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A B S T R A C T

Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis
remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs
with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that
this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient con-
centration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state
where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability
between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance.

We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation
model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis
is parameter-free, i.e., without assigning a numerical value to any of the parameters.

The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through
glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of
the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model
predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The
existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned
bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states,
but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis
offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this
bistability and the influence of the redox balance.

1. Introduction

Metabolism is central to all life. The underlying network of enzyme-
catalysed reactions adapts to environmental conditions, in order to keep
sustaining the living state. In microorganisms metabolism is arguably
even more important, since metabolic rates are directly coupled to
cellular growth rate, and hence to fitness. Understanding the dynamics
of metabolic networks is therefore an important challenge in systems
biology.

The glycolysis pathway has been the focus of research for decades. It
metabolises glucose into pyruvate, thereby using the free energy to
generate 2-adenine5′-triphosphate (ATP) and the freed electrons to
reduce nicotinamide adenine dinucleotide (NAD) to NADH. Glycolysis
is essential for cells: it provides much of the ATP that drives countless
biological processes, and glycolysis provides some of the most im-
portant precursor molecules, such as pyruvate, from which amino acids,
lipids and other macromolecules are synthesised. Moreover, many

metabolic branches feed into glycolysis, so that other sugars, such as
fructose, galactose, sucrose, maltose, lactose and others, may be me-
tabolised through this pathway as well.

When yeast is deprived of oxygen, its glycolysis converts pyruvate
further into ethanol and CO2 by oxidising NADH. This yields a very fast
but inefficient energy production, in which 2 out of the potential 12
ATP are obtained from one molecule of glucose. The yeast glycolytic
pathway has been studied extensively, and two fully detailed models
have been developed which include fully parameterised reaction ki-
netics for all the individual enzymatic steps [9,15]. Nevertheless, de-
spite this wealth of detail, a number of dynamical aspects of yeast
glycolysis remain poorly understood at present.

When fermentable nutrients such as glucose or galactose are starting
to run out, the expression of glycolytic enzymes is downregulated. The
levels of the protein glycolytic regulator 1 (gcr1) drop dramatically [7],
inducing this regulation. The flux through glycolysis decreases and the
cell enters a state of quiescence. However, gcr1 only binds to the
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transcription binding sites of lower glycolytic enzymes [2], while upper
glycolysis is constitutively expressed, which is often contributed to their
double role as glycolytic and gluconeogenic enzymes [2,17].

If some nutrient like glucose would suddenly become readily
available, already having a functional upper glycolysis would spark a
rise in many catabolic precursors and free energetic ATP. In this paper
we will show that this spark immediately allows flux through glycolysis
to start, before enzyme levels may be adjusted through regulation. Cells
that have the sufficient expression in upper glycolysis will therefore
outcompete their neighbours in the metabolic timescale, giving them an
evolutionary advantage. Our work also shows that the concentrations of
the lower glycolytic enzymes do not influence this threshold, which
shows that only the upper glycolytic enzymes need to be expressed
when the pathway is inactive to achieve this.

Yeast glycolysis has held another mystery for years. Yeast can syn-
thesise trehalose from the glycolytic intermediate glucose 6-phosphate.
This reaction is not a step of the glycolysis pathway, so one does not
expect glycolysis to fail when this reaction is disabled by means of a
gene knockout. However, many cells of the mutant in which this par-
ticular knockout is performed, the tps1-Δ mutant, are not able to grow
on glucose [18]. In [18] it was revealed that this mutant shows a form
of bistability between a regular steady state and an imbalanced state in
which some intermediate metabolites, including fructose-1,6-bipho-
sphate (FBP), accumulate in the cell, reaching toxic levels. In fact, also
wild type yeast suffers from this problem, but only a small part of the
wild type population enters the imbalanced state [18]. The trehalose
branch does not completely inhibit this effect, but makes it less likely
for glycolysis to fail and more likely to grow well; in dynamical systems
terms: the basin of attraction of the imbalanced state is reduced in size,
so that the regular steady state is reached from a wider range of initial
conditions. In the analysis of a small core model of yeast glycolysis in
the tps1-Δ knockout [13], containing FBP, ATP and inorganic phos-
phate pi as dynamic variable, the bistability between regular and im-
balanced states was shown to exist, in line with experiments [18].

The tps1-Δ mutant experiments show that the size of the sub-
population entering the imbalanced state is dramatically increased by
removing the trehalose branch. By experimentally increasing the
ethanol concentration, a distinct influence on the size of the imbalanced
subpopulation was shown [18]. The effect of more ethanol, however,
could be contributed completely to a heightened NADH/NAD balance,
yielding a higher flux through the glycerol producing, and FBP con-
suming, branch. Lower FBP levels facilitate convergence to a vital
steady state with normal glycolytic flux. Theoretically, this influence of
redox balance was not taken into account in the previous core model
[13]. Here, we shed light on the influence of redox balanced by in-
cluding NADH and NAD as dynamic variables.

When the metabolite concentrations external to the cell change, for
instance if a new food source becomes abundant, the cell’s limited en-
zyme production needs to be redistributed by the gene regulatory
network to reach a new steady state to maximise the flux through
glycolysis. It has recently been shown that enzyme levels are indeed
pervasively tuned to maximise growth rate in yeast [10]. The gene
network is responsible for tuning enzyme levels, but it needs input from
the pathway it controls to sense changes in the environment. Nutrient-
specific membrane receptors could provide such input, and yeast has a
detailed glucose-sensing mechanism [5]. Nevertheless, as in most bac-
teria [11], yeast cells also sense the flux through glycolysis by using
glycolytic intermediates binding to transcription factors. These then
influence gene expression. Experimental evidence suggests that FBP
acts as such a flux sensor [4,8], directly influencing the gene network
and thereby inducing changes in the glycolytic enzyme levels, a form of
adaptive control [14].

