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Abstract

When training neural networks, the use of Syn-

thetic Gradients (SG) allows layers or modules

to be trained without update locking – without

waiting for a true error gradient to be backprop-

agated – resulting in Decoupled Neural Inter-

faces (DNIs). This unlocked ability of being

able to update parts of a neural network asyn-

chronously and with only local information was

demonstrated to work empirically in Jaderberg

et al. (2016). However, there has been very lit-

tle demonstration of what changes DNIs and SGs

impose from a functional, representational, and

learning dynamics point of view. In this paper,

we study DNIs through the use of synthetic gra-

dients on feed-forward networks to better under-

stand their behaviour and elucidate their effect

on optimisation. We show that the incorpora-

tion of SGs does not affect the representational

strength of the learning system for a neural net-

work, and prove the convergence of the learning

system for linear and deep linear models. On

practical problems we investigate the mechanism

by which synthetic gradient estimators approx-

imate the true loss, and, surprisingly, how that

leads to drastically different layer-wise represen-

tations. Finally, we also expose the relationship

of using synthetic gradients to other error ap-

proximation techniques and find a unifying lan-

guage for discussion and comparison.

1. Introduction

Neural networks can be represented as a graph of compu-

tational modules, and training these networks amounts to

optimising the weights associated with the modules of this

graph to minimise a loss. At present, training is usually per-

formed with first-order gradient descent style algorithms,
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Figure 1. Visualisation of SG-based learning (b) vs. regular back-

propagation (a).

where the weights are adjusted along the direction of the

negative gradient of the loss. In order to compute the gra-

dient of the loss with respect to the weights of a module,

one performs backpropagation (Williams & Hinton, 1986)

– sequentially applying the chain rule to compute the ex-

act gradient of the loss with respect to a module. However,

this scheme has many potential drawbacks, as well as lack-

ing biological plausibility (Marblestone et al., 2016; Ben-

gio et al., 2015). In particular, backpropagation results in

locking – the weights of a network module can only be up-

dated after a full forwards propagation of the data through

the network, followed by loss evaluation, then finally af-

ter waiting for the backpropagation of error gradients. This

locking constrains us to updating neural network modules

in a sequential, synchronous manner.

One way of overcoming this issue is to apply Synthetic

Gradients (SGs) to build Decoupled Neural Interfaces

(DNIs) (Jaderberg et al., 2016). In this approach, models of

error gradients are used to approximate the true error gra-

dient. These models of error gradients are local to the net-

work modules they are predicting the error gradient for, so

that an update to the module can be computed by using the

predicted, synthetic gradients, thus bypassing the need for

subsequent forward execution, loss evaluation, and back-

propagation. The gradient models themselves are trained
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at the same time as the modules they are feeding synthetic

gradients to are trained. The result is effectively a complex

dynamical system composed of multiple sub-networks co-

operating to minimise the loss.

There is a very appealing potential of using DNIs e.g. the

potential to distribute and parallelise training of networks

across multiple GPUs and machines, the ability to asyn-

chronously train multi-network systems, and the ability to

extend the temporal modelling capabilities of recurrent net-

works. However, it is not clear that introducing DNIs and

SGs into a learning system will not negatively impact the

learning dynamics and solutions found. While the empir-

ical evidence in Jaderberg et al. (2016) suggests that SGs

do not have a negative impact and that this potential is at-

tainable, this paper will dig deeper and analyse the result of

using SGs to accurately answer the question of the impact

of synthetic gradients on learning systems.

In particular, we address the following questions, using

feed-forward networks as our probe network architecture:

Does introducing SGs change the critical points of the

neural network learning system? In Section 3 we show

that the critical points of the original optimisation prob-

lem are maintained when using SGs. Can we charac-

terise the convergence and learning dynamics for sys-

tems that use synthetic gradients in place of true gradi-

ents? Section 4 gives first convergence proofs when using

synthetic gradients and empirical expositions of the impact

of SGs on learning. What is the difference in the rep-

resentations and functional decomposition of networks

learnt with synthetic gradients compared to backprop-

agation? Through experiments on deep neural networks

in Section 5, we find that while functionally the networks

perform identically trained with backpropagation or syn-

thetic gradients, the layer-wise functional decomposition is

markedly different due to SGs.

