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Abstract. The Web contains a wealth of information, and a key challenge is to
make this information machine processable. In this paper, we study how to “un-
derstand” HTML tables on the Web, which is one step further from finding the
schemas of tables. From 0.3 billion Web documents, we obtain 1.95 billion tables,
and 0.5-1% of these contain information of various entities and their properties.
We argue that in order for computers to understand these tables, computers must
first have a brain – a general purpose knowledge taxonomy that is comprehensive
enough to cover the concepts (of worldly facts) in a human mind. Second, we
argue that the process of understanding a table is the process of finding the right
position for the table in the knowledge taxonomy. Once a table is associated with
a concept in the knowledge taxonomy, it will be automatically linked to all other
tables that are associated with the same concept, as well as tables associated with
concepts related to this concept. In other words, understanding occurs when com-
puters will understand the semantics of the tables through the interconnections of
concepts in the knowledge base. In this paper, we illustrate a two phase process.
Our experimental results show that the approach is feasible and it may benefit
many useful applications such as web search.

1 Introduction
The World Wide Web contains a wealth of information. Unfortunately, most of this
information is understood only by humans but not by machines. A key challenge is thus
to make such information machine accessible and processable.

In this paper, we focus on enabling machines to understand information on the Web.
We are particularly interested in HTML tables, for the following two reasons. First,
there are billions of tables on the Web, and many of them contain valuable information.
Second, tables are well structured and relatively easier to understand, whereas convert-
ing text into structured data using natural language processing techniques is very costly
and impractical for large web corpus.

Informally, we define the problem of understanding a web table as the problem of
associating the table with one or more semantic concepts in a general purpose knowl-
edge base we have created. In particular, after the association is established, each row of
the table will describe the attributes of a particular entity of that concept (In this work,
we assume tables are horizontal). For example, consider the tables in Figure 1. Our goal
is to associate, Table (a) to such concepts as US presidents in the knowledge base. This
⋆ The work was done at Microsoft Research Asia.
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(a)
Barack Obama Aug 4, 1961 Illinois

George W. Bush July 6, 1946 Texas

(b)
Illinois Springfield 12,900,000
Texas Austin 25,145,561

(c)
Name Political Party

George W. Bush Republican
Hillary Clinton Democratic

Fig. 1. Three Web Tables

means the knowledge base contains US presidents as a concept, as well as at least some
of its instances (e.g., George W. Bush) and some of its attributes or properties (e.g., date
of birth). Similarly, we need to associate Table (b) to such concepts as US states, which
contain attributes such as capitals and populations and Table (c) to such concepts as US
politicians, which contain attributes such as political parties. Note that the knowledge
base may not contain all the information in the table including instances, attributes or
values, but the knowledge base need to contain enough information for the machines to
“guess” what the table is about. Note that this is different from schema detection. For
example, in Table (c), the schema is given, but without associating the table to concepts
such as US politicians, or politicians, it is not possible to understand the meaning of the
data.

Once we understand tables, information contained in them can be used to support
applications such as semantic search. The following examples show some “smart” an-
swers to semantic queries (assuming Figure 1 contains all the tables for input).

If a user asks for “Obama birthday,” the system returns the following table (For this
work, we use tables to answer any queries. Of course, answers can be provided in any
form, including in natural languages):

President Date of Birth
Barack Obama Aug 4, 1961

This shows that the system correctly identified the first column of Table(a) is about
presidents and the second column about their birthdays.

Second, for query “Illinois,” it returns the following table about the state of Illinois:

State Capital City Population
Illinois Springfield 12,900,000

Note that i) the result has an inferred schema (a header), and ii) even though the word
Illinois appears in Table (a) as well, our system realizes Table (a) is more about presi-
dents than states, and the query is looking for information about Illinois, the state.

