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Abstract

Erythrocyte rheology is of interest in un-
derstanding microcirculation and oxygen delivery 
and consumption alterations induced by sepsis 
and septic shock. Several mechanisms are pro-
posed: (i) direct or indirect RBC membrane al-
terations, (ii) abnormal intraerythrocytic homeo-
stasis, (iii) RBCs interaction with other cells and 
extracellular molecules, (iiii) increased reactive 
species production and altered redox homeo-
stasis. In this review, we describe in part these 
mechanisms and what’s the impact of these 
hemorheological disturbances on the outcome 

and mortality rate. Also, we outline the possible 
therapeutic interventions and further perspectives 
regarding sepsis and septic shock management. 

Introduction

In 2016 The Third International Consen-
sus for Sepsis and Septic shock defined sepsis 
as “a life-threatening organ dysfunction caused 
by a dysregulated host response to infection” 
[1]. The concept of severe sepsis is not actual 
anymore [1], but in this review we also collected 
data about red blood cell rheology in context of 
severe sepsis (as it was defined by the previous 
definitions in 2001) [2]. Sepsis and septic shock 
still represent the most common cause of death 
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and critical illness worldwide [1]. Pathophysiolo-
gy of sepsis is complex and involves alterations 
particularly observed in microcirculation and 
blood constituents homeostasis [1]. Of interest 
in this review is the way sepsis alters erythro-
cyte rheology and function, the actual possible 
therapeutic tools and future perspectives re-
garding the treatment of these alterations.

Basic principles of hemorheology. 
Sepsis and septic shock induced altered red 
blood cell (RBC) rheology

Hemorheology is a branch of fluid dy-
namics studying and describing flow and de-
formation behaviour of blood and its cells (i.e., 
erythrocytes, leukocytes, platelets) [3]. Blood 
rheology still represents an area of interest, af-
ter decades of studies and, yet, there are still 
many aspects that need to be elucidated, like 
aggregation’s (one major determinant of eryth-
rocyte rheology) implications in pathophysiolo-
gy of several diseases [4, 5]. But, in this review, 
we will focus on RBC rheology and how sepsis 
and septic shock influences it.

Blood viscosity

Blood is a non-Newtonian two-phase 
fluid. Plasma represents the suspending phase 
for blood cells and is considered a Newtonian 
fluid, thus alterations of its viscosity will lead to 
changes in whole blood viscosity independent 
of blood cells properties (changed or not) [3,6]. 
Plasma viscosity can be increased in acute 
phase of inflamatory diseases (increased most-
ly by plasma proteins, like fibrinogen and oth-
er acute phase reactants) and by extension, in 
sepsis [3,7]. 

Added to plasma, blood cells make 
whole blood viscosity higher than plasma vis-
cosity and this has implications in blood flow 
behaviour (fluid transition from Newtonian to 
non-Newtonian) [3] . Viscosity can be expressed 
as the ratio between shear stress and shear rate 
[8]. In terms of viscosity, shear rate determines 
RBC behaviour, at high rates causing RBC dis-
persion and preventing aggregation, and at low 
rates incresaing their chance to aggregate [8]. 
Microvascular stasis (low flow state) in sepsis 
may lead to low shear rates and microthrombo-
sis (capillary-stopped flow) [8,9].

Hematocrit can seriously alter blood 
viscosity as seen in hyperviscosity syndromes 
which can associate severely decreased tissue 
perfusion pressures [10]. On the other hand, a 
low hematocrit (anemia) leads to kyperdynamic 
circulation [11]. In sepsis, development of a hy-
perviscosity syndrome is controversial and less 

probable [7]. Systemic inflamatory response 
syndrome (SIRS) is frequently associated with 
increased acute phase reactants which, in the-
ory, leads to increased plasma viscosity [3], 
sepsis and septic shock associate seriously 
altered microcirculation (vasodialation) [1] and 
by extension, a hyperdinamic status, and also, 
in time, a progressive anemia [1,7,12] which, in 
turn, reduces blood viscosity [3,8]. Blood vis-
cosity in sepsis can maybe be characterized by 
an increased variability [7] caused first and fore-
most by the high volumes of fluids following ag-
gressive volemic resuscitation [12]. Given this, 
a hyperviscosity syndrome is unlikely to develop 
and or it can be at least, prevented [13]. He-
matocrit is the only hemorheological parameter 
included in the Acute Physiology and Chronic 
Health Evaluation (APACHE II) predictive score 
[14]. In sepsis, hematocrit value can be falsely 
increased with anemia [12], and this can mod-
ify studies results in blood rheology and also 
lead to false lower APACHE II scores in ICU 
patients assesment. Moreover, blood viscosity 
can be influenced by blood transfusions in sep-
sis [7]. Finally, knowing that dialysis increases 
blood viscosity and alters RBC rheology [15,16] 
patients who require renal replacement thera-
py may present further altered hemorheology. 
Piagnerelli et al concluded in their RBC rheol-
ogy in sepsis review that blood viscosity is in-
fluenced mainly by plasma visosity, shear rate, 
deformability and aggregation [8].

Aggregation

Capillary-stopped flow is specific for 
sepsis [9], and RBC rheologic changes like 
increased aggregability and adhesion are in-
criminated as possible mechanisms [8,9,17]. Of 
course, this phenomenon is much complex and 
must be integrated in the overall pathophysio-
logical mechanisms of sepsis. 