However, it is less clear why FBP should play this role as sensor. For
FBP to function properly, its concentration should contain sufficient
information to assess the metabolic flux through glycolysis. The FBP
concentration should therefore be associated to a unique steady state

concentration profile. This has been shown to be true experimentally
and a mechanism has been proposed [11], but it is not clear how this
property emerges from the kinetic properties of the glycolytic pathway.
We investigate here for a detailed core model under what parameter
assumptions FBP indeed parametrises steady states. We also ask the
question whether the steady states may actually be faithfully predicted
by a flux value, for instance one of the FBP-consuming fluxes. Although
we will show broadly applicable parameter conditions which yield
these phenomena, we do not include dynamic enzyme concentrations
or regulation. Therefore our results indicate that the glycolytic pathway
generally has kinetic properties that facilitate FBP to function as a flux
sensor.

1.1. Introducing the glycolytic pathway

The essential elements of the phenomena described above are the
inclusion of FBP (f), ATP (a), inorganic phosphate (p) and NADH (n) as
dynamical variables, upper glycolysis (v1), lower glycolysis (v2), the
glycerol branch (v3) ethanol production (v4) and phosphate exchange
with the vacuole (v7) as fluxes. The glycerol pathway is a net consumer
of NADH and ethanol is NADH-neutral, so we need to include the
succinate pathway (v5) as a net producer of NADH and cannot lump v2
and v4 as v5 uses the intermediate pyruvate (y) as its input. Then the
ethanol pathway is producing ATP and we model all ATP consuming
fluxes in the cell in the lumped flux v6. This model (Fig. 1) is the sim-
plest possible to describe the phenomena of interest, yet already its
complexity is high in the context of qualitative analysis of core models.

We consider the metabolic timescale after a sudden increase in ex-
ternal glucose concentration. In this timeframe we assume that the
external conditions are constant, such that the growth-permissable
glucose and negligable ethanol concentrations are fixed parameters.
The concentrations of glycerol and succinate are disregarded with the
assumption of product insensitivity of v3 and v5, respectively.

The pi concentration is dynamically buffered (v7) by diffusion be-
tween the cytosol and the vacuole. We assume that the concentration
inside the vacuole is not influenced on our timescale and is constant
(Π). Therefore, p will be steered towards Π by v7, the concentration of
inorganic phosphate in the vacuole.

Conservation laws dictate the concentrations of ADP and NAD. The
total concentration of ATP and ADP is constant (aT) and so the ADP
concentration ( −a aT ) is a dependent variable. Likewise the NAD
concentration ( −n nT ) is a dependent variable. The parameters aT and
nT are determined by the initial conditions.

The reactions in the model are lumped, and therefore we cannot use
the detailed rate functions given in the Teusink or Hynne models
[9,15]. Instead, we have chosen to model them after a few important
properties, monotone increasing in the substrate concentration, satur-
ating, irreversible and product insensitive. The underlying assumption

Fig. 1. A graphical representation of the stoichiometry of our model. The nodes are the
different metabolites, the arrows are the reactions. When a metabolite species is between
brackets, the concentration is disregarded or assumed constant in the model.
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for irreversibility/product insensitivity is the common way to consider
PFK, which dominates the rate of upper glycolysis (v1); we also model
the cell as having a major glycolytic flux, making all fluxes very di-
rectional. For this reason the fluxes v2, v3, v4 and v5 are irreversible
Michaelis–Menten type dynamics (see Fig. 3). The reaction v1 in our
model corresponds to phosphofructokinase (PFK), a complex enzyme
with many binding sites for allosteric activation and inhibition and
insensitive for its product FBP, which allows for its indefinite accu-
mulation in the imbalanced state. We simplify here by assuming that v1
depends only on a [6]. Despite this simplification, PFK still catalyses the
most complex reaction: as a function of a, v1 is not always monotone.
The reaction flux increases for small a, because ATP is a substrate, but
at some point decreases, because ATP also allosterically inhibits PFK
(see Fig. 2 for a sketch). This is a simplification of the reality where the
allosteric effect is indirectly effected through AMP [15].

For a more detailed mathematical description, the reader is referred
to Section 2.

1.2. A first overview of the main techniques and results

In this section we only introduce the structure of the model, de-
laying a full description to Section 2, and give a first overview of the
main techniques and results.

The independent variables of the model are the concentrations of
FBP (f), pi (p), pyruvate (y), ATP (a) and NADH (n), which are collected
in the vector x, and 7 reactions …v v, ,1 7 collected in v(x). The model is a
system of differential equations,

=x v xN˙ ( ),

with stoichiometric matrix N and reaction rates v(x) detailed in
Section 2. Each row of N denotes how many molecules of that meta-
bolite are used as a substrate (negative entries), or produced (positive
entries), by the 7 reactions.

The main goal is to shed light on the change in steady state beha-
viour of the model, using a natural bifurcation parameter. All three
types of behaviour (equilibrium, regular and imbalanced states) have
been documented in yeast glycolysis, and will be studied.

To facilitate steady state analysis, we need to separate the variables
and fluxes as much as possible. Mathematically, any basis of the row
space of N, NRow , yields the same null space and therefore the same
steady states. In Section 3.1 we will give several bases, each of which is
useful for a different part of the analysis. A general method to find such
a basis is detailed in the Supplementary information (SI).

