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Abstract

SPKI/SDSI is a language for expressing distributed ac-
cess control policy, derived from SPKI and SDSI. We pro-
vide a first-order logic (FOL) semantics for SDSI, and show
that it has several advantages over previous semantics. For
example, the FOL semantics is easily extended to additional
policy concepts and gives meaning to a larger class of ac-
cess control and other policy analysis queries. We prove
that the FOL semantics is equivalent to the string rewriting
semantics used by SDSI designers, for all queries associ-
ated with the rewriting semantics. We also provide a FOL
semantics for SPKI/SDSI and use it to analyze the design
of SPKI/SDSI. This reveals some problems. For example,
the standard proof procedure in RFC 2693 is semantically
incomplete. In addition, as noted before by other authors,
authorization tags in SPKI/SDSI are algorithmically prob-
lematic, making a complete proof procedure unlikely. We
compare SPKI/SDSI withRTC

1 , which is a language in the
RT Role-based Trust-management framework that can be
viewed as an extension of SDSI. The constraint feature of
RTC

1 , based on Constraint Datalog, provides an alternative
mechanism that is expressively similar to SPKI/SDSI tags,
semantically natural, and algorithmically tractable.

1 Introduction

In 1996, Rivest and Lampson [26] proposed a new
public-key infrastructure, called the Simple Distributed Se-
curity Infrastructure (SDSI), featuring the use of linked lo-
cal names. Concurrently, Ellison et al. developed the
Simple Public Key Infrastructure (SPKI), which empha-
sizes delegation of authorization. In 1997, the two efforts
were merged, leading to a system called SPKI/SDSI. The
standard reference on SPKI/SDSI is RFC 2693 [6], with
a later paper [4], whose authors include several designers
of SPKI/SDSI, providing certificate chain reduction algo-
rithms for SPKI/SDSI, clearer descriptions of many fea-
tures, and certain minor design changes. SPKI/SDSI can be

viewed as a trust-management (TM) language. Trust man-
agement is an approach to access control in decentralized
distributed systems with access control decisions based on
policy statements made by multiple principals. In general, a
TM language has a syntax for specifyingpolicy statements
andqueries, together with a semantic relatioǹ. Given a set
P of policy statements and a queryQ, the relationP ` Q
means thatQ follows fromP. WhenQ arises from an ac-
cess request,P ` Q means that accessQ is allowed inP.

In SPKI/SDSI, policy statements take the form of name-
definition certificates (name certs), authorization certificates
(auth certs), and Access Control List (ACL) entries.Prin-
cipals are identified with public keys, and each principal
has its own name spaces for names. A local name, which is
identified by a principal and an identifier, is bound to a set of
principals that we call the members of the local name. Only
the principalK can issue name certs that determine mem-
bers of the local nameK A. PrincipalK can defineK A
to include a principal, a local name, or a linked local name
(also called an extended name). We use SDSI to refer to the
sub-language of SPKI/SDSI that just has name certs, also
called 4-tuples. Auth certs and ACL entries, also called 5-
tuples, originally came from SPKI. In a 5-tuple, the issuing
principal grants certain authorization to a subject, which can
be a principal, a local name, an extended name, or a thresh-
old subject. The issuing principal also specifies whether the
subject can further delegate the authorization it receives in
a 5-tuple.

A set of SPKI/SDSI statements defines a policy, and
many properties of a policy are of interest to its authors
and users. The most basic query is whether a policy al-
lows a principal to access a resource. However, it may also
be important to determine safety and availability properties
of a policy [21], such as whether a resource owner still has
some guarantees about who can access their resources af-
ter delegating limited authority to other principals. RFC
2693 does not explicitly specify a class of queries that can
be made against a policy, but provides operational rules for
producing new 5-tuples from existing 5-tuples. The 5-tuple
reductions implicitly define a class of access queries for



SPKI/SDSI as well as a proof procedure for answering these
queries.

The semantics of SPKI/SDSI has attracted a lot of
interest in the security research community. Beginning
with Abadi [1], significant effort has gone into finding a
logic-based semantics for both SDSI naming alone and
SPKI/SDSI. A logic developed by Howell and Kotz [11]
extends the ABLP logic [2, 15] with a restricted form of
delegation and provides a semantics for SPKI/SDSI autho-
rization. Halpern and van der Meyden subsequently devel-
oped the Logic of Local Name Containment (LLNC) [8]
and then extend the logic to deal with 5-tuples in SPKI [9].
These studies all use specialized propositional modal log-
ics. Li [16] provides a logic programming based reading for
SPKI/SDSI, which has several drawbacks. In the present
paper, we use standard first-order logic (FOL) and explicitly
consider the class of queries supported by the semantics.

In our study of the SDSI naming portion of SPKI/SDSI
(Section 2 of this paper), we present a FOL semantics based
on translating each name cert into a Datalog clause. Datalog
is a limited form of logic programming that does not have
function symbols (except for zero-ary functions). Datalog
is also a query language for relational databases. Since Dat-
alog is a subset of first-order logic, this leads to a FOL se-
mantics; since Datalog has a computational interpretation,
a set of name certs induces a Datalog program. Since the
semantics of a policy is defined by classical logical impli-
cation, this approach allows any FOL formula to be under-
stood as a meaningful query against a policy. We prove that
the FOL semantics is equivalent to the string rewriting se-
mantics used by SDSI designers, for all queries associated
with the rewriting semantics. The advantages of our ap-
proach over previous logics are the following. It captures
the set-based semantic intuition of SDSI, which is used in
Clarke et al. [4] and Halpern and van der Meyden [8]. It uses
classical first-order logic rather than more complex modal
logics. The FOL semantics contains more information in
the sense that a larger class of queries can be formulated
and understood in the semantics. The semantics is easily
extended to support useful extensions to SDSI; and, finally,
the relationship between the FOL semantics and logic pro-
gramming provides an efficient method to answer a large
class of queries.

In our study of full SPKI/SDSI, we first describe a trust
management languageRTC

1 [18], which uses Constraint
Datalog as its semantic foundation. We then give a FOL
semantics for SPKI/SDSI by treating authorization tags and
validity specification as constraints, and examine several
design issues of SPKI/SDSI, usingRTC

1 for comparison.
The languageRTC

1 [18], which may be viewed as an alter-
nate extension of SDSI, is a language from the RT family
of Role-based Trust-management languages [20, 22]. One
characteristic ofRTC

1 is the use of various constraint do-

mains to express policies about structured resources such
as file hierarchies and standard concepts such as time of
day or days of the week. After developing a semantics
for SPKI/SDSI that treats authorization tags and validity
specification as constraints, we observe that SPKI’s 5-tuple
reduction procedure is semantically incomplete. One rea-
son is that reduction does not handle union of tags. For
example, ifK1 grants toK2 in two certificates with two
authorization tags(* range numeric ge 1 le 5)
and(* numeric range ge 4 le 10) , it is not pos-
sible to derive thatK1 grants toK2 (* range numeric
ge 2 le 7) , which is a logical implication of the two 5-
tuples. Another problem, pointed out by Howell [10], is
that the intersection of two authorization tags may be a set
that is not representable by any finite set of authorization
tags. This suggests that no rewriting algorithm dealing with
SPKI/SDSI tags can be semantically complete. We then dis-
cuss several design issues of SPKI/SDSI, referring toRTC

1

for comparison. Among other benefits of a logical point of
view, the constraint feature ofRTC

1 is expressively similar
to SPKI/SDSI tags, but semantically natural and algorithmi-
cally tractable.

We give FOL semantics and equivalence results for the
SDSI naming portion of SPKI/SDSI in Section 2, with trust
management languageRTC

1 [18] and Constraint Datalog
in Section 3, FOL semantics and analysis of SPKI/SDSI in
Section 4. We conclude in Section 5.

2 Understanding SDSI Using First-Order
Logic (FOL)

In SDSI, principals are identified with public keys. We
useK to denote the set of all principals and useK, often
with subscripts or superscripts, to denote a principal. An
identifier is a word over some given standard alphabet. The
set of all identifiers is denoted byA, and an identifier is de-
noted byA or B (often with subscripts). We assume that
both K andA are countable. We do not consider SDSI
1.1 [26]special roots, which are identifiers that are bound to
the same principal in every name space. Although it would
be straightforward to treat them, they do not seem to add
any special interest and do not appear in SPKI/SDSI.

