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Radiomics is the method of choice for investigating the association between cancer

imaging phenotype, cancer genotype and clinical outcome prediction in the era of

precision medicine. The fast dispersal of this new methodology has benefited from the

existing advances of the core technologies involved in radiomics workflow: image

acquisition, tumor segmentation, feature extraction and machine learning. However,

despite the rapidly increasing body of publications, there is no real clinical use of a

developed radiomics signature so far. Reasons are multifaceted. One of the major

challenges is the lack of reproducibility and generalizability of the reported radiomics

signatures (features and models). Sources of variation exist in each step of the workflow;

some are controllable or can be controlled to certain degrees, while others are

uncontrollable or even unknown. Insufficient transparency in reporting radiomics studies

further prevents translation of the developed radiomics signatures from the bench to the

bedside. This review article first addresses sources of variation, which is illustrated using

demonstrative examples. Then, it reviews a number of published studies and progresses

made to date in the investigation and improvement of feature reproducibility and model

performance. Lastly, it discusses potential strategies and practical considerations to

reduce feature variability and improve the quality of radiomics study. This review focuses

on CT image acquisition, tumor segmentation, quantitative feature extraction, and the

disease of lung cancer.

Keywords: radiomics, lung cancer, reproducibility, variability, CT acquisition, tumor segmentation, feature

extraction, quality control

INTRODUCTION

Radiomics refers to the determination of tumor imaging phenotypes by extracting and analyzing a

large number of quantitative image features, a.k.a. radiomics features (1–3). Unlike molecular- and

tissue-based analyses, radiomics strives to characterize differences in tumor phenotypes based on

non-invasive radiographic images that can be routinely obtained from clinical practice and clinical

trials. Radiomics can capture the heterogeneity of a whole tumor and tumor metastases in multiple

body sites and their surrounding tissues, and it can be used to monitor changes in tumor biology

(e.g., mutation status) over time. Thus, radiomics is promising to be capable of addressing key issues
across the continuum of cancer care.
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The hypothesis underpinning radiomics is that disease

processes, which produce histopathological and genetic

alterations, also manifest in characteristic phenotypes that can

be captured by radiographic images. Qualitative visual

interpretation of CT features has been used by radiologists in

making routine diagnoses for decades, such as lung nodules with
spiculated edges indicating malignancy and an enlarged tumor

size (diameter) post-therapy indicating a worse prognosis for the

treatment. However, the big moment for cancer imaging

phenotype was the 2007 article on the reconstruction of global

gene expression profiles of hepatocellular carcinoma (HCC)

using predefined imaging traits assessed qualitatively by
radiologists on contrast-enhanced CT (CECT) (4). A new

radiogenomic venous invasion scoring system, derived from

three imaging traits (internal arteries, hypodense halos, and

tumor-liver difference) on CECT in HCC, was reported to

serve as a noninvasive imaging biomarker for histological

microvascular invasion, a tissue biomarker associated with
early disease recurrence and poor overall survival (5). While

human eyes have an incredible ability to recognize both local and

global patterns, visual interpretations can be subjective and

prone to variation especially when evaluating subtle

differences. Radiomics can objectively discern clinically

relevant information that human eyes cannot even perceive.

Indeed, a fast-growing literature shows the great promise of
radiomics signatures (radiomics features and models) as a

“virtual biopsy” to assist in cancer diagnosis and prognosis,

treatment plan, patient stratification, and assessment of tumor

response to therapy. The current status of CT-based radiomics in

lung cancer has been well summarized in a recent collection of

review articles [e.g., (6–17)].

Radiomics features are well defined, and some are even

intuitive (in line with expert radiologists’ visual interpretation).

Radiomics analysis is a favorable approach for studying tumor

imaging phenotypes because performing it requires a relatively
small number of patients to train models compared to

convolutional neural networks (CNNs), and sometimes it

yields explainable analysis results as well. However, multiple

sources of variation in every step of the radiomics workflow

create an intrinsic methodological weakness that has been

recognized since the earliest days of radiomics analysis (18, 19)
(Figure 1). For instance, radiomics features can be sensitive to

heterogeneous image acquisition settings (scanners, scanning

techniques, and reconstruction parameters). Unknown ground

truth of tumor boundaries can introduce uncertainty into

features derived from segmented tumors. Despite an explosive

increase in the radiomics literature, this research frequently fails
to adequately consider sources of variation and reports isolated

results not validated by replication in external data sets (20). The

resulting concerns about rigor and reproducibility slow the pace

of innovation in radiomics and limit its translational potential.

Recognizing the need to evaluate the scientific merit and

clinical utility of radiomics studies, a group of scientists proposed

a radiomics quality score (RQS) in 2017 (21) which evaluates a
set of essential components in the radiomics workflow, starting

with the quality of image protocol and ending with the

availability of open science and data. A maximum of 36

possible points is awarded by scoring each component’s

FIGURE 1 | Radiomics workflow, along with sources of variation and potential strategies to reduce feature variability.
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accordance to the suggested guidelines, with more important

aspects earning more points. While the RQS is not perfect, it does

establish a set of practices that can facilitate clinical translation of

radiomics research. It also highlights the weakness of the current

literature: the mean RQS scores of published radiomics studies

are low (<10 points) (22, 23), indicating inadequate
scientific quality.

The quality of radiomics studies has recently improved

thanks to community-wide efforts to explore and reduce

variability in medical imaging and to promote the translation

of quantitative imaging biomarkers into clinical practice and

clinical trials (24–27) (Figure 2). Figures 2A, B are drawn based
on a research team’s recent literature search for the CT-based

radiomics studies in lung cancer (6), which we supplemented

with studies published as of July, 2020 as well as information

about imaging parameters (slice thickness, reconstruction

kernel) and segmentation (inter-/intra-variability, software,

result supervised or not) (Table 1 in Supplementary

Material). Although previous imaging studies have shown the

effects of slice thickness and reconstruction kernel on computed

features, between ~5% and ~25% of radiomics studies prior to

2020 did not report their study imaging protocols (Figure 2A,

green color). Most of those who reported their imaging protocols

only included the slice thickness information (Figure 2A, blue

color). It is good to see that the trend of reporting both slice
thickness and reconstruction kernel increased from 10% in 2016

to 50% in 2020 (Figure 2A, pinkish-orange color). Nevertheless,

half of the radiomics studies still do not seem to have considered

the effects of reconstruction kernel on radiomics features,

especially texture features. The percentages of studies that

performed imaging test-retest and inter-/intra-segmentation
have been stable over the years, varying between ~20% - 40%

(Figure 2B, gray and yellow colors). All radiomics studies

published in 2019 and 2020 reported human supervision of

tumor segmentation (Figure 2B, green color), an important

step to ensure the accuracy of segmentation, while only ~40%

studies did so in 2016.

A valid quantitative imaging biomarker must be informative,

or sensitive to underlying biology, as well as reproducible and

reliable across various image acquisition settings and

quantitative methods. It is essential to understand and regulate
the sources of variation to ensure that consistent high quality

images can be meaningfully analyzed and biological information

can be reliably extracted by advanced quantitative methods. This

article starts with image acquisition, then considers tumor

segmentation and feature extraction. Readers who are

interested in machine learning for radiomics are referred to
(10, 16, 17). From the point of view of image analysis, in each of

the following sections, it first illustrates how radiomics features

can be affected by various factors using demonstrative examples,

then reviews a number of published studies exploring sources of

variation and offering increased reproducibility of radiomics

features and models. Lastly, it discusses potential strategies and
practical considerations to reduce feature variability and improve

the quality of radiomics studies.

IMAGE ACQUISITION

Radiomics signatures aim to characterize the phenotypes of

tumors and surrounding tissue using radiographic images.

They can be sensitive to image quality governed by image

acquisition settings, or the constellation of factors involved in
acquiring the images, which include (but is not limited to)

scanner equipment, acquisition techniques, reconstruction

parameters, and contrast administration.

Radiomics studies have mostly used retrospective analysis of

imaging data from historical studies and clinical trials that were

not designed for quantitative feature analysis of tumors. Many of

the images studied were acquired in clinical trials to make simple

A B

FIGURE 2 | (A) A trend of radiomics studies reporting image acquisition parameters of slice thickness, reconstruction kernels and both. (B) A trend of radiomics

studies reporting re-imaging, re-segmentation and supervised segmentation. Due to the small number of radiomics studies published in 2014 and 2015, those

studies are excluded from the graphs.
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measurements of tumor diameter on CT images, which did not

demand a high degree of standardization in image acquisition

parameters. Because these datasets are now being radiomically

analyzed retrospectively, and new data sets are being acquired

prospectively, the importance of the degree of variation in CT

acquisition needs to be determined.
Pioneering efforts revealed that imaging variables, such as

repeat CT scans (28), imaging reconstruction slice thicknesses

and kernels (29), and scanners (30), could affect the computed

values of radiomics features. These studies inspired intensive

investigations in feature variability and reproducibility, which

have confirmed the initial findings and extended them to broader
research areas. Investigations on the sources of variation in CT

image acquisition have mainly focused on one or combinations

of the following factors: test-retest (28, 31, 32), vendors’ scanner

(30, 33–36), tube voltage and current (37–41), pitch (36), field of

view/pixel spacing (42–44), reconstruction kernel and slice

thickness (we do not here distinguish between slice thickness
and slice interval, the real physical distance between any two

adjacent images) (29, 31, 38, 39, 45–47), contrast administration

(48–50), and 4D phases (51, 52). In the following subsections, a

number of studies exploring sources of variation in image

acquisition is reviewed, followed by a discussion on potential

strategies and practical considerations to reduce variability in

image acquisition.

In Vivo “Same-Day” Repeat CT Studies
Radiomics features derived from tumor images from two CT

scans performed on the same day or during a short time period

can be different due to factors such as the patient’s relocation,

breath holding, and organ movement, even though no biological

changes would be expected to be discernable during such a short

time period. The reproducibility of radiomics features on repeat
CT scans must be demonstrated in order to establish the

reliability of radiomics models built using these features.