For each parameter choice, there will typically be one or several
regular steady states that together with their stability describe the

behaviour of the model for this choice of parameters. A perturbation of
some parameter will perturb also the steady states and/or stability. A
standard technique in bifurcation analysis is to consider one parameter
as a continuous variable, the bifurcation parameter λ, and follow the
steady states along this continuously changing curve. These curves can
then have special points of interest with clear meaning, such as two
curves intersecting and exchanging stability (a transcritical bifurca-
tion). There is a rich availability of possible parameters, but given the
phenomena of interest, the most obvious choice is =λ V1. This para-
meter corresponds to the Vmax parameter of v1. In our model, it in-
corporates both the abundance of glucose and the enzyme levels of
upper glycolysis. Both have been shown to influence whether yeast cells
have problems starting up glycolysis, work normally, or indeed keep
accumulating glycolytic intermediates.

The equilibrium states, where there is zero flux, are shown to be two
axes of the phase space and at the intersection of these there is a
(complicated) bifurcation of a simple eigenvalue, a transcritical bi-
furcation. To show how this bifurcation unfolds, we need an explicit
expansion of the emergent curve of steady states. This allows us to show
that the regular steady states exist whenever (Theorem 3). This shows
that glycolysis will only start up if the upper glycolytic flux crosses a
lower bound with respect to the ATP consumption in the cell.

We prove that all non-equilibrium steady states are locally described
by a single, one-dimensional curve and that the FBP concentration
parameterises this curve under a mild parameter condition
(Theorem 4). Although this does not lead to new biological insights, it
shows that the model does what it is supposed to do; the setup of the
model is to describe a functional cell with glycolysis as the most
dominant pathway in its metabolism, but from just the construction it is
unclear whether or not the model actually incorporates the normal
behaviour of a cell.

The most tangible way of considering the imbalanced state without
numerical simulation is to continue the curve of steady states until it
reaches an asymptote where FBP approaches infinity. To compactify the
state space, we use a coordinate transform from the metabolites to some
fluxes to explicitly solve most steady state equations, reducing them to
one equation in two flux variables. In the transformed variables, the
imbalanced states are finite points instead of asymptotic points. In this
way we show that the glycerol flux v3 parametrises all steady states for
some mild parameter conditions. This part of the analysis provides the
main justification to set up numerical continuations, but does not
provide direct biological insight. It is therefore included in the SI for the
interested reader.

The imbalanced states start at the endpoint of the curve of regular
steady states. In Section 3.4 we show that V4 determines precisely
where this endpoint lies. We also show that this analysis provides in-
sight into the influence of increased ethanol on the imbalanced beha-
viour. As an aside, we show that the pyruvate concentration can also
reach infinity in our model, which is not comparable to the living cell,
but has been an obstacle in previous detailed models of glycolysis [15].

To summarise, given growth-permissable glucose levels, the switch
to glycolysis can only be achieved if the cell has a high enough ex-
pression of the enzymes in upper glycolysis compared to the ATP
consumption of the cell. This emergent curve of regular steady states
can be continued until FBP reaches infinity at a finite value of V1. In
Section 3.5, we illustrate the coexistence between regular and im-
balanced states numerically. Although this is a simulation for a specific
parametrisation, our analysis so far has shown that its characteristics
are pervasive for other choices of parameters.

2. The mathematical model

In complete detail, the system of equations is

Fig. 2. Schematic illustration of h(a), with ′ =h (0) 1 i.e. ′ =v V(0)1 1.

Fig. 3. Michaels-Menten kinetics for substrate concentration c with parameters V and k.
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=x v xN˙ ( ),

where x, N, and v are
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In the definitions of the reaction rates, all parameters are positive
and h(a) is defined as follows (see also Fig. 2 for a sketch),
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The parameters d1, d2, d3, and d4 are also positive. This formula is based
on [15], where the concentrations of all metabolites apart from a are
assumed to be constant [6], and V1 is rescaled such that ′ =h (0) 1.

The bifurcation parameter is = ≥λ V 01 .

3. Steady state analysis

The goal of this section is to gain insight into the steady states;
steady states are solutions x to the steady state equations, given by

=v x 0N ( ) , (5)

with x, N, and v defined as in (1) and (2). We aim to solve these
equations for x and the bifurcation parameter =λ V1.

3.1. Suitable representations of the null space of N

We provide a general method to construct different bases of NRow
in the SI, which separate fluxes and variables as much as possible. The
new version of the steady state equations that are used throughout the
paper are given by
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In the SI we also use two other versions of this matrix, denoted ∼N56 and
∼N356. Each is useful for a certain part of the analysis.

3.2. The equilibrium states

The system has trivial solutions, which we refer to in this work as
equilibrium states.

Definition 1. A state x is called an equilibrium state if =v x 0( ) .

Chemical equilibria are usually dynamical steady states, where the
forward and backward reactions are balanced, but in our model nearly
all reactions are irreversible (the exception being v7). As a modelling
artefact, the equilibrium states in our model are not balanced in for-
ward and backward reactions, but have zero forward and zero back-
ward reaction rates. They therefore cannot represent a living cell.
Nevertheless, the V1 parameter, which includes both glucose avail-
ability and upper glycolytic enzyme concentrations, is an important
parameter. Starved yeast cells do sometimes have problems starting up
glycolysis, even when offered abundant glucose. We are therefore in-
terested if and how the glycolytic pathway behaves for lower values of
V1.
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The proof can be found in the SI. The equilibrium states are a family
of two lines on the boundary of the metabolite space. Either (0, Π, 0, 0,
n), where n∈ [0, nT] or (0, Π, y, 0, 0), where �∈ ≥y 0. The intersection
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In the SI we show that x0 is, in fact, the only relevant equilibrium,
because a transcritical bifurcation occurs at x0, giving rise to the non-
equilibrium, or regular, steady states. We also show that any regular
steady state that is near the equilibrium states is on this emergent curve.
Furthermore, at this bifurcation x0 transfers local stability to the regular
non-equilibrium steady states.

