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Figure 1: Measure the scenery quality of a tourist spot by analyzing tourists’ visual attention.

Abstract

Travel photos record tourists’ experiences and attentions

when visiting a place. We question if they embed any un-

tapped indices, subconsciously created by the tourists, for

measuring the scenery quality? By analyzing thousands

of such photos and inspired by the psychological theory of

“broaden-and-build”, our study reveals a strong inclination

of taking panoramic photos at high rating outdoor tourist

spots. Thus, this preference can be a supplementary mea-

sure of indexing the scenery quality. However, the task of

recognizing panoramic photos is nontrivial. In this paper,

we propose a visual attention inspired computational model

to address this issue, which mimics human perceptual and

cognitive mechanisms by a focus model and a scale model.

The experiments on a newly created dataset demonstrate

a remarkable performance of our proposal, along with its

effectiveness in measuring scenery quality also verified by

10 high rating outdoor spots and 2 lower rating ones from

across the world.

1. Introduction

Recent years have witnessed a revolution in internet Big-

Data for tourism economics. It has enabled us to accumu-

late massive volumes of travel data from social networking

services (SNSs) and travel guides, and generates valuable

knowledge for tour recommendations [4,18,24,35]. To pro-

vide a precise recommendation to the end users, one impor-

tant task of these online services is to evaluate the “scenery

quality” of each tourist spot. The common methodolo-

gies employ the “rank-by-count” or “rank-by-frequency”

using check-ins, tweets, or GPS traces shared through SNSs

[18,20,22,23,44]. Nevertheless, these methods are arguably

over-optimistic because people often open positive opinions

in their tweets and check-ins but are apt to hide negativities,

and GPS traces are somehow personalized. We question if

there exist any untapped indices that unveil tourists’ sub-

conscious preferences in spite of all disguises?

After browsing thousands of travel photos collected from

both high and lower rating tourist spots, we find a consider-

able inclination of tourists to take more distant/panoramic

view photos at high rating spots, but this preference ap-

pears to be moderate or even going in the reverse direction

at lower rating spots, see Fig. 6. This observation follows

an inspiration from the well-established psychological the-

ory of “broaden-and-build” [16,33,34], where positive emo-

tions instigate a preference to a global visual attention but

negative emotions narrow down the attention. Thus, the rea-

sonable explanation of the observation is that people would

have positive emotions and tend to broaden their attention

when experiencing high quality spots. Transferred into ac-

tion, they could be shooting more distant/panoramic view

photos to record their broader attention for memory [1, 9].
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On the contrary, tourists would focus more on small ele-

ments at the lower rating spots to capture close-up view

photos. In this phenomenon, we consider that a tourist’s

emotion correlates with the user rating at trip recommen-

dation sites (e.g. TripAdvisor) which indicates the scenery

quality of the spot. Thus, evaluating the scenery quality

of an outdoor spot can be partially treated as a problem of

measuring tourists’ attentions at that place, and further sim-

plified as an image classification task of estimating the pro-

portion of those distant/panoramic view photos.

However, images shared by tourists through SNSs have

an extremely wide variety of contexts that greatly challenge

this task. In this work, we follow the basic idea of human

visual system (HVS) and propose a framework consisting a

focus model and a scale model. The focus model is based on

the finding that a large number of professionally shot close-

up view photos adhere to the focus lens model of HVS [41]

where it focuses on the center object (focus) while the sur-

rounding background is blurred (fringe), as shown in Fig.

2(a). To model it, we transform images into a set of dif-

ferent frequency domains, and applied three well accepted

feature descriptors and two codebook approaches, respec-

tively. Afterwards, a support vector machine classifier is

built to find the best domain and feature to represent this

focus model. However, many close-up view photos shot by

low-cost cameras (e.g. smart phones) do not follow the fo-

cus model where entire scene appears sharp, as shown in

Fig. 2(b). Therefore, the scale model is derived from ob-

servers’ ability to differentiate the views by measuring the

size of objects, namely the spatial size (the object size mea-

sured in the photo indicated by the boxes in Fig. 2(b) and

2(c) is bigger than the one in Fig. 2(d)) and conceptual

size (the realistic proportion of the object; a person in Fig.