Repeat CT in Lung Cancer
Early radiomics studies already took into account the effects of

repeat CT imaging and re-segmentation on features ’

reproducibility (3, 28, 53), thanks to the availability of The
Reference Image Database to Evaluate Therapy Response’s

Lung CT Collection (RIDER Lung) (54, 55). RIDER Lung is a

unique, publicly available same-day repeat CT image dataset that

allows exploration of the reproducibility of quantitative methods,

including segmentation and feature extraction, for lung cancer

studies. This dataset consists of 31 non-small cell lung cancer

(NSCLC) patients’ repeat CT scan images reconstructed using
1.25 mm slice thickness and the lung kernel. Unfortunately,

RIDER Lung is suboptimal as test-retest for radiomics studies

because CT images in the majority of clinical studies were not

reconstructed using 1.25 mm slice thickness and the lung kernel.

In order to explore reproducibility and variability in

radiomics features due to re-imaging at multiple acquisition
settings with same or different imaging parameters,

investigators published a pilot study on 89 commonly used

radiomics features using same-day repeat CT scan images

reconstructed at six imaging settings/series: a combination of

three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two

reconstruction kernels (lung (L): a sharp kernel; standard (S): a

smooth kernel) (31). These settings cover the CT acquisition

parameters widely used in lung cancer oncology trials and

clinical practice. Figure 3A shows an example of a lung cancer

tumor captured on a CT scan that was reconstructed using six
different imaging settings. Given the same slice thickness, tumor

heterogeneity can be better seen on sharper images than on

smoother ones. The curves beneath the tumor images show the

values of two popular GLCM features, Contrast (Figure 3B, blue

color) and Correlation (Figure 3B, orange color), calculated

under each imaging setting. The bigger the value of Contrast,
the more heterogeneous the tumor. The greater the value of

Correlation, the more homogeneous the tumor. In this example,

the value differences were caused by different imaging

reconstruction parameters, not by the tumor’s underlying

biological effects. The study found that the radiomics features

were generally reproducible when calculated between two repeat
scans reconstructed using the same imaging setting. This is

indicated by quite uniformly bright red areas (high

concordance correlation coefficient (CCC) values) in Figure

4A(a). However, a substantial amount of variability was

observed within the same slice thickness when using standard

or lung reconstruction kernels, generating smooth and sharp

images respectively, as indicated by large dark areas (low CCC
values) mostly centered at the texture features [Figure 4A(b)].

The authors’ conclusion that smooth and sharp reconstructions

should not be treated as interchangeable for radiomics studies

has been confirmed by other independent studies (29, 36, 56).

Repeat CT in Rectal Cancer
RIDER Lung was a very well controlled clinical study in which

the two repeat non-contrast chest CT scans were performed
within 15 minutes using the same imaging protocol on the same

scanner. Other radiomics studies also reported good

reproducibility when testing their quantitative features using

RIDER Lung [e.g., (32, 36)]. However, it is possible that repeat

CT scan images of other organs may cause different magnitudes

of feature reproducibility. A study found much lower feature
reproducibility in rectal cancer than in lung cancer (32). The

investigators collected repeat CT scan images from 40 rectal

cancer patients in a clinical setting; the interval times between

two repeat scans ranged from 5 to 19 days. They reported that

only 9/542 features had CCC >0.85 in rectal cancer, whereas 446/

542 features had higher CCC values for the test-retest analysis of
the RIDER Lung dataset. However, this is not surprising because

the longer interval times between the two repeat scans in the

rectal cancer study, the possible use of different imaging settings

for two repeat scans, and presence of more noise in rectal images

could all contribute to the decreased reproducibility.

Four-Dimensional CT (4D CT)
The same-day repeat CT images in the RIDER Lung collection
were acquired with each patient holding their breath.

Radiotherapy scan images, however, are often acquired under

free breathing of the patients. Respiratory motion can cause

changes in tumor location, volume, shape and intensity (57)
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leading to more uncertainty of target tumors and enlarged

margins in the delineation of the treatment volumes. To

decrease the amount of radiation exposures to healthy tissues,
an emerging modality of gated or 4D CT imaging has been

developed and used in radiation treatment planning (58). During

a thoracic 4D CT study, multiple CT images are acquired over a

period of at least one full respiratory cycle (8 or 10 phases) at
each table position. Moving the table and synchronizing the

A

B

FIGURE 3 | Effects of imaging parameters on radiomics features (A) A lung tumor captured on one CT scan reconstructed at 6 different imaging settings: 1.25 mm

slice thickness with the lung reconstruction algorithm (sharp image) (1.25L) (i) and the standard reconstruction algorithm (smooth image) (1.25S) (ii); 2.5 mm slice

thickness with lung reconstruction (2.5L) (iii) and standard reconstruction (2.5S) (iv); 5 mm slice thickness with lung reconstruction (5L) (v) and standard

reconstruction (5S) (vi) (31). (B) GLCM Contrast (blue color) and Correlation (orange color) features computed at the 6 corresponding imaging reconstruction settings.

The bigger the value of Contrast, the more heterogeneous the tumor. The greater the value of Correlation, the more homogeneous the tumor.

BA

FIGURE 4 | (A) CCC heat map of radiomics features. The CCC (0 to 1) of the studied 89 radiomics features were computed from same-day repeat CT images

reconstructed at (a) six identical imaging settings or (b) three different imaging settings. The brighter the red color, the higher the CCC values (i.e., the more

reproducible) of a feature computed for the repeat scans (31). (B) CCC heat map of 23 non-redundant radiomics feature groups (rows) under 15 inter-setting

comparisons (columns). Columns are arranged in descending order according to the average CCC of the inter-setting comparisons. Rows are arranged in

descending order according to average CCCs of non-redundant feature groups (45).
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scans according to the patient’s air-flow-volume curve, a spatial-

temporal 4D CT dataset can be acquired. After being sorted, the

motion-reduced 3D CT image series acquired at each respiratory

cycle can be generated.

A recent study investigated respiration-related 4D stability of

radiomics features across 8 individual respiratory phases for
NSCLC (59). Eight hundred forty-one features were extracted

from all individual phases of each patient. The relationship

between individual coefficients of variation (COVs) and tumor

motion magnitude was also inspected. The study found that

some features (e.g., skewness, many GLDM features) were

sensitive to respiration, whereas others (e.g., shape related
features, many GLCM features) were not. The study did not

observe a clear trend between the feature stability and the motion

magnitude due to respiration. In the second part of the study, the

value of utilizing 4D stability to preselect radiomics features to

build prognostic prediction models for overall survival in early-

stage NSCLC radiotherapy patients was explored. By comparing
the performance of the models built with and without 4D

stability feature preselection, the study showed an improved

prediction performance with the preselection. Other studies in

radiation oncology also suggested using phase images of already

acquired 4D CT data as an alternative way to determine and

remove unstable radiomics features prior to radiomics model

construction when test-retest images were not available (51,
52, 60).

Radiomics Phantoms
Due to concerns such as radiation dose to patients,

comprehensive investigations of image acquisition’s effects on
radiomics features have to rely on phantom studies. However,

there is a significant disparity between tumor phenotypes that are

seen in patient clinical CT images and traditional physical

phantoms (e.g., simple shape, homogeneous density) (61).

Credence Cartridge Radiomics (CCR) Phantom
A group of medical physicists designed the CCR phantom to

assist in exploring intra- and inter-scanner robustness and
reproducibility of radiomics features (30). The CCR phantom

embraces ten cartridges of an equal size of 10.1×10.1×3.2 cm3,

each filled with different materials in different patterns. The

phantoms were scanned on 17 scanners from the four major CT

vendors at multiple medical centers using their local thoracic

imaging protocols. Both histogram-based and texture features
were extracted using the open source radiomics software package

of IBEX (62). The study results showed that the phantom’s

dynamic density range covered that observed in the tumors

seen in 20 NSCLC patients. The authors noticed that inter-

scan variability of the features varied depending on the feature

itself and the cartridge material. One of the drawbacks of the

CCR phantom is its uniform cartridge shape, which cannot study
radiomics features that describe tumor shape and the

interrelation between tumors and surrounding tissue.

Other studies also used the CCR phantom to explore the

reproducibility and robustness of radiomics features across CT

scanners, scanning techniques, and reconstruction parameters.

An example was to study the effect of CT tube current on

radiomics features. Using the ten cartridges in the CCR

phantom, one study showed no clear effect of tube current on

radiomics features (33). Another study, however, showed that

tube current affected features extracted from homogeneous

materials more than from tumor-like textured phantoms when
splitting 6 cartridges contained in the CCR phantom into two

groups, one filled with homogeneous materials and the other

filled with more tissue-like texture materials (40).

3D Printed Phantoms
Although the CCR phantom has been widely used to investigate

variability in radiomics features across scanners and scanning
parameters, it does not contain lesion shape information, and its

density textures/patterns are not anatomically informed.

Recently, advances in 3D printing technology have made it

possible to design and fabricate synthetic phantoms with

realistic lesion sizes, shapes, intensities and internal textures

while knowing the ground truth of their characteristics.

Using a subset of lung nodules taken from the database of
Lung Image Database Consortium (LIDC), a series of

corresponding virtual nodule models were created using the

investigators’ software and its built-in fitting and texture

modeling routines (63). A multi-material 3D printer then

distributed 2 base materials in the desired proportions

according to the dithered nodule model to achieve lesion sizes,
shapes, and internal density textures similar to those of the real

nodules. The heterogeneous nodule phantoms were imbedded in

an anthropomorphic thoracic phantom and scanned using

different acquisition parameters of dose level, slice thickness,

and reconstruction kernel. The study demonstrated that the

printed textured phantoms can be used to determine the

variability and accuracy of texture features extracted from CT
images acquired at varying imaging settings.

In order to determine robust shape features, researchers used

spherical harmonic functions to create mathematical tumor

models with increasing degrees of complexity/spiculatedness

and printed the models using a single material 3-D printer

(64). They studied the relationship of a set of commonly used
shape features (e.g., Volume, Surface area, Compactness,

Sphericity) with varying degrees of spiculatedness under

different conditions (slice thickness, resampling, and surface

and volume computing algorithms). As expected, they found

that surface-specific features, such as Surface area, were

positively correlated with tumor spiculatedness, whereas global
shape features, such as Compactness, were negatively correlated

with tumor spiculatedness. They also found that the shape

features are less affected by the aforementioned variables and

less dependent to tumor volume.