The equilibrium state x0 is thus a highly degenerate point, where
three families of steady states meet. The bifurcation analysis for this
point is therefore quite subtle. The bifurcation point has a quadruple
zero, of which three zeros have to be separated before the actual bi-
furcation becomes emerges.

The curve can even be made explicit as a power series expansion in
= −t λ ,V

2
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with all coefficients strictly positive. Therefore the curve enters the
domain of biologically relevant (x, λ)-space at V6/2, for increasing λ,

(1)
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because the lowest order terms of the variables are all positive.

Theorem 3. For any possible choice of parameters, there exists a
transcritical bifurcation at =λ V /2,6 at which the equilibrium state x0
confers stability to the regular steady state.

We note that, compared to the previously studied core model [13],
which lacked NADH and pyruvate, the bifurcation structure is simpler,
with an unconditional transcritical bifurcation at =λ V /26 .

3.3. Parameterising steady states by metabolite concentrations

In order to investigate whether f may act as a flux sensor at fixed
enzyme levels (fixed Vi’s), we will show that the bifurcation curve is
locally one-dimensional regardless of parametrisation, and, under mild
and biologically plausible parameter conditions, can be parametrised
by f.

For the following analysis, we will use the matrix ∼N36 (6), since its
Jacobian has most entries with a clear sign, irrespective of parameter
values. The steady state equations are given by =∼ v xN ( ) 0,36 which can
be written out as

⎛

⎝

⎜
⎜
⎜
⎜

− −
− −
− −
−

−

⎞

⎠

⎟
⎟
⎟
⎟

=

λh a v v
v v v
v v v
v v

V p

10 ( ) 28 5
10 18 5
5 14 5
5 2

(Π )

0,

3 6

2 3 6

4 3 6

5 3

7 (8)

with …v v, ,2 6 as defined in Eq. (2). We now focus on regular steady
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The solution for p shows that the pathway neither produces nor con-
sumes phosphate in regular steady states. The remaining steady state
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v
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v
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· ( , , , , )
( , , , )

2 3 2
6

2 3

4
6

4 3

3 5 5 5 3

2 3 4 5 6

(11)

The left matrix is a submatrix of ∼N36 (6) and we will expand upon the
right matrix to reformulate it (12).

With the exception of v1, the rate functions which make up v are
products of individual functions of one variable, in which each function
is monotone increasing in its variable (here we include the dependent
variables = −b a aT and = −d n nT for ADP and NAD respectively).
Thus any partial derivative of a reaction to a metabolite yields the same
product, where the function of the specific metabolite is replaced with
its derivative (with a possible minus in front). Moreover, this structure
is independent of the specific values of parameters or variables.

We introduce some notation to capture these properties: let
= +z :i

z
k zi z,

. where z is a metabolite concentration and i follows from
which flux vi we consider. For instance, for flux v3 we get =v V f n ,3 3 3 3

where = +f f
k f3 f3,

and = +n n
k n3 n3,

. In this notation, = ′∂
∂ V f n ,v

f 3 3 3
3 for in-

stance. The possible minus comes from taking a partial derivative to a
for a function bi or likewise for n and di, which yields − ′bi or − ′di
respectively. Then multiplying with =1 z

z
i
i
we get that the partial de-

rivative to z of a flux is this flux times a logarithmic derivative of its z-
dependent function,

∂
∂

= ±
′v

z
v

z
z

.i
i

i

i

We use here that zi is nonzero for any concentration z and flux vi,
which follows from our positivity assumptions on the metabolite con-
centrations. In this notation, we can rewrite the flux definitions (2) as

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

v
v
v
v
v

V f p b d
V f n
V y n

V y a d
V a

.

2
3
4
5
6

2 2 2 2 2

3 3 3

4 4 4

5 5 5 5

6

We take partial derivatives to f, y, a and n and rewrite to get

⎜ ⎟
⎛
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∂
∂
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2
2

2
2

2

2
2

2

2

3
3

3
3

3

3

4
4

4
4

4

4

5
5

5
5

5

5
5

5

5

6 (12)

Each of these logarithmic derivatives is positive and the fluxes are also
positive. Now we have dK in a form amenable to analysis.

The Jacobian dK has one column more than it has rows; removing a
column and computing the determinant yields a subdeterminant. If a
subdeterminant is nonzero for a given solution of =K f y a n( , , , ) 0, then
the Implicit Function Theorem (IFT) gives us that the solutions can be
locally parameterised in the variable corresponding to the removed
column [12]. For example, proving that the subdeterminant where the
first column of dK is removed is nonzero for a solution (f, y, a, n), im-
plies that locally the steady states are on a one-dimensional manifold
that can be parameterised by the concentration f. We will prove that
this is the case.

Theorem 4. The non-equilibrium steady states can be described as a one-
dimensional manifold parameterised by concentration f if

≥k k .n n4, 3, (13)

Proof. We only need to show that for any solution of Eq. (10), the
subdeterminant of dK, where the first column is removed, is nonzero.
We can start at an arbitrary solution and follow the locally defined
manifold for decreasing f. We can continue this until the
subdeterminant is zero, but the subdeterminant is nonzero for any
non-equilibrium steady state and f is decreasing, so we must encounter
an equilibrium state, where indeed the subdeterminant is zero. In
Section 3.2, we showed that there is only one emergent curve of non-
equilibrium steady states from the equilibrium states, hence all steady
states are on the same curve, starting at x0 for =f 0.