A name string, called a term in [4, 12], is a principal
followed by zero or more identifiers. In other words, the set
S ⊆ (K∪A)∗ of name strings contains strings overK∪A.
A local namehas the formK A, whereK ∈ K andA ∈
A, and anextended nameis a principal followed by more
than one identifier. UsingNL for the set of all local names
andNE for extended names, we haveS = K ∪ NL ∪ NE ,
i.e., a name string is either a principal, a local name, or and
extended names.

A name-definition certificate(name cert) C is a signed
4-tuple(K,A, S, V ), where



• K ∈ K is a principal (public key) called theissuer; the
certificate is signed byK.

• A ∈ A is an identifier.

• S ∈ S is a name string, called the subject.

• The validity specificationV provides information re-
garding the validity of the certificate.

We say the 4-tuple(K,A, S, V ) definesthe local name
KA andS is thedefinition. In this section, we ignore the va-
lidity specificationV . We assume that the validity of name
certs are checked, and only valid certificates are considered.
We will discuss how to handle the validity specification in
the logical semantics in Section 4.2. When ignoring the va-
lidity specification, we write(K,A, S, ·) for a 4-tuple.

In the rest of this section, we describe three semantics for
SDSI that have appeared (sometimes implicitly) in the liter-
ature, then introduce the FOL semantics and prove its equiv-
alence to other semantics; finally, we compare the FOL se-
mantics with other semantics for SDSI.

2.1 A String Rewriting Semantics for SDSI

RFC 2693 defines a 4-tuple-reduction mechanism, which
Clarke et al. [4] explicitly describes as string rewriting. The
main idea is to replace a local name in a name string by its
definition. Regarding a 4-tuple(K,A, S, ·) a rewriting rule
KA 7→ S, the two 4-tuple-reductions in Section 6.4 of RFC
2693 operate on the left end of a name string as follows:.

UsingK1 A1 7→ K2, rewrite
K1 A1 A2 · · · A` � K2 A2 · · · A`

UsingK1 A1 7→ K2 B1 · · · Bk, rewrite
K1 A1 A2 · · · A` � K2 B1 · · · Bk A2 · · · A`

In the rest of this paper, we often writeKA 7→ S instead
of (K,A, S, ·) to represent a 4-tuple. The following defini-

tion shows how set of 4-tuples defines a binary relation
∗

�
on name strings.

Definition 1 (Rewriting Semantics for SDSI:RS[P]) If
P is a set of 4-tuples, letRS[P] be the rewriting system
that rewritesS1 � S2 whenever there is a corresponding
ruleK1 A1 7→ K2 orK1 A1 7→ K2 B1 · · · Bk given by a

4-tuple inP. We writeRS[P] B S1
∗

� S2 if it is possible
to rewriteS1 to S2 using zero or more steps fromRS[P].

The class of string rewriting systems generated by sets of
4-tuples have the following characteristics: when rewriting
a name string, the rewriting replaces the first two symbols,
which form a local name, with another name string, and

the result is also a name string. Jha and Reps [12] pointed
out that SDSI string rewriting systems correspond exactly to
the class of string rewriting systems modelled using push-
down systems. This connection reduces certain computa-
tion problems in SDSI to reachability analysis and model
checking in push-down systems, for which efficient algo-
rithms exist.

Given a set of 4-tuples, for any name stringS, there ex-
ists a set of principals thatS can rewrite into. This deter-
mines a valuation for every name string, and leads to the
set-theoretic semantics for SDSI.

2.2 A Set-theoretic Semantics

In the set-theoretic semantics for SDSI, every name
string has a valuation that is a set of principals. Clarke
et al. [4] use an informal description of this semantics as
the semantic intuition for SDSI. Halpern and van der Mey-
den [8] use the same spirit to provide a semantics for their
Logic of Local Name Containment (LLNC). Li et al. [22]
use the same idea to provide a semantics forRT0, which can
be viewed as SDSI enhanced with the intersection operator
in the subject. The following presentation of the semantics
follows [22].

Definition 2 (Set-theoretic Semantics for SDSI:M[P])
Given any functionf : NL → ℘(K) mapping local names
to sets of principals, where℘(K) is the power set ofK, we
extendf to a valuationVf : S → ℘(K) on all name strings
as follows:

Vf (K) = {K}
Vf (K A) = f(K A)

Vf (K1 A1 · · · A`) =
⋃

K2∈f(K1 A1)
Vf (K2 A2 · · · A`)

where` > 1.
The semanticsM[P] of a setP of 4-tuples is the least1

function f : NL → ℘(K) that satisfies the system of set
containments

SC[P] = { f(K A) ⊇ Vf (S) | K A 7→ S ∈ P }

We use a least-solution definition forM[P] because 4-
tuples may define local names recursively. Note thatV nat-
urally extendsM[P] and gives a valuation for each name
string.

We now show that the functionM[P] : NL → ℘(K) is
well defined and present a straightforward way to construct
it finitely. We define the following sequence of functions
f i : NL → ℘(K), i ∈ N

f0(K A) = ∅
f i+1(K A) =

⋃
K A 7→S∈P

Vfi(S)

1One functionf : NL → ℘(K) is less than anotherg : NL → ℘(K)
if f(K A) ⊆ g(K A) for every local nameK A ∈ NL.



It is easy to show by induction that, for any local name
K A not defined inP, f i(K A) = ∅ for any i ∈ N, and
that, for any local nameK A and anyi ∈ N, f i(K A) only
contains principals occurring inP. It follows that the set
of all functions that could occur in the sequencef i forms a
finite lattice. In addition, the sequencef i is nondecreasing.
Therefore, the least fixed pointfω of the sequence, given
by fω =

⋃
i≥0 f

i(K A), exists; in addition,fω = M[P].
The functionfω clearly satisfiesSC[P], and one can show
by induction that any function that satisfiesSC[P] is greater
than or equal tofω.

This set-theoretic semantics contains less information
than the rewriting semantics, in the following sense. We

will show that, if RS[P] B S1
∗

� S2, thenVM [P ](S1) ⊇
VM [P ](S2); this follows from Proposition 1 in Section 2.3
and Theorem 3 in Section 2.5. However, the converse is
only guaranteed to be true whenS2 is a principal, i.e.,

VM [P ](S) 3 K if and only if RS[P] B S
∗

� K. This
follows from Proposition 1 in Section 2.3 and Theorem 3
in Section 2.5; see also Proposition 2 in Section 2.5. It may
well be the case thatVM [P ](S1) ⊇ VM [P ](S2), but there is
no rewriting relationship betweenS1 andS2. For example,
givenP that contains the two four tuplesK A1 7→ K2 and
K A2 7→ K2, the valuation ofKA1 clearly contains the val-
uation ofKA2; however, usingP, one cannot rewriteKA1

intoK A2. In other words,RS[P] B S1
∗

� S2 is not equiv-

alent to∀K((RS[P] B S1
∗

� K)⇐ (RS[P] B S2
∗

� K));
the former is stronger than the latter.

When making access control decisions, the valuations of
name strings are necessary, but the rewriting relationship
between two name strings are not directly useful. However,
this relation is very helpful for understanding the effect of
4-tuples. IfS1 rewrites intoS2 from P, thenS1 rewrites
into S2 from anyP ′ such thatP ′ ⊇ P; therefore, the val-
uation of S1 is always a superset of the valuation ofS2

no matter what new policy statements are added. This is
especially useful for studying the availability properties of
policies when policies may change,e.g., statements may be
added and/or removed [21].

2.3 A Logic Programming (LP) Semantics for
SDSI

The set-theoretic semantics can be captured naturally us-
ing logic programs. This observation was made by Halpern
and van der Meyden [8]. It was also used implicitly in the
semantics of the RT framework [22, 20]. The semantics of
RT0, the basic component of the RT framework, was first
defined using sets [22]. When additional features, such as
internal structures of role terms (role terms correspond to
identifiers in SDSI) are added, a logic programming based
semantics is used [20]. The advantage of the LP approach

over the set approach is that it is easily extended to addi-
tional forms of policy statements.

