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Abstract

Gradient-based optimization algorithms can be studied from the perspective of limiting

ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not

distinguish between two fundamentally different algorithms—Nesterov’s accelerated

gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball

method—we study an alternative limiting process that yields high-resolution ODEs.

We show that these ODEs permit a general Lyapunov function framework for the

analysis of convergence in both continuous and discrete time. We also show that these

ODEs are more accurate surrogates for the underlying algorithms; in particular, they

not only distinguish between NAG-SC and Polyak’s heavy-ball method, but they allow

the identification of a term that we refer to as “gradient correction” that is present

in NAG-SC but not in the heavy-ball method and is responsible for the qualitative

difference in convergence of the two methods. We also use the high-resolution ODE

framework to study Nesterov’s accelerated gradient method for (non-strongly) convex

functions, uncovering a hitherto unknown result—that NAG-C minimizes the squared

gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE

of NAG-C, we obtain a family of new optimization methods that are shown to maintain

the accelerated convergence rates of NAG-C for smooth convex functions.
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1 Introduction

Machine learning has become one of the major application areas for optimization

algorithms during the past decade. While there have been many kinds of applica-

tions, to a wide variety of problems, the most prominent applications have involved

large-scale problems in which the objective function is the sum over terms associated

with individual data, such that stochastic gradients can be computed cheaply, while

gradients are much more expensive and the computation (and/or storage) of Hessians

is often infeasible. In this setting, simple first-order gradient descent algorithms have

become dominant, and the effort to make these algorithms applicable to a broad range

of machine learning problems has triggered a flurry of new research in optimization,

both methodological and theoretical.

We will be considering unconstrained minimization problems,

min
x∈Rn

f (x), (1.1)

where f is a smooth convex function. Perhaps the simplest first-order method for

solving this problem is gradient descent. Taking a fixed step size s, gradient descent

is implemented as the recursive rule

xk+1 = xk − s∇ f (xk),

given an initial point x0.

As has been known at least since the advent of conjugate gradient algorithms,

improvements to gradient descent can be obtained within a first-order framework by

using the history of past gradients. Modern research on such extended first-order meth-

ods arguably dates to Polyak [39], whose heavy-ball method incorporates a momentum

term into the gradient step. This approach allows past gradients to influence the cur-

rent step, while avoiding the complexities of conjugate gradients and permitting a

stronger theoretical analysis. Explicitly, starting from an initial point x0, x1 ∈ R
n ,

the heavy-ball method updates the iterates according to

xk+1 = xk + α (xk − xk−1) − s∇ f (xk), (1.2)

where α > 0 is the momentum coefficient. While the heavy-ball method provably

attains a faster rate of local convergence than gradient descent near a minimum of

f , it does not come with global guarantees. Indeed, [31] demonstrate that even for

strongly convex functions the method can fail to converge for some choices of the step

size.1

The next major development in first-order methodology was due to Nesterov, who

discovered a class of accelerated gradient methods that have a faster global conver-

gence rate than gradient descent [34,36]. For a μ-strongly convex objective f with

1 Note that [39] considers s = 4/(
√

L + √
μ)2 and α = (1 − √

μs)2. This momentum coefficient is

basically the same as the choice of α = 1−√
μs

1+√
μs

(adopted starting from Sect. 1.1) if s is small.
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L-Lipschitz gradients, Nesterov’s accelerated gradient method (NAG-SC) involves

the following pair of update equations:

yk+1 = xk − s∇ f (xk)

xk+1 = yk+1 +
1 − √

μs

1 + √
μs

(yk+1 − yk) ,
(1.3)

given an initial point x0 = y0 ∈ R
n . Equivalently, NAG-SC can be written in a

single-variable form that is similar to the heavy-ball method:

xk+1 = xk +
1 − √

μs

1 + √
μs

(xk − xk−1) − s∇ f (xk) −
1 − √

μs

1 + √
μs

·s (∇ f (xk) − ∇ f (xk−1)) , (1.4)

starting from x0 and x1 = x0 − 2s∇ f (x0)

1+√
μs

. It is worthwhile mentioning that the Ravine

method of Gelfand and Tsetlin is in a similar form [22]. Like the heavy-ball method,

NAG-SC blends gradient and momentum contributions into its update direction, but

defines a specific momentum coefficient
1−√

μs

1+√
μs

. Nesterov also developed the estimate

sequence technique to prove that NAG-SC achieves an accelerated linear convergence

rate:

f (xk) − f (x⋆) ≤ O
(
(

1 − √
sμ

)k
)

,

if the step size satisfies 0 < s ≤ 1/L . Moreover, for a (weakly) convex objective f

with L-Lipschitz gradients, Nesterov defined a related accelerated gradient method

(NAG-C) that takes the following form:

yk+1 = xk − s∇ f (xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk),

(1.5)

with x0 = y0 ∈ R
n . The choice of momentum coefficient k

k+3
, which tends to one, is

fundamental to the estimate-sequence-based argument used by Nesterov to establish

the following inverse quadratic convergence rate:

f (xk) − f (x⋆) ≤ O

(
1

sk2

)

, (1.6)

for any step size s ≤ 1/L . Under an oracle model of optimization complexity, the

convergence rates achieved by NAG-SC and NAG-C are optimal for smooth strongly

convex functions and smooth convex functions, respectively [33]. For completeness,

we remark that the convergence results for these accelerated methods can be carried

over to the iterates yk’s when the objective is smooth [36].
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Fig. 1 A numerical comparison between NAG-SC and heavy-ball method. The objective function (ill-

conditioned μ/L ≪ 1) is f (x1, x2) = 5 × 10−3x2
1 + x2

2 , with the initial iterate (1, 1)

1.1 Gradient correction: small but essential

Throughout the present paper, we set α = 1−√
μs

1+√
μs

and x1 = x0 − 2s∇ f (x0)

1+√
μs

to define a

specific implementation of the heavy-ball method in (1.2). This choice of the momen-

tum coefficient and the second initial point renders the heavy-ball method and NAG-SC

identical except for the last (small) term in (1.4). Note that this choice of α can take

any value between 0 and 1. Despite their close resemblance, however, the two meth-

ods are in fact fundamentally different, with contrasting convergence results (see, for

example, [14]). Notably, the former algorithm in general only achieves local acceler-

ation, while the latter achieves acceleration method for all initial values of the iterate

[31]. As a numerical illustration, Fig. 1 presents the trajectories that arise from the

two methods when minimizing an ill-conditioned convex quadratic function. We see

that the heavy-ball method exhibits pronounced oscillations throughout the iterations,

whereas NAG-SC is monotone in the function value once the iteration counter exceeds

50.

This striking difference between the two methods can only be attributed to the last

term in (1.4):

1 − √
μs

1 + √
μs

· s (∇ f (xk) − ∇ f (xk−1)) , (1.7)

which we refer to henceforth as the gradient correction.2 This term corrects the update

direction in NAG-SC by contrasting the gradients at consecutive iterates. Although

an essential ingredient in NAG-SC, the effect of the gradient correction is unclear

from the vantage point of the estimate-sequence technique used in Nesterov’s proof.

2 The gradient correction for NAG-C is k
k+3

· s(∇ f (xk ) − ∇ f (xk−1)), as seen from the single-variable

form of NAG-C: xk+1 = xk + k
k+3

(xk − xk−1) − s∇ f (xk ) − k
k+3

· s(∇ f (xk ) − ∇ f (xk−1)).
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Accordingly, while the estimate-sequence technique delivers a proof of acceleration

for NAG-SC, it does not explain why the absence of the gradient correction prevents

the heavy-ball method from achieving acceleration for strongly convex functions.

A recent line of research has taken a different point of view on the theoretical

analysis of acceleration, formulating the problem in continuous time and obtaining

algorithms via discretization This can be done by taking continuous-time limits of

existing algorithms to obtain ordinary differential equations (ODEs) that can be ana-

lyzed using the rich toolbox associated with ODEs, including Lyapunov functions3.

For instance, [41] shows that

Ẍ(t) +
3

t
Ẋ(t) + ∇ f (X(t)) = 0, (1.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (1.5)

by taking the step size s → 0. Alternatively, the starting point may be a Lagrangian

or Hamiltonian framework [43]. In either case, the continuous-time perspective not

only provides analytical power and intuition, but it also provides design tools for new

accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of

differentiating between the heavy-ball method and NAG-SC. In particular, these two

methods have the same limiting ODE (see, for example, [44]):

Ẍ(t) + 2
√

μẊ(t) + ∇ f (X(t)) = 0, (1.9)

and, as a consequence, this ODE does not provide any insight into the stronger conver-

gence results for NAG-SC as compared to the heavy-ball method. As will be shown

in Sect. 2, this is because the gradient correction,
1−√

μs

1+√
μs

s (∇ f (xk) − ∇ f (xk−1)) =
O(s1.5), is an order of magnitude smaller than the other terms in (1.4) if s = o(1).

Consequently, the gradient correction is not reflected in the low-resolution ODE (1.9)

associated with NAG-SC, which is derived by simply taking s → 0 in both (1.2) and

(1.4).

1.2 Overview of contributions

Just as there is not a single preferred way to discretize a differential equation, there

is not a single preferred way to take a continuous-time limit of a difference equation.

Inspired by dimensional-analysis strategies widely used in fluid mechanics in which

physical phenomena are investigated at multiple scales via the inclusion of various

orders of perturbations [38], we propose to incorporate O(
√

s) terms into the limiting

process for obtaining an ODE, including the (Hessian-driven) gradient correction√
s∇2 f (X)Ẋ in (1.7). This will yield high-resolution ODEs that differentiate between

the NAG methods and the heavy-ball method.

3 One can think of the Lyapunov function as a generalization of the idea of the energy of a system. Then

the method studies stability by looking at the rate of change of this measure of energy.
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We list the high-resolution ODEs that we derive in the paper here:4

(a) The high-resolution ODE for the heavy-ball method (1.2):

Ẍ(t) + 2
√

μẊ(t) + (1 + √
μs)∇ f (X(t)) = 0,

(1.10)

with X(0) = x0 and Ẋ(0) = − 2
√

s∇ f (x0)

1+√
μs

.

(b) The high-resolution ODE for NAG-SC (1.3):

Ẍ(t) + 2
√

μẊ(t) +
√

s∇2 f (X(t))Ẋ(t) +
(

1 + √
μs

)

∇ f (X(t)) = 0, (1.11)

with X(0) = x0 and Ẋ(0) = − 2
√

s∇ f (x0)

1+√
μs

.

(c) The high-resolution ODE for NAG-C (1.5):

Ẍ(t) +
3

t
Ẋ(t) +

√
s∇2 f (X(t))Ẋ(t) +

(

1 +
3
√

s

2t

)

∇ f (X(t)) = 0, (1.12)

for t ≥ 3
√

s/2, with X(3
√

s/2) = x0 and Ẋ(3
√

s/2) = −
√

s∇ f (x0).

High-resolution ODEs are more accurate continuous-time counterparts for the cor-

responding discrete algorithms than low-resolution ODEs, thus allowing for a better

characterization of the accelerated methods. This is illustrated in Fig. 2, which presents

trajectories and convergence of the discrete methods, and the low- and high-resolution

ODEs. For both NAGs, the high-resolution ODEs are in much better agreement with

the discrete methods than the low-resolution ODEs.5 Moreover, for NAG-SC, its high-

resolution ODE captures the non-oscillatory pattern while the low-resolution ODE

does not.

The three new ODEs include O(
√

s) terms that are not present in the corresponding

low-resolution ODEs (compare, for example, (1.12) and (1.8)). Note also that if we

let s → 0, each high-resolution ODE reduces to its low-resolution counterpart. Thus,

the difference between the heavy-ball method and NAG-SC is reflected only in their

high-resolution ODEs—the gradient correction (1.7) of NAG-SC is preserved only in

its high-resolution ODE in the form
√

s∇2 f (X(t))Ẋ(t). This term, which we refer

to as the (Hessian-driven) gradient correction, is connected with the discrete gradient

correction by the approximate identity:

1 − √
μs

1 + √
μs

· s (∇ f (xk) − ∇ f (xk−1)) ≈ s∇2 f (xk)(xk − xk−1) ≈ s
3
2 ∇2 f (X(t))Ẋ(t),

4 We note that the form of the initial conditions is fixed for each ODE throughout the paper. For example,

while x0 is arbitrary, X(0) and Ẋ(0) must always be equal to x0 and −2
√

s f (x0)/(1 +√
μs), respectively,

in the high-resolution ODE of the heavy-ball method. This is in accordance with the choice of α = 1−√
μs

1+√
μs

and x1 = x0 − 2s∇ f (x0)

1+√
μs

.

5 Note that for the heavy-ball method, the trajectories of the high-resolution ODE and the low-resolution

ODE are almost identical.
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Fig. 2 Top left and bottom left: trajectories and errors of NAG-SC and the heavy-ball method for minimizing

f (x1, x2) = 5×10−3x2
1 + x2

2 , from the initial value (1, 1), the same setting as Fig. 1. Top right and bottom

right: trajectories and errors of NAG-C for minimizing f (x1, x2) = 2 × 10−2x2
1 + 5 × 10−3x2

2 , from the

initial value (1, 1). For the two bottom plots, we use the identification t = k
√

s between time and iterations

for the x-axis

for small s, with the identification t = k
√

s. The gradient correction
√

s∇2 f (X)Ẋ

in NAG-C arises in the same fashion.6 Interestingly, although both NAGs are first-

order methods, their gradient corrections brings in second-order information from the

objective function.

Despite being small, the gradient correction has a fundamental effect on the behavior

of both NAGs, and this effect is revealed by inspection of the high-resolution ODEs.

We provide two illustrations of this.

– Effect of the gradient correction in acceleration Viewing the coefficient of Ẋ as a

damping ratio, the ratio 2
√

μ+
√

s∇2 f (X) of Ẋ in the high-resolution ODE (1.11)

of NAG-SC is adaptive to the position X , in contrast to the fixed damping ratio

2
√

μ in the ODE (1.10) for the heavy-ball method. To appreciate the effect of this

adaptivity, imagine that the velocity Ẋ is highly correlated with an eigenvector of

∇2 f (X) with a large eigenvalue, such that the large friction (2
√

μ+
√

s∇2 f (X))Ẋ

effectively “decelerates” along the trajectory of the ODE (1.11) of NAG-SC. This

feature of NAG-SC is appealing as taking a cautious step in the presence of high

curvature generally helps avoid oscillations. Figure 1 and the left plot of Fig. 2

confirm the superiority of NAG-SC over the heavy-ball method in this respect.

6 Henceforth, the dependence of X on t is suppressed when clear from the context.
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If we can translate this argument to the discrete case we can understand why NAG-

SC achieves acceleration globally for strongly convex functions but the heavy-ball

method does not. We will be able to make this translation by leveraging the high-

resolution ODEs to construct discrete-time Lyapunov functions that allow maximal

step sizes to be characterized for the NAG-SC and the heavy-ball method. The

detailed analysis is given in Sect. 3.

– Effect of gradient correction in gradient norm minimization We will also show

how to exploit the high-resolution ODE of NAG-C to construct a continuous-time

Lyapunov function to analyze convergence in the setting of a smooth convex objec-

tive with L-Lipschitz gradients. Interestingly, the time derivative of the Lyapunov

function is not only negative, but it is smaller than −O(
√

st2‖∇ f (X)‖2). This

bound arises from the gradient correction and, indeed, it cannot be obtained from

the Lyapunov function studied in the low-resolution case by [41]. This finer char-

acterization in the high-resolution case allows us to establish a new phenomenon:

min
0≤i≤k

‖∇ f (xi )‖2 ≤ O

(
L2

k3

)

.

That is, we discover that NAG-C achieves an inverse cubic rate for minimizing the

squared gradient norm. By comparison, from (1.6) and the L-Lipschitz continuity

of ∇ f we can only show that ‖∇ f (xk)‖2 ≤ O
(

L2/k2
)

. See Sect. 4 for further

elaboration on this cubic rate for NAG-C.

1.3 Related work

There is a long history of using ODEs to analyze optimization methods. Recently,

the work of [41] has sparked a renewed interest in leveraging continuous dynamical

systems to understand and design first-order methods and to provide more intuitive

proofs for the discrete methods. Below is a rather incomplete review of recent work

that uses continuous-time dynamical systems to study accelerated methods.

In the work of [13,43,44], Lagrangian and Hamiltonian frameworks are used to

generate a large class of continuous-time ODEs for a unified treatment of acceler-

ated gradient-based methods. Indeed, [43] extends NAG-C to non-Euclidean settings,

mirror descent and accelerated higher-order gradient methods, all from a single “Breg-

man Lagrangian.” In [44], the connection between ODEs and discrete algorithms is

further strengthened by establishing an equivalence between the estimate sequence

technique and Lyapunov function techniques, allowing for a principled analysis of

the discretization of continuous-time ODEs. Recent papers have considered sym-

plectic [13] and Runge–Kutta [45] schemes for discretization of the low-resolution

ODEs. Notably, there is a venerable line of work that studies inertial dynamics with a

Hessian-driven term [1,7,9,10]. In particular, [2] relates these ODEs to the analysis of

associated optimization methods in both convex and non-convex settings, and [9] ana-

lyzes forward-backward methods using inertial dynamics with Hessian-driven terms,

where the viscous damping coefficient is fixed. While the continuous-time limits con-

sidered in these works resemble closely with our ODEs, it is important to note that the
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Hessian-driven terms therein result from the second-order information of Newton’s

method [9], and in contrast, the gradient correction entirely relies on the first-order

information of Nesterov’s accelerated gradient method.

An ODE-based analysis of mirror descent has been pursued in another line of

work by [28–30], delivering new connections between acceleration and constrained

optimization, averaging and stochastic mirror descent.

In addition to the perspective of continuous-time dynamical systems, there has also

been work on the acceleration from a control-theoretic point of view [11,24,25,31]

and from a geometric point of view [15]. See also [18,19,21,23,32,37] for a number

of other recent contributions to the study of the acceleration phenomenon.

1.4 Organization and notation

The remainder of the paper is organized as follows. In Sect. 2, we briefly introduce our

high-resolution-ODE-based analysis framework. This framework is used in Sect. 3 to

study the heavy-ball method and NAG-SC for smooth strongly convex functions. In

Sect. 4, we turn our focus to NAG-C for a general smooth convex objective. In Sect. 5

we derive some extensions of NAG-C. We conclude the paper in Sect. 6 with a list of

future research directions. Most technical proofs are deferred to the “Appendix”.