2(b) is a small object and a building in Fig. 2(c) is a big

object). We measure the spatial size by five variations of

object bounding box proposal methods, whereas, the con-

ceptual size is measured by object recognition (a fine-tuned

CNN). Then, the best combination of box proposal method

and recognition CNN is selected. Finally, both the focus

and the scale models are assembled to form one framework.

To validate the effectiveness of our computational

model, we collected 5050 images from Flickr and ImageNet

including 2452 distant/panoramic view and 2598 close-

up/local view photos. Experiment results showed that our

proposed framework achieves a noticeable improvement

from 84% [39] to 93.17% in overall accuracy (Table 3). Fur-

thermore, we statistically analyze photos taken from 10 high

rating spots and 2 lower rating ones on TripAdvisor. The

result reveals a strong correlation between the viewpoint ra-

tios with the tourists’ ratings of these spots. Particularly,

the ratio approximates 8:2 or 7:31 in favour of panoramic

1Surprisingly, many online tour recommendation articles [15, 26, 37]

subconsciously use this ratio to illustrate nice locations as well.

Figure 2: Image samples. (a) Close-up view with focus and

fringe; (b) All focused close-up view with large spatial but

small conceptual size object; (c) All focused distant view

with large spatial and large conceptual size object; (d) All

focused distant view with small spatial and small concep-

tual size object.

views at high rating spots. We boldly claim this inclination

as a supplementary measure of spot scenery quality estab-

lished on top of the subconscious behavior of tourists due

to the consistency with the psychological studies on visual

attention.

The summary of this work is illustrated in Fig. 1, and the

contributions are threefold.

• We investigate various computational algorithms to build

the HVS inspired focus model and scale model for a re-

liable framework to perform the distant/panoramic view

and close-up/local view classification task.

• We perform a statistical analysis using our proposal on

24K photos taken from a dozen outdoor tourist spots,

and found a strong correlation between the viewpoints

of travel photos with the quality ratings on TripAdvisor.

• We proposed a scenery quality measure based on the

aforementioned analysis with the support from literatures

about the psychology of human visual attention.

2. Related Works

The preference of panoramic views at high rating spots

could be explained by a list of psychological studies on vi-

sual attention. It has been known that the interpreted con-

tent of a scene can be viewed as two levels in the human

perceptual process; that is to say global processing and lo-

cal processing. Navon [27] claimed that human attends to

process global structure of a scene or fine-grained elements

according to varied tasks, however, a global precedence

could presumably hold when both global and local levels

have the same visibility. Other researches further illustrated

that emotions could interact with visual attention and affect

perceptual process [2, 8, 17]. Specifically, Fredrickson et

al. proposed a “broaden-and-build” theory [16]. It shows

that positive emotions broaden (globalize) the scope of at-

tention of the observer and result in processing of a global

picture, while negative emotions correlate with a narrowed
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(localized) attentional focus and induce the processing of

local units of the presented stimuli. Conversely, Nieden-

thal et al. [28] demonstrated that distributed attention leads

to positive emotions and focused attention leads to negative

emotions. These conclusions show that emotional and per-

ceptual processes interact reciprocally [11, 14, 33, 34].

To our best knowledge in computer science, very few

works are aware of this psychological phenomenon and

its potential applications. Only a few researches address

on the problem of camera viewpoint. Zhuang et al. [45]

employed the edge distribution based on an assumption

that panoramic images have gentle contrast throughout the

whole image, but other images do not have. However, the

irregular spatial information would degrade the accuracy.

Torralba et al. [40] investigated the relationship between

the image structure and spectral signatures in frequency do-

main. They proposed an image feature based on discrete

Fourier transform (DFT) for classification. Unfortunately,

DFT can not fully represent the focus attribute of a close-up

view [30].

