. In brief, Eq. (4) is generalised to all 2 ×
2 matrices:

M = [ m + m ], (A.1)

where m is a scalar and m a vector in an abstract 3-dimensional
space that, in our application, coincides with QUV space. In the
Appendix to Paper IV, the rules for algebraic manipulation of
quaternions are derived and applied to describe polrotation and
polconversion as geometric operations in this space. I shall freely
use these results, mostly without further reference to their origin.

A.1. Instrument model fit

The algorithm of Paper IV, App. D.2, can be presented in a more
transparent form. Given a set of observed coherencies

W
jk
= J

j
E

jk
J
†
k

(A.2)

for a Sky Model {E
jk
}, we seek to fit a set of inverse Jones ma-

trices {K
j
} that minimises the noise power

S =
∑

jk

|| K
j
W

jk
K
†
k
− E

jk
|| (A.3)

at the interferometer inputs. We do this by a relaxation method
in which we successively adjust the K

j
toward convergence:

K′
j
=
∑

k

E
jk

KkW
†
jk

⎛
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†
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†
jk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

. (A.4)

A.2. Polvector alignment

Consider two arbitrary unit polvectors p and r which make an
angle α. Rotating one into the other can be achieved through
many different rotations (all of which have their axis in the bi-
secting plane of p and r). For the axis perpendicular to both vec-
tors the rotation angle is equal to α and minimal, which seems
to be a desirable property. To find this minimal rotation, we take
the quaternion product

[p] [r] = [p · r + i p× r] = [cosα + i 1p×r sinα]. (A.5)

This is a unimodular unitary quaternion that effects a polrotation
over an angle 2α with its axis along p × r. To implement the
required rotation over α we must take the square root of [p] [r].
(Just as for positive hermitian matrices, a closed form can be
derived for the square root of a unitary matrix.)

In the Instrument-fit procedure of Sect. 4.2, p and r above
represent the polvectors of the Sky-Model and observed co-
herencies, respectively. We sum their product over all uv points
to estimate the required rotation.

Appendix B: Post-calibration algorithms

If the observed field contains enough source flux that we may
assume a priori to be unpolarized, we may use these sources as a
reference against which polconversion can be estimated and then
removed. Similarly, if there is enough linearly polarized flux we

can use it to estimate how much of it has been polrotated into
circular polarization and correct for that.

We may also compare the fitted Jones matrices J jt to prior
knowledge of the instrument. To this end we must factor them
to expose the parameters by which an antenna channel is nor-
mally characterised: Rotations (Faraday, parallactic, feed), feed
configuration and errors, complex receiver gains.

B.1. Poldeconversion

Polconversion is characterised by the matrix H in Eq. (7). For
once I revert to the quasi-scalar approximation in which only one
of its effects is considered, viz. the conversion of some I flux into
a polvector flux for every source k11:

∆pk = p0 Ik. (B.1)

Since the ∆p are small, the best place to look for them is in the
residual p image after CLEANing. To measure it, we correlate
this image with the dirty intensity image, using the intensity as a
weight factor

p′0 =

∑

[ p I ]
∑

I2
(B.2)

where the prime indicates an estimate. To avoid contamination
by sources for which CLEAN found significant p components,
these should first be subtracted from the I and p images.

An example from the simulation is shown in Fig. 4.

B.2. Polvector leveling

Consider the set of N real column vectors {pk} representing
the polarized Sky Model, and a plane through the origin of
QUV space whose normal is the column vector a. The distance
of a point pk to the plane is dk = aT pk = pT

k
a. We require the

value of a that minimises

S =
∑

d2
k =
∑

j

aT p
j

∑

k

pT
k a = aT PTP a (B.3)

where P is an N×3 matrix whose columns are the real vectors pk.
With the accessory condition a2 = 1 this results in an eigenvalue
problem

PTP a − λ a = 0 (B.4)

