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Abstract. To develop sophisticated database management systems, there is a need 

to incorporate more understanding of the real world in the information that is 

stored in a database. Semantic data models have been developed to try to capture 

some of the meaning, as well as the structure, of data using abstractions such as 

inclusion, aggregation, and association. Besides these well-known relationships, a 

number of additional semantic relationships have been identified by researchers 

in other disciplines such as linguistics, logic, and cognitive psychology. This article 

explores some of the lesser-recognized semantic relationships and discusses both 

how they could be captured, either manually or by using an automated tool, and 

their impact on database design. To demonstrate the feasibility of this research, a 

prototype system for analyzing semantic relationships, called the Semantic Rela- 

tionship Analyzer, is presented. 

Key Words. Database design, entity-relationship model, relational model, seman- 

tic relationships, database design systems. 

1. Introduction 

One advance needed in database management  systems (DBMSs) is the capture of 

some of the semantics of an application for which a database is developed. In 

particular, there is a need within the database community to extend the relational 

model  to accommodate  more real world knowledge (Reiter, 1984). Some initial 

steps have been taken through the incorporation of certain semantic relationships 

into DBMS designs, commonly referred to as data abstractions. 

In general, an abstraction is a simplified description, or specification, of a system 

that emphasizes some of the system's details or properties while suppressing others 

(Shaw, 1984). Various researchers (Brodie, 1984; UUman, 1986; Mattos, 1988) 

have pointed out the benefits of incorporating data abstractions into DBMSs to 

enhance the capabilities of these systems and to capture more of the semantics 

of an application. The most common abstractions are inclusion (subtype-supertype or 
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/s-a), aggregation (component), and association (membership) relationships (Smith 

and Smith, 1977; Blaha et al., 1988; Mattos, 1988; Potter and Kerschberg, 1988; 

Davis and Bonnell, 1989; Mattos and Michels, 1989; Goldstein and Storey, 1991, 

1992). 

1.1 Semantic Relationships 

In addition to the common data abstractions mentioned above, research in linguistics, 

logic, and cognitive psychology has recognized many more semantic relations 1 

(Winston et al., 1987). Landis et al. (1987) divided semantic relationships into 

antonym, synonym, class inclusion, part-whole, and case relationships. Chaffin and 

Herrmann (1988) provided a list of 31 semantic relationships that are broken into 

categories similar to the above. Winston et al. (1987) presented a taxonomy 

of relationships dealing with objects and their components, and other concepts 

related to the part-whole or meronymic relationship. Brachman (1983) analyzed 

different interpretations of the/s-a relationship and Schubert et al. [1983] discussed 

recognition of part-of, color, and time relationships. 

Figure 1 presents a taxonomy of the seven types of semantic relationships 

analyzed here (inclusion, possession, attachment, attribution, antonym, synonym, and 

case). The taxonomy is based on the work of Winston et al. (1987) and Chaffin et 

al. (1988), but is expanded to include the other classes of semantic relationships 

identified by Landis et al. (1987). An interesting feature of the taxonomy is 

that it places the well-known data abstractions within the context of a broader 

set of semantic relationships. In particular, inclusion as found in the database 

literature corresponds to class inclusion in the taxonomy; aggregation corresponds 

to component-object; and association to member-collection. 

The overall objective of this research is to analyze some of the lesser-known 

semantic relationships to understand better how they can be employed to create 

a design that accurately reflects the semantics of an application. The guidelines 

provided for doing so are intended to be useful for both automated database design 

tools and human database designers. Specifically the objectives are to: 

• Make human designers more aware of the existence and classification of 

various types of semantic relationships and their design implications. 

• Provide heuristics that allow an interactive database design system to use 

what it "knows" about semantic relationships (from the analysis carried out 

in this article) to: 

1. capture more information about a design problem from a user; 

1. Hereafter  referred to as semantic relationships. 
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Figure 1. Semantic relationships 

Semantic Relationships 

I I I I I I 
Inclusion Possession Attachment Attribution Antonyms Synonyms 

I 
I I I 

Class Meronymlc Spatial 

I 
Case 

I I I I I I I 
component member portion stuff phase place feature 

/ / / / / / / 
object collection mass object activity area event 

Based on Landis et al. (1987); Winston et al. (1987); Chaffin et al. (1988). 

2. refine a user's input so that information is obtained that better reflects 

the semantics of the user's application. 

To demonstrate the implications of this research, a prototype system for examin- 

ing semantic relationships, called the Semantic Relationship Analyzer, is presented. 

This article is divided into five sections. The remainder of this section discusses 

database design and automated database design tools. Seven categories of semantic 

relationships are presented in Section 2 and their impact on database design is 

analyzed. Have/has relationships, which are often used in data modeling, but which 

can be ambiguous in meaning, are discussed in Section 3. The Semantic Relationship 

Analyzer is presented in Section 4. Section 5 summarizes and concludes the article. 

1.2 Database Design 

Database design can be defined as the process of capturing the relevant information 

and processing requirements of an enterprise and mapping them onto an underlying 

DBMS (Dogac et al., 1989). This design process is often thought of in four stages. 

During the requirements analysis phase, an analysis is made of the information needs 

within an organization, resulting in a preliminary specification of the information 

needs of various user groups. Conceptual design models and represents the users' and 

applications' views of information and, possibly, a specification of the processing 

or use of the information in a manner that supports, for example, the Entity- 
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Relationship (E-R) (Chen, 1976) or some other semantic data model. During the 

logical design phase, a logical schema (or design) that corresponds to the data model 

of the chosen DBMS is produced; for example, a relational data model. Finally, 

physical design transforms the logical data model design into a form that is suitable 

for the given hardware and DBMS. 

The focus of this research is on identifying semantic relationships in the concep- 

tual design phase and determining how they should be transformed into a logical 

design. This is illustrated in terms of the E-R model, which is well-known as 

an effective conceptual modeling tool (Tauzovich, 1989), and its translation into a 

relational model which has become widely accepted as an implementation model. 

The semantic relationships discussed in this article are binary ones. In a 

relationship, A verbphrase B, the min/max cardinalities (Tsichritzis and Lochovsky, 

1982) represent the minimum and maximum number of occurrences of the entity 

type, B, that can exist for each occurrence of the entity type, A, and vice versa. 

Consider, for example: 

Company employs Employees 
(1,*) (1,1) 

This relationship is interpreted to mean that each company employs between one 

and many (*) employees; each employee is employed by one and only one company. 

In general, when an entity-relationship model is converted to a relational model, 

each entity becomes a separate entity relation (Teorey et al., 1986) that looks exactly 

the same as the entity (i.e., it has the same key and non-key attributes.) This entity 

relation may then be modified if a relationship is represented by adding another 

entity type's key to it as a foreign key. Teorey et al. (1986) refer to this modified 

entity relation as an extended entity relation. Alternatively, a relationship may be 

represented by creating a separate relationship relation whose key is the concatenation 

of the keys of the involved entity types and whose non-keys are the relationship's 

attributes. In general, when the min/max cardinalities of one entity type are (1,1) 

in a relationship, the key of the other entity type is added as a foreign key to the 

entity type with the (1,1) cardinalities. All other relationships are many-to-many 

and are represented as separate relations. Furthermore, it is the many-to-many 

relationships that can have relationship attributes. 2 Thus, the cardinalities are most 

important because they dictate how best to represent a (semantic) relationship in 

a relational data model. 