So it remains to be shown that the subdeterminant of dK, where the
first column is removed is nonzero for any solution of Eq. (10). Using
the reformulation of the Jacobian (12), we can write the relevant
subdeterminant as
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Writing this out, we can see that it is a sum of three negative terms and

⎜ ⎟⎜ ⎟⎜ ⎟− ⎛
⎝
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4

4
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3

3

where the right factor does not have a clear sign. We see that the entire
determinant is negative if this factor is nonnegative,

′
−

′
≥v

n
n

v
n
n

5 14 0.4
4

4
3

3

3

To show the above inequality, we use the steady state equations (8). In
particular

= +v v v5 14 5 .4 3 6

Substituting this equation for 5v4, we see that the subdeterminant is
smaller than zero if the following inequality (or its rewritten form
below) holds,
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This would follow from the inequality

′
−
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n
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n
n

0,4

4

3

3

which is a consequence of our assumption k4, n≥ k3, n as we can write
out the definitions (2),

′
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=
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+
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n
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n n

n n

n n

4

4

3

3

4,

4,
2

4, 3,

3,
2

3,

4, 3, 3, 4,

3, 4,

4, 3,

3, 4,

□

Although the parameter condition of Theorem 4 is comprehensive
and acceptable, we can make a more general statement. We now prove
that any admissible nonzero vector (f, y, a, n) yields a Jacobian dK
where any two subdeterminants are never both zero. In this way we
prove that any solution lies on a one-dimensional curve of solutions.

Lemma 5. Given f, p, y, a, n>0 and a< aT, n< nT, then if a 3×3
subdeterminant of dK is 0, then the other subdeterminants are nonzero.

Proof. Assume, for the sake of contradiction, that two arbitrarily
chosen subdeterminants are zero. This yields two equations that must
hold. We can rewrite these equations as expressions for V2 and V6,
because in those parameters, the equations are polynomial. Although
this is a cumbersome task, it is elementary. The full computations can
be found in the supplementary Mathematica script. The script uses the
rewritten form of dK from Eq. (12). The resulting expressions show that
V2< 0 or V6< 0 follows from the positivity constraints on the other
paramters and variables, regardless of their specific values. The
parameters V2 and V6 are constrained to be positive themselves, so
this is a contradiction. We conclude that if one subdeterminant is zero
for an admissible solution x, the other subdeterminants are
nonzero. □

An immediate consequence the Lemma 5 is the following Theorem.

Theorem 6. All steady state solutions in the interior of the extended

metabolite space, (x, λ)> 0, lie locally on a smooth one-dimensional
manifold.

The curve of steady states can not only be parametrised by f, but
also by the flux v3.

Theorem 7. All solutions to (5) in (x, λ) are on a manifold described as a
function of v3, if the following condition on the parameters is satisfied,

− +
+ + +

>k k V k
k

n
k n

k
V k a

2 Π
Π ( )

0.f f f
p

T

n T

a

a T
3, 2, 2 3,

2, 2,

2,

6 2,
2 (14)

The proof is a long exercise in algebraic manipulation of equations.
The reader is referred to the SI, because these details do not contribute
to biological insights. To prove this Theorem, the state space is com-
pactified, making the imbalanced states in which f→∞ finite objects.

3.4. The imbalanced state

We now turn our attention to the imbalanced state in our model. We
have seen in Section 3.2 that the regular steady states connect with the
equilibrium states at the transcritical bifurcation; the other end of the
curve must cross the boundary where f or y is infinite. In this section we
show that in fact any such point can be at the end of the regular steady
state curve if V4 is chosen appropriately.

We want to continue the curve of steady states until f approaches
infinity. Through a simple coordinate transform this becomes a finite
point. This point does not itself signify an imbalanced state, because it is
on the nullcline =ḟ 0. The way to find imbalanced states is to consider
all other nullclines and disregard the nullcline for f. This gives a new
curve of imbalanced states. If some are stable and coexisting with
regular steady states we have shown bistability.

The infinite endpoint of the steady state curve is found and classi-
fied below; its continuation was unfortunately beyond our reach with
parameter-free analysis. Instead we turn to numerics to confirm the
possible bistability and consider the remaining biological questions
(Section 3.5).

We will show that in this model, f and ymay both keep increasing to
infinity, even simultaneously, depending on the parameter V4. This
extends the analysis on the smaller core model discussed in [13], in
which this type of bistability was also studied.

First we introduce a coordinate transform to rescale the points “at
infinity” to 1. Set

=
+

=
+

ϕ
f

k f
ρ y

k y
, ,

f y3, 4, (15)

so that

=
+

=
+ −

=ψ ϕ
f

k f
κ ϕ

ϕ κ
κ

k
k

( )
1 ( 1)

, ,
f

f

f
f

f

f2,

3,

2, (16)
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+

=
+ −

=ρ ρ y
k y

κ ρ
ρ κ

κ
k
k

( )
1 ( 1)

, ,
y

y

y
y

y

y
5

5,

4,

5, (17)

where ψ(ϕ) and ρ5(ρ) map [0, 1] onto [0, 1], and are monotone in-
creasing, one-to-one functions. Note that these functions were also used
to prove Theorem 7 and can be found in the SI.

Fig. 4. Schematic representation of (20) in terms of n. As a increases (the dotted graph),
n* is increases.
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Theorem 8. For any (ϕ, ρ)∈ (0, 1]2, the point (ϕ, Π, ρ, a*, n*, λ*) is a
steady state, for a unique n*∈ (0, nT), a*∈ (0, aT) and λ*> 0, and a
unique value of the parameter V4, given by

=
++

−
+ −

+

V
V ρ V a

ρ

7 *
.

a
k a

n n
k n n

n
k n

4
5 5

*
*

*
* 6

*
*

a
T

n T

n

5, 5,

4, (18)

Proof. This proof is most easily followed from the schematic graphs in
Figs. 4–6.