Our previous work [39] explored the focus cue and scale

cue using the Discrete Wavelet Transform and the Edge

Box, respectively, and achieved a reasonable performance

on a relatively small dataset. Instead, this work investigates

a large variety of methods, and demonstrates a noticeable

improvement from 84% [39] to 93.17% in overall accuracy

on newly created dataset. Moreover, we link the scenery

quality with the preference of photo-taking, and suggest a

supplementary index.

3. The Computational Model

The task of distant/panoramic and close-up/local view

classification is not as simple as it seems due to context vari-

ability. Therefore, we approach the problem based on hu-

man visual perception by investigating a model that closely

resembles the HVS. In psychology, the visual attention op-

eration is described by the focus lens model [41] whereby

it defines the focus, fringe, margin, and size changing. As

shown in Fig. 2(a) the focus is the area central to the vi-

sual field where high-resolution (i.e. sharp) information are

extracted, whereas the fringe is the area surrounding the fo-

cus where low-resolution (i.e. blur) information are derived.

The fringe extends to the margin where the vision field ends,

while the size changing describes the trade-off in the pro-

cessing efficiency when the region of focus varies. The in-

terest point of establishing a computational model that repli-

cates this psychological model, particularly the properties

of focus and fringe, is the ability to understand the view-

point of images for subsequent scenic evaluations.

3.1. Focus Modeling

The focus and fringe properties are found in close-up

view photos, particularly the ones taken by professional

Figure 3: Example of close-up and distant view images

transformed into frequency domains using DWT, NSCT,

and NSST. (Best viewed in color.)

photographers, as a result of the shallow depth-of-field

(DoF) settings in camera lens. Hence, these image prop-

erties can be exploited in the frequency domain where the

high pass subband contains the sharp details of the image,

while the blur and smooth textures are found in the low pass

subband. Figure 3 shows examples of images transformed

to frequency domain, where it is apparent that the low fre-

quency consists mostly of the image background which is

noticeably blurred compared to the grayscale image. On the

other hand, the high frequency decomposition shows sharp

edge details of the image. The discriminating factor is that

the close-up view has high frequency details that are con-

centrated towards the center of the image, whereas the de-

tails of distant view images are scattered.

3.1.1 Frequency Domain and Feature Representation

There are various frequency transformation methods avail-

able such as the Discrete Wavelet Transform (DWT) [30], a

simple, flexible and fast multi-resolution decomposition ap-

proach. Differently, contourlet [7, 10] and shearlet [12, 19]

are more sophisticated methods that can better represent

sharp and blur information. Contourlets and shearlets are

anistropic transformations which give directional sensitiv-

ity that wavelet lacks. The nonsubsampled variant of them,

the Nonsubsampled Contourlet Transform (NSCT) [7] and

the Nonsubsampled Shearlet Transform (NSST) [12], fur-

ther introduces shift invariance by eliminating the down-

sampling and up-sampling.

In our investigation, the high frequency decompositions

of DWT, NSCT, and NSST as shown in Fig. 3 has clear

differences that can influence the classification process. It

can be seen that there are background details “leaked” into

the decomposition of DWT bounded by the red box. But it

is not apparent for the decompositions by NSCT and NSST,

hence are better representations of focus information.

With the established frequency domain to emphasize the

sharpness information of the images, the next step is to ex-

tract features to represent the different views. The multi-

windows based histogram of frequency energy (MWHFE)

[39] approach quantizes the pixel-wise energies in the high
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frequency decompositions. Designed for the high frequency

domain, it captures the spatial distribution of the sharp de-

tails produced by the DWT, NSCT, and NSST, as features.

Additionally, we implement other approaches as com-

parison to investigate the most effective approach for mod-

eling the focus cue. Two notable image feature extrac-

tion methods were tested, namely the Local Binary Pattern

(LBP) [29] and Speeded-up Robust Features (SURF) [3]

that captures texture and edge features respectively. The

texture difference of sharp and blur greatly differ from one

another, hence the LBP is suitable for the classification

task. Conversely, SURF would be able to capture the ap-

parent variations of the edges in center focused close-up

and all focus distant view images. As per convention, the

implementation of local features such as SURF in classi-

fication includes codebook feature quantization, therefore,

we further investigate the effectiveness of different code-

book approaches for our task. The methods we engaged

are the Bag of Visual Words (BoVW) [6] and Fisher Vector

(FV) [31, 32]. A Support Vector Machine (SVM) is chosen

as the focus feature classifier because of its robustness on

binary classification problems.