The conceptual results of this research should also be applicable to the emerging 

object-oriented systems (Kim, 1990). This is because, given an entity-relationship 

model, an entity would become an object in an object-oriented system (with infor- 

mation provided on its behavior). A relationship could correspond to an aggregate 

2. For further discussion on database design, see Elmasri and Navathe (1989), Storey (1988, 1991a), Storey 

and Goldstein (1988), and Teorey et al. (1986). 
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object (e.g., Assignment can be thought of as an aggregate of Project and Employee) 
or an attribute (e.g., Employee has Name). 

Recently, a number of systems have been developed that attempt to automate 

the database design process, among which are SECSI (Systrme en Conception 

de Systrme d'Informations; Bouzeghoub et al., 1985); the View Creation System 

(Storey, 1988; Storey and Goldstein, 1988; 1990a; 1990b; AVIS (Automated View 

Integration System; Wagner, 1989); OICSI (Rolland and Proix, 1986; Cauvet et 

al., 1988; Proix and Rolland, 1988); and CARS (Computer Aided Requirements 

Synthesis; Demo and Tilli, 1986). 3 Some of these systems rely on the user (who 

may or may not be a database design expert) to identify and provide, as input, the 

relationships that one would find, for example, in an entity-relationship model of 

the user's application. Most of the systems deal with the input on a syntactical basis 

only; that is, they simply treat the names of the entity types and verbs that appear 

in relationships as strings of characters. They do not have sophisticated means for 

capturing much information about an application beyond that provided by the user. 

There are various ways in which information about semantic relationships could 

aid an automated tool for database design. First, many database design tools are 

interactive where the user is either a database designer or, possibly, an end-user. If a 

user were to provide, as input, a (semantic) relationship of the form, A verbphrase B, 
a database design system could "understand" the design impact of the relationship 

and make inferences about it. This is easily demonstrated by the well-known class 

inclusion or/s-a relationship. If a user indicates that Managers are Employees, for 

example, then a system could automatically delete from Manager any (non-key) 

attributes that are found in Employee because Manager could "inherit" them from 

Employee. This minimizes redundancy that might appear in the design. Similarly, if 

the user provides, as input, the three relationships, Foreman is-a Manager, Manager 
is-an Employee, and Foreman is-an Employee, then the system can ignore the latter 

relationship because it is redundant. These types of inferences are possible because 

the semantics of is-a relationships are well-understood. 

Based on what a system "knows" about semantic relationships (from the analysis 

carried out in this article), it could make certain design decisions. For example, 

if a member-collection relationship (such as Employee member-of Committee) is 

identified, the system could infer that a priori attributes (e.g., "max#") and derived 

attributes (e.g., "average-age") are applicable and prompt the user to provide them. 

Dahlgren (1988) distinguishes between things which are "typical" and "inherent" 

in the real world. Typical things usually take place (e.g., managers usually prepare 

budgets). Inherent properties are always true (e.g., employees have names and 

addresses). One would expect a system with knowledge about the real world to 

"know" these types of things. Some could be captured using case relationships 

3. For an overview of these and others, see Lloyd-Williams (1991); Ram (1989); Storey and Goldstein, in 
press; Storey, 1993, in press). 
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(discussed later). As an extreme situation, suppose that the system had a dictionary 

of semantic relationships that included applications found to be most useful in 

previous design sessions. Then the system could suggest, for example, an Employee 

entity type through which various kinds of employees were related by is-a relationships 

(Manager is-an Employee, Secretmy is-an Employee, etc.). Unfortunately, there are 

not, as yet, adequate capabilities for database design systems to capture such real 

world knowledge (Storey, 1992a). Some work, however, has been carried out. The 

SECSI system (Bouzeghoub, 1985), for example, allows a designer to add some 

domain-specific knowledge. Tauzovich (1989) suggested that learning mechanisms 

for the refinement and customization of the knowledge base of the Modeller system 

would be appropriate. A goal of the 12S system (Kawaguchi et al., 1986) is to 

"learn" information about certain application domains as it is used over time. 

Semantic relationships can be problematic to understand and distinguish among 

(Winston et a1.,1987; Kuczora and Cosby, 1989). Some verb phrases often used in 

expressing relationships between entity types can have many different meanings. A 

database design system could assist a user in determining the best interpretation 

for the application. Some of the most common of these ambiguous relationships 

are discussed later in this article and it is shown how they can be modified to be 

more meaningful. 

2. Analysis of Relationships 

Each of the relationships of the taxonomy presented in Figure 1 is analyzed in this 

section and its database design implications are highlighted. 

2.1 Inclusion 

The inclusion relationship describes situations where one entity type comprises or 

contains other entity types. Winston et al. (1987) identified three different types 

of inclusion: class, meronymic, and spatial. 

2.1.1 Class Inclusion. Class inclusion is the standard subtype/supertype relationship 

that frequently appears in data modeling (Hull and King, 1987; Peckham and 

Maryanski, 1988) and is often expressed as A/s-a B where A is referred to as the 

specific entity type and B the generic entity type (e.g., Manager is-an Employee.) 

Class inclusion is hierarchical and may be expressed as: X's area type ofY,'X's are 

Y's; X is a kind of Y," and X is-a Y (Winston et al., 1987). Examples include Cars are 

a type of Vehicle; Roses are Flowers; Theft is a kind of Crime; and Employee is-a Person. 

Within the database literature, different kinds of inclusion have been distin- 

guished. These are: classification, which relates an entity occurrence to an entity type; 

generalization, in which an entity type is the union of non-overlapping subtypes; spe- 

cialization, which is defined as the inverse of generalization (Codd, 1979; Tsichritzis 

and Lochovsky, 1982; Urban and Delcambre, 1986; Potter and Kerschberg, 1988) 
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and subset hierarchy (Teorey et al., 1986), in which possibly overlapping subtypes 

exist. For example, 1an Ross is-an Engineer is a classification. A generalization hier- 

archy could be defined by the two relationships, Part-Time Employee is-an Employee 

and Full- Time Employee is-an Employee, because Part- Time Employee and Full- Time 

Employee partition the generic entity type Employee. Part- Time Employee is a spe- 

cialization of Employee. 4 The three relationships Full- Time Employee is-an Employee, 

Part-Time Employee is-an Employee, and Secretary is-an Employee form a subset hi- 

erarchy because, obviously, there could be overlap among the specific entity types 

(Part-Time Employee, Full-Time Employee, and Secretary). 

Database Design Implications: Class Inclusion. 

• A class inclusion relationship always has min/max cardinalities: 

Manager is-an Employee 

(1,1) (0,1) 

As previously mentioned, the well-known inheritance principle of is-a rela- 

tionships (Brachman, 1983) states that anything that is true about the generic 

entity type, B, must also be true of the specific entity type, A. Any attributes 

of B, therefore, are also attributable to A (but not necessarily vice versa). 

Similarly, in whichever relationships B can participate, A can participate 

also. Database designers, and therefore database design systems, can take 

advantage of this property by storing common attributes in the entity type at 

the highest level in an is-a hierarchy and allowing the entity types lower in 

the hierarchy to inherit them. Thus, any candidate key of a supertype entity 

can serve as a legitimate candidate key for a subtype entity. 