We mostly follow the notation of [36], with slight modifications tailored to the

present paper. Let F1
L(Rn) be the class of L-smooth convex functions defined on R

n ;

that is, f ∈ F1
L if f (y) ≥ f (x)+〈∇ f (x), y − x〉 for all x, y ∈ R

n and its gradient is

L-Lipschitz continuous in the sense that ‖∇ f (x) − ∇ f (y)‖ ≤ L ‖x − y‖, where ‖·‖
denotes the standard Euclidean norm and L > 0 is the Lipschitz constant. (Note that

this implies that ∇ f is also L ′-Lipschitz for any L ′ ≥ L .) The function class F2
L(Rn)

is the subclass of F1
L(Rn) such that each f has a Lipschitz-continuous Hessian. For

p = 1, 2, let S
p
μ,L(Rn) denote the subclass of F

p
L (Rn) such that each member f is

μ-strongly convex for some 0 < μ ≤ L . That is, f ∈ S
p
μ,L(Rn) if f ∈ F

p
L (Rn) and

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + μ
2

‖y − x‖2 for all x, y ∈ R
n . Note that this is

equivalent to the convexity of f (x) − μ
2
‖x − x⋆‖2, where x⋆ denotes a minimizer of

the objective f .

2 The high-resolution ODE framework

This section introduces a high-resolution ODE framework for analyzing gradient-

based methods, with NAG-SC being a guiding example. Given a (discrete) optimiza-

tion algorithm, the first step in this framework is to derive a high-resolution ODE

using dimensional analysis, the next step is to construct a continuous-time Lyapunov

function to analyze properties of the ODE, the third step is to derive a discrete-time

Lyapunov function from its continuous counterpart and the last step is to translate

properties of the ODE into that of the original algorithm. The overall framework is

illustrated in Fig. 3.

Step 1: Deriving high-resolution ODEs Our focus is on the single-variable

form (1.4) of NAG-SC. For any nonnegative integer k, let tk = k
√

s and take the
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Algorithms

High-Resolution ODEs Continuous E(t)

Discrete E(k)

Nesterov’s Acceleration

Gradient Norm Minimization

dimensional analysis phase-space representation

Fig. 3 An illustration of our high-resolution ODE framework. The three solid straight lines represent Steps

1, 2 and 3, and the two curved lines denote Step 4. The dashed line is used to emphasize that it is difficult,

if not impractical, to construct discrete Lyapunov functions directly from the algorithms

ansatz that xk = X(tk) for some sufficiently smooth curve X(t). Performing a Taylor

expansion in powers of
√

s, we get

xk+1 = X(tk+1) = X(tk) + Ẋ(tk)
√

s +
1

2
Ẍ(tk)

(√
s
)2 +

1

6

...
X(tk)

(√
s
)3 + O

(
(√

s
)4
)

xk−1 = X(tk−1) = X(tk) − Ẋ(tk)
√

s +
1

2
Ẍ(tk)

(√
s
)2 −

1

6

...
X(tk)

(√
s
)3 + O

(
(√

s
)4
)

.

(2.13)

We now use a Taylor expansion for the gradient correction, which gives

∇ f (xk) − ∇ f (xk−1) = ∇2 f (X(tk))Ẋ(tk)
√

s + O
(
(√

s
)2
)

. (2.14)

Multiplying both sides of (1.4) by
1+√

μs

1−√
μs

· 1
s

and rearranging the equality, we can

rewrite NAG-SC as

xk+1 + xk−1 − 2xk

s
+

2
√

μs

1 − √
μs

·
xk+1 − xk

s
+ ∇ f (xk) − ∇ f (xk−1)

+
1 + √

μs

1 − √
μs

∇ f (xk) = 0. (2.15)

Next, plugging (2.13) and (2.14) into (2.15), we have7

Ẍ(tk) + O
(
(√

s
)2
)

+
2
√

μ

1 − √
μs

[

Ẋ(tk) +
1

2
Ẍ(tk)

√
s + O

(
(√

s
)2
)
]

+∇2 f (X(tk))Ẋ(tk)
√

s + O
(
(√

s
)2
)

+
(

1 + √
μs

1 − √
μs

)

∇ f (X(tk)) = 0,

7 Note that we use the approximation
xk+1+xk−1−2xk

s = Ẍ(tk ) + O(s), whereas [41] relies on the low-

accuracy Taylor expansion
xk+1+xk−1−2xk

s = Ẍ(tk ) + o(1) in the derivation of the low-resolution ODE

of NAG-C.
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which can be rewritten as

Ẍ(tk)

1 − √
μs

+
2
√

μ

1 − √
μs

Ẋ(tk) +
√

s∇2 f (X(tk))Ẋ(tk) +
1 + √

μs

1 − √
μs

∇ f (X(tk)) + O(s)

= 0.

Multiplying both sides of the last display by 1 − √
μs, we obtain the following high-

resolution ODE of NAG-SC:

Ẍ + 2
√

μẊ +
√

s∇2 f (X)Ẋ + (1 + √
μs)∇ f (X) = 0,

where we ignore any O(s) terms but retain the O(
√

s) terms (note that (1−√
μs)

√
s =√

s + O(s)).

Our analysis is inspired by dimensional analysis [38], a strategy widely used in

physics to construct a series of differential equations that involve increasingly high-

order terms corresponding to small perturbations. In more detail, taking a small s, one

first derives a differential equation that consists only of O(1) terms, then derives a

differential equation consisting of both O(1) and O(
√

s), and next, one proceeds to

obtain a differential equation consisting of O(1), O(
√

s) and O(s) terms. High-order

terms in powers of
√

s are introduced sequentially until the main characteristics of the

original algorithms have been extracted from the resulting approximating differential

equation. Thus, we aim to understand Nesterov acceleration by incorporating O(
√

s)

terms into the ODE, including the (Hessian-driven) gradient correction
√

s∇2 f (X)Ẋ

which results from the (discrete) gradient correction (1.7) in the single-variable form

(1.4) of NAG-SC. We also show (see “Appendix A.1” for the detailed derivation) that

this O(
√

s) term appears in the high-resolution ODE of NAG-C, but is not found in

the high-resolution ODE of the heavy-ball method.

As shown below, each ODE admits a unique global solution under mild conditions

on the objective, and this holds for an arbitrary step size s > 0. The solution is accurate

in approximating its associated optimization method if s is small. To state the result,

we use C2(I ; R
n) to denote the class of twice continuously differentiable maps from

I to R
n for I = [0,∞) (the heavy-ball method and NAG-SC) and I = [1.5

√
s,∞)

(NAG-C).

Proposition 1 For any f ∈ S2
μ(Rn) := ∪L≥μS2

μ,L(Rn), each of the ODEs (1.10)

and (1.11) with the specified initial conditions has a unique global solution X ∈
C2([0,∞); R

n). Moreover, the two methods converge to their high-resolution ODEs,

respectively, in the sense that

lim sup
s→0

max
0≤k≤ T√

s

∥
∥xk − X(k

√
s)
∥
∥ = 0,

for any fixed T > 0.

In fact, Proposition 1 holds for T = ∞ because both the discrete iterates and

the ODE trajectories converge to the unique minimizer when the objective is stongly

convex.
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Proposition 2 For any f ∈ F2(Rn) := ∪L>0F
2
L(Rn), the ODE (1.12) with the

specified initial conditions has a unique global solution X ∈ C2([1.5
√

s,∞); R
n).

Moreover, NAG-C converges to its high-resolution ODE in the sense that

lim sup
s→0

max
0≤k≤ T√

s

∥
∥xk − X(k

√
s + 1.5

√
s)
∥
∥ = 0,

for any fixed T > 0.

The proofs of the two propositions are standard in the theory of ordinary differential

equations (see, e.g., the proofs of Theorems 1 and 2 in [41]) and thus are omitted.

Step 2: Analyzing ODEs using Lyapunov functions With these high-resolution ODEs

in place, the next step is to construct Lyapunov functions for analyzing the dynamics

of the corresponding ODEs, as is done in previous work [31,41,44]. For NAG-SC, we

consider the Lyapunov function

E(t) = (1 + √
μs)

(

f (X) − f (x⋆)
)

+
1

4
‖Ẋ‖2

+
1

4
‖Ẋ + 2

√
μ(X − x⋆) +

√
s∇ f (X)‖2. (2.16)

The first and second terms (1 + √
μs) ( f (X) − f (x⋆)) and 1

4
‖Ẋ‖2 can be regarded,

respectively, as the potential energy and kinetic energy, and the last term is a mix. For

the mixed term, it is interesting to note that the time derivative of Ẋ +2
√

μ(X − x⋆)+√
s∇ f (X) equals −(1 + √

μs)∇ f (X).

From a dimensional analysis viewpoint, the step size s has dimension [T−2], where

T denotes the time unit. Consequently, both μ and L have the same dimension [T2].
Recognizing the assumptions imposed on the objective, which in particular give rise to
μ
2
‖X −x⋆‖2 ≤ f (X)− f (x⋆) ≤ L

2
‖X −x⋆‖2, one can readily show that every term in

this Lyapunov function, such as (1+√
μs) ( f (X) − f (x⋆)) , 1

4
‖Ẋ‖2, 1

4
‖
√

s∇ f (X)‖2

and any cross terms in the mixed energy, have dimension [T2L2], where the length unit

L is the dimension of X . Indeed, this dimensional analysis viewpoint in part formalizes

the intuition for the construction of all Lyapunov functions in this paper.

The differentiability of E(t) will allow us to investigate properties of the ODE (1.11)

in a principled manner. For example, we will show that E(t) decreases exponentially

along the trajectories of (1.11), recovering the accelerated linear convergence rate of

NAG-SC. Furthermore, a comparison between the Lyapunov function of NAG-SC and

that of the heavy-ball method will explain why the gradient correction
√

s∇2 f (X)Ẋ

yields acceleration in the former case. This is discussed in Sect. 3.1.

Step 3: Constructing discrete Lyapunov functions Our framework make it possible

to translate continuous Lyapunov functions into discrete Lyapunov functions via a

phase-space representation (see, for example, [3]). We illustrate the procedure in the

case of NAG-SC. The first step is formulate explicit position and velocity updates:
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xk − xk−1 =
√

svk−1

vk − vk−1 = −
2
√

μs

1 − √
μs

vk −
√

s(∇ f (xk) − ∇ f (xk−1)) −
1 + √

μs

1 − √
μs

·
√

s∇ f (xk),

(2.17)

where the velocity variable vk is defined as vk = xk+1−xk√
s

. The initial velocity is

v0 = − 2
√

s

1+√
μs

∇ f (x0). Interestingly, this phase-space representation has the flavor of

symplectic discretization, in the sense that the update for xk − xk−1 is explicit (it only

depends on the last iterate vk−1) while the update for vk − vk−1 is implicit (it depends

on the current iterates xk and vk , see [40]).

The representation (2.17) suggests translating the continuous-time Lyapunov func-

tion (2.16) into a discrete-time Lyapunov function of the following form:

E(k) =
1 + √

μs

1 − √
μs

(

f (xk) − f (x⋆)
)

︸ ︷︷ ︸

I

+
1

4
‖vk‖2

︸ ︷︷ ︸

II

+
1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆) +
√

s∇ f (xk)

∥
∥
∥
∥

2

︸ ︷︷ ︸

III

−
s ‖∇ f (xk)‖2

2(1 − √
μs)

︸ ︷︷ ︸

a negative term

, (2.18)

by replacing continuous terms (e.g., Ẋ ) by their discrete counterparts (e.g., vk). Akin to

the continuous (2.16), here I, II, and III correspond to potential energy, kinetic energy,

and mixed energy, respectively. To better appreciate this translation, note that the factor
1+√

μs

1−√
μs

in I results from the term
1+√

μs

1−√
μs

√
s∇ f (xk) in (2.17). Likewise,

2
√

μ

1−√
μs

in III

is from the term
2
√

μs

1−√
μs

vk in (2.17). We use xk+1 in lieu of xk as a reflection of the fact

that the x variable takes a forward step in the phase-space representation of NAG-SC.

The need for the final (small) negative term is technical; we discuss it in Sect. 3.2.

Step 4: Analyzing algorithms using discrete Lyapunov functions The last step is to

map properties of high-resolution ODEs to corresponding properties of optimization

methods. This step closely mimics Step 2 except that now the object is a discrete

algorithm and the tool is a discrete Lyapunov function such as (2.18). Given that Step

2 has been performed, this translation is conceptually straightforward, albeit often

calculation-intensive. For example, using the discrete Lyapunov function (2.18), we

will recover the optimal linear rate of NAG-SC and gain insights into the fundamental

effect of the gradient correction in accelerating NAG-SC. In addition, NAG-C is shown

to minimize the squared gradient norm at an inverse cubic rate by a simple analysis

of the decreasing rate of its discrete Lyapunov function.
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3 Gradient correction for acceleration

In this section, we use our high-resolution ODE framework to analyze NAG-SC and

the heavy-ball method. Section 3.1 focuses on the ODEs with an objective function

f ∈ S2
μ,L(Rn), and in Sect. 3.2 we extend the results to the discrete case for f ∈

S1
μ,L(Rn). Throughout this section, the strategy is to analyze the two methods in

parallel, thereby highlighting the differences between the two methods. In particular,

the comparison will demonstrate the vital role of the gradient correction, namely
1−√

μs

1+√
μs

· s (∇ f (xk) − ∇ f (xk−1)) in the discrete case and
√

s∇2 f (X)Ẋ in the ODE

case, in making NAG-SC an accelerated method.

3.1 The ODE case

The following theorem characterizes the convergence rate of the high-resolution ODE

corresponding to NAG-SC.

Theorem 1 (Convergence of NAG-SC ODE) Let f ∈ S2
μ,L(Rn). For any step size

0 < s ≤ 1/L, the solution X = X(t) of the high-resolution ODE (1.11) satisfies

f (X(t)) − f (x⋆) ≤
2 ‖x0 − x⋆‖2

s
e−

√
μt

4 .

The theorem states that the functional value f (X) tends to the minimum f (x⋆) at a

linear rate. By setting s = 1/L , we obtain f (X) − f (x⋆) ≤ 2L ‖x0 − x⋆‖2 e−
√

μt

4 .

The proof of Theorem 1 is based on analyzing the Lyapunov function E(t) for the

high-resolution ODE of NAG-SC. Recall that E(t) defined in (2.16) is

E(t) = (1 + √
μs)

(

f (X) − f (x⋆)
)

+
1

4
‖Ẋ‖2 +

1

4
‖Ẋ + 2

√
μ(X − x⋆)

+
√

s∇ f (X)‖2.

The next lemma states the key property we need from this Lyapunov function.

Lemma 1 (Lyapunov function for NAG-SC ODE) Let f ∈ S2
μ,L(Rn). For any step

size s > 0, and with X = X(t) being the solution to the high-resolution ODE (1.11),

the Lyapunov function (2.16) satisfies

dE(t)

dt
≤ −

√
μ

4
E(t). (3.19)

The proof of this lemma is placed at the end of this subsection. In particular, the

proof reveals that (3.19) can be strengthened to

dE(t)

dt
≤ −

√
μ

4
E(t) −

√
s

2

[

‖∇ f (X(t))‖2 + Ẋ(t)⊤∇2 f (X(t))Ẋ(t)
]

.
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The term
√

s
2

(‖∇ f (X)‖2 + Ẋ⊤∇2 f (X)Ẋ) ≥ 0 plays no role at the moment, but

Sect. 3.2 will shed light on its profound effect in the discretization of the high-resolution

ODE of NAG-SC.

Proof of Theorem 1 Lemma 1 implies Ė(t) ≤ −
√

μ

4
E(t), which amounts to d

dt(

E(t)e

√
μt

4

)

≤ 0. By integrating out t , we get

E(t) ≤ e−
√

μt

4 E(0). (3.20)

Recognizing the initial conditions X(0) = x0 and Ẋ(0) = − 2
√

s∇ f (x0)

1+√
μs

, we write

(3.20) as

f (X) − f (x⋆) ≤ e−
√

μt

4

[

f (x0) − f (x⋆) +
s

(

1 + √
μs

)3
‖∇ f (x0)‖2

+
1

4(1 + √
μs)

∥
∥
∥
∥

2
√

μ(x0 − x⋆) −
1 − √

μs

1 + √
μs

·
√

s∇ f (x0)

∥
∥
∥
∥

2
]

.

Since f ∈ S2
μ,L , we have that ‖∇ f (x0)‖ ≤ L‖x0 − x⋆‖ and f (x0) − f (x⋆) ≤

L‖x0 − x⋆‖2/2. Together with the Cauchy–Schwarz inequality, the two inequalities

yield

f (X) − f (x⋆) ≤
[

f (x0) − f (x⋆) +
2 + (1 − √

μs)2

2(1 + √
μs)3

· s ‖∇ f (x0)‖2

+
2μ

1 + √
μs

∥
∥x0 − x⋆

∥
∥

2
]

e−
√

μt

4

≤
[

L

2
+

3 − 2
√

μs + μs

2(1 + √
μs)3

· sL2 +
2μ

1 + √
μs

]
∥
∥x0 − x⋆

∥
∥

2
e−

√
μt

4 ,

which is valid for all s > 0. To simplify the coefficient of ‖x0 − x⋆‖2 e−
√

μt

4 , note

that L can be replaced by 1/s in the analysis since s ≤ 1/L . It follows that

f (X(t)) − f (x⋆) ≤
[

1

2
+

3 − 2
√

μs + μs

2(1 + √
μs)3

+
2μs

1 + √
μs

] ‖x0 − x⋆‖2 e−
√

μt

4

s
.

Furthermore, a bit of analysis reveals that

1

2
+

3 − 2
√

μs + μs

2(1 + √
μs)3

+
2μs

1 + √
μs

< 2,

since μs ≤ μ/L ≤ 1, and this step completes the proof of Theorem 1. ⊓⊔
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We now consider the heavy-ball method (1.2). Recall that the momentum coefficient

α is set to
1−√

μs

1+√
μs

. The following theorem characterizes the rate of convergence of this

method.

Theorem 2 (Convergence of heavy-ball ODE) Let f ∈ S2
μ,L(Rn). For any step size

0 < s ≤ 1/L, the solution X = X(t) of the high-resolution ODE (1.10) satisfies

f (X(t)) − f (x⋆) ≤
7 ‖x0 − x⋆‖2

2s
e−

√
μt

4 .

As in the case of NAG-SC, the proof of Theorem 2 is based on a Lyapunov function:

E(t) = (1 + √
μs)

(

f (X) − f (x⋆)
)

+
1

4
‖Ẋ‖2 +

1

4
‖Ẋ + 2

√
μ(X − x⋆)‖2, (3.21)

which is the same as the Lyapunov function (2.16) for NAG-SC except for the lack

of the
√

s∇ f (X) term. In particular, (2.16) and (3.21) are identical if s = 0. The

following lemma considers the decay rate of (3.21).

Lemma 2 (Lyapunov function for the heavy-ball ODE) Let f ∈ S2
μ,L(Rn). For any

step size s > 0, the Lyapunov function (3.21) for the high-resolution ODE (1.10)

satisfies

dE(t)

dt
≤ −

√
μ

4
E(t).

The proof of Theorem 2 follows the same strategy as the proof of Theorem 1. In

brief, Lemma 2 gives E(t) ≤ e−√
μt/4E(0) by integrating over the time parameter t .

