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ABSTRACT

TCP Throughput Collapse, also known as Incast, is a patho-
logical behavior of TCP that results in gross under-utilization
of link capacity in certain many-to-one communication pat-
terns. This phenomenon has been observed by others in
distributed storage, MapReduce and web-search workloads.
In this paper we focus on understanding the dynamics of
Incast. We use empirical data to reason about the dynamic
system of simultaneously communicating TCP entities. We
propose an analytical model to account for the observed In-
cast symptoms, identify contributory factors, and explore
the efficacy of solutions proposed by us and by others.

Categories and Subject Descriptors

C.2.5 [Computer-communication Networks]: Local and
Wide-Area Networks—Internet

General Terms

Networks

Keywords

TCP, Throughput Collapse, Incast, Unix

1. INTRODUCTION
Internet datacenters support a myriad of services and ap-

plications. Companies like Google, Microsoft, Yahoo, and
Amazon use datacenters for web search, storage, e-commerce,
and large-scale general computations. Business cost efficien-
cies mean that datacenters use existing technology. In par-
ticular, the vast majority of datacenters use TCP for com-
munication between nodes. TCP is a mature technology
that has survived the test of time and meets the commu-
nication needs of most applications. However, the unique
workloads, scale, and environment of the Internet datacenter
violate the WAN assumptions on which TCP was originally
designed. For example, in contemporary operating systems
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such as Linux, the default RTO timer value is set to 200ms,
a reasonable value for WAN, but 2-3 orders of magnitude
greater than the average roundtrip time in the datacenter.
As a result, we discover new shortcomings in technologies
like TCP in the high-bandwidth, low-latency datacenter en-
vironment.

One communication pattern, termed “Incast” by other re-
searchers, elicits a pathological response from popular im-
plementations of TCP. In the Incast communication pat-
tern, a receiver issues data requests to multiple senders. The
senders, upon receiving the request, concurrently transmit
a large amount of data to the receiver. The data from all
senders traverses a bottleneck link in a many-to-one fashion.
As the number of concurrent senders increases, the perceived
application-level throughput at the receiver collapses. The re-
ceiver application sees goodput that is orders of magnitude
lower than the link capacity.

The incast pattern potentially arises in many typical dat-
acenter applications. For example, in cluster storage [8, 10],
when storage nodes respond to requests for data, in web-

search, when many workers respond near simultaneously to
search queries, and in batch processing jobs like MapRe-

duce [7], in which intermediate key-value pairs from many
Mappers are transferred to appropriate Reducers during the
“shuffle” stage.

In our opinion, a thorough solution to address the Incast
pathology would have several elements: 1) a demonstration
that the problem is general, and not limited to particular
network environments; 2) an analytical model that identifies
the likely causes of the problem and predicts the experimen-
tally observed Incast symptoms; 3) modifications to TCP
that help mitigate the problem, implemented in OS kernels
and evaluated using real life workloads. Ideally, a thorough
solution would also provide signatures or benchmarks that
help diagnose systems for the presence of Incast.

In this paper we make progress towards a thorough so-
lution. Our contributions are: we reproduce the results in
prior work in our own experimental testbeds and offer an-
other demonstration of the generality of Incast; we propose
a quantitative model that accounts for some of the observed
Incast behavior and provide qualitative refinements that give
plausible explanations for the other symptoms we observed;
we implement several minor, intuitive modifications to the
TCP stack in Linux, and demonstrated that some modifica-
tions are more helpful than others. Based on our analytical
model and experimental results, we comment on other po-
tential TCP solutions, as well as the likely impact of miti-
gation techniques in application and network layers.
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The rest of the paper is organized as follows. Section 2
presents background on the Incast phenomena, Section 3
describes the workloads and testbeds we used. Sections 4, 5
and 6 present a detailed discussion of the dynamics of incast,
with a simple mathematical model to explain our empirical
observations and possible strategies for eliminating Incast.
Section 7 summarizes our findings and outlines future work.