Aggregation can be described as the 
equillibrum between aggregating and disag-
gregating forces [3]. The dissaggregating forc-
es (electrostatic repulsion between cells, RBC 
membrane elastic energy and fluid share forc-
es) are dependent of RBC integrity and describe 
the concept of RBC aggregability, while aggre-
gation is determined by large macromolecules 
(i.e., fibrinogen) [3,4,6,18]. The way this imbal-
ance between aggregating and disaggregating 
forces may appear and how it can be ameliorat-
ed will be discussed later in this review. 

Deformability

The normal erythrocyte is a biconcave 
disc shaped-like anucleated cell, approximately 
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7 μm in diameter and 2 μm thick [9]. Its prima-
ry function (considered the only one for a long 
time) is to transport oxygen from lungs to the tis-
sues, but in the past years, erythrocyte was de-
scribed not only as an oxygen carrier, but also 
as an oxygen sensor [19,20]. Of course, with 
recent findings there is much more we know 
about RBCs function and it will be described in 
this review. Deformability represents erythro-
cytes ability to deform when exposed to blood 
flow and this is of utter importance for physi-
ologic cappilary circulation, where RBCs can 
undergo extreme deformability in order to pass 
and maintain homeostasis [8,9,21,22]. RBC de-
formability depends on (i) membrane surface 
area-to-volume ratio also known as erythrocyte 
geometry, (ii) elements forming cytoskeletal pro-
teins (spectrin, ankyrin, band 3 protein domain, 
4.1 protein and 4.2 protein) affecting RBC mem-
brane mechanical features and RBC shape and 
(iii) intraerythrocytic water and ion homeostasis. 
[21,22,23,24]. Red blood cell deformability was 
recently reviewed by Huisjes et al [21]. 

RBCs deformability can be an ear-
ly marker of sepsis [7,25,26,27] and also a 
marker of severity [28]. Furthermore, altered 
deformability can be a prognostic factor being 
associated with outcome [29] and progression 
to organ dysfunction [30]. Finally, less prob-
able, it can be an element of differential diag-
nosis between septic and non-septic critically 
ill patients [7,31]. RBC deformability is altered 
through several proposed mechanisms we will 
discuss later in this review along with how ther-
apeutic interventions ameliorated deformability 
and changed outcome. Erythrocytes increased 
sphericity, variable volume and deformability al-
terations are factors which may alter red blood 
cells distribution width (RDW, a basic paraclin-
ical tool studied routinely with every complete 
blood count laboratory examination) along with 
decreased hematocrit and hemoglobin [9,11]. In 
fact, RDW is a measure of RBCs grade of aniso-
cytosis [9,11], and it was found to be changed in 
septic patients by several studies [?]. Increased 
RDW was associated with poor immediate 
[32,33] and short term prognosis: increased 28-
day [34,35], 30-day [36] and 90-day mortality 
[34]. It it also considered, that RDW value can 
be helpful in differentiating the severity of sepsis 
[33,37] and is associated with MDA and TNF-al-
fa levels during the first week of sepsis [33]. 

Mechanisms explaining RBC rheology 
in sepsis Erythrocyte membrane
alterations in sepsis RBC membranc 
sialic acid (SA) content and bacterial 
compounds action on RBC membrane

The way RBC content of sialic acid in 
septic patients changes RBC shape was de-
scribed by Piagnerelli et al. including in their 
studies non-septic critically ill patients, septic 
patients and healthy volunteers as control group 
[38,39]. Piagnerelli et al aim was to observe if 
there is any relationship between RBC mem-
brane sialic acid content and RBC shape using 
flow cytometry. They reported significantly lower 
values of SA content in septic patients compared 
with non-septic patients and healthy volunteers, 
and this low values have been correlated with 
RBC shape; RBCs were more spherical in sep-
tic patients and also had a decreased capacity 
of sphericity in hypo-osmolar solution. [38,39]. 
Just recently, Qadri et al prooved that artificial 
desyalation of RBCs with Clostridium perfrin-
gens derived neuraminidase induced increased 
phosphatidylserine exposure and increased 
intraerythrocyitic calcium levels [40]. Changes 
in RBC shape due to sialic acid content and si-
alidase activity was also described in patients 
with diabetes. Diabetic patients presented lower 
quantities of sialic acid and an increased siali-
dase activity [41,42] and also, a higher percent 
of senescent erythrocytes [42]. RBCs in diabetic 
patients present a lower deformability [42] and 
increased aggregability [41]. Moutzouri et al [43] 
reported that sepsis and diabetes have an ad-
ditive effect on red blood cell deformability with 
significantly higher rigidity indices in patients 
with diabetes and sepsis compared with septic 
but not diabetic patients, diabetic but not spetic 
patients and healthy volunteers [43].

Another proposed mechanism was a di-
rect effect of bacterial virulence factors on RBC 
membrane sialic acid content. [8]. Milligan et 
al [44] and later, Mattingly et al [45], reported 
that serotype III isolates of group B Streptococci 
from infants having the disease produced more 
extracellular neuraminidase than serotype III 
isolates of group B Streptococci in those col-
onized and asymptomatically. Neuraminidase 
production was not an absolute condition for 
infants to develop the disease accordingly to 
Mattingly et al [45]. These findings are of big 
importance in understanding the pathologic 
molecular mechanisms given the fact that sial-
ic acid is attached to A glycophorin (the most 
abundant sialoglycoprotein on erythrocytes) 
and is also a monosaccharide derivative of 