In addition, in Section 6 we look at formalising the con-

nection between SGs and other forms of approximate error

propagation such as Feedback Alignment (Lillicrap et al.,

2016), Direct Feedback Alignment (Nøkland, 2016; Baldi

et al., 2016), and Kickback (Balduzzi et al., 2014), and

show that all these error approximation schemes can be

captured in a unified framework, but crucially only using

synthetic gradients can one achieve unlocked training.

2. DNI using Synthetic Gradients

The key idea of synthetic gradients and DNI is to approxi-

mate the true gradient of the loss with a learnt model which

predicts gradients without performing full backpropaga-

tion.

Consider a feed-forward network consisting of N layers

fn, n ∈ {1, . . . , N}, each taking an input hn−1
i and pro-

ducing an output hn
i = fn(h

n−1
i ), where h0

i = xi is the in-

put data point xi. A loss is defined on the output of the net-

work Li = L(hN
i , yi) where yi is the given label or super-

vision for xi (which comes from some unknown P (y|x)).
Each layer fn has parameters θn that can be trained jointly

to minimise Li with the gradient-based update rule

θn ← θn − α
∂L(hN

i , yi)

∂hn
i

∂hn
i

∂θn

where α is the learning rate and ∂Li/∂h
n
i is computed with

backpropagation.

The reliance on ∂Li/∂h
N
i means that an update to layer i

can only occur after every subsequent layer fj , j ∈ {i +
1, . . . , N} has been computed, the loss Li has been com-

puted, and the error gradient ∂L/∂hN
i backpropgated to get

∂Li/∂h
N
i . An update rule such as this is update locked as

it depends on computing Li, and also backwards locked as

it depends on backpropagation to form ∂Li/∂h
n
i .

Jaderberg et al. (2016) introduces a learnt prediction of

the error gradient, the synthetic gradient SG(hn
i , yi) =

̂∂Li/∂hn
i ≃ ∂Li/∂h

n
i resulting in the update

θk ← θk − α SG(hn
i , yi)

∂hn
i

∂θk
∀k ≤ n

This approximation to the true loss gradient allows us to

have both update and backwards unlocking – the update

to layer n can be applied without any other network com-

putation as soon as hn
i has been computed, since the SG

module is not a function of the rest of the network (unlike

∂Li/∂hi). Furthermore, note that since the true ∂Li/∂h
n
i

can be described completely as a function of just hn
i and

yi, from a mathematical perspective this approximation is

sufficiently parameterised.

The synthetic gradient module SG(hn
i , yi) has parameters

θSG which must themselves be trained to accurately pre-

dict the true gradient by minimising the L2 loss LSGi
=

‖SG(hn
i , yi)− ∂Li/∂h

n
i ‖

2.

The resulting learning system consists of three decoupled

parts: first, the part of the network above the SG module

which minimises L wrt. to its parameters {θn+1, ..., θN},
then the SG module that minimises the LSG wrt. to θSG.

Finally the part of the network below the SG module which

uses SG(h, y) as the learning signal to train {θ1, ...θn},
thus it is minimising the loss modeled internally by SG.

Assumptions and notation

Throughout the remainder of this paper, we consider the

use of a single synthetic gradient module at a single layer

k and for a generic data sample j and so refer to h = hj =
hk
j ; unless specified we drop the superscript k and subscript

j. This model is shown in Figure 1 (b). We also focus on
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SG modules which take the point’s true label/value as con-

ditioning SG(h, y) as opposed to SG(h). Note that without

label conditioning, a SG module is trying to approximate

not ∂L/∂h but rather EP (y|x)∂L/∂h since L is a function

of both input and label. In theory, the lack of label is a suf-

ficient parametrisation but learning becomes harder, since

the SG module has to additionally learn P (y|x).