Finally, when asked for “politicians”, the machine returns the following table by
combining Table (a) and (b) and adding a header:

Politician Date of Birth State Political Party
Barack Obama Aug 4, 1961 Illinois -

George W. Bush July 6, 1946 Texas Republican
Hillary Clinton Oct 26, 1947 - Democratic

What is interesting about this answer is that the system not only knows that Table (a) is
about US presidents and Table (b) is about politicians, but it also knows that presidents
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are politicians, the two tables can be combined for the query. Such semantic association
and reasoning between tables is significantly more intelligent than relational schema
induction techniques which merely generate a “data type” for each column of a table.

Knowing the structure of the data does not mean knowing the semantics of the data,
or understanding its content. For example, given Figure 1(a), how do we know Barack
Obama is a president, and Aug 4, 1961 is not just a date, but also Obama’s birth date?
Furthermore, how do we know that the first row is about Obama, the president, and not
Illinois, the state? And finally, how do we know we can merge Figure 1(a) and (c)?

As human beings, to answer these questions, we need certain background knowl-
edge. If we know Obama and Bush are US presidents, then immediately we can add
title “President” to the first column of Figure 1(a). Next, we recognize that the second
column is dates. Since our knowledge tells us presidents are persons and one of the most
important dates about a person is his or her date of birth, we can add the “Date of Birth”
header to the second column. If our knowledge also knows that Illinois and Texas are
both US states, then it is not difficult to tag the third column with “State”. Now, given
that this table has three column titles: President, Date of Birth and State, our common
sense tells us that every row of this table is more about a president than about a state,
because a president has a birth date and a home state as two of his important attributes,
whereas a state does not have a date of birth and a president for sure!

We can see that the key for understanding the tables in the above example is to
answer these two related questions:

1. What is the most likely concept that contains a set of given entities?
2. What is the most likely concept that has a set of given attributes?
We call the process to answer these two questions conceptualization. In this pa-

per, we utilize a general-purpose taxonomy called Probase [1–4] as our knowledge
to conceptualize the information in web tables and achieve understanding. Probase is
made up of worldly facts automatically constructed from 50 Terabytes Web corpus and
other data. One dramatic difference between Probase and any manually built taxonomy
(e.g. Open Mind Common Sense [5], Freebase [6]) is that Probase has over 2.7 million
concepts, which cover most if not all concepts about worldly facts in human minds.
Each concept contains a set of entities ranked by their popularity or other scores, and
also a set of attributes used to describe entities in that concept. Given the rich concepts
and probabilistic scores of Probase, we have a better chance to understand web tables
than using other manually built taxonomies, since web tables also contain diverse and
probabilistic information, which is hard to be well captured manually.

Figure 2 shows a snippet of the Probase taxonomy. Oval boxes denote concepts
and their attributes, rectangles denote entities, while arrows denote isA relations. More
details about Probase is given in Section 2.

Figure 3 illustrates the overall process for understanding web tables, which is de-
tailed in Section 3. We first try to detect the header in a table (Section 3.2). If no header
can be detected, we generate one using the table content (Section 3.3). Then we iden-
tify the column that contains entities (others are attribute columns) (Section 3.4). If we
fail to derive the header or the entity column, or the result quality is considered too
low, we discard the table. Otherwise, the recognized content is attached to the Probase
concept that best describes the entity column. This essentially extends the Probase. We
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Fig. 3. The flowchart for understanding tables

evaluate our prototype system in Section 4, and discuss some of the most related work
in Section 5 before concluding in Section 6.

2 Building a Knowledge Taxonomy
To conceptualize any web table, it is essential for our knowledge to contain large
amount of concepts, their attributes and their representative entities. In this paper, we
use Probase [1] to understand tables. Probase is a research prototype that aims at build-
ing a unified taxonomy of worldly facts from web data and search logs. The backbone
of Probase is constructed by the Hearst patterns [7], or “SUCH AS” like patterns. For
example, a sentence containing “... politicians such as Barack Obama ...” can be con-
sidered as an evidence that politicians is a hypernym of Barack Obama.

Despite their popularity in concept-entity extraction, Hearst patterns are not power-
ful enough for extracting attributes and values. As a result, the core Probase taxonomy
is not rich in the attribute/value space. To enrich Probase with more attributes, we use
the following linguistic pattern to discover seed attributes for a concept C:

What is the A of I?