2. BACKGROUND
The direct predecessor to our work looked at TCP In-

cast in cluster storage systems [10]. The Incast pathology
was observed in a variety of settings. The authors eval-
uated a spectrum of TCP variants, including TCP Reno,
New Reno, and SACK. None of them helped. Eliminating
TCP slow start did not help either. Reducing the mini-
mum value of the retransmission timeout (RTO) timer from
the default 200ms to 200µs significantly alleviates the prob-
lem in simulations. However, as the authors pointed out,
most systems lack the high-resolution timers required for
such low RTO values. We will show later that reducing the
minimum RTO timer is nevertheless very promising. The
authors also attempted a variety of non-TCP work-arounds
and identified the shortcomings of each. Increasing the size
of switch and router buffers delays the onset problem to con-
figurations with more concurrent senders. However, switches
and routers with large buffers are expensive, and even large
buffers may be filled up quickly with ever higher speed links.
Ethernet flow control removes the problem for a single switch
topology, but creates head-of-line blocking and breaks down
in multi-switch or multi-layered switching topologies. Ap-
plication level solutions are possible, e.g. global scheduling
of requests, but requires potentially complex modifications
to many key applications that use TCP.

More recent work from the same authors proposed solu-
tions centered on fine grained OS timers to facilitate sub-
millisecond RTO timer values, randomizing RTO timers,
and disabling TCP delayed ACKs [11]. The workload they
used changed significantly from the workload used in their
earlier work in [10]. In Section 3.1 we discuss the impact
of different workloads. Some of our findings here depart
from the findings in [11], likely caused by the difference in
workloads. We have been in regular discussions with the
authors, and exchanging workloads for evaluation on each
other’s testbeds is an ongoing research effort.

A key shortcoming of the prior work is the lack of an
analytical model to understand the Incast phenomenon.

Since we are altering TCP mechanisms, it would be in-
structive to trace back the watersheds in our understanding
of TCP. Work in [6] proved that the additive increase, mul-
tiplicative decrease algorithm used in all TCP implementa-
tions would eventually converge to an efficient and fair state.
The work was considered a theoretical watershed. The orig-
inal TCP congestion avoidance and control algorithms used
intuitions from linear system control theory to motivate the
exponential backoff mechanism [9]. Original implementa-
tions of the control algorithm used ad-hoc parameter values,
usually multiples of two, to facilitate faster OS kernel code
using bit-shift multipliers. These insights guided us when
we designed and implemented our TCP modifications.

Driven by cost concerns, other research on Internet data-
centers has seen increased focus on commodity and readily
available technology [3]. Cost concerns and the preference
for existing technology mean that solutions like Infiniband

and custom transport protocols are less attractive. Hence
our focus on TCP solutions.

3. METHODOLOGY

3.1 Workload
We use a workload inspired by distributed storage appli-

cations and bulk block transfers in batch processing tasks
such as MapReduce. The workload is as follows. The re-
ceiver requests k blocks of data from a set of S storage
servers – in our experiments k = 100 and S varies from
1 to 48. Each block is striped across S storage servers. For
each block request received, a server responds with a fixed
amount of data (fixed-fragment workload). Clients do not
request block k + 1 until all the fragments of block k have
been received – this leads to a synchronized read pattern of
data requests. We configure each storage server to use block
fragments of size 256KB, i.e. each block requested equals
(256KB ∗ S senders) bytes. This workload is identical to
the workload in [10], and we re-used their code there.

In our experiments, the metric of merit is application-level

throughput (goodput), given by the total bytes received
from all senders divided by the finishing time of the last

sender.
In their latest work, the authors of [10] switched to a dif-

ferent workload [11]. In the new workload, the block size
is fixed, instead of the fragment size being fixed (variable-
fragment workload). As the number of senders increase, each
sender would transmit an ever decreasing fragment of data.
The new workload was thought to be more representative
of communication patterns in popular distributed storage
systems. However, we believe that the original workload
is more representative of communication patterns in other
applications involving bulk data transfer. Also, using the
variable-fragment workload, as we increase the number of
servers, we would eventually encounter a situations in which
each server sends only one or two packets of data. Conse-
quently, any Incast behavior could be masked by the small
data transfer size for each server.

3.2 Testbed and Tools
We conducted our experiments on two platforms. First,

we used a small scale local cluster with 2.2GHz, quad-core,
64-bit x86 machines running Linux 2.6.18.8. The network
is 1Gbps, and all servers are connected through single-layer
switching, using a Nortel 5500 series switch. To the best of
our knowledge, the Nortel 5500 series switch has a maximum
of 131072B of buffer space for each port, and 786432B total
buffer space shared between 48 ports.