We also focus most of our attention on models that em-

ploy linear SG modules, SG(h, y) = hA+ yB +C. Such

modules have been shown to work well in practice, and fur-

thermore are more tractable to analyse.

As a shorthand, we denote θ<h to denote the subset of the

parameters contained in modules up to h (and symmetri-

cally θ>h), i.e. if h is the kth layer then θ<h = {θ1 . . . , θk}.

Synthetic gradients in operation

Consider an N -layer feed-forward network with a single

SG module at layer k. This network can be decomposed

into two sub-networks: the first takes an input x and pro-

duces an output h = Fh(x) = fk(fk−1(. . . (f1(x)))),
while the second network takes h as an input, produces an

output p = Fp(h) = fN (. . . (fk+1(h))) and incurs a loss

L = L(p, y) based on a label y.

With regular backpropagation, the learning signal for the

first network Fh is ∂L/∂h, which is a signal that speci-

fies how the input to Fp should be changed in order to re-

duce the loss. When we attach a linear SG between these

two networks, the first sub-network Fh no longer receives

the exact learning signal from Fp, but an approximation

SG(h, y), which implies that Fh will be minimising an ap-

proximation of the loss, because it is using approximate

error gradients. Since the SG module is a linear model of

∂L/∂h, the approximation of the true loss that Fh is being

optimised for will be a quadratic function of h and y. Note

that this is not what a second order method does when a

function is locally approximated with a quadratic and used

for optimisation – here we are approximating the current

loss, which is a function of parameters θ with a quadratic

which is a function of h. Three appealing properties of an

approximation based on h is that h already encapsulates a

lot of non-linearities due to the processing of Fh, h is usu-

ally vastly lower dimensional than θ<h which makes learn-

ing more tractable, and the error only depends on quantities

(h) which are local to this part of the network rather than θ
which requires knowledge of the entire network.

With the SG module in place, the learning system decom-

poses into two tasks: the second sub-network Fp tasked

with minimising L given inputs h, while the first sub-

network Fh is tasked with pre-processing x in such a way

that the best fitted quadratic approximator of L (wrt. h) is

minimised. In addition, the SG module is tasked with best

approximating L.

The approximations and changing of learning objectives

(described above) that are imposed by using synthetic gra-

dients may appear to be extremely limiting. However, in

both the theoretical and empirical sections of this paper we

show that SG models can, and do, learn solutions to highly

non-linear problems (such as memorising noise).

The crucial mechanism that allows such rich behaviour is

to remember that the implicit quadratic approximation to

the loss implied by the SG module is local (per data point)

and non-stationary – it is continually trained itself. It is

not a single quadratic fit to the true loss over the entire op-

timisation landscape, but a local quadratic approximation

specific to each instantaneous moment in optimisation. In

addition, because the quadratic approximation is a function

only of h and not θ, the loss approximation is still highly

non-linear w.r.t. θ.

If, instead of a linear SG module, one uses a more com-

plex function approximator of gradients such as an MLP,

the loss is effectively approximated by the integral of the

MLP. More formally, the loss implied by the SG module in

hypotheses spaceH is of class {l : ∃g ∈ H : ∂l/∂h = g}1.

In particular, this shows an attractive mathematical benefit

over predicting loss directly: by modelling gradients rather

than losses, we get to implicitly model higher order loss

functions.

3. Critical points

We now consider the effect SG has on critical points of the

optimisation problem. Concretely, it seems natural to ask

whether a model augmented with SG is capable of learning

the same functions as the original model. We ask this ques-

tion under the assumption of a locally converging training

method, such that we always end up in a critical point. In

the case of a SG-based model this implies a set of parame-

ters θ such that ∂L/∂θ>h = 0, SG(h, y)∂h/∂θ<h = 0 and

∂LSG/∂θSG = 0. In other words we are trying to establish

whether SG introduces regularisation to the model class,

which changes the critical points, or whether it merely in-

troduces a modification to learning dynamics, but retains

the same set of critical points.