PTP is a positive symmetric matrix and Eq. (B.3) a quadratic
form (Lancaster & Tismenetsky 1985). The three eigenvectors of
PTP are the normals to the principal planes of the set {pk}. The
corresponding positive eigenvalues equal the sums Eq. (B.3); the
eigenvector corresponding to the smallest of these is the normal
sought for. To rotate this vector to the V axis, we can use the
minimal-rotation algorithm of Sect. A.2

B.3. Reducing a Jones matrix to hardware factors

I show here the factoring procedure for a linearly polarized an-
tenna where, in Eq. (9), C = I. For a circularly polarized one

11 This use of the approximation is quite peripheral; with proper pre-
calibration, the errors that it might introduce are negligible. Moreover,
they affect the entire Sky rather than each source on its own, and can
therefore be corrected later.
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the analysis is only slightly more complicated. (The method
shown here is simpler and more direct than the one suggested by
Paper IV, and allows for the diagonal elements of D to differ.)

The equation to be satisfied for given J is Eq. (9)

J = GDR (B.5)

where G is diagonal, R is a Q ↔ U rotation matrix, the nom-
inal configuration matrix equals I and D, representing the feed
errors, must be close to I.

To find the factors, perform the following steps:

1. Apply the polar decomposition (Paper IV, App. B.6)

J = |x|2 H Y (B.6)

2. Factor the polrotation matrix Y per Appendix B.4 into a
product of three mutually orthogonal rotations (Paper IV,
Eq. (27))

Y = Yq(φ) Yu(ǫ) Yv(θ) (B.7)

where the factors Yq, Yu and Yv represent polrotations with
axes in the Q, U and V directions.

3. Exchange Yq(φ) with H:

J = |x|2 H Yq(φ) Yu(ǫ) Yv(θ)

= |x|2 Yq(φ) H′ Yu(ǫ) Yv(θ)
(B.8)

where

H′ = Yq(−φ) H Yq(φ). (B.9)

4. Define a unimodular matrix

M =

( √
h22/h11 0

0
√

h11/h22

)

(B.10)

to obtain a unimodular matrix H′′ with equal diagonal ele-
ments

√
h11h22

H′′ = M−1H′. (B.11)

5. Finally define the factors in Eq. (B.5) as

G = |x|2 Yq(φ) M;

D = H′′ Yu(ǫ);

R = Yv(θ).

(B.12)

The factors G and R evidently satisfy the requirements. D rep-
resents those effects that could not be accounted for by the other
two factors and which we must therefore attribute to the feed.
Some effects in the real feed are misinterpreted: A difference be-
tween the losses in the x and y receptors is absorbed in G and
a misorientation is attributed to R. Clearly, J does not contain
enough information to distinguish them (just as in scalar self-
cal one cannot distinguish various contributions to the overall
phase), unless we have more precise prior information, e.g. about
the feed.

B.4. Rotation decomposition

Although the problem of representing an arbitrary three-
dimensional rotation in terms of mutually perpendicular ones
is well known, I had trouble finding direct references. The ba-
sic information is available in handbooks (e.g. Korn & Korn
1968) but some tedious algebra is needed to extract the neces-
sary formulae.

The product Eq. (B.7) can be wtitten out in quaternion
form as

Y = [ y0 + iy ],

y0 = cosφ cos ǫ cos θ + sin φ sin ǫ sin θ
y1 = sin φ cos ǫ cos θ − cosφ sin ǫ sin θ
y2 = cosφ sin ǫ cos θ + sinφ cos ǫ sin θ
y3 = cosφ cos ǫ sin θ − sinφ sin ǫ cos θ

(B.13)

It is readily seen that y0y2 − y1y3 =
1
2

sin 2ǫ. Further note that

(

y0

y2

)

=

(

cos ǫ sin ǫ
sin ǫ cos ǫ

) (

cosφ cos θ
sinφ sin θ

)

(

y1

y3

)

=

(

cos ǫ − sin ǫ
− sin ǫ cos ǫ

) (

sinφ cos θ
cosφ sin θ

) (B.14)

from which φ ± θ follow.