Recognizing the initial conditions

X(0) = x0, Ẋ(0) = −
2
√

s∇ f (x0)

1 + √
μs

in the high-resolution ODE of the heavy-ball method and using the L-smoothness of

∇ f , Lemma 2 yields

f (X) − f (x⋆) ≤
[

1

2
+

3

(1 + √
μs)3

+
2(μs)

1 + √
μs

] ‖x0 − x⋆‖2 e−
√

μt

4

s
,

if the step size s ≤ 1/L . Finally, since 0 < μs ≤ μ/L ≤ 1, the coefficient satisfies
1
2

+ 3
(1+√

μs)3 + 2μs
1+√

μs
< 7

2
.

The proofs of Lemmas 1 and 2 share similar ideas. In view of this, we present only

the proof of the former here, deferring the proof of Lemma 2 to “Appendix B.2”.
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Proof of Lemma 1 Along the trajectories of (1.11), the Lyapunov function (2.16) sat-

isfies

dE

dt
= (1 + √

μs)〈∇ f (X), Ẋ〉 +
1

2

〈

Ẋ , −2
√

μẊ −
√

s∇2 f (X)Ẋ − (1 + √
μs)∇ f (X)

〉

+
1

2

〈

Ẋ + 2
√

μ
(

X − x⋆
)

+
√

s∇ f (X),−(1 + √
μs)∇ f (X)

〉

= −√
μ

(

‖Ẋ‖2 + (1 + √
μs)

〈

∇ f (X), X − x⋆
〉

+
s

2
‖∇ f (X)‖2

)

−
√

s

2

[

‖∇ f (X)‖2 + Ẋ⊤∇2 f (X)Ẋ
]

≤ −√
μ

(

‖Ẋ‖2 + (1 + √
μs)

〈

∇ f (X), X − x⋆
〉

+
s

2
‖∇ f (X)‖2

)

.

(3.22)

Furthermore, 〈∇ f (X), X − x⋆〉 is greater than or equal to both f (X)− f (x⋆)+ μ
2
‖X−

x⋆‖2 and μ‖X − x⋆‖2 due to the μ-strong convexity of f . This yields

(1 + √
μs)

〈

∇ f (X), X − x⋆
〉

≥
1 + √

μs

2

〈

∇ f (X), X − x⋆
〉

+
1

2

〈

∇ f (X), X − x⋆
〉

≥
1 + √

μs

2

[

f (X) − f (x⋆) +
μ

2
‖X − x⋆‖2

]

+
μ

2
‖X − x⋆‖2

≥
1 + √

μs

2
( f (X) − f (x⋆)) +

3μ

4
‖X − x⋆‖2,

which together with (3.22) suggests that the time derivative of this Lyapunov function

can be bounded as

dE

dt
≤ −√

μ

(
1 + √

μs

2
( f (X) − f (x⋆)) + ‖Ẋ‖2 +

3μ

4

∥
∥X − x⋆

∥
∥

2 +
s

2
‖∇ f (X)‖2

)

.

(3.23)

Next, the Cauchy–Schwarz inequality yields

∥
∥2

√
μ(X − x⋆) + Ẋ +

√
s∇ f (X)

∥
∥

2 ≤ 3
(

4μ
∥
∥X − x⋆

∥
∥

2 + ‖Ẋ‖2 + s ‖∇ f (X)‖2
)

,

from which it follows that

E(t) ≤
(

1 + √
μs

) (

f (X) − f (x⋆)
)

+ ‖Ẋ‖2 + 3μ
∥
∥X − x⋆

∥
∥

2 +
3s

4
‖∇ f (X)‖2 .

(3.24)

Combining (3.23) and (3.24) completes the proof of the theorem. ⊓⊔

Remark 1 The only inequality in (3.22) is due to the term
√

s

2
(‖∇ f (X)‖2 +

Ẋ⊤∇2 f (X)Ẋ), which is discussed right after the statement of Lemma 1. This term
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results from the gradient correction
√

s∇2 f (X)Ẋ in the NAG-SC ODE. For compar-

ison, this term does not appear in Lemma 2 in the case of the heavy-ball method as its

ODE does not include the gradient correction and, accordingly, its Lyapunov function

(3.21) is free of the
√

s∇ f (X) term.

3.2 The discrete case

This section carries over the results in Sect. 3.1 to the two discrete algorithms, namely

NAG-SC and the heavy-ball method. Here we consider an objective f ∈ S1
μ,L(Rn)

since second-order differentiability of f is not required in the two discrete methods.

Recall that both methods start with an arbitrary x0 and x1 = x0 − 2s∇ f (x0)

1+√
μs

.

Theorem 3 (Convergence of NAG-SC) Let f ∈ S1
μ,L(Rn). If the step size is set to

s = 1/(4L), the iterates {xk}∞k=0 generated by NAG-SC (1.3) satisfy

f (xk) − f (x⋆) ≤
5L ‖x0 − x⋆‖2

(

1 + 1
12

√
μ/L

)k
,

for all k ≥ 0.

In brief, the theorem states that log( f (xk) − f (x⋆)) ≤ −O(k
√

μ/L), which

matches the optimal rate for minimizing smooth strongly convex functions using

only first-order information [36]. More precisely, [36] shows that f (xk) − f (x⋆) =
O((1−

√
μ/L)k) by taking s = 1/L in NAG-SC. Although this optimal rate of NAG-

SC is well known in the literature, this is the first Lyapunov-function-based proof of

this result.

As indicated in Sect. 2, the proof of Theorem 3 rests on the Lyapunov function E(k)

from (2.18):

1 + √
μs

1 − √
μs

(

f (xk) − f (x⋆)
)

+
1

4
‖vk‖2 +

1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆) +
√

s∇ f (xk)

∥
∥
∥
∥

2

−
s ‖∇ f (xk)‖2

2(1 − √
μs)

.

Recall that this functional is derived by writing NAG-SC in the phase-space represen-

tation (2.17). Analogous to Lemma 1, the following lemma gives an upper bound on

the difference E(k + 1) − E(k).

Lemma 3 (Lyapunov function for NAG-SC) Let f ∈ S1
μ,L(Rn). Taking any step size

0 < s ≤ 1/(4L), the discrete Lyapunov function (2.18) with {xk}∞k=0 generated by

NAG-SC satisfies

E(k + 1) − E(k) ≤ −
√

μs

6
E(k + 1).
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The form of the inequality ensured by Lemma 3 is consistent with that of Lemma

1. Alternatively, it can be written as E(k + 1) ≤ 1

1+
√

μs

6

E(k). With Lemma 3 in place,

we give the proof of Theorem 3.

Proof of Theorem 3 Given s = 1/(4L), we have

f (xk) − f (x⋆) ≤
4(1 −

√
μ/(4L))

3 + 4
√

μ/(4L)
E(k). (3.25)

To see this, first note that

E(k) ≥
1 +

√
μ/(4L)

1 −
√

μ/(4L)

(

f (xk) − f (x⋆)
)

−
‖∇ f (xk)‖2

8L(1 −
√

μ/(4L))
,

1

2L
‖∇ f (xk)‖2 ≤ f (xk) − f (x⋆).

Combining these two inequalities, we get

E(k) ≥
1 +

√
μ/(4L)

1 −
√

μ/(4L)

(

f (xk) − f (x⋆)
)

−
f (xk) − f (x⋆)

4(1 −
√

μ/(4L))

=
3 + 4

√
μ/(4L)

4(1 −
√

μ/(4L))
( f (xk) − f (x⋆)),

which gives (3.25).

Next, we inductively apply Lemma 3, yielding

E(k) ≤
E(0)

(

1 +
√

μs

6

)k

=
E(0)

(

1 + 1
12

√
μ/L

)k
. (3.26)

Recognizing the initial velocity v0 = − 2
√

s∇ f (x0)

1+√
μs

in NAG-SC, one can show that

E(0) ≤
1 + √

μs

1 − √
μs

(

f (x0) − f (x⋆)
)

+
s

(1 + √
μs)2

‖∇ f (x0)‖2

+
1

4

∥
∥
∥
∥

2
√

μ

1 − √
μs

(x0 − x⋆) −
1 + √

μs

1 − √
μs

√
s∇ f (x0)

∥
∥
∥
∥

2

≤
[

1

2

(
1 + √

μs

1 − √
μs

)

+
Ls

(1 + √
μs)2

+
2μ/L

(1 − √
μs)2

+
Ls

2

(
1 + √

μs

1 − √
μs

)2
]

· L
∥
∥x0 − x⋆

∥
∥

2
.

(3.27)
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Taking s = 1/(4L) in (3.27), it follows from (3.25) and (3.26) that

f (xk) − f (x⋆) ≤
Cμ/L L ‖x0 − x⋆‖2

(

1 + 1
12

√
μ/L

)k
.

Here the constant factor Cμ/L is a short-hand for

4
(

1 −
√

μ/(4L)
)

3 + 4
√

μ/(4L)
·
[

1 +
√

μ/(4L)

2 − 2
√

μ/(4L)
+

1

4(1 +
√

μ/(4L))2

+
2μ/L

(1 −
√

μ/(4L))2
+

1

8

(
1 +

√
μ/(4L)

1 −
√

μ/(4L)

)2
]

,

which is less than five by making use of the fact that μ/L ≤ 1. This completes the

proof. ⊓⊔

We now turn to the heavy-ball method (1.2). Recall that α = 1−√
μs

1+√
μs

and x1 =
x0 − 2s∇ f (x0)

1+√
μs

.

Theorem 4 (Convergence of heavy-ball method) Let f ∈ S1
μ,L(Rn). If the step size is

set to s = μ/(16L2), the iterates {xk}∞k=0 generated by the heavy-ball method satisfy

f (xk) − f (x0) ≤
5L ‖x0 − x⋆‖2

(

1 + μ
16L

)k
,

for all k ≥ 0.

The heavy-ball method minimizes the objective at the rate log( f (xk) − f (x⋆)) ≤
−O(kμ/L), as opposed to the optimal rate −O(k

√
μ/L) obtained by NAG-SC. Thus,

the acceleration phenomenon is not observed in the heavy-ball method for minimizing

functions in the class S1
μ,L(Rn). This difference is, on the surface, attributed to the

much smaller step size s = μ/(16L2) in Theorem 4 as compared to the s = 1/(4L)

step size in Theorem 3. Further discussion of this difference is given after Lemma 4.

In addition to allowing us to complete the proof of Theorem 4, Lemma 4 will shed

light on why the heavy-ball method needs a more conservative step size. To state this

lemma, we consider the discrete Lyapunov function defined as

E(k) =
1 + √

μs

1 − √
μs

(

f (xk) − f (x⋆)
)

+
1

4
‖vk‖2 +

1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆)

∥
∥
∥
∥

2

,

(3.28)

123



Understanding the acceleration phenomenon via high…

which is derived by discretizing the continuous Lyapunov function (3.21) using the

phase-space representation of the heavy-ball method:

xk − xk−1 =
√

svk−1

vk − vk−1 = −
2
√

μs

1 − √
μs

vk −
1 + √

μs

1 − √
μs

·
√

s∇ f (xk).
(3.29)

Lemma 4 (Lyapunov function for the heavy-ball method) Let f ∈ S1
μ,L(Rn). For any

step size s > 0, the discrete Lyapunov function (3.28) with {xk}∞k=0 generated by the

heavy-ball method satisfies

E(k + 1) − E(k) ≤ −√
μs min

{
1 − √

μs

1 + √
μs

,
1

4

}

E(k + 1)

−
[

3
√

μs

4

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

]

.

(3.30)

The proof of Lemma 4 can be found in “Appendix B.3”. To apply this lemma to

prove Theorem 4, we need to ensure

3
√

μs

4

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2 ≥ 0.

(3.31)

A sufficient and necessary condition for (3.31) is

3
√

μs

4

(

f (xk+1) − f (x⋆)
)

−
(

1 + √
μs

1 − √
μs

)

sL
(

f (xk+1) − f (x⋆)
)

≥ 0. (3.32)

This is because ‖∇ f (xk+1)‖2 ≤ 2L ( f (xk+1) − f (x⋆)), which can be further reduced

to an equality (for example, f (x) = L
2
‖x‖2). Thus, the step size s must obey s =

O
(

μ

L2

)

. In particular, the choice of s = μ

16L2 fulfills (3.32) and, as a consequence,

Lemma 4 implies E(k + 1) − E(k) ≤ − μ
16L

E(k + 1). The remainder of the proof

of Theorem 4 is similar to that of Theorem 3 and is therefore omitted. As an aside,

[39] uses s = 4/(
√

L + √
μ)2 for local accelerated convergence of the heavy-ball

method. This choice of step size is larger than our step size s = μ

16L2 , which yields a

non-accelerated but global convergence rate.

The term s
2

(
1+√

μs

1−√
μs

)2
‖∇ f (xk+1)‖2 in (3.30) that arises from finite differencing of

(3.28) is a (small) term of order O(s) and, as a consequence, this term is not reflected

in Lemma 2. In relating to the case of NAG-SC, one would be tempted to ask why this

term does not appear in Lemma 3. In fact, a similar term can be found in E(k+1)−E(k)

by taking a closer look at the proof of Lemma 3. However, this term is canceled out by
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the discrete version of the quadratic term
√

s
2

(‖∇ f (X)‖2 + Ẋ⊤∇2 f (X)Ẋ) in Lemma

1 and is, therefore, not present in the statement of Lemma 3. Note that this quadratic

term results from the gradient correction (see Remark 1). In light of the above, the

gradient correction is the key ingredient that allows for a larger step size in NAG-SC,

which is necessary for achieving acceleration.

Before finishing Sect. 3.2 by proving Lemma 3, we briefly remark on the proof

strategies for Lemmas 3 and 4. One can rewrite the second lines of the phase-space

representations (2.17) and (3.29) as

(1 + √
μs)

(

vk +
√

s∇ f (xk)
)

− (1 − √
μs)

(

vk−1 +
√

s∇ f (xk−1)
)

= −(1 − √
μs) ·

√
s∇ f (xk)

(1 + √
μs)vk − (1 − √

μs)vk−1 = −(1 + √
μs) ·

√
s∇ f (xk),

respectively, from which it is straightforward to obtain (3.35) below in the proof

and (3.30). Notably, the derivation of (3.35) additionally relies on the fact that the

dimension of the first term is the same as the Lyapunov function plus the gradient

term.

Proof of Lemma 3 Using the Cauchy–Schwarz inequality, we have (see the definition

of III in (2.18))

III =
1

4

∥
∥
∥
∥

(
1 + √

μs

1 − √
μs

)

vk +
2
√

μ

1 − √
μs

(xk − x⋆) +
√

s∇ f (xk)

∥
∥
∥
∥

2

≤
3

4

[
(

1 + √
μs

1 − √
μs

)2

‖vk‖2 +
4μ

(1 − √
μs)2

∥
∥xk − x⋆

∥
∥

2 + s ‖∇ f (xk)‖2

]

,

which, together with the inequality

3s

4
‖∇ f (xk)‖2 −

s ‖∇ f (xk)‖2

2(1 − √
μs)

=
s

4
‖∇ f (xk)‖2 +

s

2
‖∇ f (xk)‖2 −

s ‖∇ f (xk)‖2

2(1 − √
μs)

≤
Ls

2

(

f (xk) − f (x⋆)
)

−
s
√

μs ‖∇ f (xk)‖2

2(1 − √
μs)

,

for f ∈ S1
μ,L(Rn), shows that the Lyapunov function (2.18) satisfies

E(k) ≤
(

1

1 − √
μs

+
Ls

2

)
(

f (xk) − f (x⋆)
)

+
1 + √

μs + μs

(1 − √
μs)2

‖vk‖2

+
3μ

(1 − √
μs)2

∥
∥xk − x⋆

∥
∥

2 +
√

μs

1 − √
μs

(

f (xk) − f (x⋆) −
s

2
‖∇ f (xk)‖2

)

.

(3.33)
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Take the following inequality as given for the moment:

E(k + 1) − E(k) ≤ −√
μs

[

1 − 2Ls
(

1 − √
μs

)2

(

f (xk+1) − f (x⋆)
)

+
1

1 − √
μs

‖vk+1‖2

+
μ

2(1 − √
μs)2

∥
∥xk+1 − x⋆

∥
∥

2

+
√

μs

(1 − √
μs)2

(

f (xk+1) − f (x⋆) −
s

2
‖∇ f (xk+1)‖2

)
]

,

(3.34)

which holds for s ≤ 1/(2L). Comparing the coefficients of the same terms in (3.33)

for E(k + 1) and (3.34), we conclude that the first difference of the discrete Lyapunov

function (2.18) must satisfy

E(k + 1) − E(k) ≤ −√
μs min

{

1 − 2Ls

1 − √
μs + Ls

2

(

1 − √
μs

)2
,

1 − √
μs

1 + √
μs + μs

,
1

6
,

1

1 − √
μs

}

E(k + 1)

≤ −√
μs min

{

1 − 2Ls

1 + Ls
2

,
1 − √

μs

1 + √
μs + μs

,
1

6
,

1

1 − √
μs

}

E(k + 1)

= −
√

μs

6
E(k + 1),

since s ≤ 1/(4L), as desired.

To complete the proof of this lemma, we now verify (3.34) below. First, we point

out that

E(k + 1) − E(k) ≤ −
√

μs

1 − √
μs

[
1 + √

μs

1 − √
μs

(〈

∇ f (xk+1), xk+1 − x⋆
〉

−s ‖∇ f (xk+1)‖2
)

+ ‖vk+1‖2
]

−
1

2

(
1 + √

μs

1 − √
μs

+
1 − √

μs

1 + √
μs

)(
1

L
− s

)

‖∇ f (xk+1) − ∇ f (xk)‖2 (3.35)

implies (3.34) for s ≤ 1/L . With (3.35) in place, recognizing that

⎧

⎪
⎨

⎪
⎩

f (x⋆) ≥ f (xk+1) +
〈

∇ f (xk+1), x⋆ − xk+1

〉

+
1

2L
‖∇ f (xk+1)‖2

2

f (x⋆) ≥ f (xk+1) +
〈

∇ f (xk+1), x⋆ − xk+1

〉

+
μ

2

∥
∥xk+1 − x⋆

∥
∥

2

2
,

when the step size satisfies s ≤ 1/(2L) ≤ 1/L , we have

E(k + 1) − E(k) ≤ −
√

μs

1 − √
μs

[(
1 + √

μs

1 − √
μs

)

( f (xk+1)
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− f (x⋆)
)

+
1

2L

( √
μs

1 − √
μs

)

‖∇ f (xk+1)‖2

+
μ

2

(
1

1 − √
μs

)
∥
∥xk+1 − x⋆

∥
∥

2 −
(

1 + √
μs

1 − √
μs

)

s ‖∇ f (xk+1)‖2 + ‖vk+1‖2

]

≤ −√
μs

[
(

1

1 − √
μs

)2 (

f (xk+1) − f (x⋆) − s ‖∇ f (xk+1)‖2
)

+
√

μs

(1 − √
μs)2

(

f (xk+1) − f (x⋆) −
s

2
‖∇ f (xk+1)‖2

)

+
μ

2(1 − √
μs)2

∥
∥xk+1 − x⋆

∥
∥

2 +
1

1 − √
μs

‖vk+1‖2

]

≤ −√
μs

[

1 − 2Ls
(

1 − √
μs

)2

(

f (xk+1) − f (x⋆)
)

+
1

1 − √
μs

‖vk+1‖2

+
μ

2(1 − √
μs)2

∥
∥xk+1 − x⋆

∥
∥

2 +
√

μs

(1 − √
μs)2

(

f (xk+1) − f (x⋆) −
s

2
‖∇ f (xk+1)‖2

)]

.

