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Rapid category detection, as discovered by S. Thorpe, D. Fize, and C. Marlot (1996), demonstrated that the human visual
system can detect object categories in natural images in as little as 150 ms. To gain insight into this phenomenon and to
determine its relevance to naturally occurring conditions, we degrade the stimulus set along various image dimensions and
investigate the effects on perception. To investigate how well modern-day computer vision algorithms cope with
degradations, we conduct an analog of this same experiment with state-of-the-art object recognition algorithms. We
discover that rapid category detection in humans is quite robust to naturally occurring degradations and is mediated by a
non-linear interaction of visual features. In contrast, modern-day object recognition algorithms are not as robust.
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Introduction

Thorpe, Fize, and Marlot’s (1996) study demonstrated
the robustness of the visual system at extremely short time
scales. Using an ERP setup, the authors flashed images of
natural scenes, where only a portion of the image set
contained animals. Subjects were instructed to make a go/
no-go response of whether an animal was present in the
image. Analyzing the ERP signals between animal-present
and animal-absent trials, a significant difference was
found 150 ms after stimulus onset. Although there is
controversy around this finding (Johnson & Olshausen,
2003; Van Rullen & Thorpe, 2001), it is clear that
category detection can occur at very rapid time scales.
The question motivating our study is the following: Can

one do rapid category detection when the image is
degraded? By the term degradation, we are referring to
various ways of reducing information content in the
image. Over the years, selected studies have investigated
the perceptual effects of degrading images along a
singular image dimension. Harmon and Julesz (1973)
and Bachmann (1991) demonstrate that with respect to
spatial resolution, only 18 � 18 pixels per face are
sufficient for robust recognition, and these findings have
been extended to the domains of faces, objects, and scenes
by Torralba, Fergus, and Freeman (2008) and Torralba
and Sinha (2001). Along the dimension of luminance
depth, Mooney faces are a classic demonstration of visual
processing working in extreme cases of luminance depth

degradation (Mooney, 1957). Robustness to degradation
falls under the larger umbrella of invariances. Invariance
is a percept’s tolerance to different transformations such
as scaling, lighting, or rotation. There’s been extensive
study of invariance in psychology and computer science.
Studies such as Tarr and Pinker (1989), Rock, Di Vita, and
Barbeito (1981), and Yin (1969) investigate rotation
invariance in humans. In physiology, Brainard (2004)
investigates color constancy and Ito, Tamura, Fujita, and
Tanaka (1995) investigates size and position invariance.
Many computational models have also been proposed to
tackle different invariances such as those of Olshausen,
Anderson, and Van Essen (1993), which proposes a model
that is scale and shift invariant, and those of Lowe (1999),
which proposes the SIFT descriptor, a local descriptor
robust to affine transformations and lighting variation.
Why do we think that rapid category detection maybe

adversely affected by image degradation? One line of
reasoning stems from the SpikeNet computational model
proposed by Thorpe (2002). Here the author attempts to
build a computational model capable of mirroring the
rapid categorization effect originally demonstrated by
Thorpe et al. (1996). This model centers on rank order
codingVaverage local contrast determines the timing of
neuronal firing. This perspective suggests that degraded
images, such as blurred images, would have a delayed
response since average local contrast is reduced. This link
between reduced contrast and a delayed signal is also
echoed in the explanation of the Pulfrich Pendulum
phenomenon.1 A second line of reasoning, which suggests
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a delay for degraded stimuli, is that impoverished stimuli
rely on top down influences as argued by Cavanagh
(1991). This might suggest that feedback mechanisms, and
a corresponding increase in processing time would be
required for degraded images.
In this study, we have crafted an experiment combining

rapid stimulus presentation with degraded stimuli. We use
a stimulus set of degraded images where each condition is
degraded along a singular image dimension or pair of
image dimensions. Through the use of degraded images,
we are able to remove image information in a principled
manner and by measuring the corresponding effects on
perception, we also gain key insights into the mechanisms
driving rapid category detection.
With the findings from above, we conducted another

experiment to understand how well the latest object
recognition algorithms compare to human recognition
abilities. It has been argued (Serre, Oliva, & Poggio,
2007) that the current state of the art in computer vision
can model the rapid category effect from Thorpe et al.
(1996). By running such models with degraded images as
input, we further tested the robustness of this claim.