Efforts Made in Imaging Harmonization
Image acquisition settings can vary considerably in datasets

collected from retrospective or ongoing multi-center studies.
Radiomics signatures that are influenced by variations in the

source imaging settings may assign significance to differences

such as an imaging parameter used to reconstruct images, rather
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than the biologically significant differences in tumor images.

Establishing the consistency of image data is vitally important for

the discovery of robust imaging biomarkers which can be

validated and applied to multi-center clinical trials and clinical

practice. Harmonization of imaging protocols is an effective

approach to reduce imaging-induced variability in radiomics.

Identifying Comparable Imaging Parameters
Different imaging settings can be said to be comparable when

similar feature values can be computed from the images they

produce. An early effort to identify comparable imaging settings

was reported by the team who had contributed the RIDER Lung

dataset. As a subsequent analysis of the same-day repeat CT
study, the investigators used the six-setting CT image data to

assess the feature agreements across the 3 slice thicknesses and 2

reconstruction kernels (45). Three inter-setting comparisons, i.e.,

1.25S vs 2.5S, 1.25L vs 2.5L and 2.5S vs 5S, show high average

CCC values (> 0.8 for all feature groups; bottom row in Figure

4B), indicating that these imaging parameters can be used

interchangeably in radiomics studies. The study also found
that changing slice thickness alone can generate better

agreements, especially when the range of slice thickness is

limited to 1.25mm and 2.5mm. Furthermore, combining

thicker slices with sharper reconstruction algorithms can

have the same effects as combining thinner slices with

smoother reconstruction algorithms for the computation of
radiomics features.

Controlling Imaging Protocols
The team who developed the CCR phantom studied whether a

controlled imaging protocol could reduce variability in radiomics

features (35) by scanning an updated version of the CCR

phantom on 100 scanners using both local and study-specified

CT protocols for chest and head & neck (H&N). The local
imaging protocols were heterogeneous, e.g., the slice thickness

ranged from 1 mm to 5 mm, while the study-specified protocols

were controlled by using comparable imaging parameters across

scanners, e.g., the reconstruction used slice thicknesses of 2.5 mm

or 3 mm and smooth kernels. The size of cylindrical ROIs was

8.2 cm in diameter. The IBEX radiomics package was used to
calculate 49 features including Neighborhood Grey Tone

Difference Matrix (NGTDM) and Grey Level Co-Occurrence

Matrix (GLCM). A linear mixed effects model was used to

determine the overall variability contributed by the

manufacturer, scanner of a given manufacturer, cartridge

material, and residual to the variability in the measurements.

The authors found that, compared to the local chest and H&N
imaging protocols, the controlled protocols could reduce the

overall variability by 57% and 52%, respectively.

Optimal standardization of chest imaging protocol

parameters did not ensure the reproducibility of 27 texture

features from the NGTDM and GLCM families, which were

also computed using the IBEX radiomics package, across three
CT vendor scanners (34) in a study using an anthropomorphic

lung phantom with inserted lesions of different materials that

simulated the attenuation properties of a human tissue. The

imaging parameters were optimally chosen for lung cancer

studies except the reconstruction slice thickness of 5 mm,

which was rather thick for the small phantom lesions that

ranged from 1 cm - 1.5 cm. One limitation of this study, as

discussed by the authors, was the small size of the lesion inserts.

The authors planned to conduct a follow up study to investigate

the impact of ROI size on feature reproducibility, as calculating
texture features such as GLCM from relatively small lesions on

thick slice thickness can be problematic.

It is hard to make a direct comparison between the findings of

these two phantom studies exploring benefits of the imaging

parameter harmonization across CT scanners due to the

differences of the phantoms, image preprocessing, etc.

Converting Imaging Settings to Desired Setting
Artificial intelligence (AI) offers the potential to automatically

harmonize images which were acquired and reconstructed at

different imaging settings. A recent study reported the use of a

CNN to improve the reproducibility of radiomics features

between different reconstruction kernels (soft and sharp) (65).

The investigators developed a CNN architecture using residual
learning and an end-to-end approach. To demonstrate the

effectiveness of this CNN model, a total of 702 radiomics

features were extracted from 104 pulmonary nodules or masses

(all >= 6 mm; 51 non-enhanced and 53 enhanced CTs) using

Pyradiomics (66), an open-source feature extraction package.

The CCCs of the total features extracted from images
reconstructed at the different kernels and the different kernels

after image conversion were 0.38 and 0.84, respectively. Among

the features, the CCCs of the wavelet features increased the most

after the image conversion of the reconstruction kernels. The

authors concluded that CNN-based CT image conversion can

reduce the effect of reconstruction kernels on radiomics features.

Another study showed that CNN-based super-resolution
methods can improve the reproducibility of radiomics features

extracted from CT images reconstructed at different slice

thicknesses (67).

Matching Image Appearance/Quality
Differences in image quality between special vendors’ CT systems

are unavoidable. In addition to the scanner equipment, tube
voltage and current, FOV, slice thickness, and reconstruction

kernels, there are many other acquisition-related “hidden”

factors that may affect image quality. It is impossible to study

all affecting factors, known or unknown, one by one.

An alternative way to reduce feature variability caused by

imaging is to identify the similarity of images acquired at

different settings. Phantom studies can help match image
appearance and thus identify comparable imaging settings

across different vendors’ scanners, scanning techniques and

parameters, etc. (68, 69). For example, by analyzing noise

power spectrum (NPS), a group of medical physicists

conducted a study using the ACR CT phantom to

quantitatively compare noise texture between two CT systems,
GE and Siemens (68). Under a consistent acquisition protocol

(120 kVp, 0.625⁄0.6 mm slice thickness, 250 mAs, and 22 cm field

of view), using filtered back projection and a wide selection of

available reconstruction kernels, a systematic kernel-by-kernel
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comparison was performed. The study found that the GE’s

“Soft,” “Standard,” “Chest,” and “Lung” kernels closely

matched the Siemens’ “B35f,” “B43f,” “B41f,” and “B80f”

kernels, respectively. More research in matching image quality

can be found in (69).

Identifying Images Acquired at Optimal

Phase Timing
Multi-phase CT scans after contrast administration are most

widely used for liver cancer diagnosis, prognosis, and response

assessment. Bolus tracking is used clinically during image

acquisition to control (arterial and portal venous) phase timing
to increase the likelihood of the phase timing being optimal.

However, bolus tracking does not consider individual patient’s

biological variation and thus cannot ensure that the optimal

timing was successfully reached in a given patient. In a pilot

study, investigators explored the effect of portal venous phase

(PVP) timing on the density measurement of liver metastases

(LM) from colorectal cancer (CRC) and found that LM-CRC
density was significantly decreased at non-optimal PVP timing

by 14.8%: 16.7% at early PVP and 12.6% at late PVP (49). The

same group then developed both semi-automated and AI-based

fully-automated programs to identify optimal from non-optimal

PVP timing as well as to differentiate five contrast-enhancement

phases (49, 70, 71). They applied the developed PVP optimal-
timing quality assurance (QA) method to their study developing

an on-treatment signature to detect metastatic CRC patients

sensitive to FOLFIRI+cetuximab using radiomics analysis of

tumor changes between baseline and 8-week CT images. The

radiomics signature showed higher performance on optimal

imaging (AUC=0.80; 95%CI:0.69, 0.94) than on non-optimal
imaging (AUC=0.72; 95%CI:0.59, 0.83) (72).

The effect of optimal timing on radiomics features is an

understudied area. Automated AI-based QA algorithms to

identify optimally acquired CT scan images for radiomics

analyses can help ensure image quality and consistency and

thus increase the chances to develop reproducible and reliable

radiomics signatures.

Influence of Imaging Harmonization and
Optimization on Radiomics Models
Imaging harmonization has shown potential for improving the

reproducibility of radiomics features. The following subsections
review and discuss how the performance of predictive models

built using radiomics features is affected by the harmonization

and optimization of image acquisition parameters.

Diagnosis of Solitary Pulmonary Nodule (SPN)
In a study using radiomics signatures to help the diagnosis of

SPN, investigators assessed the effects of contrast enhancement,

slice thickness, and reconstruction kernel on the diagnostic
performance of the model they developed (73). In total, 240

SPN patients (malignant:benign = 180:60) had both non-contrast

CT (NECT) and contrast-enhanced CT (CECT) scans, each

reconstructed using two different slice thicknesses of 1.25 mm

and 5 mm and two reconstruction kernels of lung (sharp kernel)

and standard (smooth kernel). At each CT imaging setting, 150

radiomics features were extracted from each SPN and the

diagnostic performance of the resulting signature was assessed

based on its AUC. The validation results showed better

discrimination capability of the radiomics signature derived

from NECT than CECT (AUC: 0.750 vs. 0.735, p=0.014), from
thin-slice than thick-slice CT (AUC: 0.750 vs. 0.725, p = 0.025),

and from smooth kernel than sharp kernel (AUC: 0.725 vs.0.686,

p = 0.039). The authors thus concluded that the non-contrast,

thin-slice (1.25mm) and smooth reconstruction kernel-based CT

was more informative for SPN diagnosis compared to the other

imaging parameters studied.

Prediction of EGFR Mutation Status in Lung

Adenocarcinoma (LAC)
Investigators evaluated whether the optimal selection of CT

reconstruction settings improved the construction of a

radiomics model to predict EGFR mutation status in LAC

using standard of care CT images (74). In this study, CT scans
of 51 patients (EGFR : WT = 23:28) with LACs of clinical stage I/

II/IIIA were reconstructed at the following four image setting

groups: 1) Thin-Sharp, 2) Thin-Smooth, 3) Thick-Sharp, and 4)

Thick-Smooth (Thin: 1 mm; Thick: 5 mm; Sharp: B70f/B70s;

Smooth: B30f/B31f/B31s). In total, 1,160 radiomics features were

extracted and used to build machine learning prediction models
at each of the four settings and a mixture setting (cases randomly

selected from the groups 1-4). The study showed the best AUC

(95%CI) of 0.83 (0.68, 0.92) when using the Thin-Smooth setting

and the worst AUC (95%CI) of 0.75 (0.59, 0.86) when using the

mixture setting (P<10-3).