To prove the lemma, we need all equations to have clear mono-
tonicity properties in the variables a and n. So depending on what this
behaviour in the positive part in an equation is, we either choose v3 or
v5 together with v6 to complete that equation. For instance, v2 is
monotone decreasing in n, thus in each equation we need the negative
parts to be monotone increasing in n; since v5 is monotone decreasing in
n and v3 is monotone increasing in n, v3 is the right choice the argu-
ment. This leads us to use the following matrix, where only the third
row is different than in the matrix ∼N36 used in the previous sections,

⎛

⎝

⎜
⎜
⎜

− −
− −

− −
−

⎞

⎠

⎟
⎟
⎟

10 0 28 0 0 5 0
0 10 18 0 0 5 0
0 0 0 1 7 1 0
0 0 2 0 5 0 0
0 0 0 0 0 0 1

.

(19)

The steady state equations can then be rewritten as

=v v2 5 ,3 5 (20)

= +v v v10 18 5 ,2 3 6 (21)

= +v v v7 ,4 5 6 (22)

together with

= + =λ v v
h a

p28 5
10 ( )

and Π.3 6

Recall the flux functions (2); written out, the first Eq. (20) is

+
=

+
−

+ −
V ϕ n

k n
V ρ a

k a
n n

k n n
2 5 .

n a

T

n T
3

3,
5 5

5, 5,

There is a unique solution =n n a* ( ): this follows from the IFT, because
the lhs is 0 at =n 0 and increasing in n, the rhs is 0 at =n nT and
decreasing in n. The function ̂n a( ) is strictly increasing in a, because

=∂
∂ 0v

a
3 and >∂

∂ 0v
a
5 (see Fig. 4).

The next Eq. (21) written out is

−
+ −

−
+ −

=
+

+V ψ a a
k a a

n n
k n n

V ϕ n
k n

V a10 Π 18 5 .T

a T

T

n T n
2

2, 2,
3

3,
6

Considered independently from (20), we have a unique solution
=n n a** ( ) if a is small enough: note that the lhs is monotone decreasing

and the rhs monotone increasing in n. At =n nT the lhs is zero and the
rhs positive, so we can only use the IFT if, at =n 0, there is the in-
equality

−
+ − +

>V ψ a a
k a a

n
k n

V a10 Π 5 .T

a T

T

n T
2

2, 2,
6

For =a 0, this inequality holds and by continuity, it will still hold as a
increases, with a maximum a⁎⁎, where the inequality becomes an
equality, yielding =n a** ( **) 0. Therefore a∈ [0, a⁎⁎), yields that
n⁎⁎(a)∈ (0, nT) is a solution, which is strictly decreasing in a, because

>∂
∂ 0,v

n
2 + <∂

∂ v v(18 5 ) 0n 3 6 (see Fig. 5).
Eqs. (20) and (21) are not independent, so we need that

=n a n a* ( ) ** ( ). These two solutions of n are the same for a unique
=a a*: the solution to (20) n*(a) is 0 at =a 0 and increasing, and the

solution to (21) n⁎⁎(a) is 0 at =a a** and decreasing (see also Fig. 6).
For simplicity, we will denote n*(a*) as n*. Note that n* and a* do

not depend on V4.
The last steady state Eq. (22) written out with =n n* and =a a* is

solved by �∈ +V4 :

=
++

−
+ −

+

V
V ρ V a

ρ

7 *
.
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k a

n n
k n n

n
k n

4
5 5

*
*

*
* 6

*
*

a
T

n T

n

5, 5,

4,

If V4 is this value, the steady state curve will pass through our given (ϕ,
ρ)∈ (0, 1]2 with =a a* and =n n* as the remaining variables, and

= +λ ,v ϕ n v a
h a

28 ( , *) 5 ( *)
10 ( *)

3 6 =p Π. □

The result of the above lemma implies that the steady state curve
can end in any point where =ϕ 1 or =ρ 1 depending on the parameter
V4. This is numerically illustrated by Fig. 7.

Note that within this model, it is possible for pyruvate to accumu-
late. This is an artifact of this model, and not seen in experiments.
However, even in more detailed models like the Teusink model [15]
with reversible rate laws and fitted parameters, this phenotype was
numerically seen had to be avoided by increasing fermentation, which
coincides with increasing our parameter V4.

The imbalanced state is characterised as having an accumulation of
f while the other variables are in steady state. In our analysis, this
means that we investigate a steady state of the related model where

=ϕ 1 is fixed and =ḟ 0 is not part of the steady state equations:

=∼ ∼∼x v xN˙ ( ), (23)

where =ϕ 1, =∼x p y a n( , , , ) and

Fig. 5. Schematic representation of (21). The dotted graphs are for larger a, giving
smaller n⁎⁎. Note that a< a⁎⁎ in both cases.

Fig. 6. Eqs. (20) and (21) have a unique solution (a*, n*) as the two solutions for n can be
solved at the same time with =a a*.

Fig. 7. Numerical illustration of the interpretation of Theorem 8. The steady state curve
for three different values of V4. Note that the curve tends to f→∞ (ϕ→ 1) for smaller
values of V4 and to y→∞ (ρ→ 1) for larger values. At the a critical value =V V ,c4 4 both
tend to infinity simultaneously.
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⎠

⎟
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∼N
0 2 2 0 4 1 1
0 2 0 1 2 0 0

2 4 0 0 4 1 0
0 2 2 1 3 0 0

.