Definition 3 (LP Semantics for SDSI) We use one ternary
predicatem; intuitively, m(K,A,K ′) means thatK ′ is in
the valuation of the local nameK A. We define a macro
contains, which takes a name string and a logical variable
as parameters, and defines a first-order logic formula.

contains[K][z] is (K = z)
contains[K A][z] is m(K,A, z)
contains[K A1 A2 · · · A`][z] is
∃y1 (m(K,A1, y1) ∧ contains[y1 A2 · · · A`][z])
where` > 1

Given a setP of 4-tuples, we defineLP[P] to be the follow-
ing set of LP clauses:

{ ∀z(contains[K A][z]⇐ contains[S][z]) | K A 7→ S }

To see that∀z(contains[K A][z] ⇐ contains[S][z])
is a LP clause (i.e., Horn clause), observe that
contains[K A1 A2 · · · A`][z] is logically equivalent to
∃y1∃y2 · · · ∃y`−1 m(K,A1, y1) ∧ m(y1, A2, y2) ∧ · · · ∧
m(y`−1, A`, z). Further observe that the above definition
of LP[P] is equivalent to definingLP[P] to contain:

m(K,A,K1) for eachK A 7→ K1 ∈ P
m(K,A, z):− m(K1, A1, z)

for eachK A 7→ K1 A1 ∈ P
m(K,A, z):− m(K1, A1, y1), · · · , m(y`−1, A`, z)

for eachK A 7→ K1 A1 · · · A` ∈ P, ` > 1

The semantics ofP is defined to be the minimal Her-
brand model ofLP[P]. If an atomm(K1, A,K2) is in
the minimal Herbrand model ofLP[P], we writeLP[P] |=
m(K1, A,K2).

We now show that the LP semantics is equivalent to the
set-theoretic semantics. Given a setP of 4-tuples, consider
the setG of all functionsg : NL → ℘(K) that satisfies
the following two conditions: (1)g(K A) = ∅ if eitherK
or A does not appear inP; (2) for any local nameK A,
g(K A) contains only principals inP. There exists a bijec-
tion betweenG and the set of all the Herbrand interpreta-
tions ofLP[P]. Given a functiong ∈ G, the corresponding
interpretation is obtained by includingm(K,A,K ′) in the
interpretation if and only ifg(K A) 3 K ′. Similarly, one
obtains a function from each Herbrand interpretation, by as-
signing toK A the smallest set that contains eachK ′ such
thatm(K,A,K ′) is in the interpretation. Furthermore, the
definition ofcontains extends the predicatem to determine
members of name strings, in exactly the same way in which
V extendsf in Definition 2. Therefore, a functiong sat-
isfiesSC[P] if and only if the interpretation corresponding



to g is a model ofLP[P], and so the least solutionM[P]
corresponds to the least Herbrand model ofLP[P]. These
establish the following equivalence.

Proposition 1 (Equivalence of LP semantics and set-
theoretic semantics)Given a setP of 4-tuples, a name
string S and a principalK ′, LP[P] |= contains[S][K ′]
if and only if VM [P ](S) 3 K ′. In particular, for any
local nameK A, LP[P] |= m(K,A,K ′) if and only if
M[P](K A) 3 K ′.

The LP semantics is an attractive logical seman-
tics. It is natural in the sense that it directly captures
the set-based semantics intuition. It can also be used
for computation purposes. Observe thatLP[P] is a
Datalog program, that is, it does not have any func-
tion symbol other than constants. In addition,LP[P]
can be transformed to an equivalent logic program
with at most two variables per rule. For example, the
clause “m(K,A, z) :− m(K1, A1, y1), m(y1, A2, y2),”
“m(y2, A3, z)” is equivalent to the two clauses
“m(K,A, z) :− m(K1, A

′, y2), m(y2, A3, z)” and
“m(K1, A

′, y2) :− m(K1, A1, y1), m(y1, A2, y2)” where
A′ is an identifier not appearing inP.

Given a setP of 4-tuples with total sizeN , letL be the
length of the longest extended name, one can first transform
LP[P] to contain only clauses that have at most two vari-
ables and then instantiate the clauses with principals inP,
obtaining a ground program with sizeO(N3L). It has been
shown that the minimal Herbrand model of a ground logic
program can be computed in time linear in the size of the
program [5]. Therefore, any Horn query againstLP[P] can
be answered in timeO(N3L). This complexity is the same
as the complexity bound derived in three papers [4, 22, 12]
using algorithms based on string rewriting, graph searching,
and pushdown systems.

2.4 A FOL Semantics

The LP semantics has the same limitation as the set-
theoretic semantics, it cannot be used to directly determine
whetherS1 rewrites intoS2. Such a query cannot be ex-
pressed using Horn queries. We now propose a first-order
logic semantics to address this issue. The idea is very sim-
ple. Each Horn clause can be viewed as a first-order sen-
tence; and the logic programLP[P] can be viewed as a
first-order theory. The rewriting query can be viewed as
a first-order formula, and logical implication defines the se-
mantics.

Definition 4 Given a setP of 4-tuples, we defineTh[P] to
be the following first-order theory:

{∀z(contains[KA][z]⇐ contains[S][z]) | K A 7→ S ∈ P)}

A query whetherRS[P] B S1
∗

� S2 can be answered
by checking whetherTh[P] |= ∀z(contains[S1][z] ⇐
contains[S2][z]). Note thatTh[P] is the same asLP[P],
here we just view it as a FOL theory.

Other first-order logic formulas can also be used
as meaningful queries. For example, the formula
∃z(m(K1, A1, z)⇐ m(K1, A2, z))⇐ ∃z(m(K2, A1, z)∧
m(K2, A2, z)) means that ifK2A1 andK2A2 shares a com-
mon member, thenK1A1 andK1A2 also shares a common
member.

2.5 Equivalence Among SDSI’s Semantics

Proposition 1 says that the set-theoretic semantics is
equivalent to the LP semantics for membership queries. The
LP semantics can be viewed as a special case of the FOL
semantics where only Horn queries are allowed. However,
to the best of our knowledge, the relationship between the
rewriting semantics and the other three semantics have not
been established and proved in literature before.

In this section, we prove the following equivalence be-
tween the rewriting semantics and the FOL semantics:

given any setP of 4-tuples,RS[P] B S1
∗

� S2 if and
only if Th[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]).
In addition, we establish a way to use logic programs to effi-
ciently determine whetherTh[P] |= ∀z(contains[S1][z] ⇐
contains[S2][z]), and prove that this approach is correct.

First, we prove a proposition that will be useful in prov-
ing the main theorem.

Proposition 2 Given a setP of policy statements, if

Th[P] |= m(K,A,K ′), thenRS(P) BK A
∗

� K ′.

See Appendix A for the proof.
We need the following definition, which helps in

transforming a queryTh[P] |= ∀z(contains[S1][z] ⇐
contains[S2][z]) into a Horn query. This definition gives
a canonical way for placing a principalK ′ in the valuation
of a name stringS.

Definition 5 Given a setP of 4-tuples, a name stringS =
K1 A1 A2 · · · A` where` ≥ 1, and a principalK ′, define
add(P, S,K ′) to be P ∪ {K1 A1 7→ K ′} whenl = 1

P ∪ {K1 A1 7→ K ′
1, K

′
1 A2 7→ K ′

2,
· · · , K ′

`−1 A` 7→ K ′} whenl > 1

whereK ′
1, · · · ,K ′

`−1 are principals not inK[P]∪{K1,K
′}.

It is easy to see thatRS[add(P,K1A1A2 · · · A`,K
′)]B

K1A1A2 · · · A`
∗

� K ′. We are now ready to state the main
theorem of this section.



Theorem 3 Given a setP of 4-tuples, and two name strings
S1 andS2, the following three statements are equivalent.

1. RS[P] B S1
∗

� S2.

2. Th[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).

3. Th[P ′] |= m(K,A,K ′), whereKA is any local name
not defined inP, andP ′ andK ′ depend on the form of
S2:

• whenS2 is a principal,K ′ = S2 andP ′ = P ∪
{K A 7→ S1}

• whenS2 = K1 A1 · · · A` where` ≥ 1, we set
K ′ to be a principal not appearing inP andP ′ =
add(P, S2,K

′) ∪ {K A 7→ S1}.

See Appendix A for the proof. The equivalence of 2 and
3 in Theorem 3 says that to determine whetherTh[P] |=
∀z(contains[S1][z] ⇐ contains[S2][z]), one can do the fol-
lowing: create a new principalK ′, find a local nameK A
not defined inP, constructP ’ by adding toP the 4-tuple
K A 7→ S1 and additional 4-tuples to make sure thatS2

rewrites intoK ′, then check whetherm(K,A,K ′) follows
from LP[P ′].