Red blood cell rheology in sepsis



43

neuraminic acid which makes it susceptible to 
glycoside hydrolysis action of neuraminidase, 
which leads to a reduction of membrane surface 
negative charge [9]. As described above, small-
er RBC sialic acid content leads to a decreased 
deformability [38,39]. A low negative charge in 
membrane surface will also reduce the repelling 
forces between RBCs and vascular endotheli-
um, therefore increasing their susceptibility to 
aggregation [3,4,6]. Liukkonen et al [46] stud-
ied Streptococcus suis (a bacterial pathogen 
causing severe infections in young piglets and 
meningitis in humans) erythrocyte binding spec-
ificity of sialic acid. In presence of sialidase, 
hemagglutination of erythrocytes exposed to 
Streptococcus suis was abolished [46]. It was 
observed that resialytation of desialytaed RBC 
with beta 1-3(4)GlcNAc alpha 2-3-sialytrans-
ferase caused a strong hemagglutination. Also, 
they found that Streptococcus suis binds to 
Band 3, Band 4.5 proteins and glycophorin A. 
[46] Parkkinen et al [47] findings about S-frim-
briated Escherichia coli effects on erythrocytes 
are comparable with Liukkonen et al, reporting 
Escherichia coli’s specificity of binding to a pro-
teic sequence of the O-linked oligosaccharide of 
glycophorin A; hemagglutination of bacteria was 
abolished when erythrocytes were treated with 
neuraminidase and trypsin [47]. 

Other bacteria have the capacity of 
producing neuraminidase: Pseudomonas aeru-
ginosa [48], Clostridium perfringens [49], Strep-
tococcus pneumoniae [50], Vibrio cholerae [51], 
leading to rheological changes in RBCs. Piag-
nerelli et al studied neuraminidase activity in 
non-septic critically ill ICU patients and septic 
patients, reporting increased levels of free sialic 
acid in plasma and increased blood neuramin-
idase activity [38,49]. RBCs incubation with 
Clostridium perfringens neuraminidase using 
different concentrations led to shape alterations 
of RBCs that became more spherical and this 
change was correlated with higher sialic acid 
hydrolysis rates [49]. Also, authors reported in-
creased RBC levels of 2,3-DPG known to alter 
RBCs shape [52,53] and increased RBC levels 
of lactate, but it was not possible to determine 
if these shape changes were due to increased 
2,3-DPG or the spherical shape determined an 
abnormal RBC glycolysis leading to increased 
2,3-DPG levels (2,3-DPG was measured after 
at least 10 hours of incubation and RBCs shape 
was already changed) [49].

The importance of RBC sialoglycopro-
teins in sepsis can be correlated with Lizcano 
et al recent findings about erythorcytes impor-
tance in suppresing neutrophil activation and 

apoptosis in blood [54]. The authors reported 
that sialoglycoproteins from RBC surface are 
important in neutrophil suppresion through Si-
glec-9 (a receptor known to recognize sialic acid 
and to decrease innate imune cell activation), 
both ex vivo and in vitro [54].

Phosphatidylserine redistribution on 
the outer RBC membrane leaflet is 
associated with increased eryptosis 
and erythrocyte clearence in sepsis

Dinkla et al [55] observed that once 
SIRS is developed in experimental endotoxin-
emia (LPS administered IV), membrane lipid 
remodeling appears in both human and animal 
experiments, leading to increased phosphati-
dylserine exposure. An interesting observation 
was thatin experimental endotoxinemia are not 
observed the exactly same effects as seen in 
sepsis [55]. In sepsis, bacterial virulence fac-
tors, others than neuraminidase were associ-
ated with membrane externalization which is 
intercepted as an erythrocyte senescence sig-
nal in the reticuloendothelial system leading to 
increased eryptosis and RBC clearence, ex-
plaining, in part, sepsis induced anemia [56]. 
Different bacterial compounds like pyocianin 
[48], α-hemolysin [57], listeriolysin [58], pepty-
doglicans [59], lipopetides [60] and sphyngo-
myelinase [61] were associated with membrane 
externalization through exposure and redistri-
bution of phosphatidylserine on the outer RBC 
membrane leaflet. Eryptotic RBCs adhesion is 
increased by bacterial peptidoglycans and it 
seems to follow a CXCL16-dependent fashion 
as it was reported by Abed et al [62]. Qadri et al 
exposed in vitro human RBCs to the virulence 
factor pyocianin released by Pseudomonas 
aeruginosa and reported altered intraerythrocyt-
ic homeostasis of water (dehydration with cell 
shrinkage) and calcium (increased RBC cyto-
solic calcium), increased RBC reactive oxygen 
species (ROS) concentration and increased 
phosphatidylserine redistribution on the outer 
RBC membrane [48]. Pyocianin is redox-active 
metabolite capable of producing ROS and also, 
can inhibit catalase, which, in turn can lead to 
increased hydrogen peroxide levels [9] (it’s ef-
fects are described later in the sepsis induced 
oxidative stress chapter). 

Phosphatidylserine redistribution is 
influenced by other factors too, like altered in-
traerythrocytic calcium homeostasis and sepsis 
induced oxidative stress [9,48,63,64,65,66,67]. 
Calcium is important in regulating RBC mem-
brane phosphatidylserine distribution [63] and 
calcium homeostasis is profoundly disturbed 
in sepsis [64,65]. Oxidative stress imbalances 
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have an important contribution on membrane 
damage too, through lipid peroxidation and 
protein oxidation which determines increased 
RBCs inner leaflet membrane exposure to the 
extracellular space [9,48,66,67]. Eryptosis is 
also associated with increased ceramide forma-
tion in sepsis [68].