We conducted the bulk of our experiments on the DE-
TER Lab testbed [5]. Here, we have full control over the
nodes, the network topology and the connection speed be-
tween nodes. This flexibility allows us to run custom oper-
ating system images, configure network bandwidth, and in-
fluence the network hardware used. Unless otherwise noted,
we used 3GHz dual-core Intel Xeon machines with 1Gbps
network connections, connected using single-layer switching
through a Nortel 5500 series switch. These settings ensured
comparability with our results from the small scale local
cluster.

For data collection and analysis we used a combination
of tools. We used tcpdump [1] and tcptrace [2] to collect
and analyze TCP data. We also built our own a timeline
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reconstruction and analysis tool in Java, to fill up gaps in
the analytical capabilities of tcptrace. These tools are not
yet sufficiently polished to be released as a contribution to
the general research community.

3.3 Exploratory Approach
Despite the existence of prior work on Incast, we felt that

we were still at an early stage in understanding the problem.
We were hesitant to prescribe a rigid list of controlled and
varied parameters, and we felt that a potential contribution
would be to narrow down the parameter space relevant to
Incast. Therefore, our priority was to understand the In-
cast problem, instead of implementing and evaluating the
widest range of possible solutions. We let our findings at
each step guide our explorations in the next step. We also
avoided simulations, because we believe that event driven
simulations like ns-2 may inadequately reflect the timing
ambiguities and non-deterministic variations that could af-
fect simultaneous bulk data transfers.

4. INITIAL FINDINGS
The first step in our study of Incast is to replicate the

problem in our test environment to convince ourselves that
the Incast phenomenon is general. Our measurements are in
Figure 1, overlaid on top of the findings in [10]. The curves
are nearly identical.

Figure 1: TCP Incast goodput collapse up to 20 senders

for three different environments

A cursory look at the sequence number graphs shows that
different senders experience long, synchronized TCP retrans-
mission timeout (RTO) events. The sequence number graphs
from two typical senders are shown in Figure 2 reproduce
from our earlier work. Each RTO event lasts for 200ms, the
default minimum RTO timer value for the Linux TCP stack.
The 200ms default value was originally designed for WAN
environments. It is significantly larger than average round
trip time in the datacenter, typically a sub-millisecond value.

These observations inspired us to attempt a series of mi-
nor, intuitive modifications to the Linux kernel. The modi-
fications included decreasing the minimum TCP RTO timer
from the default 200ms, randomizing the minimum TCP
RTO timer value, setting a smaller multiplier for the RTO
exponential back off, and using a randomized multiplier for

Figure 2: TCP sequence numbers vs. time for two

senders in a 5-to-1 setup

the RTO exponential back off. There was another intuitive
modification that we did not attempt - randomize each the
timer value of each RTO as they occur. We believe this
modification was redundant, because Linux TCP initially
sets the TCP RTO timer to its minimum value. We be-
lieve that if the initial RTO timer is randomized, then the
timer values for all subsequent RTO events would be ran-
domized. All the modifications required replacing one line of
code in the Linux kernel, sometimes with several lines of new
code1. We randomize various timer values by using exist-
ing randomness in TCP write sequence numbers, which was
originally implemented to prevent sequence number guessing
attacks [4].

We implemented these modifications and ran the fixed-
fragment and variable-fragment block transfer workloads in
modified Linux kernels on DETER. We quickly discovered
that many of these modifications were unhelpful. The smaller
multiplier for the RTO exponential back off and randomized
multiplier for the RTO exponential back off were unhelpful.
The reason is that there are only a tiny number of expo-
nential back offs for the entire transfer. Thus, altering the
exponential back off behavior had little impact. We saw
this phenomenon most clearly for the default 200ms min-
imum RTO timer value. Figure 3 shows a histogram for
the inter-packet send times for an entire transfer. The bins
greater than 200ms are nearly empty.

Surprisingly, randomizing the minimum and initial RTO
timer value was also unhelpful. This was against our in-
tuitions. However, this is what we observed in Figure 4.
Randomizing the minimum and initial RTO timer does not
improve goodput and it does not impose a goodput penalty.
A possible explanation is that the switch buffer is a funda-
mentally shared resource, so regardless of any randomization
at the senders, whenever the switch buffer gets filled, it is
filled for all senders at the same time. The senders may
restart their transmissions at random times, but all sub-
sequent switch buffer overflow events will be synchronized
for all senders because the senders fundamentally share the
same switch.