Prediction of Overall Survival (OS) in Head

and Neck Cancer
A recent radiomics study in head and neck cancer found that

models built with patients on a controlled imaging protocol did

not predict OS better than models built using varying imaging

protocols (75). In this study, investigators retrospectively

collected 726 patients’ CT images from one U.S. and two
European institutions, among which the largest subset of 511

patients’ CT images was acquired using a GE scanner with the

reconstruction parameters of a standard kernel and 1.25 mm

image thickness. The radiomics features were computed using

IBEX (62). Radiomics models to predict OS were built using the

full patient dataset (heterogeneous imaging protocols) and the
largest subset (controlled imaging protocol). This study did not

find increased performance of the outcome prediction model

when the imaging protocol was controlled (AUCs: full set vs.

subset = 0.72 vs. 0.55). Moreover, volume and HPV status were

selected as covariates in the OS prediction model built on the full

patient dataset. The authors further reported that volume alone

or volume and HPV status provided an AUC of 0.73, indicating
that adding radiomics features did not improve the model

performance. This again suggests that radiomics texture

features can be a surrogate for/correlated with tumor volume

and points to the need to remove redundant features prior to

model building (3, 76).
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Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Image Acquisition
Image acquisition is the first essential step in the radiomics

workflow, directly determining the quality of images upon which
all subsequent analyses rely. Some strategies and considerations

to improve image consistency and reduce feature variability are

highlighted below.

Controlling Imaging Protocols To Increase Image Consistency.

CT scanners, scanning techniques, and reconstruction

parameters can affect radiomics features and models. The
degree of variation caused by these factors depends on the

tumor’s characteristics and the radiomics feature itself. Studies

should report imaging acquisition settings in detail so that they

can be reproduced by others. Ensuring high quality and

consistent images across scanner devices and imaging

protocols is the key for the successful development and

application of radiomics signatures.
Potential Optimal Imaging Parameters For Studying Lung

Cancer Phenotypes. Controlling CT imaging protocols and

complying with these protocols are essential to the acquisition

of high quality and consistent image data for radiomics studies.

Preliminary data suggest that the most suitable imaging

parameter setting for phenotype studies in lung cancer is thin
slice thicknesses (e.g., 1 mm, 1.25 mm) and smooth

reconstruction kernels (e.g., standard, B31f/B31s). Moreover,

same-day repeat CT studies found that the settings of 1.25S

and 2.5S generated the most reproducible features (Figures

4A, B). These independent findings support the use of thinner

slice thickness and smoother kernel for prospective lung cancer

phenotype studies. However, this approach warrants further
investigation, especially because of the conflicting findings in

the H&N study.

Test-Retest With Proper Imaging Parameters. The purpose of

test-retest is to identify radiomics features that are sensitive to re-

imaging and remove them from subsequent analyses. Because

image acquisition parameters can affect computed feature values,
the imaging parameters should be matched, or adequately

similar, between the test-retest data and the individual studies’

data so that the testing results are reliable. In addition, different

disease sites should have their own test-retest image data, which

can be acquired from either patients or (texture) phantoms.

Before re-shooting a phantom, make sure to relocate/re-orient

the phantom. When test-retest imaging is not available for the
phenotype of interest, image perturbation such as noise addition,

image translation and rotation, and volume growth or shrinkage

can be considered (77).

4D CT - An Alternative For Test-Retest. Scanning patients twice

during a short time period is impractical. However, 4D CT imaging

has been used in radiotherapy to reduce respiratorymotion-induced
changes in tumor location andmorphology. Such image datasets are

often available in radiation oncology departments. Due to its ability

to generate 3D CT image series at multiple respiratory phases, the

4D CT scan images can serve as a candidate of test-retest dataset to

investigate feature variability. Studies show that certain radiomics

features are sensitive to respiration and the preselection of 4D

stability features can improve the performance of radiomics

prediction models. Moreover, the end of the exhale phase, which

is less affected by respiratory motion compared to the other phase

images, is recommended to reduce feature variability for

radiomics studies.

Radiomics Phantoms. Phantom studies play an essential role

in exploring different sources of variation and their magnitudes

across vendor scanners, scanning techniques and reconstruction

parameters. However, traditional physical phantoms are usually

constructed of materials that are radiologically equivalent to
tissues and contain simple geometric features such as cartridges,

cylinders, line-pair patterns, and ramps. Anthropomorphic

phantoms typically mimic the overall shape of a human being

but don’t include detailed intra-organ/lesion features and are

mostly used for dosimetry measurements. Thus, there is a

significant gap between the intricate anatomical details that are
seen in clinical CT images and the mostly uniform and simple

nature of traditional physical phantoms. Characterizing such

synthetic lesions using the cutting-edge 3D printing technology

would be instrumental toward assessing the variability of features

across different CT platforms and protocols.

Quantitative Metrics To Determine Image Quality and/or

Similarity. The wide range of vendors’ scanners, scanning

techniques, and reconstruction parameters used in clinical

practice and clinical trials makes it impossible to study the effects

of all possible variables on radiomics features and models.

Developing quantitative methods/metrics to determine image
quality and/or similarity can be an alternative way to identify

comparable images that can be used interchangeably or to decide

whether an image’s quality is adequate for computing radiomics

features. This should be done based on the acquired images such as

identifying optimal phase-timing, with no need to know the exact

acquisition parameters of the images.

Imaging Harmonization Through AI/CNN. Image processing

methods can reduce variability in images acquired with
heterogeneous image acquisition settings. Voxel size resampling

followed by Butterworth smoothing (an image processing method)

has been found to improve feature reproducibility (42). Traditional

image processing methods cannot be automatically adapted to

harmonize a multitude of imaging settings that could exist in an

image dataset. AI/CNN, however, shows great promise in
converting CT imaging settings to a desired setting and in

identifying whether images are acquired at the optimal phase

timing. There is no doubt that AI, especially generative

adversarial network (GAN)-based networks, will play a significant

role in image-to-image translation including CT imaging

conversion/harmonization (78).

Reproducible Features vs. Clinically Informative Features.
When investigators report the improved reproducibility of

radiomics features, a common method is to count the

increased number of the studied features that have increased

CCC values or CCC values greater than a predefined threshold

(e.g., CCC >0.85). It is true that when more features are

reproducible, there is a greater likelihood to identify robust
radiomics models which are built using these reproducible

features. However, the reproducibility of a feature does not

Zhao Reproducibility in Radiomics

Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 6331769

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


necessarily mean that it is clinically informative. On the other

hand, it is likely that heterogeneous imaging settings may have

little effects on some coarse clinically informative radiomics

signatures such as ground glass opacity (GGO) portion and

necrosis component of a tumor. Nevertheless, successful

radiomics models must be built upon reproducible and
robust features.

LESION SEGMENTATION

Lesion segmentation is a prerequisite for feature extraction, a

critical step in radiomics workflow. Segmentation is an essential

part of computer vision and image processing and is still an

active research area today. Artificial intelligence (AI) promises
fully-automated detection and segmentation of lesions (79).

Segmentation Methods and Variability
Segmentation can be performed manually, semi-automatically,

or fully-automatically. Variability of the lesion segmentation may

come from diverse segmentation algorithms and human

supervised post-segmentation correction.

Manual Segmentation
Manual segmentation, a hand-drawing method using a computer

mouse, is used only when there is no access to reliable semi-
automated segmentation software because it is time consuming,

subjective, and prone to variability due to radiologists’ different

opinions on identifying lesion boundaries (inter-reader

variability) or a radiologist’s inconsistency in delineating lesion

boundaries at different time points (intra-reader variability).

Manual segmentation was still used in about 40% of the lung

cancer radiomics studies in our literature search (Table 1 in

Supplemental Materials).

Semi-Automated Segmentation
Semi-automated segmentation requires an operator to use a
computer mouse to manually initiate a segmentation algorithm

that can be developed using different strategies such as clustering,

region-growing, active contours, and watershed transform.

Inter-Algorithm Variability
Different strategies employed in different segmentation

algorithms can yield different results (inter-algorithm

variability). In a “moist run” dataset (40 lung lesions and 12

lung phantom lesions) collected by the Quantitative Imaging

Network (QIN) for a lung segmentation challenge, large

variations were seen when three different segmentation

algorithms were applied to the same GGO lung lesion (Figure
5A) (80). Briefly, the algorithm Alg01 was based on the marker-

controlled watershed transform and required a region-of-interest

(ROI) manually drawn outside the lesion as the algorithm’s

initial input (Figure 5A, top-left). Alg02 and Alg03 used the

region-growing approach, with either one or multiple clicks to

determine seed points (Alg02) (Figure 5A, top-middle) or a seed
circle (Alg03) (Figure 5A, top-right) inside the lesion as the

initial input. For heterogeneous lesions, the region-growing

based algorithms can easily be trapped by a local homogeneous

region, creating a high risk of under-segmentation. In this

example, Alg02 segmented only the solid part of the lesion

(under-segmentation) when the seed point was placed in a

high-density area of the lesion.

A B

FIGURE 5 | (A). Inter-reader variability in segmentation. Top panel: manual initializations (seed point/ROIs) of three segmentation algorithms; bottom panel:

corresponding segmentation results. (B) Intra-reader variability in segmentation. Segmentation results are affected by seed points/ROIs. Reproduced with permission

from (80).
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Intra-Algorithm Variability
After manual initialization, each algorithm analyzes the density

distribution of the pixels provided by the initial ROI and then
automatically separates the lesion from its background using the

input information and its own segmentation strategy/objective

criteria. Therefore, initial ROIs can affect segmentation results.

Figure 5B shows variations (Dice Coefficient distribution) of the

segmentation results (lesion volumes) of each of the three

algorithms when initial ROIs are placed differently. This kind
of variation is called intra-algorithm variability. A good

segmentation algorithm should be insensitive to initial ROIs.

Studies reported that radiomics features extracted from

segmented lesions had higher reproducibility when using the

same algorithm with different initial inputs than when using

different segmentation algorithms (81, 82).