3.2. Scale Modeling

We found that a large portion of close-up view photos,

which are misclassified as distance view, do not have the

focus and fringe characteristics. Specifically, Fig. 2(b) ap-

pears all focused in whole image, thus, confuses the focus

model for classification. One of the reason for this is due

to the advancement of smart phone technology enabling

many tourists to use the inbuilt compact cameras, which

have large depth-of-field, to take photos while traveling.

Nevertheless, we realize that the distance of objects from

the viewpoint results in different sizes in photos. This is a

crucial characteristic where we can distinguish close-up and

distant view by evaluating the object size in the photo (spa-

tial size) and the object’s realistic scale (conceptual size).

In close-up views, conceptually small objects (i.e. people,

dogs) has large spatial size as shown in Fig. 2(b), while,

these same objects are spatially small in distant views, see

Fig. 2(d). Therefore, measuring the spatial size can be an

indicator of the view type. However, conceptually large ob-

jects (i.e. buildings, mountains) can have big spatial size, as

seen in Fig. 2(c), similar to conceptually small objects in

Fig. 2(b). Such confusion can be eradicated by evaluating

their conceptual sizes.

3.2.1 Spatial and Conceptual Size Evaluation

Object bounding box proposers can be exploited to evaluate

an object’s spatial size without recognizing the exact object

within the image. The spatial size can be approximated ef-

ficiently by checking the size of the proposed object bound-

(a) (b) (c) (d) (e)

Figure 4: Example of bounding box proposed using (a)

Edge Boxes, (b) Adobe Boxes, (c) AdobeBING, (d) RPN

(ZF) and (e) RPN (VGG16). (Top: Close-up view image;

Bottom: Distant view image.)

ing box determined by the corresponding objectness score.

If a high scoring box is found to be smaller than a prede-

termined threshold, the image can be classified as a distant

view, such as Fig. 2(d).

Object proposal algorithms have gained great interest as

a means to speed up object detection tasks into real time

systems. Consequently, many object proposal methods have

been introduced that is constructive for the spatial size eval-

uation task. We look into the Edge Boxes [46], Adobe

Boxes [13], and Region Proposal Network (RPN) [36], each

approach based on different sets of assumptions.

The Edge Boxes proposes object bounding boxes based

on the grouping of edges, and uses the edge content of the

bounding box to compute objectness (likelihood it is an ob-

ject) score. Whereas, the Adobe Boxes uses the collection

of superpixel with high color contrast from the background

as the representation of object parts, named adobes, to lo-

calize objects and the spatial compactness of these adobes

are used to calculate the objectness score. Additionally, the

Adobe Boxes can be used as a refinement for other pro-

posal algorithms, where it is recommended to be used with

the Binarized Normed Gradients (BING) [5]. While BING

is an object proposal algorithm by itself, the given object-

ness scores are biased towards full image, hence, interferes

with the spatial size evaluation. Therefore, the suggested

Adobe refined BING (AdobeBING) is included in the in-

vestigation instead of BING itself. As for RPN, it is a

deep learning approach using fully convolutional network

(FCN), designed for speeding up convolutional neural net-

works (CNN) by sharing the convolution parameters of a

specified object detection network. It is an end-to-end learn-

ing based approach that does not require feature designs

such as edge for Edge Boxes, and superpixels for Adobe

Boxes. As the RPN is detector specific, two variations were

tested, the RPN based on the Zeiler and Fergus’ CNN model

(ZF) [43], and another based on Simonyan and Zisserman’s

CNN model (VGG16) [38]. Although designed to be paired

with CNN object detectors, the RPNs are implemented as a
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standalone object proposer because the identity for the ob-

jects are not necessary for our evaluation, and also to set up

a fair comparison with the other proposal methods.