Sepsis induces RBC membrane pro
teins alterations
Band 3 protein phosphorylation

Phosphorylation of band 3 protein 
is of importance in sepsis because it plays a 
significant role in intraerythrocytic metabolic 
alterations of glycolysis and oxygen delivery, 
and by extension influences RBC deformabil-
ity (through several mechanisms) and RBC 
NO release behaviour [9,69,70,71,72]. Band 
3 protein phosphorylation and dephosphory-
lation was reported in both in vitro [70,71,72] 
and in vivo [72] studies, using tyrosine kinase 
inhibitors. Recently, Lin et al in a murine cecal 
ligation puncture (CLP) sepsis model reported 
increased cytoplasmic domain of Band 3 pro-
tein (cdB3) proteolysis via Western Blot test-
ing. Furthermore, cdB3 proteolysis was higher 
in mice undergoing severe CLP compared with 
those undergoing sham CLP [73]. Spolarics et 
al [74] and Condon et al [72] observed that band 
3 phosphorylation was associated not only with 
reduced RBC deformability but also with altered 
anion activity.

Band 3 phosphorylation and dephos-
phorylation depends on several intraerytrocytic 
alterations: calcium concentration [75], oxida-
tive damage on RBC membrane [76], low ox-
ygen partial pressure leading to increased de-
oxyhemoglobin levels [77]. These alterations 
are already described in sepsis and can, in part, 
explain this phenomenon. Altered calcium ho-
meostasis in erythrocyte leads to phosphoty-
rosine phosphatase dissociation from band 3 
allowing its phophorylation in a reaction cata-
lyzed by the enzyme phophotyrosine kinaze 
[75]. Band 3 phosphorylation then determines 
increased cytosol concentration of glyceralde-
hyde dehydrogenase, phosphofructokinase and 
aldolase (glycolitic enzymes anteriorly inactive 
and attached to cdb3) and enhanced glycolysis 
[75]. Band 3 phosphorylation is also determined 
by deoxyhemoglobin which through binding to 
cdb3 enhances glycolisis via the same mech-
anism described above [77]. Sepsis hypoxic 
status reduces drastically the hexose mono-
phosphate pathway and further, NADPH con-
centration, which is vital in producing reduc-
tants in order to protect RBCs from oxidative 

damage [78,79]. Thus, ROS produced from the 
increased hemoglobin autooxidation process-
es along with other sources of ROS, in a low 
oxidative defense state, will lead to increased 
glycolysis via hydrogen peroxide [76] in the 
same fashion with calcium and deoxyhemoglo-
bin. Enhanced glycolysis will lead to increased 
ATP efflux [80]. ATP will bind to the P2Y recep-
tors, inducing NO synthesis, which will further 
alter  RBC deformability [81]. Moreover, glyco-
lytic pathway stimulation, decreased levels of 
intraerythrocytic reductants (altered NO-gluta-
thione interaction), band 3 phosphorylation and 
dephosphorylation influences intraerythrocitic 
NO chemical reactions and modifies its bio-
availability and release from RBCs [69]. Finally, 
band 3 protein phoshphorylation in presence of 
high fibrinogen levels determines a higher NO 
release from RBCs [82,83]. 

Piagnerelli et al suggested that mem-
brane protein content alterations are not cor-
related with abnormal RBC rheology seen in 
sepsis [84]. 25 patients were included in study, 
15 with sepsis, 10 non-septic critically ill and 10 
healthy volunteers as control group. No signiffi-
cant differences were observed in protein con-
tent between septic and non-septic patients, but 
in spectrin content between control group and 
non-septic critically ill patients, with decreased 
spectrin levels for the latter. The authors report-
ed decreased levels of band 3, band 4.1 and 
4.2, ankyrin, spectrin and increased band 3/
spectrin, Protein 4.2/band 3 ratios, in all critical-
ly ill patients, but as long as differences between 
the two groups were not found, the authors sug-
gested their conclusion presented earlier. [84]

Altered intraerythrocytic homeostasis
2,3-diphosphoglycerate (2,3-DPG)

The erythrocyte’s fundamental role is 
oxygen delivery from lungs to the tissues by 
binding the oxygen molecule to hemoglobin. 
2,3- DPG represents one of the most important 
organic phosphates in the RBC and is produced 
through the Rapoport-Lubering shuttle – the 
side path of glycolysis taking place in RBC. 2,3 
DPG is an allosteric regulator of hemoglobin and 
has the role of reducing hemoglobin’s affinity for 
oxygen by forming a reversible complex with 
deoxyhemoglobin [9,85]. 2,3-DPG synthesis is 
increased in the presence of hypoxaemia and 
acidemia resulting in right shifting of the oxyhe-
moglobin disociation curve (ODC), decreased 
oxygen affinity to hemoglobin and increased 
release of oxygen to the tissues (Bohr effect). 
Studies results may seem paradoxical as a 
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first face because some of them suggest that 
the RBC ODC is shifted to the left [73,86,87], 
while others suggest both effects [85]. Recent-
ly, Lin et al, reported on a CLP murine sepsis 
model, reduced Bohr effect (increased P50 and 
increased hemoglobin affinity for O2) at 3 dis-
tinct values for pH (7.2, 7.4, 7.6) and reduced 
RBC deformability. Chillar et al [85] observed 
that patients with hypoxaemia but without se-
vere acidemia had increased values of 2,3-
DPG and ODC was shifted to the right, but in 
the presence of severe and persistent acidemia 
and hypoxia, 2,3-DPG synthesis is low, which, 
in turn, gives an opposite of Bohr effect – ODC 
is shifted to the left. Ibrahim et al reported that 
2,3-DPG concentration was correlated with 
acidosis [88], so, we can outline that the most 
important factors influencing 2,3-DPG concen-
tration, ODC shift and P50 rise or fall are the 
value of blood pH and hypoxia. Also, 2,3-DPG 
concentration can be low in the context of hy-
pophosphatemia and 2,3-DPG depleted blood 
transfusions [9]. Having all these results we 
can conclude that ODC shift is not paradoxical, 
but it follows a concentration- and time-depen-
dent fashion (Figure 1), depending mostly on 
pH value and 2,3 DPG concentration. 2,3-DPG 
concentration is important in understanding the 
RBC rheology because a high 2,3-DPG con-
centration can alter RBC membrane mechan-
ical properties [52,53]. Waugh observed that 
in Schindler et al [89] and Sheetz and Casaly 