Relationships of the form Xis-a A and Xis-a B form an/s-a  lattice. Then, 

X can inherit attributes from both A and B. Inheritance conflicts can oc- 

cur if two semantically different attributes of A and B are given the same 

name. Prefixing the attributes by their entity names is one way to help 

overcome such a problem. An is-a lattice can also highlight potential de- 

sign errors. The correct interpretation of the above is that both /s-a re- 

lationships hold simultaneously. If not, then modification to the design is 

required. Consider, for example, the relationships Project-Participant is-an 

Employee and Project-Participant is-a Student. If all Project-Participants are 

not both Employees and Students, then the common attributes of some- 

one (employee or student) who participates in a project can be "abstracted 

4. Note that specialization refers to one/s-a relationship. For example Publication is a generalization of 
Journal-Paper, Book, and Conference-Paper, whereas Book is a specialization of Publication (Peckham and 
Maryanski, 1988, p.155). 
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out" and stored in the entity type Project-Participant. Two additional entity 

types, Employee-Participant and Student-Participant are needed. Then the 

/s-a relationships become Employee-Participant is-an Employee and Employee- 
Participant is-a Project-Participant. Analogous relationships are needed for 

Student-Participant (Goldstein and Storey, 1991; 1992). 

Class inclusion is easily confused with member-collection relationships (as 

well as other meronymic relationships) because both involve membership of 

individuals in a larger set. Meronymic relationships, however, are determined 

on the basis of characteristics that are extrinsic to the individual members 

themselves. Class inclusion is determined by similarity to other members 

based on an intrinsic characteristic (Kuczora and Cosby, 1989). 

Winston et al. (1987) suggested that class inclusion may be distinguished 

from meronymic relationships when expressed as "kind of" versus "part-of." 

One is not inclined to say, for example, that Robin ispart-ofa Bird or Wheel 
is kind-ofa Car. This, then, provides a simple mechanism for a database 

design system to determine if a relationship is best classified as/s-a (class 

inclusion) or part-of (part-whole) without requiring that the user be aware 

of the distinction between the two. 

Chaffin et al. (1988) identified the following four kinds of class inclusion: 

Type Example 

1. Natural Object-Kind 

2. Artifact-Kind 

3. State-Kind 

4. Activity-Kind 

Employee is-a Person 

Microcomputer is-a Computer 

Single kind-of Marital Status 

Consulting kind-of Work 

Both natural object-kind and artifact-kind relationships would be represented 

by two entity types connected by/s-a relationships where all of the design 

implications of/s-a relationships hold. The other two, state-kind and activity- 
kina~ would be best represented by making the state or activity an attribute 

of an appropriate entity type. Then, the kind would be an instantiation of 

that attribute. For example, 'Single" would be a value of the (state) attribute 

"marital-status" and "consulting" a value of the (activity) attribute "work." 

Transitivity properties hold between /s-a and part-of relationships (Evens, 

1988); that is, if Xis-a Y and Zpart-ofy  then Zpart-ofX. If all three 

relationships were to appear in a database design, a system could infer that 

the relationship Zpart-ofX, is redundant and therefore should be deleted. 
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Personal Computer (X) is-a Computer (Y) 

CPU (Z) part-of Computer (Y) 

therefore: 

CPU (Z) part-of Personal Computer (X) 

2.1.2 Meronymic Inclusion. Meronymic (from the Greek word "meros" for part) 

relationships occur between something and its parts (Winston et al., 1987). Seven 

different types of meronymic relationships, based on Storey (1991b), are discussed 

below. 

. Component-Object. The component-object relationship takes place between 

a component and the object of which it is a part (e.g., Engine component-of 
Car). This is the aggregation abstraction in data modeling. An aggregation is 

an abstraction in which a relationship between objects (e.g., an entity type) 

is considered a higher-level object (Smith and Smith, 1977). This makes 

it possible to focus attention on the aggregate while suppressing low-level 

detail. Reservation, for example, can be thought of as an aggregate of Hotel, 
Person, and Date (Smith and Smith, 1977). A component of an aggregate 

can be either: relevant (the component can exist, but is not necessary for 

the aggregate); characteristic (the component is required for the existence of 

the aggregate); or identifying (the component is both required and uniquely 

identifies the aggregate [Dos Santos et al., 1980]). Examples are: 

Relevant: 

Receptionist component-of Company 
(0/1,1) (0,*) 

Characteristic: 

Employee component-of Company 
(0/1,1) (1,*) 

Identifying: 

CEO component-of Company 
(0/1,1) (1,1) 

The minimum cardinality for the part entity type is denoted by 0/1 to in- 

dicate that, in many applications, the part can be considered separate from 

its attachment to the whole. If the part entity type can be considered inde- 

pendently of its attachment to the aggregate (Blaha et al., 1988), then the 

minimum cardinality is 0. If it is only considered with respect to the whole, 

then the minimum cardinality is 1. 

Database Design Implications: Component-Object. The cardinalities for the 

different types of aggregation are (Goldstein and Storey, 1991): 
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. 

. 

Relevant component-of Aggregate 
(-,-) (0, > O) 

Characteristic component-of aggregate 
(- ,-)  ( >  1, > min) 

Identifying component-of aggregate 
(0/1,1) (1, > 1) 

The cardinality expression > min means that the maximum cardinality, as 

always, must be greater than or equal to the minimum cardinality. This 

ensures that nonsensical cardinalities, such as (2,1), are avoided for the 

aggregate. A system could ask the user appropriate questions to determine 

which kind of component exists and then verify that the cardinalities are 

appropriate for that type of component (or vice versa). 

Feature-Event. The Feature part-of Event relationship is exemplified by Trapeze 
Act part-of Circus (Chaffin et al., 1988). Events resemble objects (in component- 

object relationships) in the sense that they have a predetermined structure 

or arrangement of parts. Events differ from objects in that an event may 

have parts (features) that occur at different moments in time, whereas the 

parts of an object typically occur at the same time. 

Demonstration part-of Presentation 
(0,,) (0,,) 

Database Design Implications: Feature-Event. Database management systems 

do not have a special means for representing events. A feature-event re- 

lationship, therefore, should be represented following the normal rules for 

relationship representation (i.e., by a foreign key or by constructing a separate, 

relationship relation). 

Member-Collection. This relationship is the association abstraction (also 

referred to as belongs-to and grouping or partitioning~ Brodie, 1984) where 

a set of members is considered an object in its own right (e.g., Employee 
member-of Committee). It differs from the component-object relationship in 

that it does not assume that the member performs a specific function in the 

collection. 

Database Design Implications: Member-Collection. 

• There are, in general, no restrictions on the cardinalities: A (0,*) 

member-of B (0,*). 

• An association relationship can have both a priori and derived attributes 

(Brodie, 1981). For example, "max-number" is an a priori attribute 
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. 

of Committee whereas "average-age" is a derived attribute. Therefore, 

having established that a relationship is member-collection, a system 

could prompt a user to identify such attributes. 

• Chaffin and Herrmann (1988) identify three subcategories of member- 

collection: (1) member-group (e.g., brother-fraternity, cow-herd); (2) 

member-collection (e.g., tree-forest, ship-fleet, book-library); and (3) 

unit-organization (e.g., delegation-UN, battalion-army, registry-college). 