In general, the answer is positive: SG does induce a reg-

ularisation effect. However, in the presence of additional

assumptions, we can show families of models and losses

for which the original critical points are not affected.

Proposition 1. Every critical point of the original optimi-

sation problem where SG can produce ∂L/∂hi has a cor-

responding critical point of the SG-based model.

Proof. Directly from the assumption we have that there ex-

ists a set of SG parameters such that the loss is minimal,

thus ∂LSG/∂θSG = 0 and also SG(h, y) = ∂L/∂h and

1We mean equality for all points where ∂l/∂h is defined.
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SG(h, y)∂h/∂θ<h = 0.

The assumptions of this proposition are true for exam-

ple when L = 0 (one attains global minimum), when

∂L/∂hi = 0 or a network is a deep linear model trained

with MSE and SG is linear.

In particular, this shows that for a large enough SG module

all the critical points of the original problem have a corre-

sponding critical point in the SG-based model. Limiting

the space of SG hypotheses leads to inevitable reduction

of number of original critical points, thus acting as a regu-

lariser. At first this might look like a somewhat negative re-

sult, since in practice we rarely use a SG module capable of

exactly producing true gradients. However, there are three

important observations to make: (1) Our previous observa-

tion reflects having an exact representation of the gradient

at the critical point, not in the whole parameter space. (2)

One does preserve all the critical points where the loss is

zero, and given current neural network training paradigms

these critical points are important. For such cases even if

SG is linear the critical points are preserved. (3) In prac-

tice one rarely optimises to absolute convergence regard-

less of the approach taken; rather we obtain numerical con-

vergence meaning that ‖∂L/∂θ‖ is small enough. Thus,

all one needs from SG-based model is to have small enough

‖(∂L/∂h+e)∂h/∂θ<h‖ ≤ ‖∂L/∂θ<h‖+‖e‖‖∂h/∂θ<h‖,
implying that the approximation error at a critical point just

has to be small wrt to ‖∂h/∂θ<h‖ and need not be 0.

To recap: so far we have shown that SG can preserve crit-

ical points of the optimisation problem. However, SG can

also introduce new critical points, leading to premature

convergence and spurious additional solutions. As with

our previous observation, this does not effect SG modules

which are able to represent gradients exactly. But if the SG

hypothesis space does not include a good approximator2 of

the true gradient, then we can get new critical points which

end up being an equilibrium state between SG modules and

the original network. We provide an example of such an

equilibrium in the Supplementary Materials Section B.

4. Learning dynamics

Having demonstrated that important critical points are pre-

served and also that new ones might get created, we need a

better characterisation of the basins of attraction, and to un-

derstand when, in both theory and practice, one can expect

convergence to a good solution.

Artificial Data

We conduct an empirical analysis of the learning dynam-

ics on easily analysable artificial data. We create 2 and

100 dimensional versions of four basic datasets (details in

2In this case, our gradient approximation needs to be reason-
able at every point through optimisation, not just the critical ones.

the Supplementary Materials Section D) and train four sim-

ple models (a linear model and a deep linear one with 10

hidden layers, trained to minimise MSE and log loss) with

regular backprop and with a SG-based alternative to see

whether it (numerically) converges to the same solution.

For MSE and both shallow and deep linear architectures the

SG-based model converges to the global optimum (exact

numerical results provided in Supplementary Material Ta-

ble 2). However, this is not the case for logistic regression.

This effect is a direct consequence of a linear SG module

being unable to model ∂L/∂p3 (where p = xW + b is the

output of logistic regression), which often approaches the

step function (when data is linearly separable), and cannot

be well approximated with a linear function SG(h, y) =
hA+ yB+C. Once one moves towards problems without

this characteristic (e.g. random labeling) the problem van-

ishes, since now ∂L/∂p can be approximated much better.