[90] studies of RBC membrane in the context 
of high 2,3-DPG concentrations was reported 
a destabilizing effect on erythrocyte membrane 
and membrane skeleton. Waugh [52] report-
ed that at high 2,3-DPG concentrations and in 
non-physiologic conditions, there is an increase 
in membrane viscosity due to an increase in cel-
lular hemoglobin concentration (MCHC), which, 
in turn leads to a decrease in membrane shear 
modulus and deformability. Later Suzuki et al. 
reported the same increase in MCHC, which in 
turn, led to an increase in membrane viscosi-
ty and a decrease in RBC deformability. RBC 
deformability greatly improved when MCHC 
was decreased close to normal values, sug-
gesting that RBC reduced deformability is main-
ly influenced by internal viscosity, but also by 
membrane viscoelasticity [53]. Piagnerelli et al 
reported increased RBC 2,3-DPG and lactate 
concentrations in presence of desialyation af-
ter RBCs from septic patients were incubated 
with different neuraminidase concentrations 
[49]. RBC shape transitioned from discocyte to 
spherocyte after at least 10 hours of incubation. 
Furthermore, it was not possible to determine if 
the 2,3-DPG high concentrations modified RBC 
shape, or if RBCs abnormal shape altered gly-
colisis because 2,3-DPG was measured only 
after 10 hours of incubation with neuraminidase 
and past this moment, RBCs shape was already 
changed [49].

Figure 1. 2,3-DPG and ODC trend in relation with blood pH and oxygen partial pressure
Calcium homeostasis
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Calcium homeostasis is profoundly dis-
turbed in septic patients [64]. Totsimon et al re-
ported that hypocalcemia in septic patients can 
predict mortality [7] and Desai et al found that 
septic nonsurvivors had lower plasma calcium 
compared with survivors [65].This alteration is 
observed both in extracellular [65,91] and intra-
cellular [64,92] calcium physiology. Intracellular 
calcium has structural (erythrocyte morphology, 
rheology, adhesion, cellular volume) and bio-
chemical (proteolysis, transglutaminse activity, 
redox status) effects on RBC [9,63]. Intracellu-
lar calcium homeostasis alterations in septic pa-
tients were described for liver cells [93], cardio-
myocytes [94], lymphocytes [95] and of interest 
in this review, eryothrocytes [64,92,96,97]. Ruef 
et al reported increased intraerythrocytic calci-
um concentration and decreased erythrocyte 
deformability after RBCs (from healthy donors) 
were incubated with E. coli lipid A [92]. Erythro-
cyte deformability was found to be inhibited by 
administration of verapamil (a calcium channel 
blocker) and protein kinase inhibitors like stau-
rosporine [92]. Todd and Mollit observed that 
intracellular calcium homeostasis is altered in 
vivo (septic patients) and in vitro (whole blood 
incubated with E. coli endotoxin), respectively 
[64]. They found that increased intraerythrocytic 
calcium levels (as free cytosolic calcium mea-
sured by fluorescent spectroscopy) is specific 
for septic patients. These in vivo results were 
studied also in vitro by incubating whole blood 
(pretreated with dantrolene, or verapamil, or 
ATP and posttreated or not with ATP) with E. 
coli endotoxin in the presence or absence of ex-
tracellular calcium [64]. Todd and Mollit reported 
the same increase in free cytosolic calcium for 
the in vitro experiment and also found out that 
intracellular calcium concentration was not in-
fluenced by pretreatment with verapamil or dan-
trolene (a ryanodine receptor blocker known to 
decrease intracellular calcium), transmembrane 
calcium channels, intracellular calcium deposits 
and extracellular calcium concentration [64]. An 
interesting finding was that pretreatment with 
ATP led to a smaller increase in intraerythrocytic 
calcium and this phenomenon may rise the sus-
picion of an energy deficiency being responsible 
for the cytosolic calcium increase. Nowadays, 
RBCs ATP deficit in sepsis is described through 
many mechanisms we will discuss later and can 
support Todd and Mollit theory.

WBCs modulation and increased oxi-
dative stress role in RBCs intracelluar calcium 
homeostasis was reported by Todd and Mollit 
which incubated anticoagulated whole blood 
samples from healthy donors with LPS and 
observed an increase in erythrocyte cytosolic 

calcium concentration, but this increase was 
dependent on WBCs presence; in absence of 
WBCs this change was not reported [98]. WBCs 
implication in these findings was demonstrated 
when incubation of whole blood pretreated with 
xanthine oxidase inhibitors (allopurinol), leuko-
cytes modulators (pentoxifylline) and free rad-
ical scavengers (superoxide dismutase) with 
LPS resulted in smaller increases in cytosolic 
calcium concentration [98].