Now, we conclude this section by deriving (3.35). Recall the discrete Lyapunov

function (2.18),

E(k) =
(

1 + √
μs

1 − √
μs

)
(

f (xk) − f (x⋆)
)

︸ ︷︷ ︸

I

+
1

4
‖vk‖2

︸ ︷︷ ︸

II

+

1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆) +
√

s∇ f (xk)

∥
∥
∥
∥

2

︸ ︷︷ ︸

III

−
s

2

(
1

1 − √
μs

)

‖∇ f (xk)‖2

︸ ︷︷ ︸

additional term

.

Next, we evaluate the difference between E(k) and E(k + 1) by the three parts, I, II

and III respectively.

– For part I (potential), using the convexity of the objective, we have

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
(

1 + √
μs

1 − √
μs

)
(

f (xk) − f (x⋆)
)

≤
(

1 + √
μs

1 − √
μs

)[

〈∇ f (xk+1), xk+1 − xk〉 −
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

]
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≤
(

1 + √
μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk〉

︸ ︷︷ ︸

I1

−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2

.

– For part II (kinetic energy), using the phase representation of NAG-SC (2.17), we

see that 1
4

‖vk+1‖2 − 1
4

‖vk‖2 ≡ 1
2

〈vk+1 − vk, vk+1〉 − 1
4

‖vk+1 − vk‖2 equals

−
√

μs

1 − √
μs

‖vk+1‖2 −
√

s

2
〈∇ f (xk+1) − ∇ f (xk), vk+1〉

−
1 + √

μs

1 − √
μs

·
√

s

2
〈∇ f (xk+1), vk+1〉 −

1

4
‖vk+1 − vk‖2

= −
√

μs

1 − √
μs

‖vk+1‖2

︸ ︷︷ ︸

II1

−
√

s

2
·

1 − √
μs

1 + √
μs

〈∇ f (xk+1) − ∇ f (xk), vk〉
︸ ︷︷ ︸

II2

+
1 − √

μs

1 + √
μs

·
s

2
‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

II3

+
s

2
〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1)〉

︸ ︷︷ ︸

II4

−
1 + √

μs

1 − √
μs

·
√

s

2
〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

II5

−
1

4
‖vk+1 − vk‖2

︸ ︷︷ ︸

II6

.

– For part III (mixed energy), using the phase representation of NAG-SC (2.17), we

have

1

4

∥
∥
∥
∥
vk+1 +

2
√

μ

1 − √
μs

(xk+2 − x⋆) +
√

s∇ f (xk+1)

∥
∥
∥
∥

2

−
1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆) +
√

s∇ f (xk)

∥
∥
∥
∥

2

=
1

2

〈

−
1 + √

μs

1 − √
μs

√
s∇ f (xk+1),

1 + √
μs

1 − √
μs

vk+1

+
2
√

μ

1 − √
μs

(xk+1 − x⋆) +
√

s∇ f (xk+1)

〉

−
1

4

(
1 + √

μs

1 − √
μs

)2

s ‖∇ f (xk+1)‖2
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= −
√

μs

1 − √
μs

1 + √
μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

︸ ︷︷ ︸

III1

−
1

2

(
1 + √

μs

1 − √
μs

)2 √
s 〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

III2

−
1

2

(
1 + √

μs

1 − √
μs

)

s ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III3

−
1

4

(
1 + √

μs

1 − √
μs

)2

s ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III4

.

Now, we evaluate the difference of the discrete Lyapunov function (2.18) at k + 1

and k:

E(k + 1) − E(k) ≤
(

1 + √
μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk〉

︸ ︷︷ ︸

I1

−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2

−
√

μs

1 − √
μs

‖vk+1‖2

︸ ︷︷ ︸

II1

−
√

s

2
·

1 − √
μs

1 + √
μs

〈∇ f (xk+1) − ∇ f (xk), vk〉
︸ ︷︷ ︸

II2

+
1 − √

μs

1 + √
μs

·
s

2
‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

II3

+
s

2
〈∇ f (xk+1) − ∇ f (xk), ∇ f (xk+1)〉

︸ ︷︷ ︸

II4

−
1 + √

μs

1 − √
μs

·
√

s

2
〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

II5

−
1

4
‖vk+1 − vk‖2

︸ ︷︷ ︸

II6

−
√

μs

1 − √
μs

1 + √
μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

︸ ︷︷ ︸

III1

−
1

2

(
1 + √

μs

1 − √
μs

)2 √
s 〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

III2

−
1

2

(
1 + √

μs

1 − √
μs

)

s ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III3

−
1

4

(
1 + √

μs

1 − √
μs

)2

s ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III4

−
s

2

(
1

1 − √
μs

)
(

‖∇ f (xk+1)‖2 − ‖∇ f (xk)‖2
)

︸ ︷︷ ︸

additional term

≤ −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

+ ‖vk+1‖2

)

︸ ︷︷ ︸

II1+III1
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−
1

2

(
1 + √

μs

1 − √
μs

)[√
s

〈

∇ f (xk+1),

(
1 + √

μs

1 − √
μs

)

vk+1 − vk

〉

+ s ‖∇ f (xk+1)‖2

]

︸ ︷︷ ︸

1
2 I1+III2+III3

−
√

s

2
·

1 − √
μs

1 + √
μs

〈∇ f (xk+1) − ∇ f (xk), vk〉
︸ ︷︷ ︸

II2

+
s

2
〈∇ f (xk+1) − ∇ f (xk), ∇ f (xk+1)〉

︸ ︷︷ ︸

II4

−
1

4

[

‖vk+1 − vk‖2 + 2

(
1 + √

μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk+1 − vk〉 +

(
1 + √

μs

1 − √
μs

)2

s ‖∇ f (xk+1)‖2

]

︸ ︷︷ ︸

1
2 I1+II5+II6+III4

−
1

2

[
1

L

(
1 + √

μs

1 − √
μs

)

− s

(
1 − √

μs

1 + √
μs

)]

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2+II3

−
1

2

(
1

1 − √
μs

)

s
(

‖∇ f (xk+1)‖2 − ‖∇ f (xk)‖2
)

︸ ︷︷ ︸

additional term

.

The term (1/2)I1 + II5 + II6 + III4 is identical to

−
1

4

[

‖vk+1 − vk‖2 + 2

(
1 + √

μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk+1 − vk〉

+
(

1 + √
μs

1 − √
μs

)2

s ‖∇ f (xk+1)‖2

]

= −
1

4

∥
∥
∥
∥
vk+1 − vk +

(
1 + √

μs

1 − √
μs

)√
s∇ f (xk)

∥
∥
∥
∥

2

≤ 0.

Using the phase representation of NAG-SC (2.17), we have

1

2
I1 + III2 + III3

= −
1

2

(
1 + √

μs

1 − √
μs

)[√
s

〈

∇ f (xk+1),

(
1 + √

μs

1 − √
μs

)

vk+1 − vk

〉

+ s ‖∇ f (xk+1)‖2

]

=
1

2

(
1 + √

μs

1 − √
μs

)

s (〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1)〉

+
2
√

μs

1 − √
μs

‖∇ f (xk+1)‖2

)

=
1

2

(
1 + √

μs

1 − √
μs

)

· s · 〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1)〉
︸ ︷︷ ︸

IV1

+
(

1 + √
μs

1 − √
μs

)

·
√

μs

1 − √
μs

· s ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

IV2

.
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Note that IV = (1/2)I1 + III2 + III3. Then, using the phase representation of NAG-

SC (2.17), we have

E(k + 1) − E(k)

≤ −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs

(
〈

∇ f (xk+1), xk+1 − x⋆
〉

− s ‖∇ f (xk+1)‖2
)

+ ‖vk+1‖2

)

︸ ︷︷ ︸

II1+III1+IV2

−
1

2
·

1 − √
μs

1 + √
μs

〈∇ f (xk+1) − ∇ f (xk), xk+1 − xk〉
︸ ︷︷ ︸

II2 +
(

1

1 − √
μs

)

s 〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1)〉
︸ ︷︷ ︸

II4+IV1

−
1

2

[
1

L

(
1 + √

μs

1 − √
μs

)

− s

(
1 − √

μs

1 + √
μs

)]

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2+II3

−
1

2

(
1

1 − √
μs

)

s
(

‖∇ f (xk+1)‖2 − ‖∇ f (xk)‖2
)

︸ ︷︷ ︸

additional term

.

To proceed, note that II4 + IV1 + additional term is a perfect square as this term is

identical to

(
1

1 − √
μs

)

s 〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1)〉

−
1

2

(
1

1 − √
μs

)

s
(

‖∇ f (xk+1)‖2 − ‖∇ f (xk)‖2
)

=
1

2

(
1

1 − √
μs

)

s ‖∇ f (xk+1) − ∇ f (xk)‖2 .

Combining II4 + IV1 + additional term, I2 + II3, we see that (II4 + IV1 +
additional term) + (I2 + II3) equals

1

2

(
1

1 − √
μs

+
1 − √

μs

1 + √
μs

−
1 + √

μs

1 − √
μs

·
1

Ls

)

s ‖∇ f (xk+1) − ∇ f (xk)‖2

≤
1

2

(
1 + √

μs

1 − √
μs

+
1 − √

μs

1 + √
μs

−
1 + √

μs

1 − √
μs

·
1

Ls

)

s ‖∇ f (xk+1) − ∇ f (xk)‖2 .

Now, we obtain that the difference of Lyapunov function (2.18) obeys

E(k + 1) − E(k) ≤ −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs
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(
〈

∇ f (xk+1), xk+1 − x⋆
〉

− s ‖∇ f (xk+1)‖2
)

+ ‖vk+1‖2
)

−
1

2
·

1 − √
μs

1 + √
μs

〈∇ f (xk+1) − ∇ f (xk), xk+1 − xk〉

+
1

2

(
1 + √

μs

1 − √
μs

+
1 − √

μs

1 + √
μs

−
1 + √

μs

1 − √
μs

·
1

Ls

)

s ‖∇ f (xk+1) − ∇ f (xk)‖2 .

Because ‖∇ f (xk+1) − ∇ f (xk)‖2 ≤ L 〈∇ f (xk+1) − ∇ f (xk), xk+1 − xk〉 for any

f (x) ∈ S1
μ,L(Rn), we have

E(k + 1) − E(k) ≤ −
√

μs

1 − √
μs

[
1 + √

μs

1 − √
μs

(〈

∇ f (xk+1), xk+1 − x⋆
〉

− s ‖∇ f (xk+1)‖2
)

+ ‖vk+1‖2

]

−
1

2
·

1 − √
μs

1 + √
μs

·
1

L
· ‖∇ f (xk+1) − ∇ f (xk)‖2

+
1

2

(
1 + √

μs

1 − √
μs

+
1 − √

μs

1 + √
μs

−
1 + √

μs

1 − √
μs

·
1

Ls

)

s ‖∇ f (xk+1) − ∇ f (xk)‖2

≤ −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs

(〈

∇ f (xk+1), xk+1 − x⋆
〉

−s ‖∇ f (xk+1)‖2
)

+ ‖vk+1‖2
)

−
1

2

(
1 + √

μs

1 − √
μs

+
1 − √

μs

1 + √
μs

)(
1

L
− s

)

‖∇ f (xk+1) − ∇ f (xk)‖2 .

This completes the proof. ⊓⊔

4 Gradient correction for gradient normminimization

In this section, we extend the use of the high-resolution ODE framework to NAG-C

(1.5) in the setting of minimizing an L-smooth convex function f . The main result is an

improved rate of NAG-SC for minimizing the squared gradient norm. Indeed, we show

that NAG-C achieves the O(L2/k3) rate of convergence for minimizing ‖∇ f (xk)‖2.

To the best of our knowledge, this is the sharpest known bound for this problem using

NAG-Cwithout any modification. Moreover, we will show that the gradient correction

in NAG-C is responsible for this rate and, as it is therefore unsurprising that this inverse

cubic rate was not perceived within the low-resolution ODE frameworks such as that

of [41].
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4.1 The ODE case

We begin by studying the high-resolution ODE (1.12) corresponding to NAG-C with

an objective f ∈ F2
L(Rn) and an arbitrary step size s > 0. For convenience, let

t0 = 1.5
√

s.

Theorem 5 Assume f ∈ F2
L(Rn) and let X = X(t) be the solution to the ODE (1.12).

The squared gradient norm satisfies

inf
t0≤u≤t

‖∇ f (X(u))‖2 ≤
(12 + 9sL)‖x0 − x⋆‖2

2
√

s(t3 − t3
0 )

,

for all t > t0.

By taking the step size s = 1/L , this theorem shows that inf t0≤u≤t ‖∇ f (X(u))‖2 =
O(

√
L/t3), where the infimum operator is necessary as the squared gradient norm is

generally not decreasing in t . In contrast, directly combining the convergence rate of

the function value (see Corollary 1) and inequality ‖∇ f (X)‖2 ≤ 2L( f (X) − f (x⋆))

only gives a O(L/t2) rate for squared gradient norm minimization. We remark that

this inverse cubic rate is also found in an ODE for modeling Newton’s method [10].

The proof of the theorem is based on the continuous Lyapunov function

E(t) = t

(

t +
√

s

2

)
(

f (X) − f (x⋆)
)

+
1

2
‖t Ẋ + 2(X − x⋆) + t

√
s∇ f (X)‖2,

(4.36)

which reduces to the continuous Lyapunov function in [41] when setting s = 0.

Lemma 5 Let f ∈ F2
L(Rn). The Lyapunov function defined in (4.36) with X = X(t)

being the solution to the ODE (1.12) satisfies

dE(t)

dt
≤ −

[√
st2 +

(
1

L
+

s

2

)

t +
√

s

2L

]

‖∇ f (X)‖2 , (4.37)

for all t ≥ t0.

The decreasing rate of E(t) as specified in the lemma is sufficient for the proof of

Theorem 5. First, note that Lemma 5 readily gives

∫ t

t0

[√
su2 +

(
1

L
+

s

2

)

u +
√

s

2L

]

‖∇ f (X(u))‖2 du

≤ −
∫ t

t0

dE(u)

du
du = E(t0) − E(t) ≤ E(t0),
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where the last step is due to the fact E(t) ≥ 0. Thus, it follows that

inf
t0≤u≤t

‖∇ f (X(u))‖2 ≤

∫ t

t0

[√
su2 +

(
1
L

+ s
2

)

u +
√

s
2L

]

‖∇ f (X(u))‖2 du

∫ t

t0

√
su2 +

(
1
L

+ s
2

)

u +
√

s

2L
du

≤
E(t0)

√
s(t3 − t3

0 )/3 +
(

1
L

+ s
2

)

(t2 − t2
0 )/2 +

√
s

2L
(t − t0)

.

(4.38)

Recognizing the initial conditions of the ODE (1.12), we get

E(t0) = t0(t0 +
√

s/2)( f (x0) − f (x⋆))

+
1

2

∥
∥−t0

√
s∇ f (x0) + 2(x0 − x⋆) + t0

√
s∇ f (x0)

∥
∥

2

≤ 3s ·
L

2
‖x0 − x⋆‖2 + 2

∥
∥x0 − x⋆

∥
∥

2
,

which together with (4.38) gives

inf
t0≤u≤t

‖∇ f (X(u))‖2 ≤
(2 + 1.5sL) ‖x0 − x⋆‖2

√
s(t3 − t3

0 )/3 +
(

1
L

+ s
2

)

(t2 − t2
0 )/2 +

√
s

2L
(t − t0)

.

(4.39)

This bound reduces to the one claimed by Theorem 5 by only keeping the first term√
s(t3 − t3

0 )/3 in the denominator.

The gradient correction
√

s∇2 f (X)Ẋ in the high-resolution ODE (1.12) plays a

pivotal role in Lemma 5 and is, thus, key to Theorem 5. As will be seen in the proof

of the lemma, the factor ‖∇ f (X)‖2 in (4.37) results from the term t
√

s∇ f (X) in the

Lyapunov function (4.36), which arises from the gradient correction in the ODE (1.12).

In light of this, the low-resolution ODE (1.8) of NAG-C cannot yield a result similar

to Lemma 5; furthermore, we conjecture that the O(
√

L/t3) rate does applies to this

ODE. Sect. 4.2 will discuss this point further in the discrete case.

In passing, it is worth pointing out that the analysis above applies to the case of

s = 0. In this case, we have t0 = 0, and (4.39) turns out to be inf0≤u≤t ‖∇ f (X(u))‖2 ≤
4L‖x0−x⋆‖2

t2 . This result is similar to that of the low-resolution ODE in [41].8

This section is concluded with the proof of Lemma 5.

Proof of Lemma 5 The time derivative of the Lyapunov function (4.36) obeys

dE(t)

dt
=

(

2t +
√

s

2

)
(

f (X) − f (x⋆)
)

+ t

(

t +
√

s

2

)
〈

∇ f (X), Ẋ
〉

8 To see this, recall that [41] shows that f (X(t)) − f (x⋆) ≤ 2‖x0−x⋆‖2

t2 , where X = X(t) is the solution

to (4.39) with s = 0. Using the L-smoothness of f , we get ‖∇ f (X(t))‖2 ≤ 2L( f (X(t)) − f (x⋆)) ≤
4L‖x0−x⋆‖2

t2 .
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+
〈

t Ẋ + 2(X − x⋆) + t
√

s∇ f (X),−
(√

s

2
+ t

)

∇ f (X)

〉

=
(

2t +
√

s

2

)
(

f (X) − f (x⋆)
)

− (
√

s + 2t)
〈

X − x⋆,∇ f (X)
〉

−
√

st

(

t +
√

s

2

)

‖∇ f (X)‖2 .

Making use of the basic inequality f (x⋆) ≥ f (X) + 〈∇ f (X), x⋆ − X〉 +
1

2L
‖∇ f (X)‖2 for L-smooth f , the expression for dE

dt
above satisfies

dE

dt
≤ −

√
s

2

(

f (X) − f (x⋆)
)

−
(√

st +
1

L

)(

t +
√

s

2

)

‖∇ f (X)‖2

≤ −
(√

st +
1

L

)(

t +
√

s

2

)

‖∇ f (X)‖2

= −
[√

st2 +
(

1

L
+

s

2

)

t +
√

s

2L

]

‖∇ f (X)‖2 .