Figure 4 shows examples of object bounding boxes pro-

posed by the aforementioned methods. Evidently, these

methods give vastly different object focus and box shapes

for the same images. Hence, it is necessary to investigate

the best option for an adequate view classifier.

Please note that the object proposal size evaluation can

only filter out distant views where conceptually small ob-

jects (e.g. people, animals) having small spatial size, such

as Fig. 2(d). However, the cases in Fig. 2(b) - 2(c) must

be handled by another classifier to evaluate the conceptual

size of the object in the proposed bounding boxes, where

large is categorized as distant view, while small as close-up

view. To this end, a generic CNN object classifier is chosen

and fine-tuned into a binary classifier for the final stage of

measuring object conceptual size.

4. Experiments

The experiments of the computational model were con-

ducted using a dataset of close-up/local view and dis-

tant/panoramic view images we have collected from the

Flickr and the ImageNet database. The dataset contains

2598 close-up view images and 2452 distant view images.

This dataset is then divided into subsets for the experi-

ments. The first subset, referred as Set1 henceforth, con-

sists of 1522 close-up images that has the focus and fringe

attribute and 1315 randomly selected distant view images.

1000 images from each class of Set1 were set aside to ex-

tract features and train the SVM for the focus model while

the leftover 522 close-up view and 315 distant view images

were for testing. The remaining 1076 all focus close-up

view and 1137 distant view images of the dataset make up

Set2, where 800 images from each class were for training,

and the others were the testing images. The scale model’s

CNN classifier for measuring object conceptual size used

the training images of both Set1 and Set2. The experimen-

tation were done in stages according to the focus and scale

modeling.

4.1. Implementation Details

The key components of the focus model are the fre-

quency transformation, feature extraction, codebook gen-

eration, and classification, while the scale model has two

components, the spatial size evaluation based on object pro-

posal methods, and the conceptual size evaluation using a

fine-tuned CNN classifier.

4.1.1 Focus Model

With the exception of the classifier, where the SVM was

used regardless of domain and features, the settings and de-

Domain MWHFE LBP SURF(BoVW) SURF(FV)

Original 51.52% 90.49% 87.65% 94.38%

DWT 75.99% 76.49% 87.83% 87.84%

NSCT-1 75.44% 74.24% 88.78% 89.84%

NSCT-2 74.74% 79.64% 86.19% 92.33%

NSCT-3 70.42% 85.73% 88.57% 93.76%

NSST-1 76.54% 70.08% 89.01% 89.70%

NSST-2 76.92% 73.67% 87.57% 88.53%

NSST-3 73.05% 80.24% 86.17% 91.04%

Table 1: Stage 1 classification results averaged over five

cross-validation by random sub-sampling. (Gray cells show

combinations used in Stage 2 of the experiment.)

(Domain) + (Features)
Accuracy

(Stage1)

Accuracy

(Stage2)
Difference

Original + LBP 90.92% 81.52% -9.40%

NSCT-3 + LBP 83.87% 69.10% -14.77%

NSCT-1 + SURF(BoVW) 90.92% 78.90% -12.02%

Original + SURF(FV) 94.74% 82.00% -12.74%

NSCT-2 + SURF(FV) 93.55% 79.31% -14.24%

NSCT-3 + SURF(FV) 95.10% 80.14% -14.96%

NSST-1 + SURF(FV) 91.16% 77.24% -13.92%

NSST-3 + SURF(FV) 92.71% 78.14% -14.57%

Table 2: Stage 2 classification results and accuracy differ-

ence between the performances in Stage 1 and Stage 2.

tails of the variants tested are as follows:

Frequency transformation. The DWT, NSCT, and NSST

were used to obtain the high frequency details as explained

in Section 3. Both NSCT and NSST are multi level de-

compositions, therefore, we implemented three levels in the

experiments. For the NSCT, the decomposition scale di-

rections used are {1, 2} (NSCT-1), {1, 2, 8} (NSCT-2), and

{1, 2, 8, 16} (NSCT-3), with the ‘9-7’ pyramidal filter and

‘pkva’ ladder directional filter [42]. Whereas the NSST uses

{1, 8} (NSST-1), {1, 8, 16} (NSST-2), and {1, 8, 16, 16}
(NSST-3) decomposition scale directions with the ‘maxflat’

pyramidal filter [25].