Adenosine triphosphate

In conditions of impaired oxygenation 
as seen in sepsis, erythrocytes are capable of 
releasing vasoactive molecules like nitric oxide, 
nitrosothiols and ATP [99] In conditions of hy-
poxia ATP can be released [100,101] through 
erythrocyte Pannexin-1 channel [9,102]. The 
released ATP binds to P2Y receptors and caus-
es vasodialation [9,29,103,104]. Mathie et al 
reported that nitric oxide hepatic vasodialiton 
was ATP-induced in rabbits perfused in vitro 
with Krebs-Bülbring  buffer via heaptic artery 
and portal vein. The study results suggested 
that ATP binding to P2Y receptors (which are 
abundant in endothelial cells) induces NO and 
causes vasodialation in hepatic artery vascular 
bed. ATP-induced NO release via endothelial 
cells was reported also by Busse et al [105].  
ATP was found to be an important mediator of 
NO release in isolated perfused rabbit lungs 
[107,106] and was reported in dogs models too 
[106]. An interesting and contradictory hypothe-
sis to what was presented until now comes from 
Serroukh et al [?] suggesting that the decreased 
functional capillary density can be caused by an 
ATP-induced vasoconstriction in microvascular 
bed, secondary to increased ATP release from 
abnormal erythrocytes, but further investiga-
tions are needed to establish this theory. 

RBC reduced deformability determines 
ATP release [27,81,106,109] and, in turn, ATP 
deposits are low in sepsis [100,101]. Decreased 
intraerythrocytic ATP impairs PMCA activity 
leading to an increase in intracellular calcium 
and decreased RBC deformability [8]. Bateman 
et al [81] and Rozier et al [110] observed ATP 
release dependent on RBC oxygenation is im-
paired in presence reduced pH (in a 6 h rat hy-
potensive sepsis model) [81] and inhibited, at 
high lactate concentrations, respectively [110].

Another possible mechanism for in-
creased RBC ATP release in sepsis can be re-
lated to pore-forming virulence of some bacte-
ria. Recently, Greve et al, in an in vitro study 
on knock-out mice, reported pore forming in 
RBC membrane and immediate RBC ATP re-
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lease after α-hemolysin is inserted into RBC 
membrane via binding to P2X1 receptors [111]. 
This phenomenon was described in vivo in hu-
mans and is associated with P2X7 receptors 
[112]. Hemolysin E. coli producing strains are 
observed mostly in patients with severe urinary 
tract infections and Greve et al speculated that 
P2X receptor antagonists maybe will be useful 
in urosepsis [111]. Other bacteria can induce 
the same cellular changes as described above: 
Staphylococcus aureus via α-toxin [113] and 
Clostridium perfringens [114] via β-toxin.

Sepsis induced oxidative stress 

Sepsis induced oxidative stress rep-
resents an important area of interest nowadays 
for scientific researchers. Molecular studies 
regarding oxidative stress were eye-opening 
in understanding sepsis pathophysiology and 
a more actual concern for scientists is how we 
can therapeuticaly intervene to correct all these 
imbalances [115]. Sepsis mechanisms are com-
plex and multifactorial leading to a vicious circle 
in which disease creates disease. It’s effects 
are of utter importance in terms of microcir-
culation disturbances and oxygen physiology, 
from uptake and delivery in (normal/abnormal) 
RBCs to (abnormal) utilization and consumption 
in mithocondrion. Several studies emphasize 
the oxidative imbalance in sepsis and critically 
ill patients describing a diminished antioxidant 
activity [9,115-121] and an increased oxidative 
status [1,8,9,115-117,121]. Oxygen physiolo-
gy is altered by transformation of oxygen into 
reactive oxygen species like superoxide (O2

.¯), 
hydroxyl radical (.OH), hydrogen peroxide 
(H2O2), hypoclorus acid (HOCl) and peroxyni-
trite (ONOO¯) [115], oxygen free radicals and 
oxidizing species [9]. In ROS producing and re-
dox homeostasis alteration are implicated many 
factors and of interest are: neutrophils [115, 
122], endothelial cells [9, 115], the erythrocyte 
itself [123] and plasma oxidants (nitric oxide, 
xanthine oxidase, malonyldialdehyde) [9]. 

For this review, ROS and altered re-
dox homeostasis is important because sever-
al studies reported altered RBC deformability 
[124-135] and increased RBC aggregability 
[124,135] both related to oxidative imbalance in 
septic patients. Baskurt et al found that intracel-
lular superoxide anion production is responsible 
for altered RBC deformability and extracellu-
lar superoxide anion increased RBC aggrega-
tion, when RBCs were exposed to this ROS 
[124]. RBC exposure to hydrogen peroxide 
[125,126,132], determines sepctrin-hemoglobin 
cross-linking [126,132] decreased deformability 

[126,132], ekynocytes formation [125,126] and 
increased RBC adhesion [126], while exposure 
of RBCs to lipid peroxidation products like MDA 
determines decreased RBC deformability [67]. 
ROS influence on band 3 phosphorilation was 
already discussed earlier in this review. (see 
band 3 phosphorilation). 

Of importance is also RBCs capacity 
to produce ROS under certain conditions [9]. 
Erythrocyte autooxidation is determined main-
ly by H2O2 and superoxide and is prevented 
by catalase and superoxide dismutase (SOD) 
[136]. The most important factor determining 
RBC autooxidation is superoxide anion produc-
tion [123] and this it’s production is favoured by 
high temperature, low pH, increased 2,3-DPG 
[137,138] and a partial oxygenation of hemoglo-
bin [137]. High temperature as a manifestation 
of systemic inflamation, hypoxia determined by 
microcirculation alteration and abnormal oxy-
gen physiology, low pH and in turn, increased 
2,3-DPG are frequent in sepsis, making RBCs 
more susceptible to autooxidation, mainly in ar-
eas of capillary stopped-flow where oxygen he-
moglobin saturations are lower [81,139]. 