1Due to space considerations we omit the code snippets.
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Figure 3: Inter-packet idle time histogram

Figure 4: Comparison between randomized and non-

randomized minimum/initial RTO values

TCP delayed ACKs were not disabled in the environment
for these measurements. We will have a more detailed dis-
cussion regarding delayed ACKs later in the paper.

We found that the most promising modification was to
reduce the minimum RTO timer value. We used this modi-
fication as a reference point for developing an in-depth un-
derstanding of the Incast phenomenon.

5. ANALYSIS IN DEPTH

5.1 Different RTO Timers
We ran the fixed-fragment transfer workload for several

different minimum RTO timer values. The results are in
Figure 5. We observed three distinct regions for up to 48
concurrent senders, labeled R1, R2 and R3 for the RTO min
1ms curve. The initial throughput collapse (R1) is followed
by a region of goodput increase (R2), which is followed by
yet another turning point and a region of goodput decrease
(R3). For different minimum RTO timer values, the location
of the turning points and the slope between turning points

are different. For the default minimum RTO of 200ms, the
second turning point seems to be beyond 48 nodes.

Figure 5: Goodput for various minimum RTO values

There are several other noteworthy details. Smaller min-
imum RTO timer values mean larger values for the initial
goodput minimum. Also, the initial goodput minimum oc-
curs at the same number of senders, regardless of mini-
mum RTO timer values. Furthermore, larger minimum RTO
timer values mean the goodput local maximum occurs at
a larger number of senders. Smaller minimum RTO timer
values mean faster goodput “recovery” between the initial
goodput minimum and the subsequent goodput local maxi-
mum. After the goodput local maximum, the slope of good-
put decrease is the same for all minimum RTO timer values.
Ideally, a model should explain both the general shape of
the curve, and account for these details.

5.2 Delayed ACKs and High Resolution Timers
Two mechanisms proposed in [11] include modifying the

operating system to use high resolution timers, which fa-
cilitates RTO timers with the granularity of hundreds of
microseconds. Another suggestion was to turn off delayed
ACKs wherever possible, such that the delay ACK thresh-
old does not act as an unnecessary timeout. Most existing
TCP stacks implement delayed ACKs by default. In Linux
the delayed ACKs threshold is 40ms. Hence disabling de-
layed ACKs is expected to improve performance for RTO
timer values of 40ms or less. The authors of [11] shared with
us their Linux kernel modifications, and we repeated their
experiments for their original workload (the fixed-fragment

workload), with vastly different and somewhat unexpected
results.

Our results are in Figure 6. Some goodput numbers there
are slightly different from the numbers for the same experi-
ments in Figure 5. The reason is the high resolution timers
kernel patch was built for Linux 2.6.28.1, whereas the data
in Figure 5 is for Linux 2.6.18.8.
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To ensure a rigorous comparison between high and low reso-
lution timers, we perform the measurements in Figure 6 for
Linux 2.6.28.1.

Figure 6: Disabling delayed ACKs and using high

resolution timers

In Figure 6, the solid markers indicate experiment set-
tings with delayed ACKs disabled, and the hollow mark-
ers indicate experiments in which delay ACKs were not dis-
abled. For vanilla TCP with an RTO timer value of 200ms,
disabling delay ACKs lead to a slight improvement. For
an RTO timer value of 1ms, disabling delayed ACKs ac-
tually creates a significant performance penalty. The ker-
nel modification for the high resolution timer has delayed
ACKs disabled by default. Using a high resolution RTO
timer of 1ms or 200µs give the same performance as that
of a low resolution RTO timer of 1ms with delayed ACKs
disabled. Surprisingly, high resolution RTO timer of 200µs
with delayed ACKs enabled gives near identical performance
to RTO 200µs with delayed ACKs disabled. Out of the ex-
perimental settings we compared, the low resolution RTO
timer of 1ms with delayed ACKs turned on is actually opti-
mal.

This result is most unexpected and a departure from the
findings in [11]. Delayed ACKs were originally meant to
prevent ACK congestion. In the datacenter network envi-
ronment, we believe that it is unlikely for ACK congestion
to occur, even with delayed ACKs turned off. The remain-
ing plausible explanation would be that disabling delayed
ACKs would cause a rapid stream of ACK arrivals at the
data sender, resulting in the sender over-driving its conges-
tion window. In steady state, the TCP congestion window
would be able to adapt, but the high bandwidth-delay prod-
uct of the round trip path, means that TCP would never
reach steady-state before a fragment has been transmitted.