Feature Extraction. For the MWHFE, the histogram of en-

ergy is a column-wise summation of the high frequency

map, which generates a 63-dimensions vector. Whereas,

the LBP and SURF are natural image feature extractors that

produce feature representation vectors of 10-dimensions

and 64-dimensions respectively. Additionally, multiscale

grid sampling is adopted in the SURF feature extraction. All

three extractors were applied on the original RGB image,

and the high frequency decompositions of DWT, NSCT, and

NSST for a thorough comparison in the experiments.

Codebook Generation. The codebook generation step is

only used in the classification pipeline using the SURF fea-

tures. Both the vocabulary size for the BoVW and the num-

ber of clusters for the Gaussian Mixture Model (GMM) of

the FV were set to 50.
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Focus model \Proposal Edge Adobe AdobeBING RPN (ZF) RPN (VGG16)

Original+LBP 86.41% 82.21% 89.38% 80.48% 87.17%

NSCT-3+LBP 80.97% 73.45% 88.38% 79.17% 84.97%

NSCT-1+SURF (BoVW) 87.59% 82.00% 92.48% 82.00% 88.83%

Original+SURF (FV) 88.07% 82.97% 92.21% 82.90% 88.69%

NSCT-2+SURF (FV) 87.03% 80.97% 91.79% 81.93% 88.14%

NSCT-3+SURF (FV) 88.07% 82.14% 93.17% 82.83% 89.45%

NSST-1+SURF (FV) 85.59% 79.93% 91.38% 81.17% 87.17%

NSST-3+SURF (FV) 86.90% 80.41% 92.28% 82.21% 88.48%

Table 3: Stage 3 classification results.

Focus model (+ AdobeBING) Original + SURF (FV) NSCT-3 + SURF (FV)

Datasets Actual \Predicted Close-up view Distant view Close-up view Distant view

Stage 1
Close-up view 498 24 492 30

Distant view 20 295 11 304

Stage 2
Close-up view 592 206 550 248

Distant view 55 597 40 612

Stage 3
Close-up view 735 63 782 16

Distant view 110 542 83 569

Table 4: Confusion matrix of focus modeling methods in Stage 1, Stage 2, and combined with AdobeBING and fine-tuned

CNN in Stage 3.

4.1.2 Scale Model

To evaluate the spatial size, the Edge Boxes (EB), Adobe

Boxes (AB), BING refined by Adobe Boxes (AdobeBING),

and the RPNs, ZF and VGG16 were implemented using the

recommended parameters stated in their respective papers

without any retraining of the used models. As detailed in

Section 3.2.1, the spatial size is determined by selecting the

top scoring box proposed by the methods, followed by the

checking of the box area size. If the size is smaller than

the threshold, the image is classified as a distant view, oth-

erwise the area bounded will be used in the conceptual size

classification. The threshold is fixed to be 20% of the image

size. As for the conceptual size classification, the ImageNet

pretrained AlexNet architecture [21] was chosen due to its

simple and relatively small architecture, and its output layer

is fine-tuned by re-mapping each of its 1000 object classes

into either the big or small object class.

4.2. Stage 1: Focus Test

In the first stage of the experiments, the ability of the

frequency domain and feature extraction techniques to dis-

tinguish the close-up image with focus and fringe attribute

from the all focus distant view images were investigated.

Therefore, only Set1 was used, where the 2000 training

images were used to train the SVM classifier and the 522

close-up and 315 distant view testing images for models

verification.

As detailed in Section 4.1, a total of four types of fea-

tures (i.e. MWHFE, LBP, SURF (BoVW), and SURF (FV))

were tested on eight domains (i.e. the original image, DWT,

NSCT-1, NSCT-2, NSCT-3, NSST-1, NSST-2, and NSST-

3). The repeated random sub-sampling validation method

was performed with five repetitions and the averaged per-

formance are shown in Table 1.