In sepsis, the antioxidant capacity is 
overwhelmed by the excessive oxidative spe-
cies production [115]. This hypothesis is sus-
tained by the studies in which administration of 
antioxidant molecules in septic patients or criti-
cally ill patients improved the outcome [116,121, 
128,140-146]. Administration of N-acetylcys-
teine (NAC) alone was found to transiently im-
prove tissue oxygenation [140,141], increase 
hepatic blood flow and liver function [142], im-
prove static lung compliannce and lower plasma 
IL-8 levels [141] and decrease lipid peroxidation 
with a reduction of organ failure at day 10 [143]. 
Selenium administration alone was found to re-
duce mortality rate by 25%, decrease inflamato-
ry response [144] and reduce the incidence of 
acute kidney injury requiring renal replacement 
therapy [145]. Gadek et al [147] and Pontes-Ar-
ruda et al [148] administered a combination of 
antioxidant molecules (vitamin c, vitamin E, 
β-carotene, selenium) enteraly in aproximate-
ly same concentrations and number of days (4 
days [147] versus 4-7 days [148]). They report-
ed mostly the same results: improved oxygen-
ation, reduced length of ventilatory support and 
ICU stay, less new organ failure [147,148] and 
reduced mortality [148]. The pitfall of this com-
bination of antioxidant molecules is the impos-
sibility of associating the benefits with a single 
or specific molecule, as was reported by Marik 
et al as well [116] who found that co-administra-
tion of vitamin C, thiamine and hydrocortisone 
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prevented organ dysfunction and decreased 
mortality. 

Moreover, several studies reported 
an inversely proportional relationship between 
plasmatic levels of antioxidants and oxidants 
[117,118,120]. Decreased antioxidants like vi-
tamin E [117,118,120], ascorbate [116,117,118], 
β-carotene [117,118] and retinol [117] were 
found in septic patients associating important 
lipid peroxidation activity (increased MDA [118] 
or other evidence supporting lipid peroxidation 
[117]. In support of required proper antioxidant 
levels and in terms of RBC rheology comes ev-
idence suggesting that suplementation in sep-
tic patients with vitamin C improved outcome 
by preventing organ failure [116], determined 
inhibition of erythrocyte destruction through 
eryptosis [146] and vitamin E supplementation 
decreased mortality rate and ameliorated RBC 
deformability [128].

Nitric oxide

NO release and effects in sepsis and 
septic shock were described in several stud-
ies [27,81,149-156]. Under physiologic con-
ditions, NO is synthetised in endothelial cells 
from L-arginine catalyzed by e isoform nitric ox-
ide synthase (eNOS), known also as c isoform 
(constitutive, cNOS) [157]. Produced in small 
amounts, NO is vital in capillary tone regulation 
[8]. Of interest in sepsis, is the i isoforme, which 
is the inducible NOS (iNOS) found to be stimu-
lated excessively in sepsis by different media-
tors like  LPS, cytokines (IL1, IL6, TNF-α, IFNγ) 
and ATP [8,56]. Recently, Takatani et al report-
ed that iNOS is associated with immune cell 
migration and hypothermia in the late phase of 
sepsis [158]. Pentraxin 3 is known to be overex-
pressed in sepsis and septic shock [159] and is 
also thought it can blunt endothelial NO produc-
tion [160]. Another NOS isoform is the neuronal 
isoform (nNOS) thought to take part in SIRS 
pathophysiology [161] and more important, it 
seems to have serious implications in vascular 
alterations seen in sepsis [162] Another import-
ant aspect is gram-positive bacteria possesion 
of bacterial isoform NOS (bNOS) which was re-
ported to have multiple roles: protection against 
oxidative stress, antibiotic resistance and host 
immune response [163,164].  

Hemoglobin and NO interaction is im-
portant in sepsis. NO affinity for hemoglobin is 
high [99] (increased affinity for thiol groups or 
for the iron ion), but NO binding at Hb is de-
pendent on oxygen partial pressure [69, 99]. At 
arterial oxygen partial pressure (high-pressure, 
PaO2) NO and oxy-Hb form S-nitrosohemoglo-

bin (SNO-HBO2) through NO binding at the thiol 
group of cysteine β93 [69], but at low oxygen 
partial pressures (as it happens in sepsis), NO 
interacts with the iron ion binding to it and re-
sulting in nitrosylhemoglobin molecules forma-
tion [165]. In 1996, Jubelin et al [166] suggested 
that erythrocytes can be able to produce NO. In 
2004 Carvalho et al [167] demonstrated in vitro 
NO erythrocyte production using the ampero-
metric method. One year later, Kleinbongard et 
al reported that RBCs posses a functional eNOS 
[168]. Recently, Lin et al in a murine CLP sep-
sis model, reported decreased levels of RBC 
NO content (total RBC NO, FeNO, and SNO 
content) [73]. RBC NO content was measured 
using chemiluminescene and was signifficant-
ly decreased, with lower values in severe CLP 
mice versus sham CLP mice [73]. These results 
can be correlated with Herdade et al observa-
tions on NO efflux behaviour related to acute 
inflamatory phase [169]. The authors created 
an in vivo mice model of acute inflamation by 
injecting platelet-activator factor (PAF) in mice 
scrotum and reported an inversely proportional 
relationship between NO efflux and develop-
ment of acute-phase response, with decreasing 
rates of NO efflux as the inflamatory response 
was developed and approximately normal NO 
values in the recovery phase. An important ob-
servation authors made was that RBC deforma-
bility was not completely recovered and this can 
be, in part, attributed to PAF’s ability to break-
down RBCs sphingomyelin [169].