Fully-Automated Segmentation
Fully-automated segmentation is performed without any

human-machine interaction. The input of such algorithms is

the entire image series and the output is the image series

containing automatically segmented lesions. A fully-automated

segmentation method needs to perform lesion detection and

segmentation simultaneously. The challenge for automated
lesion detection is to avoid false negative and false positive

lesions. Unlike manual and semi-automated segmentations,

repeatedly running a fully-automated algorithm on one image

series won’t change the output result. However, the impact of

image acquisition settings on fully-automated segmentation

algorithms needs to be explored (83).

Human Supervised Post-Segmentation
Correction
Ideally, a lesion segmentation algorithm should be fully

automated, reproducible, and accurate. However, both lesions
and relationships between lesions and their surrounding tissues

can manifest in complex patterns on CT, making a satisfactory

segmentation for all lesions unrealistic. To avoid segmentation

errors, a radiologist needs to review and correct computer-

generated lesion contours. Over the past few years, awareness

of the need for human supervised post-segmentation correction

has increased (Figure 2B; green color). Supervised segmentation
is influenced by the radiologist’s subjective judgement. However,

only the modified parts of the lesion contours are affected by the

manual correction and the unmodified contour parts are still

determined by objective criteria. This explains why radiomics

features extracted from lesions segmented manually were less

reproducible than those extracted from lesions segmented
algorithmically with supervision by a radiologist (84, 85).

Segmentation of Multiple Disease Sites
Solid tumors, including primary and metastatic lesions, exist in

various organs. They can present various intra-tumoral patterns

and contrast levels to the surrounding tissues on CT images,

which challenges lesion segmentation to different degrees. For

instance, lung lesions are usually easy to be segmented due to
their high contrast to the surrounding lung parenchyma.

However, when lung lesions attach to blood vessels or chest

walls possessing similar densities to those of the lesions,

segmentations can become difficult. Lymph nodes are well-

known for their low contrast to their surrounding

backgrounds. Segmentation of liver lesions can suffer from

their heterogeneity, low contrast against liver parenchyma
(contrast-enhancement dependent), and noisy abdominal

images. Various strategies have been developed to better

delineate tumors of different types.

In general, texture features are affected more than volume

feature by image acquisition parameters. Over-segmentation, i.e.,

inclusion of surrounding non-lesion tissues in the lesion
segmentation, can have a large effect on texture features when

there is a large density difference between the lesion and its

surrounding tissues (e.g., lung lesion and lung parenchyma). A

tight segmentation is thus more desired than a loose

segmentation in radiomics studies. Lesion segmentation can hit

lesion boundary-related features harder than others.
A study preliminarily analyzed the effect of inter-observer

variability between three manual contours on the stability of

1,404 radiomics features in head and neck squamous cell

carcinoma (HNSCC), malignant pleural mesothelioma (MPM),

and NSCLC (86). There were 11 lesions for each type. The

authors found that the inter-observer delineation variability was

the highest in MPM and the lowest in NSCLC, and the stability
rate of radiomics features negatively correlated with delineation

variability. Shape-related features showed the weakest stability

among the 3 tumor types.

Effect of Inter-Reader Variability on
Radiomics Prediction Model
The last example in this section shows a pilot study exploring the

effects of inter-reader variability on radiomics prediction models.

In the study, the investigators predicted EGFR mutational status

in early stage NSCLC patients treated with a targeted therapy

(Gefitinib) using the change in 89 radiomics features over 3
weeks (delta features) extracted from 1.25 mm and lung kernel

images (87). Lung lesions in 46 patients (EGFR:wildtype = 20:26)

were independently segmented by three radiologists using in-

house software that allowed manual post-segmentation

correction. Univariate analysis identified the most significant

delta features computed from each of the three radiologists’

segmentation results. The best EGFR prediction performance
expressed by AUC values differed for each radiologist's

segmentation: 0.79 (top feature: compact factor – a shape

feature), 0.85 (top feature: mean density) and 0.91 (top feature:

volume), respectively. Delta volume was the only feature that was

among the top 5 most significant features in all three radiologists’

results. The prediction performances using the delta volumes
obtained by the three radiologists were (AUC=) 0.77, 0.80 and

0.91, respectively. All outperformed the corresponding

unidimensional performances of 0.63, 0.53 and 0.66.

Unidimensional measurement (i.e., tumor in-plane diameter) is

used to assess tumor change by conventional Response

Evaluation Criteria in Solid Tumors (RECIST) (88). None of

the three radiologists’ results included the delta diameter in its

Zhao Reproducibility in Radiomics

Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 63317611

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


top 5 most significant feature list. The results of this study

warrant validation on larger data.

Open Source Software for
Lesion Segmentation
3D Slicer and ITK-Snap are the most popular open source

platforms for interactive segmentation, registration, and

volume rendering/visualization of medical images. Built over

two decades through support from the National Institutes of
Health (NIH) and software engineers worldwide, 3D Slicer has

provided researchers with a set of free image processing tools

(89). ITK-SNAP is another open source tool that offers free semi-

automatic segmentation software (90). Both platforms provide

manual delineation functions. So far, about 25% of lung cancer

radiomics studies were conducted with the help of open source

segmentation tools (Table 1 in Supplemental Materials).

Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Lesion Segmentation
Accurate, reproducible, and efficient segmentation tools that can
be widely distributed are essential to accelerating and advancing

cancer imaging research. Semi-automated segmentation tools

have commonly been used in radiology-oncology imaging

studies. An imaging platform providing lesion segmentation

software should also provide a manual editing/correction

function. Certainly, computer segmentation methods are more
efficient when they require fewer human-machine interactions.

Inter- and/or Intra-Reader Test. The Purpose of Inter-Reader

(or intra-reader) testing is to recognize radiomics features that

are sensitive to lesion segmentation so that they can be removed

from subsequent analyses. Features that are sensitive to

segmentation can be identified by asking multiple radiologists

to delineate the same lesions or an individual radiologist to
delineate a set of lesions at two or more sessions, with a sufficient

time interval between any two annotation sessions to avoid the

effects of the radiologist’s reading memory.

Radiologists’ Consensus on Lesion Contouring. Radiologists are

not specifically trained in identifying tumor boundaries; big

variations can happen especially when segmenting partial solid
tumors. The Tumor Segmentation step shown in Figure 1

(Radiomics workflow) offers an example of three radiologists’

manually delineated tumor contours; some tend to delineate

contours tightly surrounding a solid tumor component, while

others tend to delineate contours loosely including more GGO

areas. Although there may not be “gold standard” lesion boundaries,

obtaining radiologists’ consensus about lesion boundaries can help
reduce variability in segmentation and thus in computed

radiomics features.

Proper Use of Segmentation Software. Different semi-

automated algorithms use different strategies to obtain

information about lesions and/or their surrounding tissue from

initial ROIs, which can help the algorithms identify lesion pixels/
voxels. For instance, to properly start a region-growing based

algorithm, seed ROI points/circle should be placed in both hypo

and hyper density areas inside a heterogeneous lesion so that the

range of lesion densities can be fully captured and used to guide

the region growing algorithm. Proper use of a segmentation

algorithm can improve the segmentation’s accuracy and

consistency. Again, to avoid unpredictable surrounding tissues

of possible high (or low) contrasts, tight segmentation results are

more preferred than loose segmentation results in

radiomics studies.
In radiation oncology, the standard treatment planning

process has generated a large amount of annotated tumors that

can be readily used in radiomics studies. However, it should be

noted that the quality of the segmentations might not be

sufficiently precise for radiomics. For instance, there is no need

to accurately delineate the speculated edges of a tumor for the
purposes of treatment planning while radiomics requires a very

precise delineation of the tumor. Therefore, segmentation results

taken from radiotherapy data may need to be refined prior to

feature extraction.

Effects of Imaging on Segmentation. Acquisition settings

determine image quality and can thus affect segmentation
algorithms [e.g., (91, 92)]. The ultimate goal of image pre-

processing is to reduce noise while maintaining image details.

Generally, pre-processing methods using smoothing filters (e.g.,

Gaussian filter) are applied for the region-growing based

algorithms, whereas sharpening filters (e.g., Laplacian filter) are

used by the edge-based segmentation algorithms. When

investigating volumetric imaging biomarkers, variables
affecting volumetry/tumor segmentation have been intensively

studied, particularly by the RSNA-organized Quantitative

Imaging Biomarkers Alliance (QIBA) (93–95), which is not

further discussed in this review.

FEATURE EXTRACTION

Radiomics features are also known as quantitative image
features. In the past decades, pattern recognition using

quantitative image features has been widely used for tasks such

as image segmentation, classification, and computer-aided

detection and diagnosis (96).

Radiomics Features
Radiomics features can be grouped into two categories: agnostic

and quantified semantic features (18). Agnostic features are derived

to quantify lesion morphology and density heterogeneity through

mathematical equations/descriptors, while quantified semantic

features are developed to characterize visual patterns of lesions

(ROIs) based on radiology lexicons. Agnostic features are usually

further divided into the following four categories based
on: 1) morphology (e.g., size, shape), 2) histogram-statistics (e.g.,

mean, standard deviation, skewness, kurtosis), 3) texture (e.g., Run-

Length, GLCM), and 4) transformation (e.g., Wavelet transform).

Histogram-based features, a.k.a. first-order statistics, describe tumor

density distribution without considering spatial information,

whereas texture features, a.k.a. second-order statistics, characterize
tumor heterogeneity by considering the spatial interrelations of

image pixel/voxel densities. Transformation-based features are
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computed from transformed images rather than original images. Of

note, there is another type of quantitative features that can provide

additional information, i.e., features that characterize density

transition between a lesion and its surrounding tissues/

parenchyma. An example is the feature class of Sigmoid Function;

the feature, Sigmoid-slope, can be used to quantify lesion edge
(density) sharpness.