Here, A is the seed attributes we want to discover, and I is an entity in concept C
obtained from Probase. For example, assume we want to find seed attributes for concept
countries. From Probase, we know China is a country. Then, we use the pattern “What
is the * of China?” to search the Web. A match “What is the capital of China?” indicates
capital is a candidate seed attribute for countries. The seed attributes thus extracted are
good enough to detect many table schemas. Below, we address several important issues
in attributes discovery. The notations used in our discussion are summarized in Table 1.

Table 1. Probase Notations

C, I,A concepts, instances, and attributes in the taxonomy
E(c) entities of concept c pc(i) plausibility of entity i for class c
A(c) attributes of concept c ac(i) ambiguity of entity i for class c
C(i) concepts entity i belongs to

1. Why use the rigid pattern “What is the A of I”? We deliberately choose a rigid
pattern to increase the precision. Because i) we are only interested in seed attributes in
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this phase; ii) we use multiple entities to find attributes for each concept, and iii) we are
matching the pattern against a huge Web corpus (50 Terabytes), which means we can
always find good candidate attributes. Note that the above pattern is a skeleton which
represents a set of concrete patterns. For example, the word What can be replaced by
Where or Who, and is can be replaced by are or was.

2. What entities should we use as the I in the pattern? For each concept, Probase
returns a list of entities associated with a set of scores. Two essential scores are plausi-
bility and ambiguity. Plausibility measures how likely an entity is really a member of a
given concept, and ambiguity measures how likely an entity is also a member of other
unrelated concepts. For example, both Microsoft and Apple are companies, but Apple is
more ambiguous because it is also a fruit. If we use Apple, we may mistake taste as an
attribute of companies. So we want entities with high plausibility and low ambiguity.
For how the scores are derived, we refer readers to [1]. Specifically, we find ES(c), the
eligible entities of class c:

ES(c) = {i|i ∈ E(c), pc(i) > δp, ac(i) < δa},

where δp and δa denote the thresholds for plausibility and ambiguity, respectively.
3. How to rank candidate seed attributes to obtain final seeds? For each concept c,

we score and merge candidate seed attributes derived from ES(c) to obtain final ones.
If attribute a is derived with entity i, then we add a weight equals to pc(i) to a. We
then aggregate the weights of all the candidate seed attributes, and choose top-ranked
attributes as the final seed attributes of c. Specifically, let D(a) denote the set of entities
in ES(c) having attribute a. The weight of a candidate attribute a with respect to c is:

wc(a) =
∑

i∈D(a)

pc(i)/
∑

i∈ES(c)

pc(i). (1)

Note that Eq (1) considers both plausibility and ambiguity, because i ∈ ES(c).
One problem of using linguistic patterns to find attributes from the Web is noises, or

wrong attributes. However, for different entities I , the pattern typically returns different
noises, hence the ranking scheme effectively removes such noises.

Besides the above pattern, we also get attributes from DBPedia. We use exact match-
ings when locating Probase’s entities in it.

In total, we obtain 10.5 million raw seed attributes (0.21 million distinct) for about
1 million classes. These are enough to bootstrap the process of understanding tables.
Once we identified table schema, they can be used to expand the current set of attributes
and essentially enrich Probase. In an evaluation of 30 concepts and their top 20 seed
attributes, we found our approach reaches an average precision of 0.96. This provides a
strong foundation for further understanding process.

3 Understanding Tables
From 0.3 billion web documents, we extract 1.95 billion raw HTML tables. Many of
them do not contain useful or relational information (e.g., be used for page layout pur-
pose); others have structures that are too complicated for machines to understand. We
use a rule-based filtering method to acquire 65.5 million tables (3.4% of all the raw
tables) that contain potentially useful information.
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In this section, we describe the process of understanding a table. With the help
of “enriched” Probase, we identify entities (of a single concept/class), attributes, and
values in a table. Then, we use the information in the table to enrich Probase.