While this may not seem particularly significant, it illus-

trates an important characteristic of SG in the context of the

log loss – it will struggle to overfit to training data, since it

requires modeling step function type shapes, which is not

possible with a linear model. In particular this means that

for best performance one should adapt the SG module ar-

chitecture to the loss function used —for MSE linear SG

is a reasonable choice, however for log loss one should use

architectures including a sigmoid σ applied pointwise to a

linear SG, such as SG(h, y) = dσ(hA) + yB + C.

As described in Section 2, using a linear SG module makes

the implicit assumption that loss is a quadratic function

of the activations. Furthermore, in such setting we can

actually reconstruct the loss being used up to some addi-

tive constant since ∂L/∂h = hA + yB + C implies that

L(h) = 1
2hAhT + (yB + C)hT + const. If we now con-

struct a 2-dimensional dataset, where data points are ar-

ranged in a 2D grid, we can visualise the loss implicitly

predicted by the SG module and compare it with the true

loss for each point.

Figure 2 shows the results of such an experiment when

learning a highly non-linear model (5-hidden layer relu net-

work). As one can see, the quality of the loss approxi-

mation has two main components to its dynamics. First,

it is better in layers closer to the true loss (i.e. the top-

most layers), which matches observations from Jaderberg

et al. (2016) and the intuition that the lower layers solve a

more complex problem (since they bootstrap their targets).

Second, the loss is better approximated at the very begin-

ning of the training and the quality of the approximation

degrades slowly towards the end. This is a consequence

of the fact that close to the end of training, the highly non-

linear model has quite complex derivatives which cannot be

well represented in a space of linear functions. It is worth

3∂L/∂p = exp(xW + b)/(1 + exp(xW + b))− y
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Figure 2. Visualisation of the true MSE loss and the loss approximation reconstructed from SG modules, when learning points are

arranged in a 2D grid, with linearly separable 90% of points and 10% with randomly assigned labels (top row) and with completely

random labels (bottom row). The model is a 6 layers deep relu network. Each image consists of visualisations for a model with a single

SG (left part) and with SG between every two layers (on the right). Note, that each image has an independently scaled color range, since

we are only interested in the shape of the surface, not particular values (which cannot be reconstructed from the SG). Linear SG tracks

the loss well for MSE loss, while it struggles to fit to log loss towards the end of the training of nearly separable data. Furthermore, the

quality of loss estimation degrades towards the bottom of the network when multiple SGs bootstrap from each other.

noting, that in these experiments, the quality of the loss ap-

proximation dropped significantly when the true loss was

around 0.001, thus it created good approximations for the

majority of the learning process. There is also an empirical

confirmation of the previous claim, that with log loss and

data that can be separated, linear SGs will have problems

modeling this relation close to the end of training (Figure 2

(b) left), while there is no such problem for MSE loss (Fig-

ure 2 (a) left).

Convergence

It is trivial to note that if a SG module used is globally

convergent to the true gradient, and we only use its output

after it converges, then the whole model behaves like the

one trained with regular backprop. However, in practice

we never do this, and instead train the two models in paral-

lel without waiting for convergence of the SG module. We

now discuss some of the consequences of this, and begin

by showing that as long as a synthetic gradient produced is

close enough to the true one we still get convergence to the

true critical points. Namely, only if the error introduced by

SG, backpropagated to all the parameters, is consistently

smaller than the norm of true gradient multiplied by some

positive constant smaller than one, the whole system con-

verges. Thus, we essentially need the SG error to vanish

around critical points.

Proposition 2. Let us assume that a SG module is trained

in each iteration in such a way that it ǫ-tracks true gradient,

i.e. that ‖SG(h, y)− ∂L/∂h‖ ≤ ǫ. If ‖∂h/∂θ<h‖ is upper

bounded by some K and there exists a constant δ ∈ (0, 1)
such that in every iteration ǫK ≤ ‖∂L/∂θ<h‖

1−δ
1+δ

, then

the whole training process converges to the solution of the

original problem.

Proof. Proof follows from showing that, under the as-

sumptions, effectively we are training with noisy gradients,

where the noise is small enough for convergence guaran-

tees given by Zoutendijk (1970); Gratton et al. (2011) to

apply. Details are provided in the Supplementary Materials

Section C.