We should however have >ḟ 0 as we want accumulation of f.
If we consider the steady states of this problem without assuming

=ϕ 1, the steady state curve as parameterised by v3 in Theorem 7 solves
these equations, because we have the same equations, without =ϕ̇ 0.
Moreover the solutions were nondegenerate (which follows from
Lemma 5), so locally the solutions to =∼v x 0N ( ) are a curved plane and
the steady state curve separates the part where <ḟ 0 and >ḟ 0. If the
steady state curve connects to a point where =ϕ 1, this is the starting
point of a curve of imbalanced states. We can continue in two direc-
tions; one will have >ḟ 0 and this is the branch we want to follow.

To find out which branch it is, we manipulate =∼v 0N . We sum the
first and third rows to see that + =p a˙ ˙ 0, which yields

= − + + + + − + − −

= − − − +

v v v v v v v v v

v v v v

0 2 2 4 2 4 4

2( ) ,
2 3 5 6 7 1 2 5 6

1 2 3 7

in which we recognise = − −f v v v˙ 1 2 3. We substitute = −v V p(Π )7 7
from (2) to get

= −f V p˙ 1
2

(Π ).7 (24)

Hence on the curved plane of solutions to ∼v xN ( ), we have that p<Π is
equivalent to >ḟ 0, thus we follow the branch for decreasing p. This is
to be expected biologically: to continue production of FBP, phosphate
needs to be added from the vacuole, causing a drop in the vacuole
concentration [18].

3.5. Numerical illustrations

In [18] it was shown through experiments and modelling that lower
values of upper glycolytic parameters would make it less likely for
glycolysis to end up in an imbalanced state. In our model, this would
correspond to lower V1 making it less likely to have a bistable im-
balanced state. Second, a higher ethanol concentration, reducing fer-
mentation, was linked to a lower likelihood of an imbalance between
upper and lower glycolysis [18]. This higher ethanol pushed the fer-
mentative flux backwards upstream, and caused steady state values of
NADH and higher flux through the glycerol branch. In our model
ethanol is not included, but we can decrease fermentation by lowering
V4.

Parameter-free analysis of how the regular steady states reach the
imbalanced ones (Section 3.4) provides us with the mathematical in-
sight to support parameter manipulations in numerical investigations.

We aim to confirm in our model the bistability of steady and im-
balanced states and confirm in our model the “rescue mechanisms” of
decreased V4 and decreased V1.

The bistability is indeed shown to exist (see Fig. 8); the only para-
meter condition seems to be that V7 needs to be low enough. This is
consistent with previous work [16,18]. The imbalance between upper
and lower glycolysis causes a depletion of phosphate by continued
production of FBP. This was the reason to include p as a dynamic
variable. Limiting the supply of free p by lowering V7, should therefore
make the imbalanced state exist for even lower values of V1.

What can also be seen in Fig. 8 is that for =λ V1 low enough, there is
no bistability. So decreased V1 makes it less likely to have bistability
confirming the rescue mechanism of low V1. The Figure suggests that
the curve ends, after which there is no bistability. However, in the
numerics we see an accumulation of pyruvate near the end of the curve;
for higher V1 there will be likely be a new imbalanced state with both
infinite FBP and pyruvate.

To shed light on the influence of V4, we tried several values of V4

and observed the change in the imbalanced states, in particular the
NADH and =λ V1 values. In Fig. 9 we see the curve of imbalanced states
for three different V4. Lowering the fermentative flux we go from black
(highest), through red, to magenta (lowest). There are three patterns of
interest that can be seen from this. The entire graph shifts up and to the
right. In particular the point where V1 is minimal also shifts to the right.
The point where pyruvate starts accumulating is encountered sooner.
The shifting up of the entire graph means a higher NADH, and shifting
to the right requires a higher V1, both of which support the narrative of
the rescue mechanism for increased ethanol (lower V4).

4. Discussion

With the goal of shedding light on aspects of glycolysis (bistability
with an imbalanced state, expression of upper glycolytic enzymes when
glycolysis is downregulated and FBP functioning as a flux sensor) we
have provided an exhaustive mathematical analysis of a core model.
The precise mathematical statements are given by Theorems 3, 4, 6 and
7 in Section 3. Their biological interpretation is described below.

4.1. Without overexpression of its upper part, glycolysis will not activate in
starved yeast presented with glucose

If a yeast cell would not have its overexpressed upper glycolytic
enzymes when glycolysis is downregulated, a sudden increase in glu-
cose will increase the efficiency of its enzymes, but the flux through
upper glycolysis is then severely limited. In our model this is re-
presented by low V1. The higher the expression of upper glycolytic

Fig. 8. The steady state curve for the transformed variable ϕ, reaching =ϕ 1 (i.e., = ∞f , in blue) and the imbalanced states branching off from this (red). Left: bifurcation curves in (p, λ,
ϕ)-space; Right: the same curves, showing the p and ϕ values along the curve, to better illustrate the bistability between regular and imbalanced states. See SI for parameter settings. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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enzymes, the bigger V1 may become when glucose is supplied.
Our analysis shows that there is a bifurcation from inactive to active

glycolysis for =V V /21 6 (Theorem 3). This means that the pathway is not
activated by an increase in glucose if there is no overexpression of the
upper glycolytic enzymes. Such a clear division in active flux through
glycolysis vs. equilibrium has been found before in a small core model,
including essentially only reactions v1, v2 and v6 [1,3]. Here we show in
a more involved core model with two side-branches and ATP and NADH
householding that this bifurcation value persists; the expression of the
other enzymes in fermentative glycolysis do not influence the activation
threshold.

4.2. Under mild conditions, FBP will function as a flux sensor on the
metabolic scale

Theorem 4 shows that f increases along the family of regular steady
states. This means it can act as a signal to the regulatory network and its
value represents the current flux. Of course the regulatory network will
then adjust transcription for the enzymes and the steady state flux and
FBP concentration will be changed again, so there is some discrepancy
to our analysis and the working of a flux sensor. However, on the me-
tabolic scale it may act as a flux sensor.