3.1 Knowledge APIs for Schema Extraction

We first introduce two functions κA(A) and κE(E), which are part of the knowledge
API provided by Probase. Probase contains rich information about concepts, entities,
and attributes. For a given concept, we may use Probase to find its entities and its at-
tributes. Likewise, for a given set of entities or attributes, we may use Probase to find
the set of concepts that they may belong to. The two functions serve this purpose. Given
a set of attributes A and a set of entities E, functions κA(A) and κE(E) find the most
likely concept to which A or E belongs 4. More specifically, we have

– κA(A) : for a set of attributes A, κA(A) returns a list of triples · · · , (ci, Ai, sai), · · ·
ordered by score sai, where ci is a likely concept for A, Ai ⊆ A are attributes of
concept ci, and sai is the score indicating the confidence of ci given A.

– κE(E) : for a set of entities E, κE(E) returns a list of triples · · · , (ci, Ei, sei), · · ·
ordered by score sei, where ci is a likely concept for E, Ei ⊆ E are entities of
concept ci, and sei is the score indicating the confidence of ci given E.

Table 2. A running example for table understanding

Name Birthdate Political Party Assumed Office Height
Barack Obama 4 Aug 1961 Democratic 2009 6’1
Arnold Schwarzenegger 30 Jul 1947 Republican 2003 6’2
Hillary Clinton 26 Oct 1947 Democratic 2009 5’8

The two functions may help us discover the schema of a table. Let us take Table 2
as an example. Suppose we want to know if the first row is the head of the table. As we
know, a head usually contains a set of attributes of a concept. So by applying κA() on
A = {Name, Birthdate, Political Party, Assumed Office, Height}, we may expect to get
some concepts of high confidence. Assume Probase returns the following for κA(A):

(US presidents, {Birthdate, Political Party, Assumed Office}, 0.90)
(politicians, {Birthdate, Political Party, Assumed Office}, 0.88)
(NBA players, {Birthdate, Height}, 0.65)
. . .
The result ranks US presidents higher than politicians. This is probable because we

are only looking at the header, and have not studied the table content yet.
On the other hand, if we compute κA(A) on the second row A = {Barack Obama,

4 Aug 1961, Democratic, 2009, 6’1}, we may get empty results or results with very low
confidence. This indicates that κA() is useful in table header detection. We discuss this
in more detail in Section 3.2.

However, many tables do not have headers. Function κE() is useful in this case.
Consider the first column E = {Name, Barack Obama, Arnold Schwarzenegger, Hillary
Clinton}. Applying κE() on E may get:

4 The implementation of the two functions is discussed in [1, 8].
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(politicians, {Barack Obama, Arnold Schwarzenegger, Hillary Clinton}, 0.95})
(actors, {Arnold Schwarzenegger}, 0.5})
. . .
In this case, κE() identifies politicians as the top match. If we apply κE() on other

columns, we may recover more possible attributes. Thus, there is a possibility we can
generate a header for the table. We discuss this in more detail in Section 3.3.

In summary, combining the outcomes of κA() and κE(), we may get a clue regard-
ing what the table is about. The scores sai and sei returned by κA() and κE() play an
important role in reaching the conclusion. One important issue is how sai and sei are
calculated. Intuitively, the more matching attributes/entities we find, the higher score of
a concept should be. Specifically, assuming (ci, Ei, sei) is in the output of κE(E) and
(ci, Ai, sai) is in the output of κA(A), a straightforward way to define sei and sai is:

sei =
1

|E|
∑
ei∈Ei

pci(ei), sai =
∑

ai∈Ai

wci(ai) (2)

where pci(ei) is the plausibility score of ei given ci, and wci(ai) is the confidence score
of ai being the attribute of ci in Probase.

3.2 Header Detector

The first step in understanding a table is locating the header. The header of a table
contains a set of attributes, which form the schema of the table. It also indicates the
orientation, depending on whether it appears as a row or column. In our discussion, we
assume all tables are horizontal, e.g. in Table 2, the header is the top row.