The proof of the equivalence of 2 and 3 in Appendix A
uses their relationships with the rewriting semantics. How-
ever, this equivalence also follows from general results
in proof theory. Horn clauses and queries of the form
∀z(contains[S1][z] ⇐ contains[S2][z]) fall into a subclass
of Harrop Hereditary formulas. Nadathur [25] showed that,
for this subclass of formulas, classical provability, intuition-
istic provability, and uniform provability are equivalent.
Uniform proofs [24] are a restricted form of intuitionistic
proofs that embody a special form of goal-directedness. Us-
ing uniform proofs, in order to determine whetherTh[P] |=
∀z∀y1∀y2(m(K,A, z)⇐ m(K1, A1, y1)∧m(y1, A2, y2)∧
m(y2, A3, z)), one creates new constantsK ′,K ′

1,K
′
2 that

do not appear inP, add toP three factsm(K1, A1,K
′
1),

m(K ′
1, A2,K

′
2), andm(K ′

2, A3,K
′), and then try to prove

m(K,A,K ′) from it. This is essentially what we are doing
in Definition 5 and Theorem 3. The equivalence of classical
provability and uniform provability for this class of queries
says that this proof method is sound and complete with re-
spect to classical first order logic. The equivalence of classi-
cal provability and intuitionistic provability for this class of
queries says that one can also view the semantics as defined
in intuitionistic logic rather than classical logic.

2.6 Comparing FOL Semantics with Other Se-
mantics

Other logical semantics for SDSI exist. Both Abadi’s
logic [1] and Halpern and van der Meyden’s Logic of Lo-
cal Name Containment (LLNC) [8] are propositional modal

logics. The core relation in their logic is the rewriting into
relation. The focus of their study is to get a set of axioms
characterizing their logic.

SDSI 1.1 [26] (the version of SDSI before merging with
SPKI) gives pseudo-code of a nondeterministic algorithm
for resolving a name string into a principal given a set of
4-tuples. Like the set-theoretic semantics, this algorithmic
semantics defines a mapping from name strings to sets of
principals. This semantics was used as the reference se-
mantic in the logics by Abadi [1] and by Halpern and van
der Meyden [8]. Li [16] showed that this semantics is equiv-
alent to the string rewriting semantics when mapping name
strings to principals. Li [16] gave another LP-based seman-
tics for SDSI; the logic program there uses lists and is not
Datalog; furthermore, it is not as natural as the LP semantics
in Definition 3, and is not as easy to extend to FOL.

Comparing with the previous logic-based semantics for
SDSI, such as LLNC, the FOL semantics has the following
advantages:

• The FOL semantics directly captures the set-based se-
mantic of SDSI, which is used widely as the underlying
semantic intuition of SDSI,e.g., both by SDSI design-
ers in [4] and by Halpern and van der Meyden [8]. In
addition, it uses classical first-order logic, instead of
more complex logics with modal operators.

• It contains more information in the sense that a larger
class of meaningful queries can be formulated and de-
fined in this semantics.

• It is easily extended to support useful extensions of
SDSI. There are two important ways of extending the
SDSI 4-tuples. The first one is to add an intersection
operator,e.g., K A 7→ K A1 ∩ K A2. The mean-
ing of such a statement is immediate given the set-
based semantic intuition. Supporting intersection in
the FOL semantics is straightforwardly done using the
logical conjunction operator. Another way to extend
SDSI is to allow identifiers to be logical terms,e.g.,
K student(univ=‘Stanford’)7→ KJohn Smith. In FOL
semantics, this can be supported either by making the
predicatem take more parameters or by having a pred-
icate for each identifier function symbol,e.g., using
“student” as a predicate symbol. Extending logics such
as LLNC to support these extensions may be possible,
but seems less obvious.

• The FOL semantics has computational significance.
The equivalence of 2 and 3 in Theorem 3 gives an effi-
cient (in time polynomial in the size ofP) way to check

whetherRS[P] B S1
∗

� S2 for any name stringsS1

andS2. In LLNC, although a complete axiom system
was given, the complexity of using the axiom system

to determine whetherRS[P] B S1
∗

� S2 is not clear.



Some of these advantages also apply when comparing
with the string rewriting semantics,e.g., the FOL semantics
contains more information and is more extendable. Because
of this, we believe that the FOL semantics should be viewed
as the reference semantics. Any semantics for SDSI should
be equivalent to the FOL semantics for the class of queries it
handles. Some other semantics are useful for computational
or understanding purposes, of course. For example, the
string rewriting semantics is both helpful for understanding
SDSI and for computation, because of its relationship with
pushdown systems.

3 RTC
1 : A TM Language Extending SDSI

In Section 2, we have seen that SDSI’s semantics can
be defined in several equivalent ways and can be computed
efficiently. This shows that SDSI’s design is natural and el-
egant. SDSI was originally designed as a scheme for nam-
ing. As such, it lacks important features when used as a
full-fledged trust-management language. First, SDSI lacks
intersection; one cannot define a local name to contain the
intersection of two or more name strings. Many natural se-
curity policy statements have the form that a principal has
a certain permission (or an attribute) if it has two (or more)
other attributes at the same time. Second, SDSI identifiers
do not have internal structures. For example, instead of say-
ing “K student7→ KJohn Smith”, it would be more useful to
say “K student(dept=‘CS’, program=‘PhD’, year=‘2002’,
name=‘John Smith’,· · · ) 7→ KJohn Smith”, because one can
then use, for example, “K perm 7→ K student(dept=‘CS’)”
to grant “perm” to all principals that are CS students. Hav-
ing internal structures in identifiers also enables one to rep-
resent relationships among principals. For example, one
can then have local names such as “K managerOf(Alice)”
and “K1 physicianOf(Bob)” and issue statements such as
“K accessRecord(?X)7→ K1 physicianOf(?X)”, which
means that the physician of any patient can access the record
for that patient. (“?X” represents a logical variable.) An-
other use of having internal structures in identifiers is to rep-
resent access permissions that take parameters which iden-
tify resources and access modes.

SPKI/SDSI intends to be a full-fledged TM language; the
approach taken in designing SPKI/SDSI can be viewed as
adding SDSI features to SPKI,e.g., allowing name strings
to be used in subjects of auth certs. In Section 4, we will
analyze SPKI/SDSI and argue that the design of SPKI/SDSI
is problematic in several ways. In particular, authorization
tags, which are used to qualify permissions in SPKI/SDSI,
are quirky and algorithmically problematic. To make our
analysis easier to follow, in this section we first look at
another way of extending SDSI. Specifically, we look at
RTC

1 [18], which is a language in theRT Role-based Trust-
management framework [18, 20, 22].RT consists of a fam-

ily of TM languages. As pointed out in [20, 22], the de-
sign ofRT is heavily influenced by SDSI and Delegation
Logic [17]. RT0, the most basic language in theRT fam-
ily, can be viewed as adding intersections to SDSI.RT1

adds toRT0 parameters.RTC
1 further extendsRT1 with

constraints. The semantics of theRT languages are based
on translating statements into logical sentences, in the same
style as SDSI’s logic-based semantics.

3.1 Syntax of Policy Statements inRTC
1

Before describing the syntax of policy statements in
RTC

1 , we first explain the terminology differences between
SDSI andRT . Identifiers in SDSI are called role terms in
RT , and local names in SDSI are called roles. We useR,
often with subscripts, to denote role terms, and we add a dot
between a principal and a role term. For example,K.R rep-
resents a role inRT ; it corresponds to the local nameK R
in SDSI. Policy statements inRT0, RT1, andRTC

1 have
the same structures. They only differ in how role terms are
formed. In the following statements, the directions of the
arrows are the opposite of that used in SDSI rewriting rules.
We use this direction because it is the same as the direction
of logical implication in the logic based semantics.

• Type-1: K.R←− K1

• Type-2: K.R←− K1.R1

• Type-3: K.R←− K.R1.R2

• Type-4: K.R←− K1.R1 ∩K2.R2 ∩ · · · ∩K`.R`

A type-3 statement requires the sameK to be used
in both the role being defined,K.R, and the definition
K.R1.R2. This design is motivated by the need to handle
deduction with policy statements that are stored in a dis-
tributed manner. Observe that 4-tuples that use long ex-
tended names can still be equivalently represented inRT ,
by introducing new role terms and statements. For more
details on this, see [22].

In RT0, a role term is simply a role name, which is just
like an identifier in SDSI. InRT1, a role term may also
contain parameters. These parameters may be constants or
variables, and may use constraints in some limited ways.
RTC

1 allows more general forms of role terms, which we
now describe. InRTC

1 , each role name takes the form of
r(h1, . . . , hn), in which r is a role name, and for eachi
such that1 ≤ i ≤ n, hi takes one of the following three
forms: p = c, p ∈ S, andp = ref , in whichp is the name
of one ofr’s parameters that has typeτ , c is a constant of
typeτ , S is a value set of typeτ , andref is a reference to
another parameter in the same statement, also of typeτ . In-
tuitively, a value set is a constraint-based representation of a
set of values,e.g., [10..800] may be a value set of an integer



type. Parameters in role terms are specified by name, rather
than by position; and they are strongly typed. For example,
the followingRTC

1 statement “KSA.socketPerm(host∈ de-
scendants(‘stanford.edu’), port∈ [8000..8443])←−KAlice”
means thatKSA grants toKAlice the permission to connect
to any host in the domain ‘stanford.edu’ at any port between
8000 and 8443.