We can see that the LBP, SURF(BoVW) and SURF(FV)

perform well with accuracies above 80%, where the

SURF(FV) applied on the original image is the best with

the average accuracy of 94.38%. The MWHFE is the poor-

est performing very likely due to the insufficiency of repre-

sentation by solely relying on the spatial summation of high

frequency signals, as compared to the higher level represen-

tation provided by SURF.

4.3. Stage 2: Mixed Data Test

To verify the robustness of the focus modeling methods,

the testing images in Set2, which contain close-up view im-

ages that have no focus and fringe attribute, are combined

with the testing images of Set1. Therefore, the test data in

this stage consist 798 close-up view and 652 distant view

images in total.

According to the results of stage 1, eight combinations

were selected for the experiment. The selection is made

based on two criteria, (1) classification accuracy is above

90%, or (2) the number of distant views misclassified as

close-up view is among the least. The second criterion is

introduced to identify a model that has a better potential for

improvement in overall performance when the scale model

refines the results. (Further details in Section 4.4). The

grayed cells of Table 1 shows the selected models. Table 2
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Approach [39] Proposed

Datasets Actual \Predicted Close-up view Distant view Close-up view Distant view

Stage 1
Close-up view 354 168 492 30

Distant view 30 285 11 304

Stage 2
Close-up view 395 403 550 248

Distant view 63 589 40 612

Stage 3
Close-up view 683 115 782 16

Distant view 117 535 83 569

Table 5: Confusion matrix of [39] and our proposed method in Stage 1, Stage 2, and Stage 3.

lists their results of testing on Set12 and Set1+Set2. A large

drop, 13.33% on average, can be seen in the performance

of all combinations which is contributed by the addition of

the all focused close-up view images of Set2 into the test.

Thus, it supports the necessity of a scale model for a better

classification.

4.4. Stage 3: Scale Test

Stage 3 is dependent on the results produced by the com-

binations in Stage 2. This is because the scale model serves

as the secondary classifier to address images that do not fit

into the focus model. In other words, the scale model is

used mainly to pick out the close-up view images that were

misclassified by the focus model due to the lack of focus

and fringe attributes.

Hence, from the results of Stage 2, all images that were

classified as distant view by the focus models, regardless if

they are correct or otherwise, are used for this Stage 3 ex-

periment. As described in Section 3.2.1, five object bound-

ing box proposal methods were tested for the spatial size

evaluation with a fine-tuned CNN model for conceptual size

classification. The fine-tuning of the CNN model uses the

training set images of both Set1 and Set2, that are a total of

3600 images.

Table 3 shows the classification results where the best

performing combination is the NSCT-3 domain using SURF

features with FV codebook as the focus model, and the

AdobeBING with CNN classifier as the scale model, at

93.17% accuracy. This is a different outcome comparing

to the observation in Stage 1, where the best performing

model in Stage 1 uses the original image for focus modeling

instead of NSCT-3. Table 4 shows the confusion matrices

of both models for each experiment stage for comparison.

Notably, using the original image in the focus model

contributes to more misclassified distant view in Stage 1

and Stage 2 of the experiment as shown in the dark gray

cells of Table 4. This is the decisive element in determining

the best method because the scale model only handles mis-

classified close-up views, while the incorrectly classified

2All methods in Table 2 are trained and tested on the same image split

for comparison, hence shows a different percentage than the average results

in Table 1

distant views remains. For that reason, the NSCT-3 domain

model is favored even though it performs worse in Stage 2,

because most of them were rectified in Stage 3 as shown in

the light gray cells of Table 4.