⊓⊔
Noting that Lemma 5 shows E(t) is a decreasing function, we obtain:

f (X) − f (x⋆) ≤
E(t0)

t
(

t +
√

s
2

) =
3s( f (x0) − f (x⋆)) + 2 ‖x0 − x⋆‖2

t
(

t +
√

s
2

) ,

by recognizing the initial conditions of the high-resolution ODE (1.12). This gives the

following corollary.

Corollary 1 Under the same assumptions as in Theorem 5, for any t > t0, we have

f (X(t)) − f (x⋆) ≤
(4 + 3sL) ‖x0 − x⋆‖2

t
(

2t +
√

s
) .

4.2 The discrete case

We now turn to the discrete NAG-C (1.5) for minimizing an objective f ∈ F1
L(Rn).

Recall that this algorithm starts from any x0 and y0 = x0. The discrete counterpart of

Theorem 5 is as follows.

Theorem 6 Let f ∈ F1
L(Rn). For any step size 0 < s ≤ 1/(3L), the iterates {xk}∞k=0

generated by NAG-C obey

min
0≤i≤k

‖∇ f (xi )‖2 ≤
8568 ‖x0 − x⋆‖2

s2(k + 1)3
,

for all k ≥ 0. In additional, we have f (xk) − f (x⋆) ≤ 119‖x0−x⋆‖2

s(k+1)2 for all k ≥ 0.

123



Understanding the acceleration phenomenon via high…

Fig. 4 Scaled squared gradient norm s2(k + 1)3 min0≤i≤k ‖∇ f (xi )‖2 of NAG-C. In both plots, the scaled

squared gradient norm stays bounded as k → ∞. Left: f (x) = 1
2

〈Ax, x〉 + 〈b, x〉, where A = T ′T
is a 500 × 500 positive semidefinite matrix and b is 1 × 500. All entries of b, T ∈ R

500×500 are

i.i.d. uniform random variables on (0, 1), and ‖ · ‖2 denotes the matrix spectral norm. Right: f (x) =

ρ log

{

200∑

i=1

exp
[

(〈ai , x〉 − bi ) /ρ
]

}

, where A = [a1, . . . , a200]′ is a 200 × 50 matrix and b is a 200 × 1

column vector. All entries of A and b are sampled i.i.d. from N (0, 1) with ρ = 20

Remark 2 The convergence result of this theorem carries over effortlessly to the iterate

sequence {yk}∞k=0, since the smoothness of the objective ensures that the two iterates

are sufficiently close due to the smoothness of the objective. It is important to note,

however, that this equivalence is in general not true when applying proximal gradient

methods to nonsmooth objectives [12]. While it is beyond the scope of this paper, we

refer interested readers to [4,8] for extensions to nonsmooth objectives.

Taking s = 1/(3L), Theorem 6 shows that NAG-C minimizes the squared gradient

norm at the rate O(L2/k3). This theoretical prediction is in agreement with two numer-

ical examples illustrated in Fig. 4. To our knowledge, the bound O(L2/k3) is sharper

than any existing bounds in the literature for NAG-C for squared gradient norm mini-

mization. In fact, the convergence result f (xk)− f (x⋆) = O(L/k2) for NAG-C and the

L-smoothness of the objective immediately give ‖∇ f (xk)‖2 ≤ O(L2/k2). This well-

known but loose bound can be improved by using a recent result from [8], which shows

that a slightly modified version of NAG-C satisfies f (xk)− f (x⋆) = o(L/k2) (see Sect.

5.2 for more discussion of this improved rate). This reveals ‖∇ f (xk)‖2 ≤ o
(

L2

k2

)

,

which, however, remains looser than the bound of Theorem 6. In addition, the rate

o(L2/k2) is not valid for k ≤ n/2 and, as such, the bound o(L2/k2) on the squared

gradient norm is dimension-dependent [8]. For completeness, the rate O(L2/k3) can

be achieved by introducing an additional sequence of iterates and a more aggressive

step-size policy in a variant of NAG-C [23]. In stark contrast, our result shows that

no adjustments are needed for NAG-C to yield an accelerated convergence rate for

minimizing the gradient norm.

An �(L2/k4) lower bound has been established by [35] as the optimal conver-

gence rate for minimizing ‖∇ f ‖2 with access to only first-order information. (For

completeness, “Appendix C” presents an exposition of this fundamental barrier.) In

the same paper, a regularization technique is used in conjunction with NAG-SC to
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obtain a matching upper bound (up to a logarithmic factor). This method, however,

takes as input the distance between the initial point and the minimizer, which is not

practical in general [27].

Returning to Theorem 6, we present a proof of this theorem using a Lyapunov func-

tion argument. By way of comparison, we remark that Nesterov’s estimate sequence

technique is unlikely to be useful for characterizing the convergence of the gradient

norm as this technique is essentially based on local quadratic approximations. The

phase-space representation of NAG-C (1.5) takes the following form:

xk − xk−1 =
√

svk−1

vk − vk−1 = −
3

k
vk −

√
s(∇ f (xk) − ∇ f (xk−1)) −

(

1 +
3

k

)√
s∇ f (xk),

(4.40)

for any initial position x0 and the initial velocity v0 = −
√

s∇ f (x0). This representa-

tion allows us to discretize the continuous Lyapunov function (4.36) into

E(k) = s(k + 3)(k + 1)
(

f (xk) − f (x⋆)
)

+
1

2

∥
∥(k + 1)

√
svk + 2(xk+1 − x⋆) + (k + 1)s∇ f (xk)

∥
∥

2
. (4.41)

The following lemma characterizes the dynamics of this Lyapunov function. Its

proof is relegated to “Appendix C”.

Lemma 6 Under the assumptions of Theorem 6, for all k ≥ 0 we have

E(k + 1) − E(k) ≤ −
s2 ((k + 3)(k − 1) − Ls(k + 3)(k + 1))

2
‖∇ f (xk+1)‖2 .

Next, we provide the proof of Theorem 6.

Proof of Theorem 6 We start with the fact that

(k + 3)(k − 1) − Ls(k + 3)(k + 1) ≥ 0, (4.42)

for k ≥ 2. To show this, note that it suffices to guarantee

s ≤
1

L
·

k − 1

k + 1
, (4.43)

which is self-evident since s ≤ 1/(3L) by assumption.
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Next, by a telescoping-sum argument, Lemma 6 leads to the following inequalities

for k ≥ 4:

E(k) − E(3) =
k−1
∑

i=3

(E(i + 1) − E(i))

≤
k−1
∑

i=3

−
s2

2
[(i + 3)(i − 1) − Ls(i + 3)(i + 1)] ‖∇ f (xi+1)‖2

≤ −
s2

2
min

4≤i≤k
‖∇ f (xi )‖2

k−1
∑

i=3

[(i + 3)(i − 1) − Ls(i + 3)(i + 1)]

≤ −
s2

2
min

4≤i≤k
‖∇ f (xi )‖2

k−1
∑

i=3

[

(i + 3)(i − 1) −
1

3
(i + 3)(i + 1)

]

,

(4.44)

where the second inequality is due to (4.42). To further simplify the bound, observe

that

k−1
∑

i=3

[

(i + 3)(i − 1) −
1

3
(i + 3)(i + 1)

]

=
2k3 − 38k + 60

9
≥

(k + 1)3

36
,

for k ≥ 4. Plugging this inequality into (4.44) yields

E(k) − E(3) ≤ −
s2(k + 1)3

72
min

4≤i≤k
‖∇ f (xi )‖2 ,

which gives

min
4≤i≤k

‖∇ f (xi )‖2 ≤
72(E(3) − E(k))

s2(k + 1)3
≤

72E(3)

s2(k + 1)3
. (4.45)

It is shown in “Appendix C.4” that E(3) ≤ E(2) ≤ 119 ‖x0 − x⋆‖2, for s ≤ 1/(3L).

As a consequence of this, (4.45) gives

min
4≤i≤k

‖∇ f (xi )‖2 ≤
8568 ‖x0 − x⋆‖2

s2(k + 1)3
. (4.46)

For completeness, “Appendix C.4” proves, via a brute-force calculation, that

‖∇ f (x0)‖2, ‖∇ f (x1)‖2, ‖∇ f (x2)‖2, and ‖∇ f (x3)‖2 are all bounded above by the

right-hand side of (4.46). This completes the proof of the first inequality claimed by

Theorem 6.
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For the second claim in Theorem 6, the definition of the Lyapunov function and its

decreasing property ensured by (4.42) implies

f (xk) − f (x⋆) ≤
E(k)

s(k + 3)(k + 1)
≤

E(2)

s(k + 3)(k + 1)
≤

119 ‖x0 − x⋆‖2

s(k + 1)2
,

(4.47)

for all k ≥ 2. “Appendix C.4” establishes that f (x0) − f (x⋆) and f (x1) − f (x⋆) are

bounded by the right-hand side of (4.47). This completes the proof. ⊓⊔
In passing, we remark that the gradient correction sheds light on the superiority of

the high-resolution ODE over its low-resolution counterpart, just as in Sect. 3. Indeed,

the absence of the gradient correction in the low-resolution ODE leads to the lack of

the term (k +1)s∇ f (xk) in the Lyapunov function (see Section 4 of [41]), as opposed

to the high-resolution Lyapunov function (4.41). Accordingly, it is unlikely to carry

over the bound E(k + 1) − E(k) ≤ −O(s2k2‖∇ f (xk+1)‖2) of Lemma 6 to the low-

resolution case and, consequently, the low-resolution ODE approach pioneered by [41]

is insufficient to obtain the O(L2/k3) rate for squared gradient norm minimization.

5 Extensions

Motivated by the high-resolution ODE (1.12) of NAG-C, this section considers a family

of generalized high-resolution ODEs that take the form

Ẍ +
α

t
Ẋ + β

√
s∇2 f (X)Ẋ +

(

1 +
α
√

s

2t

)

∇ f (X) = 0, (5.48)

for t ≥ α
√

s/2, with initial conditions X(α
√

s/2) = x0 and Ẋ(α
√

s/2) =
−

√
s∇ f (x0). As demonstrated in [6,41,42], the low-resolution counterpart (that is,

set s = 0) of (5.48) achieves acceleration if and only if α ≥ 3. Accordingly, we focus

on the case where the friction parameter α ≥ 3 and the gradient correction parameter

β > 0. An investigation of the case of α < 3 is left for future work.

By discretizing the ODE (5.48), we obtain a family of new accelerated methods for

minimizing smooth convex functions:

yk+1 = xk − βs∇ f (xk)

xk+1 = xk − s∇ f (xk) +
k

k + α
(yk+1 − yk),

(5.49)

starting with x0 = y0. The second line of the iteration is equivalent to

xk+1 =
(

1 −
1

β

)

xk +
1

β
yk+1 +

k

k + α
(yk+1 − yk).

In Sect. 5.1, we study the convergence rates of this family of generalized NAC-C

algorithms along the lines of Sect. 4. To further our understanding of (5.49), Sect.
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5.2 shows that this method in the super-critical regime (that is, α > 3) converges to

the optimum faster than O(1/(sk2)). As earlier, the proofs of all the results follow

the high-resolution ODE framework introduced in Sect. 2. Proofs are deferred to

“Appendix D”. Finally, we note that Sect. 6 briefly sketches the extensions along this

direction for NAG-SC.

5.1 Convergence rates

The theorem below characterizes the convergence rates of the generalized NAG-

C (5.49).

Theorem 7 Let f ∈ F1
L(Rn), α ≥ 3, and β > 1

2
. There exists cα,β > 0 such that,

taking any step size 0 < s ≤ cα,β/L, the iterates {xk}∞k=0 generated by the generalized

NAG-C (5.49) obey

min
0≤i≤k

‖∇ f (xi )‖2 ≤
Cα,β‖x0 − x⋆‖2

s2(k + 1)3
, (5.50)

for all k ≥ 0. In addition, we have

f (xk) − f (x⋆) ≤
Cα,β‖x0 − x⋆‖2

s(k + 1)2
,

for all k ≥ 0. The constants cα,β and Cα,β only depend on α and β.

The proof of Theorem 7 is given in “Appendix D.1” for α = 3 and “Appendix D.1”

for α > 3. This theorem shows that the generalized NAG-C achieves the same rates as

the original NAG-C in both squared gradient norm and function value minimization.

The constraint β > 1
2

reveals that further leveraging of the gradient correction does

not hurt acceleration, but perhaps not the other way around (note that NAG-C in its

original form corresponds to β = 1). It is an open question whether this constraint is

a technical artifact or is fundamental to acceleration.

5.2 Faster convergence in the super-critical regime

We turn to the case in which α > 3, where we show that the generalized NAG-C in this

regime attains a faster rate for minimizing the function value. The following propo-

sition provides a technical inequality that motivates the derivation of the improved

rate.

Proposition 3 Let f ∈ F1
L(Rn), α > 3, and β > 1

2
. There exists c′

α,β > 0 such that,

taking any step size 0 < s ≤ c′
α,β/L, the iterates {xk}∞k=0 generated by the generalized

NAG-C (5.49) obey

∞
∑

k=0

[

(k + 1)
(

f (xk) − f (x⋆)
)

+ s(k + 1)2 ‖∇ f (xk)‖2
]

≤
C ′

α,β ‖x0 − x⋆‖2

s
,

123



B. Shi et al.

where the constants c′
α,β and C ′

α,β only depend on α and β.

In relating to Theorem 7, one can show that Proposition 3 in fact implies (5.50) in

Theorem 7. To see this, note that for k ≥ 1, one has

min
0≤i≤k

‖∇ f (xi )‖2 ≤
∑k

i=0 s(i + 1)2 ‖∇ f (xi )‖2

∑k
i=0 s(i + 1)2

≤
C ′

α,β‖x0−x⋆‖2

s
s
6
(k + 1)(k + 2)(2k + 1)

= O

(

‖x0 − x⋆‖2

s2k3

)

,

where the second inequality follows from Proposition 3.

Proposition 3 can be thought of as a generalization of Theorem 6 of [41]. In par-

ticular, this result implies an intriguing and important message. To see this, first note

that, by taking s = O(1/L), Proposition 3 gives

∞
∑

k=0

(k + 1)
(

f (xk) − f (x⋆)
)

= O(L
∥
∥x0 − x⋆

∥
∥

2
), (5.51)

which would not be valid if f (xk)− f (x⋆) ≥ cL ‖x0 − x⋆‖2 /k2 for a constant c > 0.

Thus, it is tempting to suggest that there might exist a faster convergence rate in the

sense that

f (xk) − f (x⋆) ≤ o

(

L ‖x0 − x⋆‖2

k2

)

. (5.52)

This faster rate is indeed achievable as we show next, though there are examples where

(5.51) and f (xk) − f (x⋆) = O(L ‖x0 − x⋆‖2 /k2) are both satisfied but (5.52) does

not hold (a counterexample is given in “Appendx D.1”).

Theorem 8 Under the same assumptions as in Proposition 3, taking the step size

s = c′
α,β/L, the iterates {xk}∞k=0 generated by the generalized NAG-C (5.49) starting

from any x0 �= x⋆ satisfy

lim
k→∞

k2( f (xk) − f (x⋆))

L ‖x0 − x⋆‖2
= 0.

Figures 5 and 6 present several numerical studies concerning the prediction of

Theorem 8. For a fixed dimension n, the convergence in Theorem 8 is uniform over

functions inF1 = ∪L>0F
1
L and, consequently, is independent of the Lipschitz constant

L and the initial point x0. In addition to following the high-resolution ODE framework,

the proof of this theorem reposes on the finiteness of the series in Proposition 3. See

“Appendices D.1” and “D.2” for the full proofs of the proposition and the theorem,

respectively.
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Fig. 5 Scaled error s(k + 1)2( f (xk ) − f (x⋆)) of the generalized NAG-C (5.49) with various (α, β). The

setting is the same as the left plot of Fig. 4, with the objective f (x) = 1
2

〈Ax, x〉 + 〈b, x〉. The step size is

s = 10−1‖A‖−1
2 . The left shows the short-time behaviors of the methods, while the right focuses on the

long-time behaviors. The scaled error curves with the same β are very close to each other in the short-time

regime, but in the long-time regime, the scaled error curves with the same α almost overlap. The four scaled

error curves slowly tend to zero

Fig. 6 Scaled error s(k + 1)2( f (xk ) − f (x⋆)) of the generalized NAG-C (5.49) with various (α, β). The

setting is the same as the right plot of Fig. 4, with the objective f (x) = ρ log

{

200∑

i=1

exp
[

(〈ai , x〉 − bi ) /ρ
]

}

.

The step size is s = 0.1. This set of simulation studies implies that the convergence in Theorem 8 is slow

for some problems

In the literature, [5,8] use low-resolution ODEs to establish the faster rate o(1/k2)

for the generalized NAG-C (5.49) in the special case of β = 1. In contrast, our proof

of Theorem 8 is more general and applies to a broader class of methods. Notably, [5,8]

show in addition that the iterates of NAG-C converge in this regime (see also [17]).

In passing, we make the observation that Proposition 3 reveals that
∑∞

k=1 sk2

‖∇ f (xk)‖2 ≤ C ′
α,β‖x0−x⋆‖2

s
, which would not hold if min0≤i≤k ‖∇ f (xi )‖2 ≥

c‖x0 − x⋆‖2/(s2k3) for all k and a constant c > 0. In view of the above, it might

be true that the rate of the generalized NAG-C for minimizing the squared gradient

norm can be improved to min0≤i≤k ‖∇ f (xi )‖2 = o
(

‖x0−x⋆‖2

s2k3

)

. We leave the proof

or disproof of this asymptotic result for future research.

123



B. Shi et al.

6 Discussion

In this paper, we have proposed high-resolution ODEs for modeling three first-order

optimization methods—the heavy-ball method, NAG-SC, and NAG-C. These new

ODEs are more faithful surrogates for the corresponding discrete optimization methods

than existing ODEs in the literature, thus serving as a more effective tool for under-

standing, analyzing, and generalizing first-order methods. Using this tool, we identified

a term that we refer to as “gradient correction” in NAG-SC and in its high-resolution

ODE, and we demonstrate its critical effect in making NAG-SC an accelerated method,

as compared to the heavy-ball method. We also showed via the high-resolution ODE

of NAG-C that this method minimizes the squared norm of the gradient at a faster rate

than expected for smooth convex functions, and again the gradient correction is the

key to this rate. Finally, the analysis of this tool suggested a new family of accelerated

methods with the same optimal convergence rates as NAG-C.

The aforementioned results are obtained using the high-resolution ODEs in con-

junction with a new framework for translating findings concerning the amenable ODEs

into those of the less “user-friendly” discrete methods. This framework encodes an

optimization property under investigation into a continuous-time Lyapunov function

for an ODE and a discrete-time Lyapunov function for the discrete method. As an

appealing feature of this framework, the transformation from the continuous Lya-

punov function to its discrete version is through a phase-space representation. This

representation links continuous objects such as position and velocity variables to their

discrete counterparts in a faithful manner, permitting a transparent analysis of the three

discrete methods that we studied.