Let P denote the set of possible headers for a table T . In one extreme, we may
consider every row of T , that is, P contains all rows of T . In the other extreme, we
may just consider the top row, which is the mostly header if T has one. We use function
κA() to evaluate each possibility and generate a set of candidate schema.

candidate_schema = {x | p ∈ P, x ∈ κA(p), x.sa+ α(p, T ) > γh} (3)

Eq 3 filters out candidates whose score is below a threshold γh. 5 The score consists
of two parts, the raw sa score returned by κA(), and an adjustment α(p, T ), which
evaluates whether a row is likely a header based on the syntax. The reason we need an
adjustment is that the header usually has some syntactic characteristics that set it apart
from the rest of the table. To name a few:

– HTML <th> tag.
– Other syntactic clues, including i) cells of p end with a colon ‘:’, and ii) cells of p

has a formatting (e.g., bold font is used) different from other rows in table T , etc.
– Data type differences6: The fact that a cell in p is of different data type from other

cells in its column may indicate p is a header. For example, a cell in p has string
type (e.g., Birthdate or Age), while other cells in that column are dates (4 Aug 1961)
or numbers (e.g., 61).

5 γh was picked based on our observation in practice.
6 Although data types are not an entirely syntactic issue, we included it here since they can be

detected syntactically.
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If candidate_schema returned by Eq 3 is empty, then we fail to detect any header.
This is possible because tables may not come with a header. In this case, we generate a
header using the method elaborated in Section 3.3.

As for the example of Table 2, a properly set threshold will find the first row as the
header, with two candidate schema that are shown below. For simplicity, we assume
α(p, T ) = 0 here, that is, the table provides no syntactic clues for header identification.

(US presidents, {Birthdate, Political Party, Assumed Office}, 0.90)
(politicians, {Birthdate, Political Party, Assumed Office}, 0.88)
In Section 3.4 we will discuss how to further narrow the above two candidates down

to a single interpretation.

3.3 Header Generator

If no candidate header is found in the header detection phase, then we assume that the
table does not come with a header. In this case, we try to generate a header for the table.

For each column Li, we find its most likely concept. For example, from the 3rd
column of Table 2, we may derive political parties. Then, we check if the concepts of
all columns together describe some other concepts. Specifically, for each column Li,
we first find its best matched top-k candidate concepts by calling κE(Li). We denote
the top-k candidate concepts of Li as c1(Li), · · · , ck(Li). Then we generate P , a set of
possible headers by selecting one concept from each of the top-k candidates, that is

P = {(a1, . . . , ai, . . . , an)|ai ∈ {c1(Li), · · · , ck(Li)}}

where n is the number of columns. Finally, we derive candidate_schema using P and
Eq 3. Note that in this case, α(p, T ) is 0, as the table does not have syntactic clues.

If candidate_schema is again empty, which means the table does not come with a
header and we cannot generate one for it, then we drop it from further consideration.

3.4 Entity Detector

The entity detector tries to accomplish two tasks. First, it detects the entity column of
the table. For example, for Table 2, the entity column is the 1st column instead of the 3rd
column, as the table is about politicians, not political parties. Second, we have derived
a set of candidate schemata previously, and we need to narrow them down to a final
interpretation. The method presented here solves the two problems at the same time.

We make our judgment based on two kinds of evidence. First, the entity column
should contain entities of the same concept, and we can derive the confidence of a
concept for a given column. Second, the header should contain attributes that describe
entities in the entity column, that is, the candidate schema we have derived should match
the concept of the entity.

For each s ∈ candidate_schema returned by Eq 3, we enumerate every column
col and compute its confidence score. Given a column col, we define

– Ecol: the set of all cells in col, except for the one in the header corresponds to s
– Acol: the set of all attributes in s, except for the one in the current column.

We then apply functions κA() and κE() on Ecol and Acol to obtain their possible
semantics. Specifically, we let SCA to be the ordered list of (ci, Acol

i , sai) returned by
κA(A

col), and SCE to be the ordered list of (ci, Ecol
i , sei) returned by κA(E

col).
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If col is the entity column, we should be able to derive a concept c from Ecol, and
c should also be strongly supported by Acol. So the possibility of col being the entity
column relies on the confidence of the concepts derived from it.