Methods

Experiment 1
Subjects

Twenty-one volunteers with normal or corrected-to-
normal vision performed a 2AFC visual discrimination
task. The experimental procedures were approved by the
UC Berkeley ethical committee.

Experimental setup

The experimental setup is modeled after Kirchner and
Thorpe’s (2006) 2AFC animal/non-animal detection task.
Subjects were seated in a dimly lit room with their heads
mounted in a chin rest. Gray scale images were presented
to subjects on a CRT monitor placed 60 cm away from the
subject. Stimuli were centered laterally 10- from fixation
and subtended approximately 6- of visual angle. We use
an Arrington eye tracker to track subject’s eye move-
ments; the accompanying software package presented the
stimuli and appropriately created log files of the subjects’
responses. These log files were later analyzed using
MATLAB scripts. The stimuli were selected from the
COREL collection of natural images. The stimulus set
was divided into an equal number of targets and
distracters. The target images each contained an animal
at an arbitrary pose and location, and the distracter images
were natural scenes such as landscapes or forest scenes
and did not contain any animals.

Protocol

In each trial, subjects were flashed a fixation cross for
2.5 s, followed by a blank gray screen for 200 ms, and
then flashed a pair of images in the right and left hemi-
fields for a duration of 30 ms. Each pair contained one
target and one distracter image. The target location was
equiprobable in the left and right hemi-fields. After
stimulus presentation, two fixation crosses were presented
for 1 s at T6-. Subjects were directed to make an eye
movement to the cross on the same side as the animal and
were measured for performance in different conditions.
Each subject was presented with the Full or control
condition and then a subset of the variable conditions.
Please see Figure 1 for a visualization of the experimental
protocol.

Stimulus conditions

The first set of conditions contains images degraded to
different degrees along one of the following dimensions:
spatial resolution, luminance depth, inversion, and reverse
contrast. To understand how these different visual dimen-
sions combine to influence perception, the above degra-
dations are paired to create multiply degraded images.
Each dimension of degradation was chosen with a

specific intention. Spatial resolution degradation is a
naturally occurring degradation with objects at a distance
and objects in the periphery, and luminance depth
degradation occurs in low-light conditions. The inversion
and reverse contrast conditions, although not naturally
occurring conditions, offer insight into visual cognition. In
the context of face recognition, both transformations have
severely impacted recognition performance and thereby
offered insight into the underlying representations (Liu,
Collin, Burton, & Chaurdhuri, 1999; Yin, 1969). Inversion
probes the role of global features as global features are
warped in an inverted image while local features (eg.
texture) are not affected. The reverse contrast condition
probes the importance of edge polarity since each edge
switches its polarity under this transformation.
Each condition consists of 50 trials, and between four

and seven subjects participated in each condition. Exam-
ple images from all conditions are shown in Figure 2. The
baseline condition, labeled Full, contains 8-bit gray scale
images of animals and natural scenes.
Along the dimension of spatial resolution, there are

three degrees of degradation. The first, labeled Blur100, is
created by resizing the original image, sized at 512 �
768 pixels, to 66 � 100 pixels. This miniaturized image is
then resized back to its original size. The Blur50 and
Blur25 conditions are created in an analogous manner.
This manner of blurring allows us to compute an upper
limit of the information contained after degradation. For
instance, in the Blur100 condition, we have 66 � 100 =
6600 dimensions where the value of each dimension is
specified by 8 bits.
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Along the dimension of luminance depth, there are two
degrees of degradation. The first, labeled 4Tone, is created
by discretizing the original 8-bit image into a 2-bit image.
In other words, the original image, containing 256 levels
of gray, is now reduced to only four luminance levels
(black, white, and two levels of gray). Likewise, in the
2Tone condition, each image pixel is either black or white.
This first set of conditions also includes the Inverse
condition where each image is vertically inverted and
Reverse where the contrast of each image is reversed.
In the second set of conditions, the above degradations