3.2 Semantics ofRTC
1

Without constraints, policy statements inRTC
1 are trans-

lated into Datalog clauses (which can be viewed as first-
order sentences), in ways very similar to SDSI.RTC

1 state-
ments with constraints are translated into clauses in multi-
sorted Constraint Datalog; these clauses can also be viewed
as first-order sentences. In the following, we give an brief
overview of Constraint Datalog. See [18] for more details of
Constraint Datalog and for the translation fromRTC

1 state-
ments to clauses in Constraint Datalog.

Constraint Datalog (or DATALOGC) is a restricted form
of Constraint Logic Programming (CLP), and is also a class
of query languages for Constraint Databases (CDB) [13,
14]. The notion of constraint databases, which was intro-
duced by Kanellakis, Kuper, and Revesz [13], grew out of
the research on Datalog and CLP and generalizes the re-
lational model of data by allowing infinite relations that
are finitely representable using constraints. DATALOGC al-
lows first-order formulas in one or more constraint domains,
which may describe file hierarchies, time intervals, and so
on, to be used in the body of a rule. Intuitively, a constraint
domain is a domain of objects, such as numbers, points in
a plane, or files in a file hierarchy, together with a language
for speaking about these objects. A constraint domain has a
first-order language defined by a set of constants, function
symbols, and relation symbols, and a class of quantifier-
free formulas in the langauge, called primitive constraints.
The following are some example constraint domains that are
used when translatingRTC

1 into DATALOGC .

Tree domains Each constant of a tree domain takes the
form 〈a1, . . . , ak〉. Imagine a tree in which every
node is labelled with a string value. The constant
〈a1, . . . , ak〉 represents the node for whicha1, . . . , ak

are the strings on the path from root to this node.
A primitive constraint is of the formx = y or
xθ〈a1, . . . , ak〉, in which θ ∈ {=, <,≤,≺,�}. The
constraintx < 〈a1, . . . , ak〉 means thatx is a child
of the node〈a1, . . . , ak〉, andx ≺ 〈a1, . . . , ak〉 means
thatx is a descendant of〈a1, . . . , ak〉.

Range domainsThe set of all constants in a range domain
is linearly ordered. A primitive constraint has the form
x = y, x = c or x ∈ (c1, c2), in whichc is a constant,

each ofc1 andc2 is either a constant or a special sym-
bol “∗”, meaning unbounded. And whenc1 is not ∗,
“(” can also be “[”; similarly, “ )” can be “]” whenc2 is
not∗.

Discrete domains with setsA basic constraint has the
form x ∈ {c1, . . . , c`}, in which c1, . . . , c` are con-
stants.

We say that these constraint domains areunary, because
each primitive constraint either has the formx = y, where
x andy are variables, or contains only one variable. We call
a primitive constraint that contains just one variable abasic
constraint. The three classes of unary constraint domains
described above support the following three operations.

Conjunction Given two basic constraintsφ1(x) andφ2(x),
determine whetherφ1(x)∧φ2(x) is satisfiable, and if it
is, computeψ1(x)∨ψ2(x)∨· · ·∨ψk(x) such thatk ≥
1, eachψi(x) is a basic constraint, for1 ≤ i ≤ k, and
the disjunction is logically equivalent toφ1(x)∧φ2(x).

Constraint Projection Given any basic constraint, deter-
mine whether it is satisfiable.

Constraint Subsumption Given the disjunction of a set
of basic constraints, determine whether another basic
constraint is implied by the disjunction,e.g., determine
whetherx ∈ [2, 8] is implied by the disjunction of
x ∈ [1, 5] andx ∈ [3, 10].

These operations make it possible to evaluate
DATALOGC programs using constraints in these do-
mains. Li and Mitchell [18] have shown that tree domains,
range domains, and discrete domains with sets have
additional properties that make such evaluation tractable.

3.3 Types

Role terms inRTC
1 are strongly typed. One declares

what parameters a role takes and the names and data types
of these parameters. One also declares new data types using
the mechanisms provided byRT . Role parameters and data
types are declared inapplication domain specification doc-
uments (ADSDs). Each ADSD is globally uniquely iden-
tified. One way to uniquely identify an ADSD is to use
a collision-free hash of the document as the identifier; one
may also include in the identifier an URI pointing to the doc-
ument so that it can be easily retrieved. An ADSD declares
a suite of related data types and role names, called avocabu-
lary. Policy statements, when using a role name, refer to the
ADSD in which the role name is declared. This enablesRT
to have strongly typed policy statements. ADSDs also pro-
vide solutions to the following vocabulary agreement prob-
lem. For a statementK.student←−K.university.student to



make sense; every principalK ′ that is a member of the role
K.university must agree withK on what “student” means,
e.g., whether it is a student registered in any class, or a stu-
dent enrolled in a degree program. The use of ADSDs en-
sure that everyone is talking about the student role declared
in one specific ADSD. The use of ADSDs and strongly
typed statements helps reduce the possibility of errors in
writing policy statements and unintended interaction among
policy statements.

The notion of vocabularies is complementary to the no-
tion of localized name spaces for roles. Each addresses
a distinct name space issue. For example, an accrediting
board might issue an ADSD that declares the role name
“student”. This defines the names and data types of the
role’s parameters. Such parameters may include university
name, student name, program enrolled in, and so on. The
ADSD may also contain description of the conditions under
which a principal should be made a member of the student
role,e.g., it may require a principal be registered in a degree
program. Then a university StateU can use this ADSD to
issue credentials definingKStateU.student. Although using
a vocabulary created by another principal, StateU is still the
authority over who is a member of the roleKStateU.student.
RTC

1 has several categories of types: integer types,
float types, enumeration types, string types, tree types.
Some system-defined data types of these categories ex-
ist, and one can declare new data types of these cat-
egories. Each type category has a syntax for defin-
ing value sets. Unordered enumeration types and string
types correspond to discrete domains with sets; a value
set takes the form of a set of constants. Integer types,
float types, and ordered enumeration types correspond to
range domains; a value set takes the form of a range,e.g.,
[10, 200], or (10, ∗). Tree types correspond to tree do-
mains; and are used to represent hierarchical structured re-
sources such as file hierarchies and DNS names; a value
set takes the form of a predefined function symbol ap-
plied to a node,e.g., descendants(〈edu, stanford〉) and
currentAndChildren(〈edu, stanford, cs〉).

4 Analyzing SPKI/SDSI using First-Order-
Logic (FOL)

In this section, we extend the FOL semantics for SDSI
to SPKI/SDSI, which has authorization certificates (or auth
certs) and ACL entries, in addition to name certs. Both auth
certs and ACL entries are 5-tuples. An auth cert is a signed
five tuple(K,H,D, T, V ), where

• K ∈ K is the issuer principal, which signs the cert.
The issuer grants a specific authorization through this
5-tuple.

• H ∈ H is called the subject, whereH is defined to
be the least set satisfying the following two condi-
tions: (1) S ⊆ H, whereS is the set of all name
strings, and (2)θk(H1,H2, · · · ,Hn) ∈ H, where
H1,H2, · · · ,Hn ∈ H. The subject specifies princi-
pals that receive authorization from this 5-tuple.

• D ∈ {0, 1} is called the delegation bit. WhenD =
1, the subject may further delegate the authorization it
receives from this 5-tuple.

• T is the authorization tag, each tag represents a (po-
tentially infinite set of) byte strings.T specifies the
authorization that is granted by this 5-tuple.

• V is the validity specification, which is the same as in
the case of a name cert.

An ACL entry is a locally stored 5-tuple
(Self ,H,D, T, V ). It is very similar to an auth cert,
except that the issuer is a special symbolSelf instead of
a key and that the ACL entry is not signed. We will treat
Self as a special principal inK.

The 5-tuple reduction rule in Section 6.3
of RFC 2693 is as follows: the two 5-tuples
(K1, S1, D1, T1, V1) and (K2, S2, D2, T2, V2) yield
(K1, S2, D2,AIntersect(T1, T2),VIntersect(V1, V2)),
provided thatS1 = K2, D1 = 1, andAIntersect(T1, T2)
succeeds.