4.5. Comparison with State-of-the-art:

Based on above experiments and analyses, NSCT-3 +

SURF(FV) and AdobeBING + CNN are selected as the fi-

nal framework and compared to the proposal by [39] which

uses DWT + MWHFE and EdgeBoxes + CNN. By apply-

ing [39] onto this newly created dataset, its overall accu-

racy is 84%, while our framework achieves 93.17% with

a statistically significant improvement of 9.17%. Table 5

shows detailed comparisons at each stage as highlighted by

the light and dark gray cells where our new method always

outperforms [39]. In the focus test, the NSCT-3 used in

our proposal produces more sophisticated high frequency

signals that preserves object appearance, whereas the DWT

loses much of the details. In scale test, we found that the

bounding box proposed by AdobeBING is more precise,

while EdgeBoxes proposed small boxes that classifies these

images as distant view, subsequently degrading the overall

framework’s performance. For more detailed comparisons,

please refer the Section 1 in the supplementary materia.

5. Verifying the Correlation between Scenery

Quality and View Ratio

Having establish a dependable framework, we investi-

gate real travel photos and assess the potential of measuring

the scenery quality of tourist spots based on view prefer-

ence. The spots were selected based on three criteria: 1)

Popularity: Recommended by top search engines - National

Geographic, Travel + Leisure and TripAdvisor; 2) Objectiv-

ity: Having at least 4000 votes for each spot; 3) Generality:

Evenly located in Asia, Europe, America and Oceania. Af-

ter filtering, the distribution of hundreds of suitable candi-

dates (the green curve) is shown in Fig. 5 that plots scenery

quality rating (provided by TripAdvisor) against the num-

ber of spots having that rating. Based on those available

locations, 12 spots, 10 high rating and 2 low rating, were
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Figure 5: The positions of 12 selected spots on the num-

ber distribution of hundreds suitable spots at varied scenery

quality ratings.

Figure 6: The scenery quality ratings from TripAdvisor.com

and the proportion of distant view photos of 12 selected

spots.

randomly selected as shown in the map of Fig. 1, for veri-

fication. More details can be found in the Section 2 of the

supplementary material.

Then 2000 geo-tagged photos from each of these spots

were downloaded from Flickr according to its geo-location

and a specified radius (e.g. we used a circle zone, center

at the Eiffel Tower with radius of 350 meters). Therefore,

24,000 photos in total were collected from 12 spots, which

were categorized into the distant/panoramic view and close-

up/local view images using our proposed framework. Fig-

ure 6 plots the proportion of distant/panoramic view (bar)

and tourist rating (curve) of each spot. As per our hypoth-

esis, there is a notable trend in the ratio of distant view to

close-up view images. For the 10 high rating spots (above

9.0), there is an approximate ratio of 8 : 2 or 7 : 3, which

is not apparent for low rating spots like The Little Mermaid

and Stonehenge.

The proportion of distant view photos and the user

ratings show a strong correlation with Person coefficient

0.956, which is also the first discovery of tourists’ prefer-

ence of a travel spot reflected in their photo taking habits.

This statistic is a testament that the preference of the im-

age viewpoints (visual attention) is able to bring forward

the subconscious emotions induced by a tourist spot. Even

so, this finding can in fact be explained by an assortment

of human visual psychology literatures about the broaden-

and-build theory [16, 33, 34].

For these reasons, we are convinced both psychologi-

cally and statistically that the emotional state brought by

tourist spots with higher scenery quality is echoed in the

photos taken by the tourists. Hence, we propose the ratio of

distant to close-up view photos as a supplementary measure

of travel locations with good outdoor scenery.

6. Conclusion

In this paper, we transformed the scenery quality evalua-

tion problem into viewpoint classification task based on in-

spiration from the psychology theory of broaden-and-build.

We investigated various computational algorithms to de-

velop a framework that closely emulates the HVS and us-

ing this framework, we statistically analyzed travel photos

from SNSs and found a strong correlation between the ra-

tio of distant and close-up view photos with the rating of

travel locations from TripAdvisor. Based on this statisti-

cal findings, and supported by psychological literatures, we

proposed a distant to close-up view photo ratio as a sup-

plementary scenery quality measure for outdoor travel lo-

cations that can potentially be developed into a full-fledged

travel spot recommendation system.
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