It turns out that our hypothesis with regard to ACK over-
driving the TCP congestion window is correct. We looked at
the TCP internal state variables using the TCP info socket
option. Figures 7 and 8 compare the congestion window be-

havior for TCP connection with and without delayed ACKs,
for the 8-to-1 configuration for low resolution 1ms RTO val-
ues. We see that with delayed ACKs turned off, the con-
gestion window exhibits larger fluctuations and a higher av-
erage. If the lower and more stable congestion window be-
havior is already associated with a partial goodput collapse,
then the higher and less stable congestion window will defi-
nitely correspond to a more severe goodput collapse.

Figure 7: Congestion window with delay ACKs

Figure 8: Congestion window without delay ACKs

The sub-optimal behavior of disabling delayed ACKs is
correlated with an increased number of smoothed RTT spikes,
as evident in Figures 9 and 10, showing the smoothed RTT
comparison for the 8-to-1 configuration for low resolution
1ms RTO values. The average smoothed RTT remains the
same with or without delayed ACKs, suggesting that the
underlying network conditions did not change. Thus, the in-
creased number of smoothed RTT spikes represent more fre-
quent, unnecessary congestion timeout events, another piece
of evidence that indicates that the congestion window is be-
ing over-driven when delay ACKs are turned off.

5.3 Workload and Testbed
It remains to be explained why the choice of workload

affects the results so much, or whether the sub-optimal per-
formance of disabling delayed ACKs is caused by a different
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Figure 9: Smoothed RTT with delayed ACKs

Figure 10: Smoothed RTT without delayed ACKs

experimental environment. To clarify our own uncertainty,
we repeated the variable-fragment workload in [11] on our
testbed.

Our results are in Figure 11. There are quite a few in-
teresting phenomena worthy of highlighting. Most notably,
for the low resolution timers, the variable-fragment workload
produces very simple goodput behavior - initial goodput col-
lapse followed by a flat goodput line. This is a significant
contrast to the complex behavior in Figure 5. We believe the
variable-fragment workload does not fully reflect the com-
plex dynamics of the incast pathology. The initial goodput
collapse is still evident. However, the subsequent complex
dynamics are hidden. In a sense, as we scale up to an in-
creasing number of senders, the variable-fragment workload
is placing the same level of stress on the network, because
the total amount of data to be transmitted in each fragment
is the same, regardless of the number of senders. In compar-
ison, the fixed-fragment workload places an increasing level
of stress on the network as we scale up to more senders. The
fragment size is the same, so with more senders, we transmit
a larger sum of data. The two workloads place two funda-
mentally different stress patterns on the network, thus the
response from the network should be different also.

More importantly, the goodput behavior for high resolu-

Figure 11: Variable fragment size workload

tion timers with 200us RTO value is similar to the behavior
in Figure 6, and different from the findings of [11]. The re-
sults here tell us several things. First, whatever sub-optimal
behavior we see with regard to delayed ACKs is workload
independent. Second, because our results are different from
[11], and we ensured that all application and transport level
parameters are reproduced, the different results suggest that
the different network environment associated with a differ-
ent testbed would play a part. Also, in agreement with the
observation in Figure 6, the sub-optimal behavior for 200us
RTO value is independent of the presence or absence of de-
layed ACKs.

There is actually a nuanced explanation that accounts for
all the observed phenomena. We already know that the ab-
sence of delayed ACKs overdrives the congestion window,
leading to workload-independent, sub-optimal behavior for
TCP that has delay ACKs disabled. The 200us RTO value
is network dependent, and delayed ACKs independent. The
explanation lies in the smoothed RTT values we measured
in Figure 10. There, we see that the average smoothed RTT
values are approximately 2ms, regardless of the amount of
smoothed RTT spikes. This means that the round trip time
for our network, at least as interpreted by the TCP stack and
stored as the smoothed RTT TCP protocol state variable,
is approximately 2ms. Thus, a RTO value of 200us would
be a severe mismatch with the perceivable RTT measured
by the TCP stack. This mismatch is independent of the ab-
sence or presence of delayed ACKs. Overdriving congestion
window and a mismatch between RTO and RTT would both
result in a significantly larger number of spurious retrans-
missions. The number of spurious retransmissions in both
cases would be bounded by the speed at which packets can
be delivered and drained from the network. The network
has a fixed limit at which it can drain packets, independent
of the transport mechanisms used. Thus, the phenomenon
produced by the two mechanisms is the same, even though
the causes are different. Hence, the 1ms RTO no delayed
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ACKs TCP exhibits identical behavior to 200us RTO with
or without delayed ACKs, independent of workload, but dif-
fers from the findings in [11] because of a potential difference
in the network round trip time. This completes a qualitative
explanation of all the different findings between our experi-
ments and those in [11].