There are a number of avenues open for future research using the high-resolution

ODE framework. First, the discussion of Sect. 5 can carry over to the heavy-ball method

and NAG-SC, which correspond to the high-resolution ODE, Ẍ(t) + 2
√

μẊ(t) +
β
√

s∇2 f (X(t))Ẋ(t) +
(

1 + √
μs

)

∇ f (X(t)) = 0, with β = 0 and β = 1, respec-

tively. This ODE with a general 0 < β < 1 corresponds to a new algorithm that can be

thought of as an interpolation between the two methods. It is of interest to investigate

the convergence properties of this class of algorithms. Second, we recognize that new

optimization algorithms are obtained in [43] by using different discretization schemes

on low-resolution ODE. Hence, a direction of interest is to apply the techniques therein

to our high-resolution ODEs and to explore possible appealing properties of the new

methods. Third, the technique of dimensional analysis, which we have used to derive

high-resolution ODEs, can be further used to incorporate even higher-order powers

of
√

s into the derivation of ODEs. This might lead to further fine-grained findings

concerning the discrete methods. Last, the powerful toolbox developed for inertial

dynamics might provide further insight in the analysis of our high-resolution ODEs

[1,2,7,9,10].

More broadly, we wish to remark on possible extensions of the high-resolution

ODE framework beyond smooth convex optimization in the Euclidean setting. In the

non-Euclidean case, it would be interesting to derive a high-resolution ODE for mirror

descent [43]. This framework might also admit extensions to non-smooth optimiza-

tion with proximal methods and stochastic optimization, where the ODEs are replaced,

respectively, by differential inclusions and stochastic differential equations. Finally,
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recognizing that the high-resolution ODEs are well-defined for nonconvex functions,

we believe that this framework will provide more accurate characterization of local

behaviors of first-order algorithms near saddle points [20,26]. On a related note, given

the centrality of the problem of finding an approximate stationary point in the non-

convex setting [16], it is worth using the high-resolution ODE framework to explore

possible applications of the faster rate for minimizing the squared gradient norm that

we have uncovered.
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Appendix

A Technical details in Sect. 2

A.1 Derivation of high-resolution ODEs

In this section, we formally derive the high-resolution ODEs of the heavy-ball method

and NAG-C. Let tk = k
√

s. For the moment, let X(t) be a sufficiently smooth map

from [0,∞) (the heavy-ball method) or [1.5
√

s,∞) (NAG-C) to R
n , with the corre-

spondence X(tk) = X(k
√

s) = xk , where {xk}∞k=0 is the sequence of iterates generated

by the heavy-ball method or NAG-C, depending on the context.

The heavy-ball method. For any function f (x) ∈ S2
μ,L(Rn), setting α = 1−√

μs

1+√
μs

,

multiplying both sides of (1.2) by
1+√

μs

1−√
μs

· 1
s

and rearranging the equality, we obtain

xk+1 + xk−1 − 2xk

s
+

2
√

μs

1 − √
μs

xk+1 − xk

s
+

1 + √
μs

1 − √
μs

∇ f (xk)

= 0. (A.53)

Plugging (2.13) into (A.53), we have

Ẍ(tk) + O
(√

s
)

+
2
√

μ

1 − √
μs

[

Ẋ(tk)

+
1

2

√
s Ẍ(tk) + O

(
(√

s
)2
)
]
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+
1 + √

μs

1 − √
μs

∇ f (X(tk)) = 0.

Ignoring the O(s) term, we obtain the high-resolution ODE (1.10) for the heavy-ball

method Ẍ + 2
√

μẊ +
(

1 + √
μs

)

∇ f (X) = 0.

NAG-C For any function f (x) ∈ F2
L(Rn), multiplying both sides of (1.5) by

1+√
μs

1−√
μs

· 1
s

and rearranging the equality, we get

xk+1 + xk−1 − 2xk

s
+

3

k
·

xk+1 − xk

s
+ (∇ f (xk) − ∇ f (xk−1)) +

(

1 +
3

k

)

∇ f (xk)

= 0. (A.54)

For convenience, we slightly change the definition tk = k
√

s + (3/2)
√

s instead of

tk = k
√

s. Plugging (2.13) into (A.54), we have

Ẍ(tk) + O
(
(√

s
)2
)

+
3

tk − (3/2)
√

s

[

Ẋ(tk) +
1

2

√
s Ẍ(tk) + O

(
(√

s
)2
)
]

+∇2 f (X(tk))Ẋ(tk)
√

s + O
(
(√

s
)2
)

+
tk + (3/2)

√
s

tk − (3/2)
√

s
∇ f (X(tk)) = 0.

Ignoring any O(s) terms, we obtain the high-resolution ODE (1.12) for NAG-C Ẍ +
3
t

Ẋ +
√

s∇2 f (X)Ẋ +
(

1 + 3
√

s
2t

)

∇ f (X) = 0.

B Technical details in Sect. 3

B.2 Proof of Lemma 2

Using the Cauchy–Schwarz inequality ‖Ẋ + 2
√

μ(X − x⋆)‖2 ≤ 2
(

‖Ẋ‖2 + 4μ

‖X − x⋆‖2
2

)

, the Lyapunov function (3.21) can be estimated as

E ≤ (1 + √
μs)

(

f (X) − f (x⋆)
)

+
3

4
‖Ẋ‖2 + 2μ

∥
∥X − x⋆

∥
∥

2
. (B.55)

Along the solution to the high-resolution ODE (1.10), the time derivative of the Lya-

punov function (3.21) is

dE

dt
= (1 + √

μs)
〈

∇ f (X), Ẋ
〉

+
1

2

〈

Ẋ ,−2
√

μẊ − (1 + √
μs)∇ f (X)

〉

+
1

2

〈

Ẋ + 2
√

μ
(

X − x⋆
)

,−(1 + √
μs)∇ f (X)

〉

= −√
μ

[

‖Ẋ‖2
2 + (1 + √

μs)
〈

∇ f (X), X − x⋆
〉
]

.
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With (B.55) and the inequality for any function f (x) ∈ S2
μ,L(Rn) , f (x⋆) ≥ f (X) +

〈∇ f (X), x⋆ − X〉 + μ
2

‖X − x⋆‖2
2, the time derivative of the Lyapunov function can

be estimated as

dE

dt
≤ −√

μ

[

(1 + √
μs)( f (X) − f (x⋆)) + ‖Ẋ‖2

2 +
μ

2

∥
∥X − x⋆

∥
∥

2

2

]

≤ −
√

μ

4
E

Hence, the proof is complete.

B.3 Proof of Lemma 4

With the phase representation of the heavy-ball method (3.29) and Cauchy-Schwarz

inequality, we have

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆)

∥
∥
∥
∥

2

2

=
∥
∥
∥
∥

1 + √
μs

1 − √
μs

vk +
2
√

μ

1 − √
μs

(xk − x⋆)

∥
∥
∥
∥

2

2

≤ 2

[
(

1 + √
μs

1 − √
μs

)2

‖vk‖2
2 +

4μ

(1 − √
μs)2

∥
∥xk − x⋆

∥
∥

2

2

]

.

The discrete Lyapunov function (3.28) can be estimated as

E(k) ≤
1 + √

μs

1 − √
μs

(

f (xk) − f (x⋆)
)

+
1 + μs

(1 − √
μs)2

‖vk‖2
2 +

2μ

(1 − √
μs)2

∥
∥xk − x⋆

∥
∥

2

2
.

(B.56)

For convenience, we also split the discrete Lyapunov function (3.28) into three parts

and mark them as below

E(k) =
1 + √

μs

1 − √
μs

(

f (xk) − f (x⋆)
)

︸ ︷︷ ︸

I

+
1

4
‖vk‖2

︸ ︷︷ ︸

II

+
1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆)

∥
∥
∥
∥

2

︸ ︷︷ ︸

III

,

where the three parts I, II and III are corresponding to potential, kinetic energy and

mixed energy in classical mechanics, respectively.

– For the part I, potential, with the basic convex of f (x) ∈ S1
μ,L(Rn)

f (xk) ≥ f (xk+1) + 〈∇ f (xk+1), xk − xk+1〉 +
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

2 ,

we have

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
(

1 + √
μs

1 − √
μs

)
(

f (xk) − f (x⋆)
)
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≤
(

1 + √
μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk〉

︸ ︷︷ ︸

I1

−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2

.

– For the part II, kinetic energy, with the phase representation of the heavy-ball

method (3.29), we have

1

4
‖vk+1‖2 −

1

4
‖vk‖2 =

1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

= −
√

μs

1 − √
μs

‖vk+1‖2

︸ ︷︷ ︸

II1

−
1

2
·

1 + √
μs

1 − √
μs

·
√

s 〈∇ f (xk+1), vk+1〉
︸ ︷︷ ︸

II2

−
1

4
‖vk+1 − vk‖2

︸ ︷︷ ︸

II3

– For the part III, mixed energy, with the phase representation of the heavy-ball

method (3.29), we have

1

4

∥
∥
∥
∥
vk+1 +

2
√

μ

1 − √
μs

(xk+2 − x⋆)

∥
∥
∥
∥

2

−
1

4

∥
∥
∥
∥
vk +

2
√

μ

1 − √
μs

(xk+1 − x⋆)

∥
∥
∥
∥

2

=
1

4

〈

vk+1 − vk +
2
√

μ

1 − √
μs

(xk+2 − xk+1), vk+1

+vk +
2
√

μ

1 − √
μs

(xk+2 + xk+1 − 2x⋆)

〉

= −
1

2
·

1 + √
μs

1 − √
μs

·
√

s 〈∇ f (xk+1),

vk+1 +
2
√

μ

1 − √
μs

(xk+2 − x⋆)

〉

−
s

4

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

= −
1 + √

μs

1 − √
μs

·
√

μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

︸ ︷︷ ︸

III1

−
1

2

(
1 + √

μs

1 − √
μs

)2 √
s 〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

III2

−
s

4

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III3

.

Next, we calculate the difference of discrete Lyapunov function (2.18) at the k-th

iteration by the simple operation as

E(k + 1) − E(k) ≤
(

1 + √
μs

1 − √
μs

)√
s 〈∇ f (xk+1), vk〉

︸ ︷︷ ︸

I1
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−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2

−
√

μs

1 − √
μs

‖vk+1‖2

︸ ︷︷ ︸

II1

−
1

2
·

1 + √
μs

1 − √
μs

·
√

s 〈∇ f (xk+1), vk+1〉
︸ ︷︷ ︸

II2

−
1

4
‖vk+1 − vk‖2

︸ ︷︷ ︸

II3

−
1 + √

μs

1 − √
μs

·
√

μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

︸ ︷︷ ︸

III1

−
1

2

(
1 + √

μs

1 − √
μs

)2 √
s 〈∇ f (xk+1), vk+1〉

︸ ︷︷ ︸

III2

−
s

4

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III3

= −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

+ ‖vk+1‖2

)

︸ ︷︷ ︸

II1+III1

−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

︸ ︷︷ ︸

I2

−
1

2

(
1 + √

μs

1 − √
μs

)√
s

〈

∇ f (xk+1),

(
1 + √

μs

1 − √
μs

)

vk+1 − vk

〉

︸ ︷︷ ︸

1
2 I1+III2

−
1

4

(

‖vk+1 − vk‖2 + 2
√

s ·
1 + √

μs

1 − √
μs

〈∇ f (xk+1), vk+1 − vk〉 + s

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

)

︸ ︷︷ ︸

1
2 I1+II2+II3+III3

.

With the phase representation of the heavy-ball method (3.29), we have

1

2
I1 + III2 = −

1

2

(
1 + √

μs

1 − √
μs

)√
s 〈∇ f (xk+1),

(
1 + √

μs

1 − √
μs

)

vk+1 − vk

〉

=
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2 ,

and

1

2
I1 + II2 + II3 + III3 = −

1

4

[

‖vk+1 − vk‖2 + 2
√

s ·
1 + √

μs

1 − √
μs

〈∇ f (xk+1),

vk+1 − vk〉 + s

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

]
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= −
1

4

∥
∥
∥
∥
vk+1 − vk +

1 + √
μs

1 − √
μs

·
√

s∇ f (xk+1)

∥
∥
∥
∥

2

≤ 0.

Now, the difference of discrete Lyapunov function (3.28) can be rewritten as

E(k + 1) − E(k) ≤ −
√

μs

1 − √
μs

(
1 + √

μs

1 − √
μs

〈

∇ f (xk+1), xk+1 − x⋆
〉

+ ‖vk+1‖2
)

−
1

2L

(
1 + √

μs

1 − √
μs

)

‖∇ f (xk+1) − ∇ f (xk)‖2

+
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2 .

With the inequality for any function f (x) ∈ S1
μ,L(Rn) f (x⋆) ≥ f (xk+1) +

〈∇ f (xk+1), x⋆ − xk+1〉 + μ
2

‖xk+1 − x⋆‖2, we have

E(k + 1) − E(k) ≤ −√
μs

[
1 + √

μs

(1 − √
μs)2

(

f (xk+1) − f (x⋆)
)

+
μ

2
·

1 + √
μs

(1 − √
μs)2

∥
∥xk+1 − x⋆

∥
∥

2 +
1

1 − √
μs

‖vk+1‖2

]

+
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

≤ −√
μs

[
1 + √

μs

1 − √
μs

(

f (xk+1) − f (x⋆)
)

+
μ

2
·

1 + √
μs

1 − √
μs

∥
∥xk+1 − x⋆

∥
∥

2 +
1

1 − √
μs

‖vk+1‖2

]

+
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

≤ −√
μs

[
1

4
·

1 + √
μs

1 − √
μs

(

f (xk+1) − f (x⋆)
)

+
1

1 − √
μs

‖vk+1‖2 +
μ

2
·

1 + √
μs

1 − √
μs

∥
∥xk+1 − x⋆

∥
∥

2
]

−
[

3

4

√
μs

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

]

.
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Comparing the coefficient of the estimate of Lyapunov function (B.56), we have

E(k + 1) − E(k) ≤ −√
μs min

{
1 − √

μs

1 + √
μs

,
1

4

}

E(k + 1)

−
[

3

4

√
μs

(
1 + √

μs

1 − √
μs

)
(

f (xk+1) − f (x⋆)
)

−
s

2

(
1 + √

μs

1 − √
μs

)2

‖∇ f (xk+1)‖2

]

.

The proof is complete.

C Technical details in Sect. 4

C.4 Technical details in Proof of Theorem 6

C.4.1 Iterates (xk, yk) at k = 1, 2, 3

The iterate (xk, yk) at k = 1 is

x1 = y1 = x0 − s∇ f (x0). (C.57)

When k = 2, the iterate (xk, yk) is

⎧

⎨

⎩

y2 = x0 − s∇ f (x0) − s∇ f (x0 − s∇ f (x0))

x2 = x0 − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0)).

(C.58)

When k = 3, the iterate (xk, yk) is

⎧

⎪
⎪
⎨

⎪
⎪
⎩

y3 = x0 − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0)) − s∇ f

(

x0 − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0))

)

x3 = x0 − s∇ f (x0) −
27

20
s∇ f (x0 − s∇ f (x0)) −

7

5
s∇ f

(

x0 − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0))

)

.

(C.59)

C.4.2 Estimate for ‖∇f (xk)‖
2 at k = 0, 1, 2, 3

From (C.57), we have

‖∇ f (x1)‖2 = ‖∇ f (x0 − s∇ f (x0))‖2 ≤ L2
∥
∥x0 − x⋆ − s∇ f (x0)

∥
∥

2

≤ 2L2(1 + L2s2)
∥
∥x0 − x⋆

∥
∥

2
. (C.60)
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According to (C.59), we have

‖∇ f (x2)‖2 =
∥
∥
∥
∥
∇ f

(

x0 − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0))

)∥
∥
∥
∥

2

≤ L2

∥
∥
∥
∥

x0 − x⋆ − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0))

∥
∥
∥
∥

2

≤ 3L2

(

1 +
33

8
L2s2 +

25

8
L4s4

)
∥
∥x0 − x⋆

∥
∥

2
.

From (C.57) and-(C.59), we have

‖∇ f (x3)‖2 ≤ L2
∥
∥x3 − x⋆

∥
∥

2

≤ L2

∥
∥
∥
∥

x0 − x⋆ − s∇ f (x0) −
27

20
s∇ f (x1) −

7

5
s∇ f (x2)

∥
∥
∥
∥

2

=
L2(40 + 381L2s2 + 1156L4s4 + 735L6s6)

10

∥
∥x0 − x⋆

∥
∥

2
.(C.61)

Taking s ≤ 1/(3L) and using (C.60), (C.61) and (C.61), we have

‖∇ f (x0)‖2 ≤
‖x0 − x⋆‖2

9s2
, ‖∇ f (x1)‖2 ≤

20 ‖x0 − x⋆‖2

81s2
,

‖∇ f (x2)‖2 ≤
485 ‖x0 − x⋆‖2

972s2
, ‖∇ f (x3)‖2 ≤

2372 ‖x0 − x⋆‖2

2187s2
.

C.4.3 Estimate for f (xk) − f (x⋆) at k = 0, 1

According to (C.57), we have

f (x1) − f (x⋆) ≤
L

2

∥
∥x1 − x⋆

∥
∥

2 ≤
L

2

∥
∥x0 − s∇ f (x0) − x⋆

∥
∥

2

≤ L(1 + L2s2)
∥
∥x0 − x⋆

∥
∥

2
. (C.62)

Taking s ≤ 1/(3L), (C.62) tells us that

f (x0) − f (x⋆) ≤
‖x0 − x⋆‖2

6s
, f (x1) − f (x⋆) ≤

10 ‖x0 − x⋆‖2

27s
.

C.4.4 Estimate for Lyapunov function E(2) and E(3)

With the phase-space representation form (4.40), we have

v2 =
x3 − x2√

s
=

1

10
∇ f (x1) +

7

5
∇ f (x2). (C.63)
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According to (4.41), the Lyapunov function E(2) can be written as

E(2) = 15s
(

f (x2) − f (x⋆)
)

+
1

2

∥
∥2(x2 − x⋆) + 5

√
sv2 + 3s∇ f (x2)

∥
∥ .2

With (C.63) and the Cauchy-Schwarz inequality, we have

E(2) ≤
15Ls

2

∥
∥x2 − x⋆

∥
∥

2 +
3

2

(

4
∥
∥x2 − x⋆

∥
∥

2 + 25s ‖v2‖2 + 9s2 ‖∇ f (x2)‖2
)

=
(

15Ls

2
+ 6

)
∥
∥x2 − x⋆

∥
∥

2 +
321

2
s2 ‖∇ f (x2)‖2 +

3

4
s2 ‖∇ f (x1)‖2 .

Furthermore, with (C.58), we have

E(2) ≤
(

15Ls

2
+ 6

)∥
∥
∥
∥

x0 − x⋆ − s∇ f (x0) −
5

4
s∇ f (x0 − s∇ f (x0))

∥
∥
∥
∥

2

+
321

2
s2 ‖

∇ f (x2)‖2 +
3

4
s2 ‖∇ f (x1)‖2 .