Observe that the 5-tuple reduction rule only applies when
the subject is a principal. When the subject is a name string,
the way to use the 5-tuple reduction rule is to first replace a
5-tuple that has a name stringS as the subject with a set of
5-tuples, each of which has one principal in the valuation of
theS as the subject. The procedure for handling threshold
is described in details in Clarke et al. [4].

4.1 Handling Basic Delegation Relationships in 5-
tuples

To understand 5-tuples, we first make some simplifying
assumptions. These assumptions will be removed later one
by one.

1. We assume thatT does not have any internal struc-
ture, and can be viewed as an identifier. As a re-
sult, AIntersect(T1, T2) either fails (whenT1 6= T2)
or equalsT1 = T2.

2. We ignore the validity specificationV , and write
(K,S, T,D, ·) for a 5-tuple. We assume that only valid
certificates are considered.

3. We assume that the subject does not contain thresh-
olds; in other words, the subject is a name stringS.



WhenD = 0, a 5-tuple(K,S, 0, T, ·) simply means that
K grants the authorizationT to any principal who is in the
valuation ofS. If we allow identifiers that correspond to
authorization specifications to be used in 4-tuples, we can
useK T to denote the set of all principals thatK grants
the authorizationT to, and view this 5-tuple as a 4-tuple
K T 7→ S.

WhenD = 1, a 5-tuple(K,S, 1, T, ·) means thatK
grants the authorization to any principal that is in the val-
uation ofS and to any principal such a principal grantsT
to. In other words,(K,S, 1, T, ·) can be represented using
two 4-tuplesK T 7→ S andK T 7→ S T . For exam-
ple, a 5-tuple(K,K1 A1 A2, 1, T, ·) is represented using
K T 7→ K1 A1 A2 andK T 7→ K1 A1 A2 T .

Using 5-tuple reduction, one can use(K1,K2, 1, T, ·)
and(K2,K3, 1, T, ·) to derive(K1,K3, 1, T, ·). This can be
viewed as deriving new rewriting rules from existing ones:

• rewriteK1 T 7→ K2 T usingK2 T 7→ K3 and derive
K1 T 7→ K3

• rewriteK1 T 7→ K2T usingK2 T 7→ K3T and derive
K1 T 7→ K3 T

These observations show that, under these simplifying
assumptions, 5-tuples can be viewed as 4-tuples, and we
can use the FOL semantics for SDSI to provide a semantics
for the simplified version of SPKI.

In the version of SPKI that existed before merging with
SDSI, the subject of a 5-tuple cannot contain names. In
this case a 5-tuple(K,K1, 1, T, V ) can be represented us-
ing two 4-tuplesK T 7→ K1 andK T 7→ K1 T . This
represents very limited delegation relationships, one cannot
expressK T1 7→ K1 T2 or the tupleK T 7→ K T1 T ,
which represents a delegation aboutT fromK to members
of K T1.

4.2 Using Constraints to Handle Authorization
Tags and Validity Specifications

Having understood the delegation semantics of SPKI, we
remove the first simplifying assumption and deal with au-
thorization tags. Howell ([10] Chapter 6) provided a de-
tailed analysis of authorization tags in his PhD thesis. In
this analysis, an authorization tagT is viewed as represent-
ing an (often infinite) set of strings. Here, we take the same
view and use constraints to specify the authorization repre-
sented as a tag. We use a unary constraint domain in which
a basic constraint has the formt ∈ T , wheret is a logical
variable andT is an authorization tag. The mapping from
tags to sets of strings then determines the truthfulness of for-
mulas in this constraint domain. We will look at details of
tags and this constraint domain in Section 4.3.

Definition 6 Given a setP of 4-tuples and 5-tuples, we de-
fine Th[P] to be the following Constraint Datalog program
(which is also a first-order theory). In addition to the predi-
catem used for 4-tuples, we also use another ternary pred-
icateg; intuitively, g(K,T,K ′) says thatK grants the au-
thorizationT toK ′. Th[P] contains

∀z(contains[K A][z]⇐ contains[S][z])
for each (K,A, S, V ) ∈ P

∀z∀t(g(K, t, z)⇐ contains[S][z] ∧ t ∈ T )
for each (K,S, 0, T, V ) ∈ P

∀z∀t(g(K, t, z)⇐ contains[S][z] ∧ t ∈ T )
for each (K,S, 1, T, V ) ∈ P

∀z∀y∀t(g(K, t, z)⇐ contains[S][y] ∧ g(y, t, z) ∧ t ∈ T )
for each (K,S, 1, T, V ) ∈ P

RFC 2693 does not explicitly specify the class of queries
in SPKI. However, because the 5-tuple reduction rule de-
duces new 5-tuples from existing ones, SPKI determines
whether a 5-tuple follows from a set of statements. This
is a reasonable “semantics” because authorization requests
are also represented as 5-tuples. Because 5-tuples are rep-
resented using first-order formulas in our semantics, first-
order logic naturally defines a semantic relation. Given a set
P of 5-tuples and 4-tuples, if one wants to know whether a
5-tuple(K,S, 0, T, V ) follows fromP, one can ask whether
Th[P] |= ∀z∀t(g(K, t, z) ⇐ contains[S][z] ∧ t ∈ T ). If
one wants to know whether a 5-tuple(K,S, 1, T, V ) fol-
lows from P, one should also check whetherTh[P] |=
∀z∀y∀t(g(K, t, z)⇐ contains[S][y] ∧ g(y, t, z) ∧ t ∈ T ).

When AIntersect(T1, T2) is sound, i.e., when t ∈
AIntersect(T1, T2) ⇒ t ∈ T1 ∧ t ∈ T2 is a tau-
tology for any pair of tagsT1 and T2, the 5-tuple re-
duction rule is sound with respect to the logical se-
mantic relation. For example, the 5-tuple reduction
that uses(K1,K2, 1, T1, ·) and(K2,K3, 0, T2, ·) to derive
(K1,K3, 0,AIntersect(T1, T2), ·) is essentially the follow-
ing sound logical deduction: from∀z∀t(g(K1, t, z) ⇐
g(K2, t, z) ∧ t ∈ T1) and ∀t(g(K2, t,K3) ⇐ t ∈ T2),
deduce∀t(g(K1, t,K3)⇐ t ∈ AIntersect(T1, T2)).

Validity specifications can be handled by extending the
two ternary predicatesm and g to take an additional pa-
rameterv, which denotes the time during which this tuple is
valid and viewing validity specifications as constraints onv.
For example, validity specifications that are validity periods
are straightforwardly represented using range constraints.

4.3 Structure of Tags

In this section, we look at the internal structure of tags.
The main point of this section is that SPKI’s 5-tuple reduc-
tion is an incomplete proof procedure with respect to the
FOL semantics of SPKI. In addition, as pointed out before
by Howell [10], authorization tags are not well behaved.



Specifically, the constraint domain for tags does not support
operations that we need to compute the meaning ofTh[P].

The following descriptions of authorization tags follow
RFC 2693. An authorization is a list of byte-strings or sub-
lists. Two authorizations intersect by matching, element for
element. If one list is longer than the other but matches at
all elements where both lists have elements, then the longer
list is the result of the intersection. This means that addi-
tional elements of a list must restrict the permission granted.
For example,(ftp (host ftp.clark.net)) may
represent the permission of ftp access to every file and
every directory on the hostftp.clarke.net . This
is more general than(ftp (host ftp.clark.net)
(dir /pub/cme)) , and the intersection of the two tags
results in the latter. SPKI also has a small number of special
expressions.

( *) stands for the set of all tags and byte-strings. In other
words, it will match anything. When intersected with
another tag, the result is that other tag.

(* set <tag-expr>*) stands for the set of elements
listed in the *-form.

(* prefix <byte-string>) stands for the set of all
byte strings that start with the one given in the *-form.

(* range <ordering> <lower-limit>?
<upper-limit>?) stands for the set of all byte
strings lexically (or numerically) between the two
limits. The ordering parameter (alpha, numeric, time,
binary, date) specifies ordering.

We now show that 5-tuple reduction is incomplete
with respect to the logical semantics, when interpreting
tags as representing a set of strings. For example, given
two 5-tuples (K,K1, 0, (* set read write) , V )
and (K,K1, 0, (* set delete) , V ), then the query
(K,K1, 0, (* set read delete) , V ) should be true;
but it cannot be inferred from the two 5-tuples by reduction.
Intuitively, one should be able to combine authorizations
received from multiple 5-tuples. However, the reduction
rule uses only tag intersection and does not consider
tag union. From this observation and the discussion in
Section 4.2, we have the following theorem.