Quantified semantic features are perceptive because they are

created based on a radiologist’s visual observations. For instance,

GGO volume percentage, a quantified visual feature, was found

to be significantly higher in tumors with exon 21 missense

mutation than that in tumors with other EGFR mutation
status (97). Some agnostic features can also be intuitively

interpreted. Skewness, an agnostic feature that measures the

asymmetry of a density distribution about its mean (e.g.,

density distribution of a solid tumor is left-skewed with a

negative skewness value), was found to be predictive for

disease-free-survival (DFS) associated with certain histologic
subgroups of lung adenocarcinoma; the lower the skewness

value is, the poorer the DFS will be (98). Another example is

the Laws’ Energy features. This feature class emphasizes texture

patterns of edge, spot, ripple and wave through the Laws filters.

Whether such tumor image patterns are clinically informative

needs to be investigated. However, meanings of many agnostic

features can be hard to be intuitively interpreted. Nevertheless, it
is believed that models built upon one or multiple radiomics

features can distinguish imaging phenotypes that can or cannot

be visually observed by human.

Sources of Variation in
Feature Computation
Traditional radiomics features are computed from predefined

mathematical equations/descriptors that can be found in
textbooks and/or published literature (99). Theoretically, these

radiomics features are clearly defined and thus fully controllable.

However, sometimes there are multiple choices to define a feature

with an identical name, select specific values for feature parameters,

and implement a feature calculation. In reality, values of radiomics

features computed using different feature extraction software can
vary considerably, which makes it hard to compare radiomics

studies especially if details of the feature definitions, parameter

settings, and implementations are not disclosed adequately.

Feature Definition
Variations in feature definition can happen when multiple

equations/descriptors are used to define a same feature. A simple

example is Compactness, a shape feature that is defined to quantify
how spherical a 3D object’s shape is. Although Compactness is a

function of an object’s surface area (S) and volume (V), there are

different equations to define it, e.g., V/(p ½
* S

3/2) and 36*p* V
2/S3.

Even if these two equations are related, the computed values from

the two equations are different. This type of variance can be

controlled by making feature definitions transparent.

Feature Parameter Setting
Many features, especially texture features, have parameters in

their definitions so that they can be used to quantify image

patterns at multiple scales and different orientations. The feature

parameter used most often is the number of gray-level (density)

bins, a.k.a. the bin level. Density discretization groups the entire

density range of images into bins of equal width. Reducing the

bin level or increasing the bin width can improve the

computational efficiency for certain features such as GLCM
features. Moreover, density discretization can lessen noise

interference. In general, bin width should not be lower than

random noise level. However, a large bin width may not be able

to capture the subtle differences in density (texture).

The GLCM feature class is an excellent example to explain

feature specific parameters (Figure 6) (100). A GLCM matrix is
created by counting how often pairs of pixels with specific gray-

level values occur in a specified distance and direction over the

ROI. The GLCM features are the computed statistics from

the matrix (101). There are 3 key parameters: the bin level of

the original images (i.e., the dimension of GLCM), the distance of

pixel pairs, and the direction of the line spanned by the pixel pair.
In Figure 6A, starting with an original image, the figures show

the feature computation process. Two example GLCM matrices

are generated with the bin levels of 4 [Figures 6A(b)–(d)] and 8

[Figures 6A(e)–(g)], both with the distance of 1 pixel and

direction of 0° (Figure 6B). For each GLCM matrix, two

common GLCM features, Contrast and Homogeneity, are

calculated and their values are different due to the different bin
levels, Figures 6A(d) and (g).

The influence of density discretization (bin levels) on

radiomics features was investigated using the CCR phantom

(33). The effect of the bin width (5 to 50 HU) on the stability of

114 studied texture features was found to be marginal compared

to the effect of scanners, slice thicknesses, and tube currents.
Although the study concludes that feature stability may not be

compromised during the optimization of gray-level

discretization when attempting to improve model performance,

evidence from clinical studies is needed.

Feature Implementation
Often, there are multiple choices to implement certain radiomics

features. For instance, a lesion surface area can be evaluated by a
mesh-based representation of the outer surface or by areas of

voxel faces toward the outside of the lesion. For features that are

derived from pre-processed images using a filtering technique

such as Gabor filter, filter length is a feature parameter, and the

method for handling the ROI edge when moving the filter over

the ROI is a hidden variable in the implementation of the Gabor
filter. Moreover, features can be computed in 2D, 2.5D (a

combination of 2D features), or 3D and extracted from the

original images as well as from pre-processed images using

different filtering techniques. In 2D image processing, for

instance, 4 or 8 connected pixels are usually considered as

neighboring pixels and 4 or 8 directions are chosen. All these

and more unspecified variances during feature computation/
implementation can add unknown variation to the computed

feature values. To date, no radiomics studies have provided

sufficient details about their feature definitions, parameter

settings and implementations so that others can reproduce this

aspect of their studies.
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Studies Exploring and Reducing Variability
in Feature Computation
Research has investigated sources of variation in feature

computation (81, 102–104). Two collaborative studies on this
topic are reviewed and discussed in the following subsections.

Preliminary Effort by the Quantitative Imaging

Network (QIN)
This study, conducted by ten teams from the PET/CT working

group of the QIN funded by the National Cancer Institute (NCI),
explored the agreement of 13 software packages on nine basic

radiomics features including volume, 2D and 3D diameters,

mean density, standard deviation, kurtosis, surface area,

sphericity, and GLCM entropy (103). The investigators applied

the feature extraction software used by the teams (about half

open source and half in-house) to both Digital Reference Objects

(DROs) and patient image data. The DROs consisted of three
objects with both texture and uniform densities and spherical

and spiculated shapes (105). The patient data contained images

from 10 patients taken from the LIDC database, a publicly

accessible database (106). One pre-annotated contour for each

DRO/lesion was used to extract radiomics features. Percentage

coefficient of variation (CV) was used to evaluate agreement of
the computed features. The results showed that for the DROs, six

out of the nine features, i.e., volume, 2D and 3D diameters, mean

density, standard deviation and kurtosis (after Fisher correction),

demonstrated excellent agreement (CV < 1%). The features of

surface and sphericity showed moderate agreement (CV: ~13%).

GLCM entropy had big variations (texture DRO: ~50%; uniform

DRO: CV > 600%). For the patient data, CV values of 2D and 3D
diameters, surface, and sphericity increased but were still

moderate. CV of the GLCM entropy decreased to ~36%. All

other features remained in excellent agreement.

From the DROs to real lesions, ROI shapes became more

irregular and densities became less uniform. This was why the
software packages turned out to agree less with each other when

computing features that relied more on ROI boundaries/surfaces,

such as 2D and 3D diameters and surface and sphericity features.

It was not surprising that the GLCM entropy feature showed

such big variations between feature extraction software packages.

Harmonization of some key parameters (e.g., bin level, pixel

pair’s distance and direction) was found to reduce the average
CV value of GLCM entropy from ~36% to ~20%.

Comprehensive Study by the Image Biomarker

Standardization Initiative (IBSI)
Since 2016, the IBSI, an independent international collaboration,

has focused on standardizing definition and implementation of
quantitative image features and providing benchmark data sets

and consensus-based reference values (26). The IBSI reference

manual is written to provide consensus-based recommendations

and guidelines to improve reproducibility and transparency of

radiomics features and studies.

Recently, the IBSI published a large scale study that
standardized 169 commonly used radiomics features (104).

This multi-year, multi-phase study involved 25 research teams

using their own feature extraction and image processing software

and showed the investigators’ first-hand experience in the

calibration and certification of various feature extraction

software packages. The study utilized a consensus-based and
iterative approach. Phase I (25 participating teams) obtained the

reference values of radiomics features based on a 3D digital

phantom. Phase II (15 teams) defined a general image processing

scheme, implemented it at different configurations, and obtained

corresponding reference values of radiomics features using a

lung cancer CT image series. Initially, only weak consensus (<3

A

B

FIGURE 6 | (A) Computing the GLCM features of Contrast and Homogeneity using different bin levels. (a) Original image. (b) Normalized image using the bin level of

4. (c) GLCM matrix derived from (b). (d) Contrast and Homogeneity computed from GLCM in (c). (e) Normalized image using the bin level of 8. (f) GLCM matrix

derived from (e). (g) Contrast and Homogeneity computed from GLCM in (f). (B) Calculation of the GLCM features for a 9X9 2D image at four directions and a

neighborhood distance of 4 pixels. Reproduced with permission from (100).

Zhao Reproducibility in Radiomics

Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 63317614

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


teams matched) existed for 76.8% features at phase I and 65.4%

features at phase II. At the final iteration, strong or better

consensus (6-9 team matches) was achieved to 95.1% and

90.6% at phase I and II, respectively. Phase III (9 teams)

prospectively assessed reproducibility of the 169 standardized

features against a public dataset of CT, PET, and MR images
from 51 sarcoma patients. More than 97% of the features studied

reached an excellent reproducibility (ICC > 0.9), showing the

value of feature standardization in reducing variability between

different feature extraction software.

The study identified several causes of deviation. For instance,

lesion volumes can be represented by simple voxel cubes or
polygonal models (or meshes). This affects the computation of

surface area and thus morphological features. Sometimes, there

are “holes”, which are dark regions inside segmented lesions. The

decision whether to fill such small holes prior to feature

computation can influence the computed value. Differences of

this kind are controllable and can be reduced or eliminated
through feature standardization.

Feature Distribution Harmonization –

Combat
Image acquisition-induced variations in radiomics features are

intensively discussed in the early section of Image acquisition,

where the suggested solutions to reduce such variability are

mainly focused on obtaining consistent and/or comparable

images through controlling image acquisition protocols and/or

post-processing of acquired images using both conventional and
AI-based methods.

Recently, a new data-driven method based on the empirical

Bayes frameworks, called ComBat harmonization, was introduced

into radiomics to reduce feature variability caused by scanners and

scanning parameters (107–109). This method was initially

developed for large-scale genomic data analysis (110). When
combining different datasets collected from microarray

experiments, a big challenge is to remove non-biological

variations caused by the systematic technical differences while

handling samples, i.e., to remove the so-called “batch effects”,

where the batches denote operators, array types, etc. In radiomics,

batches refer to scanners, imaging protocols, individual imaging

parameters, etc. Unlike the imaging harmonization, the ComBat
method operates directly on the computed feature values to remove

batch-induced bias. This eliminates/reduces, for example, the

demands for sharing and transferring medical images between

institutions that can be limited by specific regulations and

standardizing image acquisition settings that can be hard to be

implemented in routine clinical practice.
Figure 7 shows two examples of harmonization/realignment

of a feature, GLCM Homogeneity (108). The example shows two

distributions of the feature, computed from the images

reconstructed at two different reconstruction kernels, Lung vs.