We can quantitatively verify our accounting here by mea-
suring the number of spurious retransmissions. We can ex-
tract the data from the tcpdumps that we already collect.
However, due to time constraints, we have not yet performed
this analysis.

What remains is for us to provide a satisfactory explana-
tion for the complex behavior observed in the fixed-fragment
workload, as evident in Figure 5. In the next section, we
outlines the first steps we have taken towards a helpful an-
alytical model.

6. QUANTITATIVE MODELS

6.1 Model Description
We took the most promising results for our fixed-fragment

workload, i.e., delay ACKs not disabled, low resolution timers,
and developed a relatively simple model that partially ac-
counts for the general shape of the curve, and predicts the
numerical goodput values within an empirical scaling factor.
As a first step, we focus on the relatively simple curve for
200ms minimum RTO timer value.

To the first order, the goodput of each sender is given
by Equation 1. D is the total amount of data to be sent,
100 blocks of 256KB each. L is the total transfer time of the
workload without any RTO events. R is the number of RTO
events during the transfer, and r is the value of the minimum
RTO timer value. Equation 1 captures the intuition that
data transfer rate is the data transfer size divided by the
data transfer time. There are very few exponential RTO
back offs, so r approximates the effective timeout duration
of all RTO events. The net goodput across S senders is
Equation 2.

D

L + (R ∗ r)
(1)

S ∗ D

L + (R ∗ r)
(2)

For a particular curve, D and r are constant, while L and
R may be functions of S. We could not make assumptions
about how they vary with S. However, we were able to fit
piece-wise linear function to the empirically observed behav-
ior. The observed variation between R and S is shown in
Figure 12. We used Equation 3 to fit the curve.

R =



( 35

10
) ∗ S : S <= 10

35 : S > 10
(3)

Quantifying the variation between L and S is more chal-
lenging. We could not just use the measured overall transfer
time, because that would include the time spent in RTO. In-
stead, we used D divided by the link bandwidth as a baseline
for L, and add to Lbaseline the number of packets multiplied
by the time between successive packet transfers. The intu-
ition is that without RTOs, L would be increased by a longer
average inter-packet wait time. The inter-packet wait time is

Figure 12: RTO counts per sender 200ms minimum

RTO

empirically observable, and expected to vary with S. In sym-
bolic form, we compute L according to Equation 4, where
I is the inter-packet wait time, and the number of packets
is given by D divide by the average MSS. From empirically
observed data, we approximate average MSS size to be 1500
bytes, close to the minimum MSS size of 1448 bytes for the
DETER testbed.

L =
D

Bandwidth
+

„

D

averageMSS

«

∗ I (4)

The empirically observed variation between I and S is
shown in Figure 13. Again, we fit a piece-wise linear func-
tion to the observed data, as in Equation 5. We also note
with interest that the variation between I and S is nearly
identical to that between R and S.

I =



( 4.5

10
) ∗ S : S <= 10

4.5 : S > 10
(5)

Figure 13: Average inter-packet idle time for 200ms

minimum RTO, selected data points

Substituting L and R into Equation 2 yields Figure 14,
showing the predicted and the measured goodput graphs
for the default 200ms minimum RTO timer. The shapes of
the curves are identical, and the numerical goodput values
agree with each other within an experimental scaling factor.
Later, we give a qualitative explanation for the goodput un-
derestimate.

This model accounts for the shape of the initial goodput
collapse and the goodput “recovery”. However, it is not yet
a complete model. It does not account for the second or-
der goodput decrease. It also fails to predict the measured
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Figure 14: Predicted and measured goodput for 200ms

minimum RTO

curves for small minimum RTO timer values. Figure 15
shows the predicted and measured curves for the 1ms min-
imum RTO timer. Figure 16 shows the measured variation
in R and I for this modified kernel, together with the cor-
responding measurements for 200ms minimum RTO timer.
Most notably, the variation between R and S is similar for
different minimum RTO timer values, but the variation be-
tween I and S is vastly different. Also, for the 1ms minimum
RTO timer, the values of the inter-packet wait time is com-
parable and even greater than the RTO timer value.