Finally, with (C.60) and-(C.61), the Cauchy-Schwarz inequality tells

E(2) ≤
{[

3

16
(12 + 15Ls) +

963

16
L2s2

]
(

8 + 33L2s2 + 25L4s4
)

+
3

2
L2s2(1 + L2s2)

}

·
∥
∥x0 − x⋆

∥
∥

2

=
288 + 360Ls + 8916L2s2 + 1485L3s3 + 32703L4s4 + 1125L5s5 + 24075L6s6

16

·
∥
∥x0 − x⋆

∥
∥

2
. (C.64)

By Lemma 6, when the step size s ≤ 1/(3L), (C.64) tells us E(3) ≤ E(2) ≤
119 ‖x0 − x⋆‖2.

Proof of Lemma 6 The difference of the Lyapunov function (4.41) satisfies

E(k + 1) − E(k) = s(k + 3)(k + 1) ( f (xk+1) − f (xk)) + s(2k + 5)
(

f (xk+1) − f (x⋆)
)

+
〈

2(xk+2 − xk+1) +
√

s(k + 2)(vk+1 +
√

s∇ f (xk+1))

−
√

s(k + 1)(vk +
√

s∇ f (xk)),

2(xk+2 − x⋆) + (k + 2)
√

s(vk+1 +
√

s∇ f (xk+1))
〉

−
1

2

∥
∥2(xk+2 − xk+1) +

√
s(k + 2)(vk+1 +

√
s∇ f (xk+1))

−(k + 1)
√

s(vk +
√

s∇ f (xk))
∥
∥

2

= s(k + 3)(k + 1) ( f (xk+1) − f (xk)) + s(2k + 5)
(

f (xk+1) − f (x⋆)
)

+
〈

−s(k + 3)∇ f (xk+1), 2(xk+2 − x⋆) +
√

s(k + 2)(vk+1 +
√

s∇ f (xk+1))
〉

−
1

2
‖s(k + 3)∇ f (xk+1)‖2
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= s(k + 3)(k + 1) ( f (xk+1) − f (xk)) + s(2k + 5)
(

f (xk+1) − f (x⋆)
)

− s
3
2 (k + 3)(k + 4) 〈∇ f (xk+1), vk+1〉 − 2s(k + 3)

〈

∇ f (xk+1), xk+1 − x⋆
〉

− s2(k + 3)(k + 2) ‖∇ f (xk+1)‖2 −
s2

2
(k + 3)2 ‖∇ f (xk+1)‖2 ,

where the last two equalities are due to

(k + 3)
(

vk +
√

s∇ f (xk)
)

− k
(

vk−1 +
√

s∇ f (xk−1)
)

= −k
√

s∇ f (xk),

(C.65)

which follows from the phase-space representation (4.40). Rearranging the identity

for E(k + 1) − E(k), we get

E(k + 1) − E(k) = s(k + 3)(k + 1) ( f (xk+1) − f (xk))

− s
3
2 (k + 3)(k + 4) 〈∇ f (xk+1), vk+1〉

+ s(2k + 5)
(

f (xk+1) − f (x⋆)
)

− s(2k + 6)
〈

∇ f (xk+1), xk+1 − x⋆
〉

−
s2(k + 3)(3k + 7)

2
‖∇ f (xk+1)‖2 .

(C.66)

The next step is to recognize that the convexity and the L-smoothness of f gives

f (xk+1) − f (xk) ≤ 〈∇ f (xk+1), xk+1 − xk〉 −
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

f (xk+1) − f (x⋆) ≤
〈

∇ f (xk+1), xk+1 − x⋆
〉

.

Plugging these two inequalities into (C.66), we have

E(k + 1) − E(k) ≤ −s
3
2 (k + 3) 〈∇ f (xk+1), (k + 4)vk+1 − (k + 1)vk〉

−
s

2L
(k + 3)(k + 1) ‖∇ f (xk+1) − ∇ f (xk)‖2

− s
〈

∇ f (xk+1), xk+1 − x⋆
〉

−
s2(k + 3)(3k + 7)

2
‖∇ f (xk+1)‖2

≤ −s
3
2 (k + 3) 〈∇ f (xk+1), (k + 4)vk+1 − (k + 1)vk〉

−
s

2L
(k + 3)(k + 1) ‖∇ f (xk+1) − ∇ f (xk)‖2

−
s2(k + 3)(3k + 7)

2
‖∇ f (xk+1)‖2 ,

where the second inequality uses the fact that 〈∇ f (xk+1), xk+1 − x⋆〉 ≥ 0.

123



Understanding the acceleration phenomenon via high…

To further bound E(k + 1) − E(k), making use of (C.65) with k + 1 in place of k,

we get

E(k + 1) − E(k) ≤ s2(k + 3)(k + 1) 〈∇ f (xk+1),∇ f (xk+1) − ∇ f (xk)〉

−
s

2L
(k + 3)(k + 1) ‖∇ f (xk+1) − ∇ f (xk)‖2

− s2

(
(k + 3)(3k + 7)

2
− (k + 3)(k + 4)

)

‖∇ f (xk+1)‖2

=
Ls3(k + 3)(k + 1)

2
‖∇ f (xk+1)‖2 −

s(k + 3)(k + 1)

2L

‖(1 − Ls)∇ f (xk+1) − ∇ f (xk)‖2

−
s2(k + 3)(k − 1)

2
‖∇ f (xk+1)‖2

≤ −
s2

2
[(k + 3)(k − 1) − Ls(k + 3)(k + 1)] ‖∇ f (xk+1)‖2 .

This completes the proof. ⊓⊔

C Nesterov’s lower bound

Recall [36, Theorem 2.1.7], for any k, 1 ≤ k ≤ (1/2)(n − 1), and any x0 ∈ R
n , there

exists a function f ∈ F1
L(Rn) such that any first-order method obeys

f (xk) − f (x⋆) ≥
3L ‖x0 − x⋆‖2

32(k + 1)2
.

Using the basic inequality for f (x) ∈ F1
L(Rn),

‖∇ f (xk)‖
∥
∥xk − x⋆

∥
∥ ≥

〈

∇ f (xk), xk − x⋆
〉

≥ f (xk) − f (x⋆),

we have

‖∇ f (xk)‖ ≥
3L ‖x0 − x⋆‖2

32(k + 1)2 max
1≤k≤ n−1

2

‖xk − x⋆‖
,

for 1 ≤ k ≤ (1/2)(n − 1).
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D Technical details in Sect. 5

D.1 Proof of Theorem 7: Case˛ = 3

Before starting to prove Theorem 7, we first look back our high-resolution ODE

framework in Sect. 2.

– Step 1, the generalized high-resolution ODE has been given in (5.48).

– Step 2, the continuous Lyapunov function is constructed as

E(t) = t

[

t +
(

3

2
− β

)√
s

]
(

f (X(t)) − f (x⋆)
)

+
1

2

∥
∥2(X(t) − x⋆) + t

(

Ẋ(t) + β
√

s∇ f (X(t))
)∥
∥

2
. (D.67)

Following this Lyapunov function (D.67), we can definitely obtain similar results

as Theorem 5 and Corollary 1. The detailed calculation, about the estimate of the

optimal constant β and how the constant β influence the initial point, is left for

readers.

– Step 3, before constructing discrete Lyapunov functions, we show the phase-space

representation (5.49) as

xk − xk−1 =
√

svk−1

vk − vk−1 = −
α

k
vk − β

√
s (∇ f (xk) − ∇ f (xk−1))

−
(

1 +
α

k

)√
s∇ f (xk).

(D.68)

Now, we show how to construct the discrete Lyapunov function and analyze the algo-

rithms (5.49) with α = 3 in order to prove Theorem 7.

D.1.1 Case:ˇ < 1

When β < 1, we know that the function g(k) = k+3
k+3−β

decreases monotonically.

Hence we can construct the discrete Lyapunov function as

E(k) = s(k + 4)(k + 1) ( f (xk) − f (x⋆))

+ k+3
2(k+3−β)

∥
∥2(xk+1 − x⋆) +

√
s(k + 1)

(

vk + β
√

s∇ f (xk)
)∥
∥

2
, (D.69)

which is slightly different from the discrete Lyapunov function (4.41) for NAG-C.

When β → 1, the discrete Lyapunov function (D.69) approximate to (4.41) as k → ∞.

With the phase-space representation (D.68) for α = 3, we can obtain

(k + 3)
(

vk + β
√

s∇ f (xk)
)

− k
(

vk−1 + β
√

s∇ f (xk−1)
)
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= −
√

s (k + 3 − 3β) ∇ f (xk). (D.70)

The difference of the discrete Lyapunov function (D.69) of the k-th iteration is

E(k + 1) − E(k) ≤ s (k + 4) (k + 1) ( f (xk+1) − f (xk))

+ s(2k + 6)
(

f (xk+1) − f (x⋆)
)

−
〈

s(k + 4)∇ f (xk+1), 2(xk+2 − x⋆)

+
√

s(k + 2)
(

vk+1 + β
√

s∇ f (xk+1)
)〉

−
1

2
s2(k + 4) (k + 4 − β) ‖∇ f (xk+1)‖2 .

With the basic inequality of any function f (x) ∈ F1
L(Rn)

⎧

⎨

⎩

f (xk) ≥ f (xk+1) + 〈∇ f (xk+1), xk − xk+1〉 +
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

f (x⋆) ≥ f (xk+1) +
〈

∇ f (xk+1), x⋆ − xk+1

〉

,

and the phase-space representation (D.68) xk+2 = xk+1 +
√

svk+1, the difference of

the discrete Lyapunov function (D.69) can be estimated as

E(k + 1) − E(k) ≤ −s
3
2 (k + 4) 〈∇ f (xk+1), (k + 4)vk+1 − (k + 1)vk〉

−
s(k + 4)(k + 1)

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

− 2s
(

f (xk+1) − f (x⋆)
)

− s2 [β(k + 4)(k + 2)

+
1

2
(k + 4) (k + 4 − β)

]

‖∇ f (xk+1)‖2 .

Utilizing the phase-space representation (D.68) again, we calculate the difference of

the discrete Lyapunov function (D.69) as

E(k + 1) − E(k) ≤ −
[

β(k + 2) −
1

2
(k + 4 + β)

−
Lβ2s

2
(k + 1)

]

(k + 4)s2 ‖∇ f (xk+1)‖2 .

To guarantee that the Lyapunov function E(k) is decreasing, a sufficient condition is

β(k + 2) −
1

2
(k + 4 + β) −

Lβ2s

2
(k + 1) ≥ 0. (D.71)

Simple calculation tells us that (D.71) can be rewritten as

s ≤
(2β − 1)k + 3β − 4

(k + 1)Lβ2
=

1

Lβ2

(

2β − 1 +
β − 3

k + 1

)

. (D.72)
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Apparently, when β → 1, the step size satisfies 0 < s ≤ k−1
k+1

· 1
L

, which is consistent

with (4.43). Now, we turn to discuss the parameter 0 ≤ β < 1 case by case.

– When the parameter β ≤ 1/2, the sufficient condition (D.71) for the Lyapunov

function E(k) decreasing cannot be satisfied for sufficiently large k.

– When the parameter 1/2 < β < 1, since the function h(k) = 1
Lβ2

(

2β − 1 + β−3
k+1

)

increases monotonically for k ≥ 0, there exists k3,β =
⌊

4−3β
2β−1

⌋

+ 1 such that the

step size s ≤ (2β−1)k3,β+3β−4

(k3,β+1)Lβ2 works for any k ≥ k3,β (k3,β → 2 with β → 1).

Then, the difference of the discrete Lyapunov function (D.69) can be estimated as

E(k + 1) − E(k) ≤ −s2

(
2β − 1 − Lβ2s

2

)

(k − k3,β)2 ‖∇ f (xk+1)‖2 .

Here, the proof is actually complete. Without loss of generality, we briefly show

the expression is consistent with Theorem 7 and omit the proofs for the following

facts. When k ≥ k3,β + 1, there exists some constant C
0
3,β > 0 such that

E(k + 1) − E(k) ≤ −s2
C

0
3,β(k + 1)2 ‖∇ f (xk+1)‖2 .

For k ≤ k3,β , using mathematic induction, there also exists some constant C1
3,β > 0

such that for s = O(1/L), we have

‖∇ f (xk+1)‖2 ≤
C

1
3,β ‖x0 − x⋆‖2

s2
and f (xk) − f (x⋆)

≤
E(k)

4s
≤

C
1
3,β ‖x0 − x⋆‖2

s
.

D.1.2 Case:ˇ ≥ 1

When β ≥ 1, we know that the function g(k) = k+2
k+3−β

decreases monotonically.

Hence we can construct the discrete Lyapunov function as

E(k) = s(k + 3)(k + 1)
(

f (xk) − f (x⋆)
)

+
k + 2

2(k + 3 − β)

∥
∥2(xk+1 − x⋆)

+
√

s(k + 1)
(

vk + β
√

s∇ f (xk)
)∥
∥

2
, (D.73)

which for β = 1 is consistent with the discrete Lyapunov function (4.41) for NAG-C.

With the expression (D.70)

(k + 3)
(

vk + β
√

s∇ f (xk)
)

− k
(

vk−1 + β
√

s∇ f (xk−1)
)

= −
√

s (k + 3 − 3β) ∇ f (xk),
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the difference of the discrete Lyapunov function (D.73) of the k-th iteration is

E(k + 1) − E(k) ≤ s (k + 3) (k + 1) ( f (xk+1) − f (xk)) + s(2k + 5)

(

f (xk+1) − f (x⋆)
)

−
1

2
s2(k + 3) (k + 4 − β)

‖∇ f (xk+1)‖2

−
〈

s(k + 3)∇ f (xk+1), 2(xk+2 − x⋆)

+
√

s(k + 2)
(

vk+1 + β
√

s∇ f (xk+1)
)〉

.

With the basic inequality of any function f (x) ∈ F1
L(Rn)

⎧

⎨

⎩

f (xk) ≥ f (xk+1) + 〈∇ f (xk+1), xk − xk+1〉 +
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

f (x⋆) ≥ f (xk+1) +
〈

∇ f (xk+1), x⋆ − xk+1

〉

,

and the phase-space representation (D.68) xk+2 = xk+1 +
√

svk+1, the difference of

the discrete Lyapunov function (D.73) can be estimated as

E(k + 1) − E(k) ≤ −s
3
2 (k + 3) 〈∇ f (xk+1), (k + 4)vk+1 − (k + 1)vk〉

−
s(k + 3)(k + 1)

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

− 2s
(

f (xk+1) − f (x⋆)
)

− s2

[

β(k + 3)(k + 2) +
1

2
(k + 3) (k + 4 − β)

]

‖∇ f (xk+1)‖2 .

Utilize the phase-space representation (D.68) again, we calculate the difference of the

discrete Lyapunov function (D.73) as

E(k + 1) − E(k)

≤ −
[

β(k + 2) −
1

2
(k + 4 + β) −

Lβ2s

2
(k + 1)

]

(k + 3)s2 ‖∇ f (xk+1)‖2 .

Consistently, we can obtain the sufficient condition for the Lyapunov function E(k)

decreasing (D.71) and the sufficient condition for step size (D.72).

Now, we turn to discuss the parameter β ≥ 1 case by case.

– When the parameter β ≥ 3, since the function h(k) = 1
Lβ2

(

2β − 1 + β−3
k+1

)

decreases monotonically for k ≥ 0, then the condition of the step size s ≤
2β−1

(1+ǫ)Lβ2 <
2β−1

Lβ2 holds for (D.71), where ǫ > 0 is a real number. Hence, when

k ≥ k3,β + 1, where k3,β = max
{

0, ⌊β − 3⌋ + 1,

⌊
4−3β+Lβ2s

2β−1−Lβ2s

⌋

+ 1
}

, the differ-
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ence of the discrete Lyapunov function (D.73) can be estimated as

E(k + 1) − E(k) ≤ −s2

(
2β − 1 − Lβ2s

2

)

(k − k3,β)2 ‖∇ f (xk+1)‖2 .

– When the parameter 1 ≤ β < 3, since the function h(k) = 1
Lβ2

(

2β − 1 + β−3
k+1

)

increases monotonically for k ≥ 0, there exists k3,β = max {0, ⌊β − 3⌋ + 1,
⌊

4−3β
2β−1

⌋

+ 1
}

such that the step size s ≤ (2β−1)k3,β+3β−4

(k3,β+1)Lβ2 works for any k ≥ k3,β .

When β = 1, the step size satisfies 0 < s ≤ k−1
k+1

· 1
L

which is consistent with (4.43)

and k3,β = 2. Then, the difference of the discrete Lyapunov function (D.69) can

be estimated as

E(k + 1) − E(k) ≤ −s2

(
2β − 1 − Lβ2s

2

)

(k − k3,β)2 ‖∇ f (xk+1)‖2 .

for all k ≥ k3,β + 1.

By simple calculation, we complete the proof.

D Proof of Theorem 7: Case ˛ > 3

Before starting to prove Theorem 7: Case α > 3, we first also look back our high-

resolution ODE framework in Sect. 2.

– Step 1, the generalized high-resolution ODE has been given in (5.48).

– Step 2, the continuous Lyapunov function is constructed as

E(t) = t
[

t +
(α

2
− β

)√
s
]
(

f (X(t)) − f (x⋆)
)

+
1

2

∥
∥(α − 1)(X(t) − x⋆) + t

(

Ẋ(t) + β
√

s∇ f (X(t))
)∥
∥

2
, (D.74)

which is consistent with (D.74) for α → 3. Following this Lyapunov func-

tion (D.74), we can obtain

f (X(t)) − f (x⋆) ≤ O

(
‖X(t0) − x⋆‖2

(t − t0)2

)

∫ t

t0

u
(

f (X(u)) − f (x⋆)
)

+
√

su2 ‖∇ f (X(u))‖2 du ≤ O
(

‖X(t0) − x⋆‖2
)

(D.75)

for any t > t0 = max
{√

s(α/2 − β)(α − 2)/(α − 3),
√

s(α/2)
}

. The two

inequalities of (D.75) for the convergence rate of function value is stronger than

Corollary 1. The detailed calculation, about the estimate of the optimal constant

β and how the constant β influences the initial point, is left for readers.
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– Step 3, before constructing discrete Lyapunov functions, we look back the phase-

space representation (D.68)

xk − xk−1 =
√

svk−1

vk − vk−1 = −
α

k
vk − β

√
s (∇ f (xk) − ∇ f (xk−1)) −

(

1 +
α

k

)√
s∇ f (xk).

The discrete functional is constructed as

E(k) = s(k + 1)(k + α − β + 1)
(

f (xk) − f (x⋆)
)

+
1

2

∥
∥(α − 1)(xk+1 − x⋆) +

√
s(k + 1)

(

vk + β
√

s∇ f (xk)
)∥
∥

2
. (D.76)

When β = 1, with α → 3, the discrete Lyapunov function E(k) degenerates

to (4.41).