Theorem 4 The 5-tuple reduction rule is a sound but in-
complete procedure with respect to the first-order logic se-
mantics, when tags are viewed as representation of sets of
strings andAIntersect(T1, T2) is sound.

A natural question to ask is whether there exists a sound
and complete proof procedure for determining whether one
5-tuple follows from a set of 5-tuples. To do this, we
have to look at the internal structures of tags and the op-
erations on them. The short answer is that the constraint

domain for representing tags is ill-behaved, and normal
Constraint Datalog evaluation procedure does not apply.
Howell [10] pointed out that intersections between some
tags result in sets that may not be finitely represented us-
ing tags. This happens when intersecting a(* prefix)
expression and a(* range) expression, or intersecting
two two (* range) expressions that use different or-
dering. The example Howell gave is intersecting(tag
(* range numeric ge 0.5 le 0.5)) with (tag
(* prefix 000)) . Howell suggested artificially defin-
ing intersections in these potentially problematic cases to
be empty, for lack of better solutions. This suggests that
the constraint domain for authorization tags does not sup-
port the conjunction operation. It is also unclear how it can
support the subsumption operation.

Bandmann and Dam [3] pointed out another problem
with authorization tags: computingAIntersect of two tags
that use(* set) may take time exponential in the size of
the two tags.

4.4 Authorization Tags in SPKI vs. Named and
Typed Parameters inRTC

1

We have seen that, by viewing tags as representing sets
of strings and viewing 4-tuples and 5-tuples as logical sen-
tences, 5-tuple reduction is incomplete, and it seems un-
likely that a complete proof procedure exists. This is clearly
unsatisfactory. We now look for ways to remedy this prob-
lem.

SPKI/SDSI defines tags and their intersection in a syn-
tactical way. Howell [10] provided a semantics for tags by
viewing them as representations of sets of strings and found
that “special tags cause havoc” (6.5.3 of [10]). We feel that
the string semantics for tags is still syntactical in that it does
not consider what the strings intend to represent. The(*
prefix) tag, for example, is used for representing tree-
like file hierarchies. If we consider the motivation and ap-
plication for this construct, it seems more natural to rep-
resent statements about file hierarchies using multi-sorted
first-order logic with a special sort devoted to files and di-
rectories. This approach leads to a constraint domain for
tree-like hierarchies, namely, a tree domain, which we dis-
cussed in Section 3.2. The move to constraints over tree
domains not only gives us a natural semantics, but leads to
more expressive policy options. For example,(* pre-
fix) is not helpful for referring to the DNS hierarchy in
an access policy; we need a(* postfix) tag instead.
Nor can one use(* prefix) to represent the set of all
files and directories that are direct children of a directory,
where as tree domains support these constraints. Similarly,
(* range) tags are more naturally viewed as a form of
constraints over range domains than sets of strings.

We believe that instead of viewing tags as defining sets



of strings, and allowing combinations of string operations
that do not meaningfully refer to any controlled resources,
it is more informative and semantically appealing to use one
special purpose constraint domain for each concept. The
languageRTC

1 does exactly this, allowing many choices of
constraint domains. For example, inRTC

1 , one can declare
one tree domain for file hierarchies, another tree domain
for DNS names, one range domain for time of the day, and
another range domain for port numbers, and so on. Each
constraint domain has its standard semantic meaning, given
by a first-order structure, and is easy to understand and han-
dle algorithmically. InRTC

1 , a role term may have multi-
ple named and typed parameters, each parameter from one
constraint domain. This syntactic requirement allows dif-
ferent constraint domains to be combined in a single policy,
without introducing meaningless statements that, for exam-
ple, apply range predicates to tree expressions. A statement
in RTC

1 can be translated into a Constraint Datalog clause
with constraints from tree domains, range domains, or dis-
crete domains with sets. In [18], we have proved that these
domains are tractable and that evaluating the minimal mod-
els of Datalog programs with any multi-sorted combination
of tractable domains remains tractable.

While we believe the multi-sorted language with multi-
ple constraint domains is more appealing, there are com-
binations of SPKI/SDSI tags that cannot be translated into
RTC

1 in any straightforward way. While many of these
combinations do not seem meaningful or desirable, there are
some aspects of SPKI/SDSI tag intersection that do seem
useful and are not easily expressed inRTC

1 without spe-
cial provision. The SPKI/SDSIAIntersect operator treats
a longer tag as a more specialized tag. The design ratio-
nale for this to enable one to further specialize an authoriza-
tion tag by appending new fields at the end. This flexibility
seems to be missing in the strongly typed approach. The
designers of the initial tags may not be able to foresee all
necessary parameters; therefore, the initial type specifica-
tion may not have all the parameters one wants. InRTC

1 ,
this flexibility is brought back by a feature that we call re-
strictive inheritance. A role name can be declared to restric-
tively inherit another role name and adds more parameters.
Statements about the original role also implies statements
about the extended role. For more details on this, see [19].

4.5 Threshold Subjects in SPKI vs. the Intersec-
tion Operator in RTC

1

SPKI/SDSI lacks support for conjunction. As a result, it
is not possible to directly grant a permission to any princi-
pal who has two or more attributes at the same time. An-
other use of conjunction is to allow a principal to man-
age a permission (by further delegating to other principals)
without being able to use the permission. InRTC

1 , which

has an intersection operator providing logical conjunction,
K.perm←−K1.perm∩K.student can be read as saying that
K allowsK1 to delegate the authorization perm, but only to
members ofK.student. IfK1 is not a member ofK.student,
thenK1 cannot make itself a member ofK.perm, even if it
issuesK1.perm←−K1.

Threshold subjects are part of SPKI/SDSI. If threshold
subjects, which SPKI/SDSI only allows in 5-tuples, are also
allowed in 4-tuples, they can be used to implement con-
junction. For example,θ2(K1 A1, K2 A2) can represent
K1 A1 ∩ K2 A2. Threshold subjects in 4-tuples are al-
lowed in [6] and earlier versions of [7], but are not allowed
in [4, 7], because they are viewed as “too convoluted to be
useful in practice” [4]. As observed by Li [16], the mean-
ing of threshold subjects in 5-tuples is different from that
in 4-tuples. In a 4-tuple, k of the n subjects in a threshold
subject must be resolved to a single principal. In a 5-tuple,
k subjects can be resolved to different principals, which can
further delegate to a single principal.

Coming up with a declarative semantics for threshold
subjects in 5-tuples is not an easy task. Clarke et al. ([4],
Section 10) uses a highly operational approach to handle
thresholds. Halpern and van der Meyden [9] avoids thresh-
old subjects in their logical reconstruction of SPKI. Intu-
itively, with threshold subjects, it is not a single principal
that has some attributes (e.g., being granted an authoriza-
tion); instead, a set of principals together have some at-
tributes. This set of principals can all delegate to one prin-
cipal; they can also submit a joint access request.

In order to provide a logical approach to threshold sub-
jects, theRT framework has theRTT component, which
handles threshold using manifold roles.Manifold roles
generalize normal roles to allow each member to be a set
of principals rather than a single principal.RTT sup-
ports more expressive threshold structures and separation-
of-duties policies, and has a logical semantics. See [20] for
details onRTT . An example policy that one can easily ex-
press inRTT is requiring two different cashiers together to
complete a transaction. To express this in SPKI, one has to
explicitly list all the cashier principals in the threshold sub-
ject, and so the policy statement needs to be changed each
time a new cashier is added or removed. Note that delegat-
ing toθ2(Kcashier, Kcashier) is incorrect, since one single
cashier principal satisfies the threshold in SPKI’s semantics.

5 Conclusion

SPKI/SDSI is a language for expressing distributed ac-
cess control policy, derived from SPKI and SDSI. Signif-
icant effort has gone into finding a logic-based semantics
for both SDSI naming alone and SPKI/SDSI. We presented
a FOL semantics for SDSI based on translating each name
cert into a Datalog clause, viewed as a first-order logic sen-



tence. We also proved that the FOL semantics is equivalent
to the string rewriting semantics used by SDSI designers,
for all queries associated with the rewriting semantics. The
advantages of our approach over previous logics are the fol-
lowing. First-order logic captures the set-based semantic in-
tuition of SDSI, and requires only classical first-order logic
rather than more complex modal logics. The FOL seman-
tics contains more information than rewriting semantics in
the sense that a larger class of queries can be formulated
and understood. This opens the door to more possibilities of
safety and availability analysis, along the lines developed in
[21]. The FOL semantics is easily extended to support use-
ful extensions to SDSI and, finally, the relationship between
the FOL semantics and logic programming provides an ef-
ficient method to answer a large class of queries.