We join SCA and SCE to find common concepts, and we record the corresponding
score as a multiplication of sai and sej .

h(s, col) = max{sai · sej | (ci, Acol
i , sai) ∈ SCA, (cj , E

col
j , sej) ∈ SCE , ci = cj}

Finally, the most possible interpretation and entity column are the ones that achieve
the maximum score.

(final schema, entity column) = argmax
s,col

h(s, col)

Using this approach, for the example in Table 2, we will reject the schema of US
presidents, because although the concept US presidents has strong support from the at-
tributes, it has low support from the column that contains the name Arnold Schwarzeneg-
ger. Thus, the final schema we find for the table is:

(politicians, {Birthdate, Political Party, Assumed Office}, 0.88)

4 Experimental Results
Since most of the evaluations are related to concepts, we randomly selected 30 concepts
with high frequency as our benchmarks, which vary in domains and sizes. For exper-
iments that need to be evaluated manually, we use a consistent scoring criterion for
human judges: 1 for correct, 0.5 for partially correct, 0 for incorrect. In the following
subsections, we will first present some statistics about the extracted table corpus, and
then two applications that can take advantage of the web table understanding. Because
of the space limitation, only some statistics of the results will be provided. Readers are
referred to our website 7 for complete experimental results.

4.1 The Web Table Corpus

We implemented the prototype system with a Map-Reduce distributed computing plat-
form. Since all of the following stages are parallelable, Each of them takes at most
several hours to complete on our large cluster. We ask human judges to judge the cor-
rectness of the results.

1. Header detection: We randomly selected a sample of 200 8 filtered tables, and
ran the header detection algorithm on them. The result is shown below.

Actual no 86.7% correct, 13.3% incorrect

Actual yes
90.7% correct, 9.3% incorrect

(2.1% wrong position, 7.1% predict as no header)

Our algorithm correctly identified headers (or lack of which) in 89.5% of the tables.
Among the 140 tables with a header, we correctly detected the header in 127 (90.7%)
of them.

7 http://research.microsoft.com/en-us/projects/probase/tablesearch.aspx
8 This number is limited since we have to use human judges
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2. Entity column detection: Because the information in web tables is so diverse,
random sampling from web tables may not have a good coverage in both structures and
domains. Therefore in this part, we create test set using tables extracted from Wikipedia
only. These tables contain structural multiple-domain data in high density. We only fo-
cus on precision here as recall is hard to evaluate. We randomly selected 200 tables
which our system claims to have an entity column, while ensuring that no two tables
are from the same Wikipedia page. Our judges evaluated the correctness of these claims.
Results showed that 11 tables actually do not have an entity column, and most of them
have two or more main entities, which violate our assumption that there is only one
entity column in a table. Among the remaining 189 tables, our algorithm correctly iden-
tifies the entity column in 165 tables(87.3%).

4.2 Search Engine

We build a semantic search engine that operates upon table statements, rather than tables
themselves. A statement consists of a single entity, its attributes and corresponding val-
ues. Usually, a statement corresponds to a row of a table. For example, Table 2 has three
statements, each about a politician. A statement represents a basic unit of knowledge
of an entity, which is used to answer a query. This is different from previous work [9],
which uses tables as the basic unit to answer queries.

Furthermore, instead of performing keyword matching in table search as in previous
work, we try to find the semantics of a query, and return a set of statements that match
the semantics. We support four semantic components in a query: Concept, Entity, At-
tribute and Keyword. Different combinations of them lead to different types of query. In
this experiment, we focus on one representative pattern of them: Concept + Attribute,
because this pattern includes two main factors: the relation between entity and con-
cept, and the relation between attribute and concept. Some examples of pattern include
“politicians birthday”, “companies industry” and “video games developer”. Once we
have the set of statements that match a query, we rank them according to two factors:
1) match of keywords and attributes between the query and the statement; 2) the quality
of the statement.

To avoid indexing all the tables on the web, we implemented the search engine only
on Wikipedia’s tables. For the 30 concepts, we select three attributes from each of them
and generate corresponding queries. Considering we need to have a certain number
of results for each query to make the evaluation possible, we ask users to first think of
attributes they want to query, and then choose at most three of them with enough results.