Figure 15: Predicted and measured goodput for 1ms

minimum RTO

This model offers us two critical insights into potential
TCP fixes to help address the Incast problem. The goodput
is heavily affected by both the minimum RTO timer value
and the inter-packet wait time. For large RTO timer values,
reducing the RTO timer value is a first-order mitigation.
For smaller RTO timer values, intelligently controlling the
inter-packet wait time becomes crucial.

The incompleteness of this model compelled us to develop
a more complex construction to explain the other features

Figure 16: RTO counts and average inter-packet idle

time for 1ms and 200ms min RTO

in the goodput graph. These model refinements are out-
lined next. We have not yet numerically verified that model
against experimental data in a manner that is mathemati-
cally rigorous. However, it offers plausible explanations for
almost all the observed features in the goodput graphs.

6.2 Qualitative Refinements
There are several elements to the refinements:

1. As the number of senders increase, the number of RTO
events per sender increases. Beyond a certain number
of senders, the number of RTO events is constant.

Justification: This is the behavior observed in and Fig-
ure 16. We intuitively expect that more senders would
cause more congestion, leading to a large number of
RTO events. We also expect that when RTO events
are frequent, TCP would be able to adapt and cap the
frequency of RTO events.

2. When a network resource becomes saturated, it is sat-
urated at the same time for all senders.

Justification: We intuitively expect this - all senders
share the bottleneck network resource, i.e., the switch
buffers. When this resource is saturated, it is saturated
for all senders that share the resource.

3. After a congestion event, the senders enter the TCP
RTO state. The RTO timer expires at each sender
with a uniform distribution in time and a constant
delay after the congestion event, i.e., the probability
that a given sender’s RTO timer expires at time t after
a congestion event is:

Prob(enter RTO at t) =



1

T
: d < t < d + T

0 : otherwise

(6)
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d is the delay for congestion info to propagate back
to the sender, which is expected to be nearly negligi-
ble in the datacenter. T is the width of the uniform
distribution in time.

Justification: We expect d to exist because there is
delay in the network, however small it may be in the
datacenter. We assume uniform distribution because
we expect packets from different senders to be evenly
dispersed in the network buffer. Even if the packets
from different senders arrive in bursts or groups, we
expect the bursts and groups to be evenly distributed.
We expect the uniform distribution to be located be-
tween d and d + T because a sender would enter TCP
RTO state when the first unsuccessfully transmitted
packet times out. This would occur after the ACK for
the last successfully transmitted packet arrives at the
sender. The last ACK is expected to arrive at time d

+ some uniformly distributed t. The value of t would
depend on the position of the last successful packet
from a given sender relative to the last packets from
other senders.

4. T increases as the number of senders increases. How-
ever, T is bounded.

Justification: We expect T to have these properties
because the more senders there are, the larger would be
the batch of last packets. The larger the batch of last
packets there are, the greater the variation in the time
to drain the last packet from a particular sender. We
expect T to be bounded because the network buffers
are finite.

Using these refinements, we can explain the three distinct
regions in the goodput graph in Figure 5 as follows.

Region 1: Initial goodput collapse.
Explanation: The number of RTO events increases and

the number of senders increases. This is already accounted
for this effect earlier in Section 6.1.

Region 2: Goodput recovery.
Explanation: This region was also accounted for earlier.

The construction here refines the earlier model as follows. As
the number of senders increase, T increases, and there is less
overlap in the RTO periods for different senders. This means
the impact of RTO events is less severe - a mitigating effect.
Consequently, the effective value of the RTO timer would be
reduced as the number of senders increases. We believe this
effect partially accounts for the goodput underestimation in
Figure 14.

Region 3: Goodput decreases again.
Explanation: This region was not accounted for earlier.

As the number of senders increases, T would eventually
become comparable or even larger than the value of RTO
timers. When this happens, there would be interference
between senders retransmitting after an RTO timeout and
senders that are transmitting because they have not yet en-
tered the RTO state. This is an exacerbating effect. A pos-
sible consequence is increased inter-packet wait time, lead-
ing to the behavior in Figure 16, and a gradual decrease in
goodput.

Combined with our earlier model, the refinements here
can explain many details in the goodput graph.

Detail 1: A smaller minimum RTO timer value means
larger goodput values for the initial minimum.