As a consequence of Proposition 2 we can show that with

specifically chosen learning rates (not merely ones that are

small enough) we obtain convergence for deep linear mod-

els.

Corollary 1. For a deep linear model minimising MSE,

trained with a linear SG module attached between two of

its hidden layers, there exist learning rates in each iteration

such that it converges to the critical point of the original

problem.

Proof. Proof follows directly from Propositions 1 and 2.

Full proof is given in Supplementary Materials Section C.

For a shallow model we can guarantee convergence to the

global solution provided we have a small enough learning

rate, which is the main theoretical result of this paper.
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Figure 3. (left) Representation Dissimilarity Matrices for a label ordered sample from MNIST dataset pushed through 20-hidden layers

deep relu networks trained with backpropagation (top row), a single SG attached between layers 11 and 12 (middle row) and SG between

every pair of layers (bottom row). Notice the disappearance of dark squares on a diagonal in each learning method, which shows when

a clear inner-class representation has been learned. For visual confidence off block diagonal elements are semi transparent. (right) L2

distance between diagonal elements at a given layer and the same elements at layer 20. Dotted lines show where SGs are inserted.

Theorem 1. Let us consider linear regression trained with

a linear SG module attached between its output and the

loss. If one chooses the learning rate of the SG module

using line search, then in every iteration there exists small

enough, positive learning rate of the main network such

that it converges to the global solution.

Proof. The general idea (full proof in the Supplementary

Materials Section C) is to show that with assumed learn-

ing rates the sum of norms of network error and SG error

decreases in every iteration.

Despite covering a quite limited class of models, these are

the very first convergence results for SG-based learning.

Unfortunately, they do not seem to easily generalise to the

non-linear cases, which we leave for future research.

5. Trained models

We now shift our attention to more realistic data. We train

deep relu networks of varied depth (up to 50 hidden layers)

with batch-normalisation and with two different activation

functions on MNIST and compare models trained with full

backpropagation to variants that employ a SG module in

the middle of the hidden stack.

Figure 4. Learning curves for MNIST experiments with back-

propagation and with a single SG in a stack of from 3 to 50 hidden

layers using one of two activation functions: relu and sigmoid.

Figure 4 shows, that SG-based architectures converge well

even if there are many hidden layers both below and above

the module. Interestingly, SG-based models actually seem

to converge faster (compare for example 20- or 50 layer

deep relu network). We believe this may be due to some

amount of loss function smoothing since, as described in

Section 2, a linear SG module effectively models the loss

function to be quadratic – thus the lower network has a sim-

pler optimisation task and makes faster learning progress.

Obtaining similar errors on MNIST does not necessarily

mean that trained models are the same or even similar.

Since the use of synthetic gradients can alter learning dy-

namics and introduce new critical points, they might con-

verge to different types of models. Assessing the repre-

sentational similarity between different models is difficult,

however. One approach is to compute and visualise Rep-

resentational Dissimilarity Matrices (Kriegeskorte et al.,

2008) for our data. We sample a subset of 400 points xi

from MNIST, order them by label, and then record acti-

vations on each hidden layer h when the network is pre-

sented with these points. We plot the matrix RDM for each

layer, where RDMij = 1−corr(h(xi), h(xj)), as shown in

Figure 3. This representation is permutation invariant, and

thus the emergence of a block-diagonal correlation matrix

means that at a given layer, points from the same class al-

ready have very correlated representations.