These do not appear to have any particular design implications, however, 

understanding that there are different categories could help the designer 

to recognize better when a member-collection relationship occurs. 

• Hierarchiesofthisrelationshiparepossible;e.g.,Performancemember-of 
Concert member-of Concert-Series. 

Portion-Mass. In a portion-mass relationship, the part is similar to all other 

parts and to the whole, e.g., Slice part-of Pie. Every portion of a pie is 

"pie" and is similar to each other slice and to the whole pie (Winston et 

al., 1987). This relationship differs from component-object and member- 

collection relationships where the parts may be dissimilar to each other, and 

different from the wholes which they comprise (Kuczora and Cosby, 1989). 

Database Design Implications: Portion-Mass. 

• Many of the properties of the mass are inheritable by the portion. If 

Slice part-of Pie, for example, then "kind of pie," "texture," etc. would 

all be inheritable by Slice; "no. of slices," however, would be an attribute 

of pie only and (in this case) derived directly from its portions. 

• The key of the portion should include the key of the mass. For example, 

Slice would be identified by the pie to which it belongs and the "slice#" 

within that pie. A system could prompt the user to provide both of 

these types of attributes. 

Phase-Activity. The Phase part-ofActivity relationship relates a phase to an 

activity (or process) and is similar to the feature-event relationship, except 

that the phases cannot be separated from the activity (whereas a feature can 

be separated from an event). Examples include: Adolescence part-of Growing 
Up, Paying part-of Shoppin~ and Billing part-of Consulting. 

Database Design Implications: Phase-Activity. Databases do not have any spe- 

cial means for representing activities so this relationship would be represented 

following normal database design principles. For example: 

Billing part-of Consulting 

(1,1) (1,*) 
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This implies that each Billing can be identified uniquely (e.g., by "invoice#"). 

Consulting corresponds to different types of consulting activities (e.g., "market 

research." 

. Place-Area. Aplace-area relationship takes place between an area and special 

places or locations within it; for example, Everglades place in Florida and 

Reception-Areaplace in Office. This is similar to the portion-mass relationship 

except that the parts cannot be separated from the whole. The part (place) 

is similar to the whole (area) as in the portion-mass relationship. 

Database Design Implications: Place-Area. This type of relationship would be 

most significant for geographic databases. 5 One would expect the place and 

area entity types to have attributes in common. For example, Reception-Area 
and Office should both have attributes "rented-by," "#-square-meters," etc. 

However, the values of the attributes might differ. One would certainly expect 

the "#-square-meters" of an Office to be larger than that of its Reception-Area. 

. Stuff-Object. A stuff-object relationship deals with a constituent of an object 

but differs from the component-object relationship in that the stuff cannot 

be physically separated from the object without altering its identity (as a 

component can). Bicycle is-partlyAluminum is a stuff-object relationship 

(Winston et al., 1987). 

Database Design Implications: Stuff-Object. The above relationship could be 

represented by an attribute "metal-made-of" for which a value of "aluminum" 

would appear. 

2.1.3 Identification of Meronymic Relationships. Chaffin et al. (1988) and Winston 

et al. (1987) suggested that the following four dimensions may be used to distinguish 

among meronymic relationships. 

Function--whether the parts are in a specific position with respect to each 

other that supports their functional role with respect to the whole. For 

example, the handle of a cup can only be placed in a limited number of 

positions if it is to function as a handle (Winston et al., 1987). 

• Separable--if the parts can be physically disconnected, in principle, from the 

whole to which they are connected (Winston et al., 1987). 

• Homogeneous--if the parts are similar to each other and to the whole to 

which they belong (Winston et al., 1987). 

5. Evens (1988, p.25) mentioned the transitivity of part-whole relationships in geographical applications. 
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• Contemporaneous--whether the whole has all or most of its parts occurring 

at the same time. 

These dimensions are especially useful when it is difficult to determine the proper 

semantic interpretation of a relationship. Table 1 summarizes these dimensions 

based on Chaffin et al. (1988). The dimensions are given for the part with respect 

to the whole; that is, a part can have a function in the whole, be separable, be 

homogeneous, and/or be contemporaneous. 

2.1.4 Spatial Inclusion. Spatial inclusions describe situations where one object is 

surrounded by another but is not part of the thing that surrounds it; for example: 

Customer is-in Territory 

(1,1) (0,*) 

Database Design Implications: Spatial lnclusion. The significant database implication 

of spatial inclusion is that the included object can not be in more than one of the 

including objects at the same time. Therefore, the maximum cardinality on the 

left-hand side entity type must be 1. 

2.2 Relationships Similar to Meronymic 

Winston et al. (1987) identify other relationships that can easily be confused with 

meronymic relationships. These are possession, attachment, and attribution. 

2.2.1 Possession. This is the ownership relationship. Two initial cases can be 

distinguished as illustrated by the following examples: 

Case 1: 

Person possesses Driver's License 

(0,1) (1,1) 

Case 2: 

Driver possesses Driver's License 

(1,1) (1,1) 

In the first, more general, relationship, possession of a driver's license is optional for 

Person as reflected by the minimum cardinality of 0 for the Person entity type. In the 

second relationship it is, at least in principle, compulsory for a Driver to have a Driver's 

License; in fact, a driver's license is definitional for Driver In both examples, the 

Driver's License uniquely identifies the possessor. In the first, optional relationship 

Person does not uniquely identify License. In the compulsory relationship, however, 

Driver does identify uniquely Driver's License. Because possession is a quasi-legal 

concept, the possessor can only be a person or other entity type with legal standing 

such as a corporation. It is also possible for something to be possessed by more 

than one person (or corporation, etc.). For example: 
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Table 1. Meronymic relationships 

Example 

Relationship 

Component- Computer part-of Office 

Object (0,1) (0,*) 

Feature- Demonstration part-of Presentation 

Event (0,*) (0,*) 

Member- Employee part-of Committee 

Collection (0,*) (1 ,*) 

Portion- Module part-of Program 

Mass (0,*) (1 ,*) 

Phase- Biffing part-of Consulting 

Activity (1,1) (1,*) 

Place- Reception Area part-of Office 

Area (1,1) (0,1) 

Stuff- Metal part-of Desk 

Object 

(Based on Chaffin et al., 1988.) 

Func- 

tion 

V 

Separ- 

able 

Homo- Contemp- 

geneous oraneous 

i 
i 

i - 

Case 3: 

Person possesses House 

(0,,) (0,,) 

This example illustrates that, in general, one cannot automatically assign cardinalities 

to the possession relationship. 

Database Design Implications: Possession. 

• If the thing being possessed is definitional for the possessor, then the minimum 

cardinality of the possessor entity type must be 1. 