Standard (example 1, Figure 7A), and at two different slice

thicknesses, 1.25 mm vs. 5 mm (example 2, Figure 7B). In each

example, feature distributions were better overlapped after
applying the ComBat harmonization function (https://github.

com/Jfortin1/ComBatHarmonization). A follow-up study

independently verified the published results by applying the

ComBat method to harmonize a larger set of radiomics

features computed from a broader range of imaging protocols

in a larger cohort of patients. The investigators noticed that the

harmonization also increased the repeatability of texture features
(109). This promising technology warrants validation for its

clinical usefulness in radiomics.

Experience With Open Source Software
and Open Source Databases in Building
Radiomics Prediction Models
There are a number of free open source software packages to

compute radiomics features. Based on the literature searching

results, open source and in-house feature software were used
almost equally frequently in the lung cancer radiomics studies

published from 2014 to July 2020 (Supplemental Materials;

excluding ~9% “not specified” software). Pyradiomics (~15%)

(66) and Imaging Biomarker Explorer (IBEX) (~8%) (62)

are the two most popular open source software to

study radiomics.
Recently, a new radiomic feature calculator, called RaCaT,

became available (111). It calculates a large number of features

that are in compliance with the IBSI standard. Although the

calculator can be downloaded and used without requiring any

programming skills, it does not provide any Graphical User

Interface. Users need to call the calculator either from their own

programming environments or from the command line.
A research group recently reported its first-hand experience

in building a radiomics model to predict EGFR mutation status

in NSCLC patients using two open source databases, TCIA

(The Cancer Imaging Archive) (112) and TCGA (The Cancer

Genome Atlas) (113), and three feature extraction software

packages, the open source Pyradiomics (1319 features) and
IBEX (1563 features), and an in-house package (1160 features)

(114). Although they encountered some obstacles, they

reported a smooth experience overall with the public datasets

and open source feature extraction software. They were able to

collect both image data and clinical data for the majority of

patients satisfying the inclusion criteria of their study.

However, the TCGA-LUAD and the TCGA-LUSC datasets
contained image data and genomic data that were stored

separately on the TCIA and the TCGA, respectively, for the

majority of cases. In addition, the genomic data was often

incomplete, which reduced the number of useable cases. The

two open-source software packages had clear instructions that

made them amenable to beginners. Radiomics feature
definitions were well documented and were able to be

extracted from the majority of lesions. Some errors did occur

during the extraction in both open-source software packages

that could not solved. The study found that although the three

software packages selected different features to build their

prediction models, the models’ performances were similar.

The correlations found between those selected features by the
different software indicate that these features may describe
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similar tumor imaging phenotypes that are associated with

underlying biological characteristics.

Discussion: Potential Strategies and
Practical Considerations to Improve
Feature Extraction
Variations in feature computation are caused by possible

differences in feature definition, parameter setting, and

implementation. Variations also come from the previous steps

of image acquisition, lesion segmentation, and image

preprocessing, which exaggerate variability in radiomics

features and models built using these features (12, 115, 116).
Feature Definition Standardization. One way to reduce

feature variability, enhance collaboration, and accelerate the

development and validation of radiomics signatures is to

standardize feature definition, parameter setting, and

implementation. The IBSI’s effort in standardizing the feature

extraction process is a significant step toward increasing feature
transparency, reducing feature variation, and providing reference

images and reference feature values to help verify/calibrate

feature extraction software developed by researchers globally

(104). Customizable 3D DROs can be created to help

standardize radiomics features and uncover coding errors

(105) . I t should be noted that promoting feature
standardization does not mean that investigators shouldn’t

develop and use their own feature definitions, parameter

settings, and implementation methods that are different than

those suggested by the IBSI.

Feature Parameter Setting. Normally, we only use about 100

or less fundamental radiomics features. However, with multiple

settings of feature-specific parameters, different implementation

methods, and various image pre-processing methods, the total

number of features that can be provided by a feature extraction

software package can easily reach multiple thousands. Currently,

the settings of many feature parameters are “randomly” chosen
or simply adopted from the literature where the image types and

contents can be very different than those of the investigators’

own clinical studies. As a result, the same features, same feature

parameter settings, and/or same image pre-processing methods

are often used to study different clinical questions for different

disease sites using different imaging modalities. This so called
one-size-fits-all scenario may delay or prevent the discovery of

radiomics signatures. In order to increase the opportunity to

identify biologically relevant features while studying lung cancer,

FIGURE 7 | Probability density distributions of Homogeneity before (without realignment) and after (with realignment) ComBat in patient data by using two CT

reconstruction kernels (A) and two slice thicknesses (B). Reproduced with permission from (108).
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for instance, understanding the density range of lung tumors and

image noise characteristics may help choose proper values of

feature parameters.

Feature Redundancy. On one hand, multiple parameter

values allow quantification of lesion textures at different scales,

contrasts, and directions, which can increase the chance to
identify biologically relevant features. On the other hand,

multiple parameters can drastically increase the total number

of features, many of which are correlated. The high

dimensionality of features can also lead to model overfitting.

Reducing feature dimension is necessary prior to building

prediction models using machine learning methods. Feature
reduction and identification of potential confounding variables

such as image acquisition parameters (e.g., slice thickness) and

clinically used prognosticators (e.g., tumor size) are beyond the

discussions of this review paper.

Feature Transparency. Inadequate descriptions of feature

extraction in the current literature is a big burden for
widespread adoption of the features and replication/validation

of the developed radiomics signatures. For researchers who are

capable of writing their own feature extraction algorithms, it is

important for them to track their changes of the codes using

version control software and describe the feature extraction

details as much as possible in publications. For the groups

offering open source feature extraction software, the software
version numbers along with the release dates and upgrades

should be clearly documented and provided for the purposes

of record tracking.

Image Pre-Processing. Image pre-processing includes, but is

not limited to, smoothing, sharpening, and/or resampling of

images prior to feature extraction. Generally speaking, image
smoothing can improve density-based feature reproducibility.

For instance, the LoG (Laplacian of Gaussian) texture features

computed from the same-day repeat CT scan images

reconstructed at different imaging settings is an example

(Figure 4A). LoG_s1 denotes no pre-processing and LoG_s4

indicates that a large Gaussian kernel is applied to strongly

smooth the original images before the feature calculation. The
reproducibility of LoG features calculated on the smoothed

images is drastically improved (CCC heat map colors changed

from dark to bright) even when the features are calculated from

images reconstructed using different kernels. However, over

smoothing can suppress image texture details, which may lose

clinically useful information related to low contrast textures.
There is a trade-off between reproducible features and

informative features.

Another image pre-processing operation is to resample CT

images to isotropic resolutions in x-, y-, and z-directions. Studies

show that isotropic resolutions can improve feature

reproducibility (42). It is worth mentioning that, in 3D image

segmentation, the isotropic resampling of images is often a
precondition for direct use of 3D image processing operators

that are employed by many 3D segmentation algorithms.

Reproducible and Reliable Features. Both re-imaging and re-

segmentation can introduce variation into radiomics features. To

assess the reproducibility due to re-imaging, features are

extracted from a set of lesions imaged and segmented from

two repeat scans acquired within a short time interval. To assess

reproducibility due to re-segmentation, features need to be

extracted from a set of lesions segmented by the same

radiologist in at least two different sessions (intra-reader

variability) and/or by at least two independent radiologists
(inter-reader variability). If repeat scan image data are

available, re-segmentation of lesions on repeat images can take

into the account the variability caused by both re-imaging and

re-segmentation simultaneously. The concordance correlation

coefficient (CCCs) is a widely accepted statistical method to

assess the reproducibility of radiomics features (117). Only
reproducible features will be retained for the subsequent

machine learning analysis. Once features are extracted,

checking outliers for each feature is a practical way to help

identify imaging artifacts, segmentation errors, etc.

ComBat Feature Harmonization. The ComBat is an easy-to-

use and fast feature harmonization method recently introduced
to remove batch effects in radiomics. Based on calculated feature

values, the ComBat method has the ability to adjust for the batch

effects at multiple layers, e.g., at institution, scanner, imaging

protocol and individual imaging parameter levels. With the

ComBat method, more features can become robust and be

analyzed, historical image data can be better reanalyzed and

multi-center data can be properly combined and/or compared.
Future research includes, for instance, incorporating clinical and

biological variables into the ComBat method to preserve

biological variation while maximally removing batch effects.

The ComBat feature harmonization opens a new and efficient

avenue to accelerate the development, validation and

dissemination of robust and generalized radiomics signatures
and their transfers to clinical practice.

CNN Features. Given sufficient data, features derived from a

CNN can be expected to overcome the limitations of pre-defined

traditional radiomics features because a CNN’s backward

propagation of errors for training purposes enables the

network to self-learn novel features which are most useful for a

specific application. The automated learning and iterative image
filtering performed by a CNN may also make the CNN models

less likely to be confounded by heterogeneous image acquisition

settings. The CNN also eliminates the step of lesion

segmentation, a major source of variation in radiomics.

Nevertheless, radiomics can build tumor imaging phenotype

models using small datasets, a necessity for many medical
studies. Radiomics signatures can often be intuitively

interpreted, which also makes radiomics favorable over the

“black box” approach of using a CNN. In the foreseeable

future, there is no doubt that both radiomics and AI/CNN will

be mainstream approaches to study quantitative imaging

biomarkers in precision medicine.