In sepsis, RBC NO and nitrosothiols 
production and release can be increased via 
band 3 phosphorylation and NO interaction with 
reactive species resulted from hemoglobin au-
tooxidation [69,99]. These mechanisms were 
described in more detail earlier (see Band 3 
phosphorylation). Simplyfied, it’s important to 
keep in mind that NO is released from RBCs 
in conditions of hypoxia, which in sepsis has a 
significant impact on erythrocyte rheology and 
microcirculation [81].

Figure 2 summarizes many of the 
mechanisms presented in this review. 

Abbreviations: superoxide dismutase 
(SOD), catalase (CAT), peroxiredoxin (Prx), 
glutathione peroxidase, vitamin C, E, A (vit. C, 
E, A), NADPH O (NADPH oxidase), xanthine 
oxidase (XO), reactive oxygen species (ROS), 
superoxide (O2

.¯), hydroxyl radical (.OH), hydro-
gen peroxide (H2O2), hypoclorus acid (HOCl) 
and peroxynitrite (ONOO¯), interleukin-1, -6 (IL-
1, -6), lipopolysaccharides (LPS), nitric oxide 
(NO), inducible nitric oxide synthetase (iNOS), 
adenosine triphosphate (ATP), white blood cell 
(WBC), cytoplasmic domain of band 3 (cdB3), 
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phosphatidylserine (PS), purinergic receptors 
(P2YR), glycolytic enzimes (GE), 2,3-diphos-
phoglycerate (2,3-DPG), oxygen partial pres-
sure (pO2), tumor necrosis factor-α (TNF-α), in-
terferon-γ (IFN- γ), deoxygenated haemoglobin 
(DeoxyHb), plasma membrane calcium channel 
(PMCCa2+).

NO role in RBC deformability seen 
in sepsis was reported in several stud-
ies [22,27,69,81,153,169-173]. Petrov et al 
[174,175] reported presence of soluble gua-
nylate cyclase inside erythrocytes and it is 
known that NO action is modulated by gua-
nylate cyclase (sGC). Also, it was observed that 
guanylate cyclase inhibitors like methylene blue 
and ODQ (1H-[1,2,4]oxadizolo-[4,3-a]quinox-
alin-1-one) altered RBC deformability and was 
reversed by NO donors suggesting, sGC is not 
the only mechanism involved in NO induced 
RBC deformability. Moreover, NO and NO me-
tabolites [176-178] alters ion transport across 
erythrocyte membrane via Na+/H+ exchange 
[174,175], Na+/K+-ATP-ase [179], K-Cl cotrans-
port [177,178] Ca2+-ATP-ase [180], leading to 
changes in RBC cytoplasm viscosity [22] and 
band 3 protein activity [69, 72]. Further stud-
ies are needed to completely understand this 
mechanisms. 

Pharmacologic interventions regarding 
modulation of NO activity in sepsis is of great 
concern nowadays. In 1993, Korbut and Gry-
glewski [181], reported decreased RBC (from 
rabbit) deformability in presence of L-NAME 
(N-nitro-L-arginine methylester, a NO synthase 

inhibitor), but increased in the presence of NO 
donors like sodium nitroprusside and sydonimine 
(molsidomine metabolite). Bor-Kucukatay et al 
studied the effects of NOS inhibitors and NO do-
nors on RBC deformability. The authors report-
ed that the nonspecific NOS inhibitors L-NAME 
and SMT can significantly impair RBC deform-
ability but they observed that this phenomenon 
can be reversed using NO donors like SNP 
(sodium nitroprusside) and DETA-NONOate 
(diethylenetriamine) [22]. Bateman et al in a 
peritonitis sepsis rat model demonstrated that 
iNOS inhibitors like aminoguanidine can pre-
vent increased RBC NO levels  and reduced 
deformability [27]. Falkmarken et al studied 
L-NAME, L-canavanine (selective iNOS inhib-
itor) and bosentan (endothelin receptor antag-
onist) effects on hemorheological parameters 
in endotoxemic rats [173]. The authors found 
that L-NAME and L-canavanine ameliorated the 
effects of endotoxin on RBC aggregation, but 
this didn’t happened with bosentan [173]. The 
effects, others than those on RBC rheology, of 
NO oxide production inhibition (using methylen-
eblue, L-NAME and L-NMMA ) in sepsis were 
reported in several studies: increased mean ar-
terial pressure [182-184], increased [Preiser] or 
decreased [Schneider] output, increased vas-
cular tone [182, 185, 186] , decreased cardiac 
index and increased resolution of shock [185, 
186] but, also, an increase in mortality rate was 
reported [182,187]. The increased mortality rate 
was the reason a promising phase III trial was 
stopped. NO donors, like nitroglycerin, effects 

Figure 2. Proposed mechanisms explaining RBC rheology in sepsis and septic shock. 
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in sepsis are not completly elucidated [188]. In-
creases in mortality rate were reported, or no 
effects at all  on microcirculation [189], but, in 
one study authors reported an improvement in 
microcirculation when nitroglycerin was admin-
istered after fluid resuscitation [190]. Actually, 
nitric oxide pharmacologic interventions are 
not included in guidelines because there is no 
strong evidence supporting the use of any of the 
described agents [12].

Conclusions

The erythrocyte is not seen anymore 
only as an oxygen carrier, but also as an oxy-
gen sensor and vasoactive molecules producer, 
playing a key-role in microcirculation alterations 
seen in sepsis and septic shock. RBCs de-
formability and aggregation can be influenced 
through several mechanisms that still need to 
be completely established, but many of them 
seem to be interconnected, to augment or in-
hibit one another, having different trends. In the 
future, RBCs maybe will be possible targets in 
sepsis and septic shock management, but fur-
ther studies are required in order to improve the 
unfavorable outcome and mortality rate seen in 
these patients.
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