• Everything must be possessed by at least one person or thing which would 

imply that the minimum value of the B entity type might be 1. This, however, 

can only be used as a design heuristic because, as illustrated above, a House 

might not be possessed by a person (although it could be by a corporation, 

government body, etc.). Only if the union of all the A's that could possibly 

possess B was considered, could the minimum cardinality of the B entity type 

be 1; for example, Employee (1,*) possesses Benefit (1, *). 
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In the Person possesses Driver's License example (Case 1), the relationship 

would be represented by making the key of Person a foreign key in Driver's 

License. In the second case, both cardinalities are (1,1) so the relationship 

could be represented by making the key of Person a foreign key in Driver's 

License or vice versa (or even both). The actual choice depends on the 

anticipated frequency of use in processing queries against the database. In 

the Person possesses House example (Case 3), the relationship should be 

represented by creating a separate relationship relation, because neither 

entity type has (1,1) min/max cardinalities. These three are shown below, 

illustrating the importance of understanding the semantics of a relationship. 

Person: [SSN, name, address, date-of-birth, phone] 

Driver's License: [LICENSE#, date-issued] 

House: [LOCATION, description] 

Representation in a Relational Database: 

Case 1: 

Driver's License: 

Case 2: 

Driver's License: 

or 

Person: 

Case 3: 

Person-possesses-House: 

[SSN, HOUSE-LOCATION, date-acquired] 

• Possession can easily be confused with attribution; for example, Person pos- 

sesses Name, instead of "name" is an attribute of Person. 

• The possession relationship is often expressed by the verb "has" (Pitha, 1972) 

in which case it may easily be confused with other relationships as discussed 

later in this article. 

[LICENSE#, date-issued, ssn] 

[LICENSE#, date-issued, ssn] 

[SSN, name, address, date-of-birth, phone, license#] 

2.2.2 Attachment. In an attachment relationship, one entity type is connected or 

joined to another: 

Handle attached to Mug 

(1,1) (1,1) 

It is possible to distinguish attachments between an entity type and one of its parts, 

such as Fingers attached to Hand, from attachments between independent entity types 

(Winston et al., 1987). An example of an attachment between independent entity 

types is Modem (0,1) attached to Computer (0,*). 
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Database Design Implications: Attachment. When the attachment is between inde- 

pendent entity types, the minimum cardinality of both entity types must be 0 to 

reflect the fact that either can exist without the other. When one object is a part of 

another object to which it is attached, attachment is equivalent to component-object 

or aggregation; for example, an engine is attached to a car, but it is also part of a 

car. This, then, provides a very simple way for a system to determine, from a user, 

whether a relationship should be attachment or component-object. 

2.2.3 Attribution. Attribution is the relationship between an object and its attribute, 

e.g., Carhas Color. This is the standard attribute association that is found throughout 

the database literature. 6 

Database Design Implications: Attribution. An attribute can be associated with either 

an entity type or a relationship. In a relational data model, attributes appear as 

either key or non-key fields. Confusion may arise when a user provides, as an 

attribute, something that should be a component (Kuczora and Cosby, 1989) or 

some other kind of meronyrnic relationship (e.g., Carhas Color [attribute] versus Car 

has Engine [component]). To test for this, a system should ask the user if color, for 

example, is a characteristic or property of all cars and if it does not have properties 

of its o w n .  7 

2.3 Case Relationships 

Many events in the real world are structured according to scripts or plans (Schank 

and Abelson, 1977; Chaflin et al., 1988) that are used to account for knowledge of the 

everyday world. Such knowledge includes expectations that result from experience 

(Chaffin and Herrmann, 1987) and can be represented by case relationships. This 

type of semantic relationship describes things that are typically true in the real 

world; for example, things that agents use or activities they perform. Sometimes, 

the case relationship is referred to as a "use" relationship (Landis et al., 1987). 

Six different types of case relationships were identified by Chaffin and Herrmann 

(1984). Three involve agents, two involve actions, and one is concerned with invited 

attributes. 

2.3.1 Case Relationships Involving Agents. The three types of relationships in- 

volving agents are agent-action, agent-instrument, and agent-object. Agent-action 

relationships take place between an agent and the action that it usually performs 

(e.g., Consultant performs Consulting and Programmer performs Programming). Agent- 

instrument relationships take place between an agent and the instrument that it uses 

6. Users, however, may have difficulty distinguishing whether something should be classified as an entity, 

attribute, or relationship (Goldstein and Storey, 1990). 

7. Teorey et al. (1986) compiled a set of guidelines for distinguishing whether something should be an entity 

or an attribute. 
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(e.g., Programmer uses Computer and Janitor uses Mop). Agent-object relationships 

take place between the agent and the object that the agent uses or makes (e.g., 

Consultant uses Billing-Rates and Carpenter uses Lumber). 

Database Design Implications: Agent Case Relationships. The agent could be repre- 

sented by an entity type and the action, instrument, and object as attributes of the 

entity type: 

Consultant: [NAME, ..., action-performs, instrument-uses, object-uses] 

There could also be a group of agents represented by one entity type (e.g., a 

group of employees): 

Employee: [TYPE, name, action-performs, instrument-uses, object-uses] 

2.3.2 Case Relationships Involving Actions. The two types of relationships involv- 

ing actions are: (1) action-recipient; and (2) action-instrument. Action-recipient 

relationships take place between the action and the thing that receives that action 

(e.g., Bill-Client and Supervise-Employee). In an entity-relationship model, these 

could be Company bills Client and Manager supervises Employee, respectively (imply- 

ing that more information is needed about the agent who performs the action). 

Action-instrument relationships take place between the action and the instrument 

that is used in that action (e.g., Producing uses Machine, Analyzing uses Program, and 

Computing uses Computer). 

Database Design Implications: Action Case Relationships. These two types of rela- 

tionships could be included in a database design by representing the action as an 

entity type and the recipient and instrument as its attributes: 

Action: [TYPE, recipient, instrument] 

2.3.3 Case Relationships Involving Invited Attributes. An invited attribution rela- 

tionship takes place between a thing (an entity) and an attribute that is likely to 

be associated with it (e.g., Employee is Skilled and Manager is Authoritative). 

Database Design Implications: Invited Attributes. Practically every entity type could 

have an "invited-attribute" that would reflect a typical property of that entity type. 

The attributes would be treated in the standard manner: 

Employee: [EMP#, ..., type-of-skill] 

Occurrences: 

Employee: [13241, ..., computer-skills] 

Employee: [44699, ..., supervision-of-others] 

2.3.4 Discussion: Application of Case Relationships. Case relationships are used 

to represent things that typically occur in an application about agents, objects, 

and properties. In general, there are no special means in database design for 

capturing the case relationships of an application. As illustrated above, however, 
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such relationships can easily be accommodated using a combination of entity types 

and attributes. In their work on the implementation of meronymic relationships, 

Kuczora and Cosby (1989) suggested that understanding semantic relationships is 

important for computer systems with some common-sense reasoning capabilities. If 

a database design system contained such knowledge in the form of case relationships, 

it might be possible for it to generate relationships automatically, possibly subject 

to verification by the user. Ideally, this would address the need to include more 

real-world knowledge in a relational database (Reiter, 1984). For example, a system 

might generate: Employee uses Workstation or Programmer uses Computer. A system 

might also be able to generate some invited (or common) attributes of an entity type. 

Examples include "profit-level" as an attribute of Company and "yrs-experience" as 

an attribute of Employee. These capabilities would be useful because they could 

help to shorten the development time. 