are combined in pairs. In the first such condition, spatial
resolution degradation is paired with luminance depth
degradation: The Blur100 condition combines with the
4Tone condition to create the Blur100 + 4Tone condition,
and Blur50 combines with 4Tone to create the Blur50 +
4Tone condition. In the next set of conditions, Inversion is
paired separately with Blur100 and 4Tone to create the
Inversion + Blur100 and Inversion + 4Tone. Lastly,
Reverse is paired in a similar manner to create the Reverse
+ Blur100 and Reverse + 4Tone conditions.

Response recording and detection

Subjects’ eye movements are tracked using an Arrington
Eye Tracker. This unit consists of a single infrared

camera setup with a 30-Hz sampling speed. From the
eye tracking signal, the first movement to the left or right
side of the screen is extracted and taken to be the binary
response for that given trial.

Statistical analysis

A repeated measures ANOVA was conducted to
determine significance of a given condition against the
baseline condition, Full. This test has one independent
factor and one dependent factor. The independent factor is
the experimental condition, which has 2 levelsVthe
control condition and the experimental condition. This
factor served as the repeated measure in the experiment
since a given subject participated in both the control and
experimental conditions. The dependent factor in this
analysis is the accuracy of the subject in the task. The
number of subjects participating in each condition varied
between 4 and 7.

Experiment 2

To understand how object recognition algorithms cope
with degraded images, we test two algorithms: the spatial

Figure 1. Visualization of the stimulus presentation protocol. On each trial, a fixation cross is displayed, followed by a blank gray screen,
then the target–distracter pair, and finally a screen with two fixation crosses. The subject is instructed to saccade to the fixation cross on
the same side as the target.
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pyramid kernel (Lazebnik, Schmid, & Ponce, 2006) and
the GIST descriptor (Oliva & Torralba, 2006). The spatial
pyramid kernel serves as a leading approach to object
recognition as it has performed well on Caltech 101, one
of the key benchmarks in the computer vision community.
It works by pooling orientation features across different
spatial scales into a feature vector, and this feature vector
is then fed through a support vector machine classifier. The
classifier uses the training set to find a separating hyper-
plane between the positive and the negative examples in the
feature space. A given test point is classified in reference to
this hyperplaneVthe side it falls on is the class and the
distance from the hyperplane is the confidence.
While the spatial pyramid kernel was designed for

object recognition, the GIST descriptor was designed to
capture the gestalt of an image for scene classification.
The GIST descriptor was used to label an arbitrary scene
as a beach scene, office scene, etc. The GIST descriptor
also uses orientation energy but pools it in a different way.
It tiles up the image into blocks and in each block, it sums
the energy in different orientation and spatial frequency
bands. This feature vector is then fed through a support

Figure 2. Examples of stimuli from select conditions. The conditions displayed in the left column contain images degraded along a singular
condition, and the conditions displayed in the right column contain images degraded along pairs of conditions.

Figure 3. Histogram of saccadic reaction times. Data are pooled
across all conditions and all subjects.
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vector machine classifier. In this experiment, the GIST
descriptor was tailored to only use the low spatial
frequencies of the image.
We trained each classifier with 200 animal and 200 non-

animal images. These images were drawn from the same
set used in the human experiments above and each was
tagged with its respective category. We tested the

performance of the classifiers under different conditions,
and to create results comparable to the human results from
Experiment 1, we simulated “trials” where each trial
contained a randomly paired animal and non-animal
image. A correct trial is one where the confidence value
assigned to the animal image is greater than that of the
non-animal image.

Figure 4. Mean accuracy results along with error bars displayed for each condition. Between 4 and 7 subjects were used in each
condition, and a repeated measures ANOVA was used to determine significance. Significance from the baseline condition, labeled Full,
was found in the following conditions: Blur25, Blur100 + 4Tone, Blur50 + 4Tone, and Inversion + 4Tone. The p-values are printed
alongside in the condition labels in the plots.