4.3. Confirmation of bistable imbalanced state

The imbalanced state was not shown to exist with analysis, but
through numerical continuation. We confirmed the existence of im-
balanced states and rescue mechanisms. The steady state curve con-
tinues to infinite FBP, =ϕ 1, of infinite pyruvate, =ρ 1, and it is pos-
sible to control the end point at infinity by changing V4. From there, V7

may be changed freely (as it does not appear in the finite steady state
analysis). This suggests that bistability between regular and imbalanced
states are commonplace, and does not depend much on specific kinetic
parameters.

4.4. To both activate glycolysis and avoid the imbalanced state,
heterogeneity is key

Yeast has a highly dynamic environment, so populations of yeast
need to adjust quickly when nutrients are available. Our analysis shows
that the expression of upper glycolysis is caught between two pressures.
On the one hand, it needs enough expression to start up glycolysis,
where more expression means higher steady state flux. On the other

hand, if the expression is too high, the bistable imbalanced state ap-
pears which may cause an ATP-depleted death cycle. What is more,
these thresholds are both dependent on the external glucose con-
centration. For the fitness of the population, it is therefore key that
there is heterogeneity in the expression of upper glycolysis. No matter
what the specific concentration is of suddenly available glucose, some
cells in the population will immediately activate glycolysis optimally
and avoid the imbalanced state.

4.5. A simple condition for the transcritical bifurcation

The bifurcation from Theorem 3 occurs when =V V2 1 6. The ratio of
1: 2 is exactly the ratio between the reactions v1 and v6 in the Ele-
mentary Flux Mode which represents the normal glycolytic flux through
the pathway (25). This does not even take into account the other EFM
which does involve the side branches and should account for a part of
the glucose uptake, specifically the part that does not produce any ATP.
As soon as the rate of glucose uptake can support the ATP consumption
downstream, the system has an emerging stable steady state with ba-
lanced metabolism. So although the condition V1> V6/2 would seem to
be a bare minimum for stability, it is all that is required.

The subtle point in our proof where we see why this bare minimum
is enough is in the power series expansion (7). If we insert this ex-
pansion in the flux functions (2), we get exactly that those in the main
branch of glycolysis are t2, while the side branch reactions v3 and v5 are
of order t3. Hence, near the equilibrium, the flux directly through gly-
colysis is dominating the glucose consumption.

As mentioned in Section 4.1, this simple transition had been re-
ported before in a small core model of essentially the v1, v2 and v6 re-
actions [1,3]. However, the bifurcation behaviour was found to be more
complicated when adding glycerol production in the v3 and phosphate
householding in the v7 reaction [13]. In this intermediate model, there
was a richer set of solutions than found both in [1,3] and in the current
model. The addition of NADH/NAD householding and pyruvate to the
core model studied in [13] has again simplified the bifurcation struc-
ture, despite the added metabolic complexity. The key difference with
[13] seems to be that in that intermediate model there could be steady
state flux through the glycerol branch without lower glycolysis, while
flux balance analysis of the new model shows that that is impossible
(see eq. (25)). This follows from the redox balance relating v3 to v5, and
v5 needs lower glycolysis v2 to be active. The redox balance therefore
seems to tie together the pathways more, simplifying dynamics.

Fig. 9. The NADH concentration n as a function of λ. Left: for =V 4,4 =V 8,4 =V 164 the imbalanced state curves are plotted in magenta, red and black respectively. Right: the regular
steady states and imbalanced states for =V 84 . Parameter settings are discussed in the SI. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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4.6. Scope of the techniques and general outlook

In this paper we have used three main techniques to study the bi-
furcation structure of the moderately detailed pathway with explicit
kinetics: EFMs, the Implicit Function Theorem, and coordinate trans-
formations. Here we briefly discuss the generality of our approach to
other (and larger) pathways.

The use of EFMs to construct alternative steady state equations
(Proposition 9 in the SI) is general. This method will be of use parti-
cularly for models with between four to about ten independent vari-
ables; with less, one can oversee the recombination of rows easily, and
with more equations there will be a combinatorial explosion in the
number of EFMs, and they do not provide additional insight. For higher
numbers of independent variables, Extremal Pathways might be more
suitable than EFMs, as there are less of those, but at some point also
these will become cumbersome to use.

The Implicit Function Theorem is the basis of the transcritical bi-
furcation. Furthermore it was used especially to prove that the regular
steady states formed a single curve. The technique uses smaller sub-
determinants of the complete Jacobian matrix, and the linearity of Vmax
parameters in reaction functions to prove that at least one sub-
determinant is always nonzero. This technique scales in principle to
much larger networks, and it should eventually be possible to prove in
full generality whether a detailed model such as the ones by Teusink
et al. [15] or Hynne et al. [9] have the same property.

Finally, we used coordinate transformations to reformulate the
steady state equations, for two reasons: to exploit the linearity of fluxes
in those equations, and to compactify the dynamics and study im-
balanced states “at infinity”. In our case the inverse transformation
could be explicitly calculated, but this is not to be expected for larger
networks (unless they involve several smaller individual transforma-
tions between metabolites and fluxes). Moreover, the amount of work
necessary to prove that v3 parameterises the steady states was con-
siderable, and was strongly dependent on the explicit choices of reac-
tion rate functions, their product structure and whether they happened
to be increasing or decreasing in their respective variables. We do not
expect that such calculations are possible in much larger networks. On
the other hand, setting up the transformation itself was straightforward,
and already allowed the study of both regular steady states and im-
balanced states.
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