2.4 Antonyms 

Antonyms (opposites) could occur in attributes, entities, or relationships. For 

example, the attribute "work-status" can have only the values "full-time" or "part- 

time." Two entity types will be mutually exclusive if they are antonyms (e.g., 

Male-Employee and Female-Employee). Relationships of the form A verb phrasel B 

and A verb phrase2 B could be expressing information that is opposite in meaning; 

e.g., Borrowers borrow Books and Borrowers return Books. 

Database Design Implications: Antonyms. 

Identifying attribute antonyms involves examining the actual values in a 

database. Integrity constraints are required to ensure that the corresponding 

attribute values are mutually exclusive. These domain or value constraints 

could be identified during the database design process, simply by examining 

typical values of the attributes. 

An integrity constraint is required to ensure that occurrences of opposite 

entity types do not appear simultaneously in a database. For example: a single 

occurrence of Employee cannot be an occurrence of both a Male-Employee 

and a Female-Employee. 

An occurrence of an entity type should not appear in mutually exclusive 

relationships at the same time. Given the relationships, Guest arrives-at Hotel 

and Guest departs Hotel, an occurrence of Guest should not appear in both 

of these relationships (or their relational representations) simultaneously. 

It is possible that only one of two relationships that are antonyms-Passenger 

starts Flight and Passenger ends Flight-is required. As a heuristic, the design 

should be checked to determine whether one or both are necessary. 
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2.5 Synonyms 

As with antonyms, synonyms (same or nearly the same) can occur among attributes, 

entities, or relationships. For example, the attributes "job" and "function" of Em- 

ployee could be synonymous. The entity types Employee and Worker are synonyms. 

Finally, synonymous relationships can often be found by examining sets of relation- 

ships of the form A verbphrasel B and A verbphrase2 B (or B verb phrase2 A), as in 

Professor teaches Course and Course taught-by Professor. 

Database Design Implications: Synonyms. 

• For synonymous attributes, one of the attributes should be deleted from the 

entity type's definition. An automated tool could benefit from a dictionary 

of synonyms which is either built into the system initially, or developed over 

time as the system is applied to different database design problems. 

• When entities are synonyms, one of the entity types should be retained and 

the other deleted. Any relationships in which the name of a synonymous 

entity type appears should be changed to the name of the entity type that 

was retained. Redundant relationships identified in this process should be 

deleted. For example: 

Relationships: 

Employee assigned-to Project 
Worker assigned-to Project 
Project requires Worker 

Become (Employee chosen over Worker): 

Employee assigned-to Project 
Project requires Employee 

• In Example 1 below, the two relationships are synonymous so one should 

be removed. In Example 2, however, the relationships could have different 

meanings so both should be retained. 

Example 1: 

Manager manages Employee 
Manager supervises Employee 

Example 2: 

Employee assigned-to Project 
Project requires Employee 

• Relationships of the form A verbphrase B and C verbphrase B could suggest 

that an is-a relationship is missing. For example, given the relationships: 

Employee assigned-to Project 
Project-Leader assigned-to Project 
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the design needs to be checked to determine if there is a missing relationship; 

in this case, ProJect-Leader is-an Employee is also required. This heuristic stems 

from the fact that a specific entity type in an is-a relationship can inherit the 

relationships in which its corresponding generic entity type occurs. 

2.6 Summary of Classes of Relationships 

The various types of semantic relationships and ways in which they might be identified 

in a real world application are summarized in Table 2. 

3. General Relationships 

Some relationships are very general, leading to ambiguity in a design, particularly, 

have~has relationships of the form A have B or A has B. Although this relationship 

is often used in the entity-relationship model, it can easily be seen to have multiple 

interpretations (Storey, 1988). The verb phase have~has can be used to convey either 

an attribute, or a relationship in which the best interpretation could be almost any of 

the semantic relationships previously discussed. It would, therefore, be beneficial to 

use the interpretation that best reflects the semantics of the application and reserve 

the general form of this relationship for situations where it is not possible to clarify 

the semantics further. Various interpretations and types of difficulties associated 

with the have~has relationship are outlined below. These also illustrate why it is 

important to understand the semantics of an application and the sometimes subtle 

differences among the relationships. 

Part-Whole. Have~has relationships can be used to represent part-whole relationships: 

"X is a meronym (part-whole) of Y if and only if sentences of the form A Yhas 

X's/an X and An X is a part of a Y are normal when the noun phrases an X, a Y 

are interpreted generically" (Cruse, 1986). Thus, it is reasonable to expect that 

a user might express part-whole relationships as have~has relationships: Office has 

Desk versus Desk part-of/component-of Office. Have~has can be used to express other 

types of part-whole relationships. Has can also easily confuse attribution with 

part-whole relationships. For example, the relationships Car has Color, and Car has 

Engine, although of the same format, express an attribute and a component-object 

relationship, respectively (Kuczora and Cosby, 1989). 

Possession and Attribution. The relationships most often associated with have~has 

are those of possession and attribution (Pitha, 1971; 1972). When the correct 

interpretation is attribution, the attribute should be included in the definition of 
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Real world Semantic Database design 

situation relationship implications 

Classes of things Class inclusion Inheritance from 

(is-a relationships, supertype to subtype 

hierarchies, lattices) 

Something along with 

its components, parts 

Meronymic or 

part-whole 

relationships 

Partial inheritance for 

some relationships; 

distinguished by: 

function, separable, 

homogeneous, 

contemporary 

One thing included or Spatial inclusion Maximum cardinality of 

surrounded by another included entity type is 1 

One thing possesses 

or owns another 

One thing connected 

to another 

A property or characteristic 

of something 

Possessor owns 

possesses~has) 

Possession 

Attachment 

Attribute 

Case, antonym, 

and synonym 

relationships 

Typical, opposite, and 

similar relationships 

If possession definitional 

for possessor, then 

minimum cardinality 

of possessor is 1 

When thing attached is also 

a part, this is equivalent 

to aggregation or component] 

object relationship 

Both entity types and 

relationships can have 

attributes 

Case relationships capture 

real-world situations; 

synonyms should be 

removed; antonym sets 

should be checked to 

determine if both are 

needed 
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the corresponding entity type. For the possession interpretation, the relationship 

should be renamed; for example, Company has Assets would be more accurately 

modeled as Company possesses Assets. 

Reversal of Have/Has. Have can often be reversed (Zoeppritz, 1981): 

If: x has daughter y; 

then: y has parent x. 

The database design implication is that a relationship should be examined carefully 

to determine which would be a "more natural" way to express something: 

If: Company has employee Manager; 

then: Manager has employment from Company. 

This could also be captured in an entity-relationship diagram by including the roles 

that the entity types play in a relationship. 

Have/Has versus Is-A. Has can be confused with/s-a (Chaffin and Herrmann, 1988). 

Is can be used to express class inclusion, synonym, attribution, and stuff relationships. 

These relationships are organized in a hierarchical fashion. Has can be used to express 

belongs-to and some part-whole relationships. The has relationship, however, is not 

organized in a strictly hierarchical fashion. For example, a phase-activity relationship 

can be expressed bypart-of, but not by has. A collection-member relationship can be 

expressed by both belongs-to and part-of Being aware of this hierarchical distinction 

can help to determine which interpretation is appropriate. Is and have relationships 

are compared in Figure 2 (Chaffin and Herrmann, 1988), where the non-hierarchical 

feature is indicated by a dashed line. 