SUMMARY

Radiomics has shown promise for a variety of clinical

applications in lung and other cancers, and in particular for
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diagnosis, prognosis, and response assessment. Radiomics

derives strength from hypothesis neutral techniques that can

identify subtle details or changes in patterns/features of medical

images that are associated with biological activities and clinical

outcomes. This, however, also creates a potential weakness: the

values of computed radiomics features and the performance of
radiomics models incorporating them can be sensitive to many

variables intrinsic to the radiomics workflow. Given

heterogeneous image acquisition settings, varied quantification

software packages, different diseases’ characteristics, and small

and mixed patient populations, the development of reproducible

and generalizable radiomics signatures is not as straightforward
as it initially appeared. Indeed, radiomics is a multidisciplinary

research field. Its success relies on close collaborations among

physicians, medical imaging physicists, biomedical engineers,

statisticians, and computer scientists. Over the past years, great

community efforts have been made to better understand sources

of variation, improving reproducibility and reliability of
radiomics features and models through imaging and feature

harmonization and increasing transparency and quality of

radiomics studies. Ever-growing open source imaging and

genomic databases as well as open source software packages

help accelerate the development and external validation of

radiomics signatures.
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MV, Mansilla Legorburo F, et al. Radiomics of CT features may be

nonreproducible and redundant: influence of CT acquisition parameters.

Radiology (2018) 288(2):407–15. doi: 10.1148/radiol.2018172361

37. Fave X, Cook M, Frederick A, Zhang L, Yang J, Fried D, et al. Preliminary

investigation into sources of uncertainty in quantitative imaging features.

Comput Med Imaging Graph (2015) 44:54–61. doi: 10.1016/j.

compmedimag.2015.04.006

38. Lo P, Young S, Kim H, Brown M, McNitt-Gray M. Variability in CT lung-

nodule quantification: effects of dose reduction and reconstruction methods

on density and texture based features.Med Phys (2016) 43(8Part1):4854–65.

doi: 10.1118/1.4954845

39. Midya A, Chakraborty J, Gönen M, Do RK, Simpson AL. Influence of CT

acquisition and reconstruction parameters on radiomic feature

reproducibility. J Med Imaging (2018) 5(1):011020. doi: 10.1117/1.

JMI.5.1.011020

40. Mackin D, Ger R, Dodge C, Fave X, Chi P-C, Zhang L, et al. Effect of tube

current on computed tomography radiomic features. Sci Rep (2018) 8(1):1–

10. doi: 10.1038/s41598-018-20713-6

41. Hepp T, Othman A, Liebgott A, Kim JH, Pfannenberg C, Gatidis S. Effects of

simulated dose variation on contrast-enhanced CT-based radiomic analysis

for Non-Small Cell Lung Cancer. Eur J Radiol (2020) 124:108804. doi:

10.1016/j.ejrad.2019.108804

42. Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing the

pixel size in retrospective computed tomography radiomics studies. PloS One

(2017) 12(9):e0178524. doi: 10.1371/journal.pone.0178524

43. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC,

Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features

on voxel size and number of gray levels. Med Phys (2017) 44(3):1050–62.

doi: 10.1002/mp.12123

44. Rastegar S, Beigi J, Saeedi E, Shiri I, Qasempour Y, Rezaei M, et al.

Radiographic Image Radiomics Feature Reproducibility: A Preliminary

Study on the Impact of Field Size. J Med Imaging Radiat Sci (2020) 51

(1):128–36. doi: 10.1016/j.jmir.2019.11.006

45. Lu L, Ehmke RC, Schwartz LH, Zhao B. Assessing agreement between

radiomic features computed for multiple CT imaging settings. PloS One

(2016) 11(12):e0166550. doi: 10.1371/journal.pone.0166550

46. Kim H, Park CM, Lee M, Park SJ, Song YS, Lee JH, et al. Impact of

reconstruction algorithms on CT radiomic features of pulmonary tumors:

analysis of intra-and inter-reader variability and inter-reconstruction

algorithm variability. PloS One (2016) 11(10):e0164924. doi: 10.1371/

journal.pone.0164924

47. Shafiq-ul-Hassan M, Zhang GG, Hunt DC, Latifi K, Ullah G, Gillies RJ, et al.

Accounting for reconstruction kernel-induced variability in CT radiomic

features using noise power spectra. J Med Imaging (2017) 5(1):011013. doi:

10.1117/1.JMI.5.1.011013

48. Yang J, Zhang L, Fave XJ, Fried DV, Stingo FC, Ng CS, et al. Uncertainty

analysis of quantitative imaging features extracted from contrast-enhanced

CT in lung tumors. Comput Med Imaging Graph (2016) 48:1–8. doi:

10.1016/j.compmedimag.2015.12.001

49. Dercle L, Lu L, Lichtenstein P, Yang H, Wang D, Zhu J, et al. Impact of

variability in portal venous phase acquisition timing in tumor density

measurement and treatment response assessment: metastatic colorectal

cancer as a paradigm. JCO Clin Cancer Inf (2017) 1(1):1–8. doi: 10.1200/

CCI.17.00108

50. Kakino R, Nakamura M, Mitsuyoshi T, Shintani T, Hirashima H, Matsuo Y,

et al. Comparison of radiomic features in diagnostic CT images with and

without contrast enhancement in the delayed phase for NSCLC patients.

Phys Med (2020) 69:176–82. doi: 10.1016/j.ejmp.2019.12.019

51. Larue RT, Van De Voorde L, van Timmeren JE, Leijenaar RT, Berbée M,

Sosef MN, et al. 4DCT imaging to assess radiomics feature stability: An

investigation for thoracic cancers. Radiother Oncol (2017) 125(1):147–53.

doi: 10.1016/j.radonc.2017.07.023

52. Tanaka S, Kadoya N, Kajikawa T, Matsuda S, Dobashi S, Takeda K, et al.

Investigation of thoracic four-dimensional CT-based dimension reduction

technique for extracting the robust radiomic features. Phys Med (2019)

58:141–8. doi: 10.1016/j.ejmp.2019.02.009

53. Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, Kry SF, et al. High quality

machine-robust image features: Identification in nonsmall cell lung cancer

computed tomography images. Med Phys (2013) 40(12):121916. doi:

10.1118/1.4829514

54. Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, Lefkowitz RA, et al.

Evaluating variability in tumor measurements from same-day repeat CT

scans of patients with non–small cell lung cancer. Radiology (2009) 252

(1):263–72. doi: 10.1148/radiol.2522081593

55. Prior F, Smith K, Sharma A, Kirby J, Tarbox L, Clark K, et al. The public

cancer radiology imaging collections of The Cancer Imaging Archive. Sci

Data (2017) 4:170124. doi: 10.1038/sdata.2017.124

56. Lu L, Liang Y, Schwartz LH, Zhao B. Reliability of Radiomic Features Across

Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using

ACR CT Phantom. Tomography (2019) 5(1):226. doi: 10.18383/

j.tom.2019.00005

Zhao Reproducibility in Radiomics

Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 63317619

https://doi.org/10.1007/s00330-019-06360-z
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1593/tlo.13832
https://doi.org/10.2967/jnumed.117.200501
https://doi.org/10.1186/s13244-019-0764-0
https://doi.org/10.1007/s10278-014-9716-x
https://doi.org/10.1593/tlo.13865
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1038/srep23428
https://doi.org/10.18383/j.tom.2016.00208
https://doi.org/10.1080/0284186X.2017.1351624
https://doi.org/10.1097/RCT.0000000000000632
https://doi.org/10.1097/RCT.0000000000000632
https://doi.org/10.1038/s41598-018-31509-z
https://doi.org/10.1038/s41598-018-31509-z
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.1016/j.compmedimag.2015.04.006
https://doi.org/10.1016/j.compmedimag.2015.04.006
https://doi.org/10.1118/1.4954845
https://doi.org/10.1117/1.JMI.5.1.011020
https://doi.org/10.1117/1.JMI.5.1.011020
https://doi.org/10.1038/s41598-018-20713-6
https://doi.org/10.1016/j.ejrad.2019.108804
https://doi.org/10.1371/journal.pone.0178524
https://doi.org/10.1002/mp.12123
https://doi.org/10.1016/j.jmir.2019.11.006
https://doi.org/10.1371/journal.pone.0166550
https://doi.org/10.1371/journal.pone.0164924
https://doi.org/10.1371/journal.pone.0164924
https://doi.org/10.1117/1.JMI.5.1.011013
https://doi.org/10.1016/j.compmedimag.2015.12.001
https://doi.org/10.1200/CCI.17.00108
https://doi.org/10.1200/CCI.17.00108
https://doi.org/10.1016/j.ejmp.2019.12.019
https://doi.org/10.1016/j.radonc.2017.07.023
https://doi.org/10.1016/j.ejmp.2019.02.009
https://doi.org/10.1118/1.4829514
https://doi.org/10.1148/radiol.2522081593
https://doi.org/10.1038/sdata.2017.124
https://doi.org/10.18383/j.tom.2019.00005
https://doi.org/10.18383/j.tom.2019.00005
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


57. Lewis JH, Jiang SB. A theoretical model for respiratory motion artifacts in

free-breathing CT scans. Phys Med Biol (2009) 54(3):745. doi: 10.1088/0031-

9155/54/3/018

58. Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced

by respiratory motion on multi-slice CT.Med Phys (2004) 31(2):333–40. doi:

10.1118/1.1639993

59. Du Q, Baine M, Bavitz K, McAllister J, Liang X, Yu H, et al. Radiomic feature

stability across 4D respiratory phases and its impact on lung tumor

prognosis prediction. PloS One (2019) 14(5):e0216480. doi: 10.1371/

journal.pone.0216480

60. Lafata K, Cai J, Wang C, Hong J, Kelsey CR, Yin F-F. Spatial-temporal

variability of radiomic features and its effect on the classification of lung

cancer histology. Phys Med Biol (2018) 63(22):225003. doi: 10.1088/1361-

6560/aae56a

61. Valladares A, Beyer T, Rausch I. Physical imaging phantoms for simulation

of tumor heterogeneity in PET, CT, and MRI: an overview of existing

designs. Med Phys (2020) 47(4):2023. doi: 10.1002/mp.14045

62. Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open

infrastructure software platform to facilitate collaborative work in radiomics.

Med Phys (2015) 42(3):1341–53. doi: 10.1118/1.4908210

63. Samei E, Hoye J, Zheng Y, Solomon JB, Marin D. Design and fabrication of

heterogeneous lung nodule phantoms for assessing the accuracy and

variability of measured texture radiomics features in CT. J Med Imaging

(2019) 6(2):021606. doi: 10.1117/1.JMI.6.2.021606
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