Under such visualisations one can notice qualitative differ-

ences between the representations developed under stan-

dard backpropagation training versus those delivered by

a SG-based model. In particular, in the MNIST model

with 20 hidden layers trained with standard backpropaga-

tion we see that the representation covariance after 9 layers

is nearly the same as the final layer’s representation. How-

ever, by contrast, if we consider the same architecture but

with a SG module in the middle we see that the layers be-

fore the SG module develop a qualitatively different style

of representation. Note: this does not mean that layers be-

fore SG do not learn anything useful. To confirm this, we

also introduced linear classifier probes (Alain & Bengio,

2016) and observed that, as with the pure backpropaga-

tion trained model, such probes can achieve 100% train-

ing accuracy after the first two hidden-layers of the SG-

based model, as shown in Supplementary Material’s Fig-

ure 8. With 20 SG modules (one between every pair of
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layers), the representation is scattered even more broadly:

we see rather different learning dynamics, with each layer

contributing a small amount to the final solution, and there

is no longer a point in the progression of layers where the

representation is more or less static in terms of correlation

structure (see Figure 3).

Another way to investigate whether the trained models are

qualitatively similar is to examine the norms of the weight

matrices connecting consecutive hidden layers, and to as-

sess whether the general shape of such norms are similar.

While this does not definitively say anything about how

much of the original classification is being solved in each

hidden layer, it is a reasonable surrogate for how much

computation is being performed in each layer4. According

Figure 5. Visualisation of normalised squared norms of linear

transformations in each hidden layer of every model considered.

Dotted orange line denotes level at which a single SG is attached.

SG* has a SG at every layer.

to our experiments (see Figure 5 for visualisation of one of

the runs), models trained with backpropagation on MNIST

tend to have norms slowly increasing towards the output of

the network (with some fluctuations and differences com-

ing from activation functions, random initialisations, etc.).

If we now put a SG in between every two hidden layers,

we get norms that start high, and then decrease towards

the output of the network (with much more variance now).

Finally, if we have a single SG module we can observe

that the behaviour after the SG module resembles, at least

to some degree, the distributions of norms obtained with

backpropagation, while before the SG it is more chaotic,

with some similarities to the distribution of weights with

SGs in-between every two layers.

These observations match the results of the previous exper-

iment and the qualitative differences observed. When syn-

thetic gradients are used to deliver full unlocking we obtain

a very basic model at the lowest layers and then see itera-

4We train with a small L2 penalty added to weights to make
norm correspond roughly to amount of computation.

tive corrections in deeper layers. For a one-point unlocked

model with a single SG module, we have two slightly sepa-

rated models where one behaves similarly to backprop, and

the other supports it. Finally, a fully locked model (i.e. tra-

ditional backprop) solves the task relatively early on, and

later just increases its confidence.

We note that the results of this section support our previous

notion that we are effectively dealing with a multi-agent

system, which looks for coordination/equilibrium between

components, rather than a single model which simply has

some small noise injected into the gradients (and this is

especially true for more complex models).

6. SG and conspiring networks

We now shift our attention and consider a unified view

of several different learning principles that work by re-

placing true gradients with surrogates. We focus on three

such approaches: Feedback Alignment (FA) (Lillicrap

et al., 2016), Direct Feedback Alignment (DFA) (Nøkland,

2016), and Kickback (KB) (Balduzzi et al., 2014). FA ef-

fectively uses a fixed random matrix during backpropaga-

tion, rather than the transpose of the weight matrix used

in the forward pass. DFA does the same, except each

layer directly uses the learning signal from the output layer

rather than the subsequent local one. KB also pushes the

output learning signal directly but through a predefined

matrix instead of a random one. By making appropriate

choices for targets, losses, and model structure we can

cast all of these methods in the SG framework, and view

them as comprising two networks with a SG module in be-

tween them, wherein the first module builds a representa-

tion which makes the task of the SG predictions easier.

We begin by noting that in the SG models described thus far

we do not backpropagate the SG error back into the part of

the main network preceding the SG module (i.e. we assume

∂LSG/∂h = 0). However, if we relax this restriction, we

can use this signal (perhaps with some scaling factor α)

and obtain what we will refer to as a SG + prop model.

Intuitively, this additional learning signal adds capacity to

our SG model and forces both the main network and the SG
module to “conspire” towards a common goal of making

better gradient predictions. From a practical perspective,

according to our experiments, this additional signal heavily

stabilises learning system5. However, this comes at the cost

of no longer being unlocked.