Explanation: The default TCP RTO timer value is much
larger than the network round trip time in datacenters. Hence,
smaller RTO timers mean that the impact of RTO events is
less severe. This explanation is unchanged from Section 6.1.

Detail 2: The initial goodput minimum occurs at the
same number of senders, regardless of the value of the min-
imum RTO timer.

Explanation: The initial goodput minimum roughly cor-
responds to the transition point in R in Figure 16. The
transition point is at roughly the same number of senders
for all RTO timer values. Hence the goodput minimum is
roughly the same for all RTO timer values. This explanation
is unchanged from Section 6.1.

Detail 3: The second order goodput peak occurs at a
higher number of senders for a larger RTO timer value.

Explanation: The second order maximum corresponds to
the trade-off between incremental goodput increases with
more senders and increases of T causing interference with
retransmissions. The cross over point depends on both the
number of senders and the RTO timer value. In particu-
lar, larger RTO timer values would require larger T for the
effects to cross over. If the increase in T depends on the
number of senders only, then the second order goodput peak
would occur at more senders for larger RTO timer values.
This explanation was missing earlier.

Detail 4: The smaller the RTO timer values, the faster
the rate of recovery between the goodput minimum and the
second order goodput maximum.

Explanation: For smaller RTO timer values, the same in-
crease in T will have a larger mitigating effect. Hence, as
the number of senders increases, the same increase in T will
result in a faster increase in the goodput for smaller RTO
timer values. This explanation was missing earlier.

Detail 5: After the second order goodput maximum, the
slope of goodput decrease is the same for different RTO
timer values.

Explanation: When T becomes comparable or larger than
the RTO timer value, the amount of interference between
retransmits after RTO and transmissions before RTO no
longer depends on the value of the RTO timer. The amount
of interference increases with the number of senders at a
fixed rate, leading to a fixed rate of goodput degradation
after the second order goodput maximum. This explanation
was missing earlier.

The model refinements here have qualitatively accounted
for many details in the goodput graphs. However, it is not
yet a complete model, because we have not yet quantita-
tively justified its refinements, nor numerically verified these
refinements against experimentally measured data. The suc-
cess criteria for the refinements here would be to quantita-
tively re-create the shape and trends of the measured good-
put curves, as we have done more rigorously in the previous
section.

7. CONCLUSIONS AND FUTURE WORK
In this paper we studied the dynamics of Incast. To de-

velop a better understanding of the phenomenon, we con-
ducted experiments on a configurable network testbed, en-
abling fine-grained control over end hosts and the network.
Based on analysis of empirical data, we account for the dif-
ference between our observations and that in related work.
We also propose a simple mathematical model to explain
some of the observed trends.
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For future work, we plan to extend the model to quanti-
tatively account for all goodput trends. We have gathered
a large collection of TCP trace data for a variety of pro-
tocol settings. We want to identify principled fixes to In-
cast that are general across workloads and network environ-
ments. This implies that the TCP protocol that addresses
Incast would be a more general and robust transport proto-
col than what TCP is today. The first step in this design
process would be to narrow down the range of TCP vari-
ables of interest. Some variables are inter-dependent with
others, some variables may have no impact on goodput at
all. The abundance of somewhat counter-intuitive findings
we encountered suggests to us that intuitive analysis alone
is insufficient. Thus, we plan to employ machine learning
to help us identify the most important control variables to
examine. Then, the breadth of our analysis may be signifi-
cantly reduced, and we would be able to focus on a handful
of parameters instead of a horde of parameters.

Also, the mismatch between RTO and RTT, and the com-
plexity with regard to delayed ACKs, are both fundamen-
tally associated with the ACK-clocked nature of the TCP
protocol. If we are able to identify a small set of core pa-
rameters of interest, we may also be able to construct cor-
relations between the parameters. These correlations, in
turn, may allow us to develop control models that funda-
mentally depart from the ACK-clocked nature of TCP. Such
a transport level protocol may be able to survive conditions
in which ACK-clocked transport fails.

Lastly, our analysis with regard to different workloads
and different environments highlighted for us the necessity
of evaluating any proposed solutions under a wide variety
of settings. Thus, to validate whatever fixes we propose,
we also plan to evaluate our mechanisms for different ap-
plications, environments, network equipment, and network
topologies. We will investigate the associated tradeoffs, and
evaluate our solutions using real life workloads. In the long
term, we will also use our understanding to construct a de-
tection signature or benchmark that would be used to assess
whether specific applications or workloads are affected by
Incast.
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