To evaluate both the precision and quality of ranking, we ask the users to score each
of the at most top 10 results of each query. Let scorek denote the score for the result at
position k among n results, then the overall quality of a query result is defined as:∑

k∈[1,n] scorek/k∑
k∈[1,n] 1/k

.

In total 82 out of 90 queries return enough results. Among them, 53 queries return
all-correct results, and 6 queries have a score lower than 0.6. The average score of all
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queries is 0.91. Figure 4 shows the average scores of queries for each concept. 9 Among
all the 29 concepts which have result, 25 of them received an score higher than 0.8.
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Fig. 4. Average score of queries for each concept

To compare with an existing search engine, we submitted the same queries to Google.
For each query, we manually judge the top 10 pages returned to see if they contain the
desired information which are forms, lists or categories about the queried class and at-
tribute. Out of the 820 results (10 for each query), 32 results from Wikipedia and 81
results from non-wiki websites are considered useful. But the formats of these pages
make it difficult if not impractical to extract the information we need. This experiment
showed that traditional keyword search is inadequate in handling such semantic queries.

To better evaluate the quality of entities and values, we compare our results with
Google Squared, which also outputs tables as results. Our prototype search engine
merges statements with the same schema together as one table. We select at most top 10
schemata ranked by the highest score of their associated statements. For each query, we
obtain a list of entities and their attribute values, then compare it with the list returned
by Google Squared. We manually checked the correctness of our list and ensure that
the entities and values are correct. Figure 5 shows the percentage of our result that is
included by, overlapped with or disjoint with the list from Google Squared for all 30
concepts. We argue that our system not only correctly contains attribute-value infor-
mation that Google Squared currently has for the 30 concepts, but also includes many
additional attributes and values that are not found in Google Squared.
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Fig. 5. Comparing with Google Squared

4.3 Taxonomy Expansion

In this experiment, we evaluate how much our prototype system contributes in expand-
ing the Probase taxonomy in terms of the number of entities and attributes.

1. Entity expansion: Expanding entities is straightforward. For example, based on
Probase, we conclude that the leftmost column in Table 2 contains names of politicians,

9 some concepts do not have dots or bars in a chart because there aren’t enough results for them
(similarly hereinafter)
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even if not every name there is found in Probase. The leftmost column provides an
evidence equivalent to a Hearst’s pattern “... politicians such as Barack Obama, Arnold
Schwarzenegger and Hillary Clinton ...” Thus, we can expand Probase by incorporating
this new evidence in the same way as we encounter a new Hearst’s pattern.

To ensure a high quality, we select top 1000 entities ranked by ambiguity score ac(e)
as seeds for each concept c, then use plausibility score pc(e) to infer. Here we set δp to
0.6. We run our algorithm for one iteration, and discovered 3.4 million existed entities
in Probase, but more importantly, 4.6 million new entities for nearly 20,000 concepts.
Among the 30 concepts, about 11,000 new entities were discovered from 28 of them, in
which 1,410 (12.8%) are also found in Freebase by exact matching. Similar as before,
we judge the top 20 entities (if available) manually for each concept, which are sorted
by the maximal value of pc, and use the average score to indicate a concept’s quality.
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Fig. 6. Precision of new entities and new attributes

The result is shown in Fig 6. The average quality is 0.96, and all concepts have
score higher than 0.875. Furthermore, new entities in 12 of the concepts are all correct.
In essence, most of the newly discovered entities are correct.

2. Attribute expansion: After the entity column is determined, we can expand the
attribute list in Probase by adding unknown attributes to representative concepts of the
entity column. This process can help us get more attributes in the light of tables, such
as “Tel-#” for “phone number”. Furthermore, enriching Probase by expanding attribute
set and understanding more tables are in positive feedback loop.

We again run our algorithm for one iteration, and discovered 0.15 million new at-
tributes for nearly 14,000 concepts. About 2,700 new attributes were discovered for all
the 30 concepts. Like before, we care more about the quality of top-ranked attributes
than the general quality. For each concept, new attributes are first filtered though fre-
quency and average wc(a), and then sorted according to the maximal wc(a). We still
judge the top 20 attributes manually and use the average score to evaluate the concept.
Here we set δa = 0.4.