Others. Have~has can be used to express a variety of other (semantic) relationships 

including belongs-to (Chaffin and Herrmann, 1988), inherited, introduced, and 

contains (Maschtera, 1987): 

Interpretation Example 

Inherited Part-Time Employee has (inherits) Employee-Benefits 

(Part-time employees are employees; they 

inherit (some-of) the benefits of employees.) 

Introduced Store has~introduces Fashion-Line 

Belongs-to Committee-Member has (belongs-to) Committee 

(Member-Collection) 

Contains Store has (contains) Merchandise 

There are a number of other interpretations of have~has: hold; retain; possess; 

keep; and maintain (Table 3). Most of the interpretations resemble the possession 
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Figure 2. Two examples of quasi-hierarchical organization of 
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I 
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I 

! 

i 

M e m b e r - C o l l e c t i o n  P h a s e - A c t i v i t y  

FoJest Adol!cence- 
Tree Growing Up 

relationship in the sense that if all of the entity types of the thing that is obligated, 

obtained, shown, etc., are considered, then the minimum cardinality of that entity 

type should be 1. For example, something is not deserved, unless it is deserved by 

at least one person or thing; something is not demonstrated or shown, unless it is 

demonstrated or shown by someone or something. This observation only holds true, 

however, if all of the entity types that could do the deserving, holding, demonstrating, 

etc., are considered. Hence, this can only serve as a design heuristic. 

3.1 Discussion 

For database design purposes, the most common interpretations of have~has rela- 

tionships appear to be: possession, attribution, and some part-whole. Obtaining the 

most appropriate interpretation is necessary to determine the correct rain/max car- 

dinalities and, hence, the relationship's proper representation in a relational model. 

At the very minimum, the verb phrase of the relationship should be changed to one 

that reflects most accurately the application. Using a more refined interpretation 

should result in a database that is easier to use. 
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4. The Semantic Relationship Analyzer 

A prototype system, the Semantic Relationship Analyzer, has been developed that 

implements the preceding analysis. 8 The system elicits relationships of the form 

A verb phrase B from a user who is either a database designer or an end-user. 

For each relationship, the Semantic Relationship Analyzer obtains the min/max 

cardinalities and then tries to capture the best interpretation for the relationship. 

For example, because a have~has relationship is ambiguous, the system determines 

whether such a relationship would be better expressed bypart-of or one of the other 

relationships that can easily be confused with have~has. While doing so, it checks 

whether the min/max cardinalities, as provided by the user, are correct, and, modifies 

them according to what it "knows" about the semantics of the relationship. The 

system makes inferences about attributes, keys, integrity constraints, and missing 

relationships and then determines how to represent the relationship in a relational 

model. Synonymous relationships are identified and redundant relationships deleted. 

The final output is a relational model of the user's application. A sample session 

using the prototype system was described by Storey (1992b). 

4.1 Have/Has and Meronymic Relationships 

If the user provides a have~has relationship, the Semantic Relationship Analyzer 

explains that the verb phrase have~has is subject to multiple interpretations and starts 

to refine the relationship by asking the user if it can be expressed using part-of. If 

so, the system proceeds to find the best interpretation of part-of. It may also check 

if have~has has been confused with is-a (by asking the user). 

System: 

User: 

System: 

User: 

Enter next relationship. 

office has supplies ... 

Is it correct to say that: 

"supplies" is part of "office"? 

yes 

If the user does not believe that the relationship can be expressed using part-of, the 

system simply displays all of the possible interpretations of have~has (possession, 

attribution, different kinds of, part-of, etc.) and asks the user to identify which one 

is a suitable interpretation. If the user indicates that none of the interpretations is 

appropriate, the relationship remains unchanged. 

A part-of relationship is either provided directly by the user or obtained as a 

result of refining a have~has relationship. The Semantic Relationship Analyzer tries 

to determine the most appropriate interpretation of part-of by leading the user 

through a series of questions that are designed to be easy for the user to understand 

8. The system is written in Arity Prolog and runs on a PC. 
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Table 3. Have/Has Interpretations 

Interpretation 

Obligation 

Example 

Buyer has-to Pay 

(0,*) (1,1) 

Seller has-to Deliver 

(0,,) (1,,) 
Obtain, receive Company has Permit 

(0,,) (1,,) 
Feature Product has Features 

(0,*) (1,*) 

Show/Demonstrate Employeee has Skill 

(1,*) (1,*) 

Deserve Student has Degree 

(0,*) (1,1) 

Hold Employee has Shares 

(0,,) (0,1) 

Retain/Keep Company has Experts 

(0,*) (1,1) 

Maintain Company has Records 

(1,*) (1,1) 

Employee has Contacts 

(0,*) (1,*) 

and respond to. Relationships that can easily be confused with part-of are also 

included in this process. 

System: "supplies part-of office" 

Is "supplies" something that an office possesses? ... 

The order in which the system asks the user questions about the various possible 

interpretations of a relationship was carefully chosen to minimize the amount of 

confusion that might exist for the user. The system does so by trying to deal with 

the interpretations that could be the greatest source of confusion first. 

If the system cannot classify a part-of relationship, it asks the user specific 

questions to determine the relationship's characteristics. It then compares them 

to those given in Table 1 and, from this, suggests what the most appropriate 

interpretation might be. 
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System: "reception-area part-of office" 

Does the "reception-area" need to be 

in a particular place (location) or 

occur at a special time in order to support 

a particular function that it plays in the office? 

User: n o . . .  

(The system determines that a reception-area is homogeneous 

and contemporary with the office and, therefore, this is a 

place-area relationship) 

4.2 Min/Max Carflinalities 

When a relationship is identified by a user, the system obtains an initial set of 

min/max cardinalities by asking the user to select appropriate values for the number 

of occurrences of one entity type that could appear for each occurrence of the 

other. This is done by displaying a menu of possibilities and does not require the 

user to understand the concept of a cardinality. 

System: "employee part-of committee" 

How many occurrences of "committee" 

are there for each occurrence of "employee"? 

a. Exactly one. 

b. At most one. 

c. At least one. 

d. Any number. 

e. Do not know. 

User: d. 

(From this the system infers that the min/max 

cardinalities for employee are (0, .)  and asks 

a similar question for committee.) 

Then, when the system is attempting to determine the correct interpretation of a 

relationship, it tries to ascertain whether the min/max cardinalities that it obtained 

initially, were, indeed, the most appropriate ones (based on what it "knows" about 

the semantic relationship). If not, the system changes the cardinalities to correctly 

reflect the application. To illustrate, if the system establishes that a relationship 

is best interpreted as possession, it asks the user if the thing being possessed is 

definitional for the possessor. If, in the relationship Employee possesses Skills, it is 

assumed that possession of a skill is required to be an employee, then the minimum 

cardinality of Employee must be 1. If it is not, the system informs the user of the 

error and corrects it. 
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4.3 Inferences 

The Semantic Relationship Analyzer tries to make inferences about attributes, keys, 

integrity constraints, and missing relationships. It does so to ensure that the design 

is complete and to detect errors in the user's input. For example, when a member- 

collection, or association, relationship is identified, the system elicits derived and 

a priori attributes and includes them in the final design. For Employee member-of 
Committee, the system might determine that an a priori attribute is "max-number" 

whereas derived attributes are "average-age" and "no-managers." 