5 In fact, ignoring the gradients predicted by SG and only us-
ing the derivative of the SG loss, i.e. ∂LSG/∂h, still provides
enough learning signal to converge to a solution for the original
task in the simple classification problems we considered. We posit
a simple rationale for this: if one can predict gradients well using
a simple transformation of network activations (e.g. a linear map-
ping), this suggests that the loss itself can be predicted well too,
and thus (implicitly) so can the correct outputs.
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Method

∂̂L/∂h SG(h, y) SG(h, y) + α∂LSG

∂h
∂L/∂h (∂L/∂p)AT (∂L/∂g)AT (∂L/∂p)1T

SG(h, y) SG(h, y) SG(h, y) h hA hA h1
SG trains yes yes no no no no

SG target ∂L/∂h ∂L/∂h −∂L/∂h −∂L/∂p −∂L/∂g −∂L/∂p
LSG(t, s) ‖t− s‖2 ‖t− s‖2 −〈t, s〉 −〈t, s〉 −〈t, s〉 −〈t, s〉

Update locked no yes* yes yes yes yes

Backw. locked no yes* yes no yes no

Direct error no no no yes no yes

Table 1. Unified view of “conspiring” gradients methods, including backpropagation, synthetic gradients are other error propagating

methods. For each of them, one still trains with regular backpropagation (chain rule) however ∂L/∂h is substituted with a particular

∂̂L/∂h. Black lines are forward signals, blue ones are synthetic gradients, and green ones are true gradients. Dotted lines represent

non-differentiable operations. The grey modules are not trainable. A is a fixed, random matrix and 1 is a matrix of ones of an appropriate

dimension. * In SG+Prop the network is locked if there is a single SG module, however if we have multiple ones, then propagating error

signal only locks a module with the next one, not with the entire network. Direct error means that a model tries to solve classification

problem directly at layer h.

Our main observation in this section is that FA, DFA, and

KB can be expressed in the language of “conspiring” net-

works (see Table 1), of two-network systems that use a SG

module. The only difference between these approaches is

how one parametrises SG and what target we attempt to

fit it to. This comes directly from the construction of these

systems, and the fact that if we treat our targets as constants

(as we do in SG methods), then the backpropagated error

from each SG module (∂LSG/∂h) matches the prescribed

update rule of each of these methods (∂̂L/∂h). One direct

result from this perspective is the fact that Kickback is es-

sentially DFA with A = 1. For completeness, we note that

regular backpropagation can also be expressed in this uni-

fied view – to do so, we construct a SG module such that the

gradients it produces attempt to align the layer activations

with the negation of the true learning signal (−∂L/∂h). In

addition to unifying several different approaches, our map-

ping also illustrates the potential utility and diversity in the

generic idea of predicting gradients.

7. Conclusions

This paper has presented new theory and analysis for the

behaviour of synthetic gradients in feed forward models.

Firstly, we showed that introducing SG does not necessarily

change the critical points of the original problem, however

at the same time it can introduce new critical points into the

learning process. This is an important result showing that

SG does not act like a typical regulariser despite simplify-

ing the error signals. Secondly, we showed that (despite

modifying learning dynamics) SG-based models converge

to analogous solutions to the true model under some ad-

ditional assumptions. We proved exact convergence for a

simple class of models, and for more complex situations

we demonstrated that the implicit loss model captures the

characteristics of the true loss surface. It remains an open

question how to characterise the learning dynamics in more

general cases. Thirdly, we showed that despite these con-

vergence properties the trained networks can be qualita-

tively different from the ones trained with backpropaga-

tion. While not necessarily a drawback, this is an important

consequence one should be aware of when using synthetic

gradients in practice. Finally, we provided a unified frame-

work that can be used to describe alternative learning meth-

ods such as Synthetic Gradients, FA, DFA, and Kickback,

as well as standard Backprop. The approach taken shows

that the language of predicting gradients is suprisingly uni-

versal and provides additional intuitions and insights into

the models.
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