The result is shown in Fig 6. We found new attributes for all 25 concepts, and the
average quality of them is 0.90. The only outlier is the concept “guitarists”, whose
quality score is 0.58. That’s because “guitarists” are often associated with “songs” in
tables. But since Probase’s coverage of songs is not good, guitarists are selected as the
entity column instead which is not the best choice.

5 Related Work
There has been some early work on information extraction from tables on the Web.
Wang et al. [10] detects tables by using machine learning methods. It uses features
of layout, content type and word usage for training and testing different classifiers.
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However, the corpus only contained about 10,000 tables collected from 200 web sites.
Yoshida et al. [11] studied the problem of integrating tables of similar content into a big
table. It uses EM method to decide the locations of attributes and values in a table by
labeling the table format as a predefined structure, then group tables into several clus-
ters according to their attributes and values. Similar attributes in a cluster are merged
together to get a final big table. Another early work [12] focused on mining web tables
in a specific domain: travel. It defines similarity between cells, rows, and columns, then
uses the similarity to identify the schema of the table.

Cafarella et al. [13, 9] did some pioneering work in exploring tables on the Web. The
goal is to decide if a table contains relational data. To achieve this, they tried to identify
typed columns in the table, which resulted in schemata for tables that are considered re-
lational. They also studied an interesting application: searching over a corpus of tables.
More recently, a related system called Octopus [14] explored the semantic matching
among tables and achieved better accuracy and performance. Work in this space relied
on correlation statistics inside the tables instead of external knowledge. Furthermore,
each table is treated as a single entity (tables are atom units in query results) whereas
we consider table as a set of entities and values. Syed et al. [15] used Wikitology, an
ontology which combines some existing manually built knowledge systems such as
DBPedia [16] and Freebase [6], to link cells in a table to Wikipedia entities. To resolve
the ambiguity issue (a cell may match many Wikipedia entities), it finds the class or
the domain of a column (or a row) through majority voting to achieve more accurate
matching. Other researchers are interested in labeling cell text, column type and rela-
tion between columns(rows) [17, 18] using a large corpus such as YAGO, and use the
information to assist queries about relation. However, as we described in Section 1, peo-
ple need knowledge, including common sense and worldly facts, to understand a table,
especially when the table is taken out of its context. Without such knowledge, it is often
impossible to truly understand the table, or to be able to perform the type of semantic
search as described in this paper.

The work presented in this paper focuses on understanding tables. To obtain knowl-
edge required for this task, we build it upon an extension of Probase [1], a rich ontology
automatically derived from the Web to produce a concept map for the human mind. In
our extension, we find attributes for each concept (there are more than 2 million of them
in Probase). Some recent work has focused on finding attributes for given classes and
concepts. In particular, Pasca et al. [19] finds class attributes starting from a few seed
(entity, attribute) pairs for each class. Furthermore, a ranking mechanism [20] has been
developed to score attributes derived from seeds.

Besides tables, some work has also been done to explore other sources of structured
data on the Web, for example using data extracted from lists to construct relational
data [21] or to expand set of entities [22]. There is also research that transforms text to
tables [23, 24]. In particular, Pyreddy et al. [23] use heuristic rules to tag table compo-
nents, and Pinto et al. [24] use conditional random fields to locate boundaries, headers
and rows of text table.

6 Conclusion
This paper presents a framework that attempts to harvest useful knowledge from the rich
corpus of relational data on the Web: HTML tables. Through a multi-phase algorithm,
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and with the help of a universal probabilistic taxonomy called Probase, the framework
is capable of understanding the entitles, attributes and values in many tables on the Web.
With this knowledge, we built two interesting applications: a semantic table search en-
gine which returns relevant tables from keyword queries, and a tool to further expand
and enrich Probase. Our experiments indicate generally high performance in both ta-
ble search results and taxonomy expansion. This showed that the proposed framework
practically benefits knowledge discovery and semantic search.
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