Figure 5. Performance of the spatial pyramid kernel in different conditions.
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As a baseline, we tested the classifier with 200 full
resolution (the Full condition) images, where 100 were of
animal images and 100 were non-animal ones. We then
tested the classifiers in all of the degraded conditions.

Results

For Experiment 1, the histogram of reaction times
across all conditions is shown in Figure 3. Mean reaction
time is at 275 ms. Mean accuracy results along with error
bars and p-value are displayed for each condition in
Figure 4, where chance performance is at 50% accuracy.
Significance (p G .05) from the baseline condition, labeled
Full, was found in the following conditions: Blur25,
Blur100 + 4Tone, Blur50 + 4Tone, and Inversion +
4Tone. Further analysis looking for a link between
reaction time and accuracy is displayed in Figure 7 and
Figure 8. In Figure 7, we plot speed vs. accuracy across all
subjects and conditions, and in Figure 8, we look at the
relationship between speed and accuracy in each different
condition. We do not find a relationship between speed
and accuracy in either analysis.
For Experiment 2, we print the results of the spatial

pyramid kernel and GIST descriptor for all conditions in
Figure 5 and the graph the results in Figure 6. We observe
that neither the GIST descriptor nor spatial pyramid kernel
match human performance (Figures 7 and 8).

Conclusions

We can draw several implications from this study for
models of visual category recognition. Our experiments

show that cues used for rapid visual categorization are
robust under significant spatial and luminance depth
degradation, and it thereby puts marked constraints on
models of rapid visual category recognition. Unlike faces,
we also see that this effect is tolerant to both inversion and
reversal of edge polarity.
We also note the non-linear interaction among the

different visual cues. A striking example is in the Blur100
and 4Tone conditions. Individually, neither is significantly
different from baseline but by combining the degradations
into the Blur100 + 4Tone condition, we find a significant
drop in human performance. We observe the same
phenomenon with the Inversion + 4Tone condition
(Figure 4). This finding leads to conclusions in direct

Figure 6. Plot of the data from Figure 5.

Figure 7. Plot of speed vs. accuracy across subjects and
conditions. This plot uses adaptive binning so that each bin
contains the same number of points.
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contrast to claims made by Guyonneau, Kirchner, and
Thorpe (2006). In this study, the authors rotated the target
and distracter images to different degrees. Since this
transformation did not impact performance, the authors
concluded that rapid category detection “could not depend
on the global distribution of orientations within the
image.” Since we see significance with the Inversion +
4Tone condition, we conclude that both local features and
global features are used in rapid category detection.
In addition, this study extends the initial work done by

Thorpe et al. (1996) to naturally occurring conditions such
as blurring and luminance depth degradation. In such
degradations, the image information is not nearly as
pristine as in Thorpe’s original experiment. This study
demonstrates that rapid category recognition is not merely
a laboratory effect but is a process that can be at play in
real-world settings.
Lastly, many groups are constructing computational

models of object recognition, such as Frome, Singer, Sha,

and Malik (2007), Lazebnik et al. (2006), and Serre et al.
(2007). Since human subjects are quite robust to degrada-
tions, we suggest that robustness to degraded input be a
critical measure for all such models.
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Figure 8. Plot of speed vs. accuracy on a per-condition basis. Each blue dot corresponds to the mean reaction time and accuracy for a
given subject in the named condition. Please note that since “Full” was a common condition across all subjects, its plot above is a
consolidated plot containing the responses from all subjects.
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Footnote

1
In the Pulfrich Pendulum phenomenon, the subject is

fitted with a piece of smoked glass over one eye and is
presented a pendulum swinging from side to side. Instead
of perceiving the lateral motion of the pendulum, the
subject perceives the pendulum rotating circularly in depth.
The explanation is that the reduced contrast from the
smoked glass delays the visual signal from one eye to the
brain thereby leading to the subjective perception of depth.
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