The system obtains key attributes forportion-mass and/s-a relationships because 

it can make certain inferences about keys for these types of relationships. For 

portion-mass relationships, the system "knows" that the key of the portion (e.g., 

Module) should include the key of its mass (e.g., Program. The key of module 

is [PROGRAM#, MODULE#]).  For /s-a relationships, the key of the specific 

entity type can adopt the key of the generic entity type (e.g., because Manager is-an 
Employee, [EMP#] can serve as a key for both.) 

The system includes, in its output, integrity constraints from spatial inclusion 

relationships, and relevant, characteristic, and identifying components of component- 

object relationships. For example, an integrity constraint from a spatial inclusion 

relationship could be: There is at most one "territory" for each "customer." It 

would be possible, of course, for the system to list all of the restrictions imposed 

by the min/max cardinalities as integrity constraints. 

There are several ways in which the system checks for missing relationships. 

When a component-object relationship is identified, the system suggests that the 

user might wish to provide relevant, characteristic, and identifying relationships. 

For example, given that an Office-manager is a relevant component of an Office, 
the user is prompted to provide Secretary and CEO as characteristic and identify- 

ing components, respectively. When an attachment relationship, such as Modem 
attached-to Computer is identified, the system checks if Modem and Computer might 

be components of something else; in this case, Workstation. When checking for 

synonymous relationships, the system also checks for missing is-a relationships. For 

example, given the relationships Managerassigned-to Projects and Employee assigned- 
to Projects, the system checks whether Manager and Employee are synonyms, whether 

one is a subset of the other, or whether they are related in some other way. In this 

case, Manager is-an Employee would be added. 

After all of the relationships have been identified, the Semantic Relationship 

Analyzer checks for patterns of possible synonymous relationships (e.g., Employee 
assigned-to Project and Employee allocated-to Project) and deletes redundant relation- 

ships. If the system knew all of the synonyms of each verb phrase, it would not 

need to query the user about them. Because it does not, it starts to build up a 

table of synonyms which, ideally, could be drawn on during future design sessions. 
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4.4 Output 

The output from the Semantic Relationship Analyzer is a set of relations that 

represents the design of a relational model for the user's application. The relations 

consist of the three types: entity, extended entity, and relationship relations. Any 

attributes that have been identified during the session are included in the output; 

for example, those obtained from attribution relationships such as Employee has 

Name. The name of an entity type concatenated with the suffix "-KEY" is used as 

a surrogate for the key of that entity type (e.g., OFFICE-KEY ). Semantic integrity 

constraints that are identified are also listed (e.g., "There must be a minimum of one 

Secretary for each Company"). 

4.5 Extensions 

There are, obviously, a large number of extensions that could be made to the 

Semantic Relationship Analyzer. First, this system is only a prototype. A better 

user interface is needed; for example, one that employs a menu-driven dialogue. The 

wording of the system's questions is meant to be easy for the user to understand; 

however, because there are subtle differences among some of the relationships, 

further refinement of the system's questions might be useful. For example, should 

the relationship Computer has Modem be interpreted as Modem attached-to Computer 

or Modem component-of Computer? This distinction may be difficult to make. The 

system assumes that the user is able to answer its questions correctly. Heuristics 

could be added that would enable the system to identify where the user either 

makes mistakes or does not answer the system's questions in the most appropriate 

manner. Such heuristics would identify places of possible confusion on the part of 

the user. 

The system does not elicit either entity or relationship attributes. It is assumed 

that this would be done in the main part of any database design system; however, 

this capability could easily be added to the Semantic Relationship Analyzer. The 

system obtains the min/max cardinalities and then uses what it "knows" about certain 

semantic relationships to verify that these cardinalities are correct. Alternatively, 

the system could have been developed so that it carries out whatever analysis it can 

and then uses the results to generate the rain/max cardinalities. The two approaches 

could be tested to determine if one is better (e.g., easier for the user) than the 

other. 

One of the uses of knowledge-based systems is that they are able to provide some 

justification for their responses to the user. More capabilities could be provided 

that would allow the user to ask "why" the system is asking a question. This would 

better enable the user to judge what his or her answer should be before responding 

to a query from the system. 

Only binary relationships are analyzed. Non-binary relationships (for example, 

ternary) should be included, too. Also, case relationships are not incorporated, 

but, as previously discussed, would be useful for a system with some domain- 
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specific knowledge. Similarly, antonyms are not currently handled by the system. 

Domain-specific knowledge could be added that would enable the system to generate 

automatically some relationships that should be true in an application (possibly, 

subject to verification by the user). The various types of relationships discussed in 

this article should capture much of the semantics of an application. Therefore, one 

possibility would be to modify the system so that it retains information about these 

relationships as it moves from one application to another. Such information could 

be built up over time and applied to new design problems. It would, obviously, 

require a great effort to build such a capability into the system. 

Finally, the system could be extended to include the various kinds of /s-a 

relationships previously discussed: generalization and its inverse, specialization, and 

subset hierarchies. 

5. Summary and Conclusions 

Although certain well-known data abstractions are often used in data modeling, 

research in linguistics, logic, and cognitive psychology has identified many more 

semantic relationships. The objective of this article has been to analyze a number of 

these lesser-known relationships in terms of their design implications and ways they 

could be employed by database design systems to capture some of the semantics 

of an application. 

Various classes of semantic relationships are examined: inclusion, possession, 

attachment, attribution, antonyms, synonyms, and case. Have~has relationships, 

which can easily be confused with these, are also discussed. The guidelines that 

result from the analysis include ways to recognize when certain classes of semantic 

relationships exist and how relationships from these classes should be represented in a 

relational data model. The importance of obtaining the correct rain/max cardinalities, 

which can only be done by having a clear understanding of the application (and 

the relationships used to model that application), is highlighted. 

It is shown that the verb phrase, has, can be ambiguous and should be changed 

to one that is more appropriate for the application. In some situations this might 

not have a direct impact on the structure of the final design, but changing the name 

of a relationship to reflect more of the application's semantics should make the 

database easier for the end-user to work with. 

A prototype system, the Semantic Relationship Analyzer, is presented. It 

implements the analysis carried out in this research. The system engages a user in a 

dialogue that elicits the relationships of the user's application. These relationships 

are then analyzed for their most appropriate semantic interpretations. The system's 

capabilities include: correcting erroneous rain/max cardinalities; detecting missing 

relationships; and inferring attributes and integrity constraints. A relational database 

design is obtained as the system's output, which is comprised of a set of relations, 

along with some attributes and semantic integrity constraints. 

It appears that the only way certain semantic relationships (e.g., case relation- 

ships) could be really useful is if they are included in a database design system that 
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contains some real world or domain-specific knowledge. Current systems, unfortu- 

nately, do not have such capabilities, suggesting that further research is required 

in this area. Future research could also examine other semantic relationships from 

research in linguistics, cognitive psychology, and software engineering to determine 

if there are more relationships that could be identified and incorporated into an 

automated tool for database design that has some understanding of real world 

semantics. 

It is hoped that the Semantic Relationship Analyzer, or its knowledge base, 

could eventually be incorporated into a database design system to assist the user 

in providing the best input. Ideally, this would result in more of the semantics of 

the real world being captured in the final design. 
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