In our study of full SPKI/SDSI, we use as comparison
a trust management languageRTC

1 [18], which has Con-
straint Datalog as its semantic foundation.RTC

1 is a lan-
guage in the RT family of Role-based Trust-management
languages [20, 22], and can be viewed as extending SDSI
by adding several features. By adopting specific constraint
domains tailored to SPKI/SDSI, we provided a FOL seman-
tics for SPKI/SDSI in which authorization tags and validity
specification are interpreted as logical constraints. This in-
terpretation of SPKI/SDSI helped us examine several design
issues, usingRTC

1 for comparison. Our analysis shows that
SPKI’s 5-tuple reduction procedure is semantically incom-
plete. One reason is that reduction does not handle union
of tags. In addition, authorization tags in SPKI/SDSI are
algorithmically problematic, making a complete proof pro-
cedure unlikely. The constraint feature ofRTC

1 provides
an alternative mechanism that is often more expressive than
SPKI/SDSI tags, semantically natural, and algorithmically
tractable. The translation of SPKI/SDSI into logic with con-
straints, and experience withRTC

1 , suggests that Constraint
Datalog is an appropriate foundation for trust management
languages, subsuming SPKI/SDSI and possessing several
algorithmic and expressiveness advantages.
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A Proofs

Proposition 2 Given a setP of policy statements, if

Th[P] |= m(K,A,K1), thenRS(P) BK A
∗

� K1.

Proof. ¿From standard result in logic programming,
Th[P] |= m(K,A,K1) if and only ifm(K,A,K1) is in the
minimal Herbrand model ofTh[P]. We now summarize a
standard fixpoint characterization of the minimal Herbrand
model, which we will use in this proof. For a Datalog pro-
gramDP, let DPinst be the ground instantiation ofDP
using constants inDP, the immediate consequence opera-
tor, TDP , is defined as follows. Given a set of ground logi-
cal atomsK, TDP(K) consists of all logical atoms,a, such
thata:− b1, . . . , bn ∈ DPinst andbj ∈ K for 1 ≤ j ≤ n.
The least fixpoint ofTDP can be constructed as follows.
DefineTDP↑0= ∅ andTDP↑i+1= TDP(TDP↑i) for i ≥ 0.
This defines an increasing sequence of subsets of a finite set.
Thus there exists anN such thatTDP(TDP↑N ) = TDP↑N.
TDP ↑N is easily shown to be the least fixpoint ofTDP ,
which we denote byTDP ↑ω. TDP ↑ω is identical to the
minimal Herbrand model ofDP [23]; therefore,LP[P] |=
m(X,u, Z) if and only ifm(X,u, Z) ∈ TLP[P]↑ω.

We prove this proposition by using induction oni to
show that ifm(K,A,K ′) ∈ TLP[P] ↑i, thenRS(P) B

K A
∗

� K ′. The basis is trivially satisfied because
TLP[P]↑0= ∅. In the step,m(K,A,K ′) ∈ TLP[P]↑i+1, one
of the following three cases apply.

Case one: m(K,A,K ′) ∈ LP[P], this means that

K A 7→ K ′ ∈ P. Clearly,RS[P] BK A
∗

� K ′.
Case two:m(K,A, z):− m(K1, A1, z) ∈ LP[P], and

m(K1, A1,K
′) ∈ TLP[P]↑i. In this case,K A 7→ K1 A1 ∈

P, and by induction hypothesis,RS[P] B K1 A1
∗

� K ′.
Using rewriting rules inRS[P], one can rewriteK A first to

K1 A1, and then toK ′; soRS[P] BK A
∗

� K ′.
Case three: m(K,A, z) :− m(K1, A1, y1),

m(y1, A2, y2), · · · , m(y`−1, A`, z) ∈ LP[P], ` > 1, and
m(K1, A1,K

′
1), m(K ′

1, A2,K
′
2), · · · , m(K ′

`−1, A`,K
′) ∈

TLP[P]↑i. In this case,K A 7→ K1 A1 · · · A` ∈ P and by

induction hypothesis,RS[P] B K1 A1
∗

� K ′
1, K

′
1 A2

∗
�

K ′
2, · · · , K ′

`−1 A`
∗

� K ′. Using rewriting rules inRS[P],
one can rewriteK A first to K1 A1 · · · A`, then into
K ′

1 A2 · · · A`, and so on, and finally intoK ′.

Theorem 3 Given a setP of 4-tuples, and two name strings
S1 andS2, the following three statements are equivalent.

1. RS[P] B S1
∗

� S2.

2. Th[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).



3. Th[P ′] |= m(K,A,K ′), whereKA is any local name
not defined inP, andP ′ andK ′ depend on the form of
S2:

• whenS2 is a principal,K ′ = S2 andP ′ = P ∪
{K A 7→ S1}
• whenS2 = K1 A1 · · · A` where` ≥ 1, we set
K ′ to be a principal not appearing inP andP ′ =
add(P, S2,K

′) ∪ {K A 7→ S1}.

Proof. 1 implies 2: We use induction on the num-
ber of rewriting steps. Base case,S1 = S2, the for-
mula ∀z(contains[S1][z] ⇐ contains[S2][z]) is a tautol-

ogy. Consider the step, suppose thatRS[P] B S1 � S′
∗

�
S2. We will prove thatTh[P] |= ∀z(contains[S1][z] ⇐
contains[S′][z]). Induction hypothesis gives usTh[P] |=
∀z(contains[S′][z] ⇐ contains[S2][z]). Combining them,
we haveTh[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).

We now prove thatTh[P] |= ∀z(contains[S1][z] ⇐
contains[S′][z]) whenRS[P] B S1

∗
� S′. S1 is either a

principal, a local name, or an extended name.S1 cannot
be a principal, since then the rewriting fromS1 to S′ is
impossible. IfS1 is a local name, thenS1 7→ S′ ∈ P,
and so∀z(contains[S1][z] ⇐ contains[S′][z]) ∈ Th[P].
If S1 is an extended nameK A1 · · · A` for some
` ≥ 2, we assume that the 4-tuple used to rewrite
S1 into S′ is K A1 7→ K1 B1 · · · Bk for some
k ≥ 0, then S′ = K1 B1 · · · Bk A2 · · · A`. Con-
sider any model ofTh[P] and any principalz in the
model, if contains[S′][z] is true in the model, then
there exists principalsy′1, · · · , y′k and y2, . . . , y` such
that m(K1, B1, y

′
1), m(y′1, B2, y

′
2), m(y′k−1, Bk, y

′
k),

m(y′k, A2, y2), · · · , m(y`−1, A`, z) are true in the
model. SinceK A1 7→ K1 B1 · · · Bk, thenTh[P] |=
∀z(contains[K A1][z] ⇐ contains[K1 B1 · · · Bk][z]),
thereforem(K,A1, y

′
k) is true in the model. It then follows

thatcontains[K A1 · · · A`][z] is true in the model. There-
fore,Th[P] |= ∀z(contains[S1][z]⇐ contains[S′][z]).

2 implies 3: Assume, without loss of generality, thatS1

is K A1 · · · A` for some` ≥ 0 andS2 is K1 B1 · · · Bk

from some k ≥ 0. Observe that by definition of
P ′, Th[P ′] |= contains[S2][K ′]. When S2 is a prin-
cipal, S2 = K ′. When S2 is a local name or an
extended name,Th[P ′] contains the followingk atoms
m(K1, B1,K

′
1), m(K ′

1, B2,K
′
2), · · · , m(K ′

k−1, Bk,K
′).

If Th[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]),
then Th[P ′] |= contains[S1][K ′]. Also observe that
Th[P ′] |= ∀z(contains[K A][z] ⇐ contains[S1][z]);
therefore,Th[P ′] |= m(K,A,K ′).

3 implies 1From Proposition 2, we know that ifTh[P ′] |=
m(K,A,K ′), thenRS[P ′] B K A

∗
� K ′. Consider the

rewriting sequence, the first rule applied has to beK A 7→
S1, since it is the only rule that can apply. (Recall that by
definitionK A is not defined inP.) Consider the last step,
the rule applied has to beK ′

`−1 A` 7→ K ′, since that is the
only rule having aK ′ on its right hand side. The rule applied
in the second to last step has to beK ′

`−2 A`−1 7→ K ′
`−1,

since that is the only rule havingK ′
`−1 on its right-hand

side, and so on. Therefore, the rewriting sequence must con-
tains in its middle a sequence rewriting fromS1 to S2. Fur-
ther observe that the rules inP ′ but not inP cannot be ap-

plied in this middle sequence. Therefore,RS[P]BS1
∗

� S2.
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