Now, we procced to Step 4 to analyze the algorithms (5.49) with α > 3 in order to

prove Theorem 3. The simple transformation of (D.68) for α > 3 is

(k + α)
(

vk + β
√

s∇ f (xk)
)

− k
(

vk−1 + β
√

s∇ f (xk−1)
)

= −
√

s (k + γ − γβ) ∇ f (xk). (D.77)

Thus, the difference of the Lyapunov function (D.76) on the k-th iteration is

E(k + 1) − E(k) = s(k + 1) (k + α − β + 1) ( f (xk+1) − f (xk))

+ s (2k + α − β + 3)
(

f (xk+1) − f (x⋆)
)

−
〈

s (k + α − β + 1) ∇ f (xk+1), (α − 1)(xk+1 − x⋆)

+
√

s(k + α + 1)vk+1 + βs(k + 2)∇ f (xk+1)
〉

−
1

2
s2(k + α − β + 1)2 ‖∇ f (xk+1)‖2 .

With the basic inequality of convex function f (x) ∈ F1
L(Rn),

⎧

⎨

⎩

f (xk) ≥ f (xk+1) + 〈∇ f (xk+1), xk − xk+1〉 +
1

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

f (x⋆) ≥ f (xk+1) +
〈

∇ f (xk+1), x⋆ − xk+1

〉

and the phase-space representation (D.68) xk+2 = xk+1 +
√

svk+1, the difference of

the discrete Lyapunov function (D.76) can be estimated as

E(k + 1) − E(k) ≤ (k + α − β + 1)

[

−s
3
2 〈∇ f (xk+1), (k + α + 1)vk+1

−(k + 1)vk〉 −
s(k + 1)

2L
‖∇ f (xk+1) − ∇ f (xk)‖2

2

]

− s [(α − 3)k + (α − 2) (α − β + 1) − 2]
(

f (xk+1) − f (x⋆)
)
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−
1

2
s2(k + α − β + 1) [(2β + 1)k + α + 3β + 1]

‖∇ f (xk+1)‖2 .

Utilizing the phase-space representation (D.68) again, we calculate the difference of

the discrete Lyapunov function (D.76) as

E(k + 1) − E(k) ≤ −s [(α − 3)k + (α − 2) (α − β + 1) − 2]
(

f (xk+1) − f (x⋆)
)

−
1

2
s2(k + α − β + 1)

[

(2β − 1)k − α + 3β − 1 − Lβ2s(k + 1)

]

‖∇ f (xk+1)‖2 .

To guarantee the Lyapunov function E(k) is decreasing, a sufficient condition is

(2β − 1)k − α + 3β − 1 − Lβ2s(k + 1) ≥ 0. (D.78)

With the inequality (D.78), the step size can be estimated as s ≤ 2β−1

Lβ2 − α−β

(k+1)Lβ2 .

– When the parameter β > 1/2 and α < β, since the function h(k) = 2β−1

Lβ2 −
α−β

(k+1)Lβ2 decreases monotonically for k ≥ 0, thus the step size s ≤ 2β−1

(1+ǫ)Lβ2 <

2β−1

Lβ2 holds for (D.78), where ǫ > 0 is a real number. Hence, when k ≥ kα,β + 1,

where

kα,β = max

{

0,

⌊
2 − (α − 2)(α − β + 1)

α − 3

⌋

+ 1,

⌊
4 − 3β + Lβ2s

−1 + 2β − Lβ2s

⌋

+1, ⌊β − α − 1⌋ + 1} ,

the difference of the discrete Lyapunov function (D.76) can be estimated as

E(k + 1) − E(k) ≤ −s(α − 3)
(

k − kα,β

) (

f (xk+1) − f (x⋆)
)

−s2

(
2β − 1 − Lβ2s

2

)
(

k − kα,β

)2 ‖∇ f (xk+1)‖2 .

– When the parameter β > 1/2 and α ≥ β, since the function h(k) = 2β−1

Lβ2 −
α−β

(k+1)Lβ2 increases monotonically for k ≥ 0, there exists

kα,β = max

{

0,

⌊
2 − (α − 2)(α − β + 1)

α − 3

⌋

+ 1, ⌊β − α − 1⌋ + 1,

⌊
1 + α − 3β

2β − 1

⌋

+ 1

}

such that the step size satisfies s ≤ (2β−1)kα,β−α+3β−1

Lβ2(kα,β+1)
. When β = 1, the step size

satisfies

s ≤
1

L
·

kα,β − α + 2

(kα,β + 1)
→

1

L
·

kα,β − 1

kα,β + 1
as α → 3,
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which is consistent with (4.43). Then, the difference of the discrete Lyapunov

function (D.76) can be estimated as

E(k + 1) − E(k) ≤ −s(α − 3)
(

k − kα,β

) (

f (xk+1) − f (x⋆)
)

−s2

(
2β − 1 − Lβ2s

2

)
(

k − kα,β

)2 ‖∇ f (xk+1)‖2 .

D.1 A simple counterexample

The simple counterexample is constructed as

f (xk) − f (x⋆) =

⎧

⎪
⎨

⎪
⎩

L ‖x0 − x⋆‖2

(k + 1)2
, k = j2

0, k �= j2

where j ∈ N. Plugging it into (5.51), we have
∑∞

k=0(k + 1) ( f (xk) − f (x⋆)) =
L ‖x0 − x⋆‖2 ·

∑∞
j=0

(
1

j2+1

)

< ∞. Hence, Proposition 3 cannot guarantee the faster

convergence rate.

D.2 Super-critical regime: sharper convergence rate o(1/t2) and o(L/k2)

D.2.1 The ODE case

Here, we still turn back to our high-resolution ODE framework in Sect. 2. The gener-

alized high-resolution ODE has been still shown in (5.48). A more general Lyapunov

function is constructed as

Eν(t) = t
[

t +
(α

2
− β

)√
s + (α − ν − 1)β

√
s
]
(

f (X(t)) − f (x⋆)
)

+
ν(α − ν − 1)

2

∥
∥X(t) − x⋆

∥
∥

2 +
1

2

∥
∥ν(X(t) − x⋆) + t

(

Ẋ(t) + β
√

s∇ f (X(t))
)∥
∥

2
,

(D.79)

where 2 < ν ≤ α − 1. When ν = α − 1, the Lyapunov function (D.79) degener-

ates to (D.74). Furthermore, when ν = α − 1 → 2, the Lyapunov function (D.79)

degenerates to (D.67). Finally, when 2 = ν = α − 1 and β = 1, the Lya-

punov function (D.79) is consistent with (4.36). We assume that initial time is

tα,β,ν = max
{√

s
(

β − α
2

)

,
√

s
(

β(α−2)
ν−2

− α(ν−1)
2(ν−2)

)

,
√

sα
2

}

. Based on the Lyapunov

function (D.79), we have the following results.
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Theorem 9 Let f (x) ∈ F2
L(Rn) and X = X(t) be the solution of the ODE (5.48) with

α > 3 and β > 0. Then, there exists tα,β,ν > 0 such that

⎧

⎪
⎪
⎨

⎪
⎪
⎩

lim
t→∞

t2
(
(

f (X(t)) − f (x⋆)
)

+
∥
∥Ẋ(t) + β

√
s∇ f (X(t))

∥
∥

2
)

= C
2
α,β,ν

∥
∥x0 − x⋆

∥
∥

2

∫ t

t0

[

u
(

f (X(u)) − f (x⋆)
)

+ u
∥
∥Ẋ(u) + β

√
s∇ f (X(u))

∥
∥

2
]

du < ∞,

(D.80)

for all t ≥ tα,β,ν , where the positive constant C
2
α,β,ν and the integer tα,β,ν depend

only on α, β and ν. In other words, the equivalent expression of (D.80) is f (X(t)) −

f (x⋆) +
∥
∥Ẋ(t) + β

√
s∇ f (X(t))

∥
∥

2 ≤ o

(

‖x0−x⋆‖2

t2

)

.

Now, we start to show the proof. Since X = X(t) is the solution of the ODE (5.48)

with α > 3 and β > 0, when t > tα,β,ν , the time derivative of Lyapunov func-

tion (D.79) is

dEν(t)

dt
=

[

2t +
(α

2
− β

)√
s + (α − ν − 1)β

√
s
]

(

f (X(t)) − f (x⋆)
)

− (α − 1 − ν)t
∥
∥Ẋ(t)

∥
∥

2

− ν

[

t +
(α

2
− β

)√
s
]
〈

∇ f (X(t)), X(t) − x⋆
〉

− βt
√

s
[

t +
(α

2
− β

)√
s
]

‖∇ f (X(t))‖2 . (D.81)

With the basic inequality for any f (x) ∈ F2
L(Rn) f (x⋆) ≥ f (X(t))+〈∇ f (X(t)), x⋆

−X(t)〉, the time derivative of Lyapunov function (D.81) can be estimated as

dEν(t)

dt
≤ −

{

(ν − 2)t +
√

s

[
α(ν − 1)

2
− (α − 2)β

]}
(

f (X(t)) − f (x⋆)
)

−(α − 1 − ν)t
∥
∥Ẋ(t)

∥
∥

2 − βt
√

s
[

t +
(α

2
− β

)√
s
]

‖∇ f (X(t))‖2 .

With the Lyapunov function Eν(t) ≥ 0, for any t > t0 we have

∫ t

t0

u( f (X(u)) − f (x⋆))du ≤
∫ t0+δ

t0

u( f (X(u)) − f (x⋆))du +
(

1 +
t0

δ

)

∫ t

t0+δ

(u − t0)( f (X(u)) − f (x⋆))du,

where δ < t − t0. Thus, we can obtain the following lemma.

Lemma 7 Under the same assumption of Theorem 9, the following limits exist

lim
t→∞

Eν(t), lim
t→∞

∫ t

t0

u( f (X(u))
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− f (x⋆))du, lim
t→∞

∫ t

t0

u
∥
∥Ẋ(u)

∥
∥

2
du, lim

t→∞

∫ t

t0

u2 ‖∇ f (X(u))‖2 du.

With (D.81) and Lemma 7, the following lemma holds.

Lemma 8 Under the same assumption of Theorem 9, the following limit exists

lim
t→∞

∫ t

t0
u 〈∇ f (X(u)), X(u) − x⋆〉 du.

Lemma 9 Under the same assumption of Theorem 9, the following limits exist

lim
t→∞

∥
∥X(t) − x⋆

∥
∥ and

lim
t→∞

t
〈

X(t) − x⋆, Ẋ(t) + β
√

s∇ f (X(t))
〉

.

Proof of Lemma 9 Taking ν �= ν′ ∈ [2, γ − 1], we have

Eν(t) − Eν′(t) = (ν − ν′)
[

−β
√

st
(

f (X(t)) − f (x⋆)
)

+t
〈

X(t) − x⋆, Ẋ(t) + β
√

s∇ f (X(t))
〉

+
α − 1

2

∥
∥X(t) − x⋆

∥
∥

2
]

.

With Lemma 7 and (D.75), the following limit exists

lim
t→∞

[

t
〈

X(t) − x⋆, Ẋ(t) + β
√

s∇ f (X(t))
〉

+
α − 1

2

∥
∥X(t) − x⋆

∥
∥

2
]

. (D.82)
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Define a new function about time variable t : π(t) := 1
2

‖X(t) − x⋆‖2 + β
√

s
∫ t

t0
〈∇ f (X(u)), X(u) − x⋆〉 du. If we can prove the existence of the limit π(t) with

t → ∞, we can guarantee limt→∞ ‖X(t) − x⋆‖ exists via Lemma 8. We observe

the following equality

t π̇(t) + (α − 1)π(t) = β(α − 1)
√

s

∫ t

t0
〈

∇ f (X(u)), X(u) − x⋆
〉

du

+t
〈

X(t) − x⋆, Ẋ(t) + β
√

s∇ f (X(t))
〉

+
α − 1

2

∥
∥X(t) − x⋆

∥
∥

2
.

With (D.82) and Lemma 8, we obtain that the following limit exists: limt→∞
[

t π̇(t)+
(α − 1)π(t)

]

; that is, there exists some constant C
3 such that the following equality

holds: limt→∞
d(tα−1π(t))

dt

tα−2 = limt→∞ [t π̇(t) + (α − 1)π(t)] = C3. For any ǫ > 0,

there exists t0 > 0 such that when t ≥ t0, we have

tα−1

(

π(t) −
C

3

α − 1

)

− tα−1
0

(

π(t0) −
C

3

α − 1

)

≤
ǫ

α − 1
·
(

tα−1 − tα−1
0

)

;

that is,

∣
∣
∣
∣
π(t) −

C
3

α − 1

∣
∣
∣
∣
≤

∣
∣
∣
∣
π(t0) −

C
3

α − 1

∣
∣
∣
∣

(
t0

t

)α−1

+
ǫ

α − 1
.

The proof is complete. ⊓⊔

Finally, we finish the proof for Theorem 9.

Proof of Theorem 9 When t > tα,β,ν , we expand the Lyapunov function (D.79) as

Eν(t) = t
[

t +
(α

2
− β

)

√
s + (α − ν − 1)β

√
s
]

(

f (X(t)) − f (x⋆)
)

+
ν(α − 1)

2

∥
∥X(t) − x⋆

∥
∥

2

+
t2

2

∥
∥Ẋ(t) + β

√
s∇ f (X(t))

∥
∥

2

+t
〈

X(t) − x⋆, Ẋ(t) + β
√

s∇ f (X(t))
〉

.

With Lemmas 7 and 9, we obtain the first equation of (D.80). Furthermore, the Cauchy-

Schwarz inequality gives
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[

t +
(α

2
− β

)√
s + (α − ν − 1)β

√
s
]
(

f (X(t)) − f (x⋆)
)

+
t

2

∥
∥Ẋ(t) + β

√
s∇ f (X(t))

∥
∥

2

≤
[

t +
(α

2
− β

)√
s

+(α − ν − 1)β
√

s
] (

f (X(t)) − f (x⋆)
)

+ t
∥
∥Ẋ(t)

∥
∥

2

+ β2st ‖∇ f (X(t))‖2 .

With Lemma 7, we obtain the second equation of (D.80). After a straightforward

calculation, we complete the proof. ⊓⊔

D.2.2 Proof of Theorem 8

Similarly, under the assumption of Theorem 8, we can show a discrete version

of (D.80); that is, there exists some constant C
4
α,β,ν > 0 and cα,β,ν > 0 such that

when the step size satisfies 0 < s ≤ cα,β,ν/L , the following relationship holds:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

lim
k→∞

(k + 1)2
(

f (xk) − f (x⋆) +
∥
∥vk + β

√
s∇ f (xk)

∥
∥

2
)

=
C

4
α,β,ν ‖x0 − x⋆‖2

s
∞
∑

k=0

(k + 1)

(
(

f (xk) − f (x⋆)
)

+
∥
∥vk + β

√
s∇ f (xk)

∥
∥

2
)

< ∞.

(D.83)

Thus, we obtain the sharper convergence rate as f (xk)− f (x⋆)+
∥
∥vk + β

√
s∇ f (xk)

∥
∥

2 ≤

o

(

‖x0−x⋆‖2

sk2

)

.

Now we show the derivation of the inequality (D.83). The discrete Lyapunov func-

tion is constructed as

E(k) = s(k + 1)

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]
(

f (xk) − f (x⋆)
)

︸ ︷︷ ︸

I

+
ν(α − ν − 1)

2

∥
∥xk+1 − x⋆

∥
∥

2

︸ ︷︷ ︸

II +
1

2

∥
∥ν(xk+1 − x⋆) + (k + 1)

√
s
(

vk + β
√

s∇ f (xk)
)∥
∥

2

︸ ︷︷ ︸

III

, (D.84)

where 2 ≤ ν < α − 1 and parts I, II and III are the potential, Euclidean distance

and mixed energy respectively. Apparently, when ν = α − 1, the discrete Lyapunov

function (D.84) is consistent with (D.76). When β = 1 and ν = α − 1 → 2, the

discrete Lyapunov function (D.84) degenerates to (4.41),

Now, we turn to estimate the difference of Lyapunov function (D.84).
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– For the part I, the potential, we have

s(k + 2)

[

k + α + 2 − β +
(k + 3)(α − 1 − ν)β

k + α + 2

]
(

f (xk+1) − f (x⋆)
)

−s(k + 1)

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]
(

f (xk) − f (x⋆)
)

≤ s(k + 1)

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]

( f (xk+1) − f (xk))

︸ ︷︷ ︸

I1
+ s [2k + α + 3 + (2α − 3 − 2ν)β]

(

f (xk+1) − f (x⋆)
)

︸ ︷︷ ︸

I2

,

where the last inequality follows from k + α + 2 > k + α + 1 > k + 2.

– For the part II, the Euclidean distance, we have

ν(α − ν − 1)

2

∥
∥xk+2 − x⋆

∥
∥

2 −
ν(α − ν − 1)

2

∥
∥xk+1 − x⋆

∥
∥

2

= ν(α − ν − 1)
〈

xk+2 − xk+1, xk+2 − x⋆
〉

︸ ︷︷ ︸

II1 −
ν(α − ν − 1)

2
‖xk+2 − xk+1‖2

︸ ︷︷ ︸

II2

.

– For the part III, the mixed energy, with the simple transformation (D.77) for α > 3

(k + α)
(

vk + β
√

s∇ f (xk)
)

− k
(

vk−1 + β
√

s∇ f (xk−1)
)

= −
√

s (k + γ − γβ) ∇ f (xk),

we have

1

2

∥
∥ν(xk+2 − x⋆)

+(k + 2)
√

s
(

vk+1 + β
√

s∇ f (xk+1)
)∥
∥

2

−
1

2

∥
∥ν(xk+1 − x⋆) + (k + 1)

√
s
(

vk + β
√

s∇ f (xk)
)∥
∥

2

= −ν(α − ν − 1)
〈

xk+2 − xk+1, xk+2 − x⋆
〉

︸ ︷︷ ︸

III1 −
(2k + α + 3 − ν)(α − ν − 1)

2
‖xk+2 − xk+1‖2

︸ ︷︷ ︸

III2

−s(k + α + 1)

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]

〈∇ f (xk+1), xk+2 − xk+1〉
︸ ︷︷ ︸

III3

−sν (k + α + 1 − β)
〈

∇ f (xk+1), xk+1 − x⋆
〉

︸ ︷︷ ︸
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III4 −
1

2
s2 [k + α + 1 − β + 2(k + 2)β] (k + α + 1 − β) ‖∇ f (xk+1)‖2

︸ ︷︷ ︸

III5

.

Clearly, we see that II1 + III1 = 0, and II2 + III2 = − s(2k+α+3)(α−ν−1)
2

‖vk+1‖2.

Using the basic inequality for f (x) ∈ F1
L(Rn), f (xk) ≥ f (xk+1) + 〈∇ f (xk+1), xk

−xk+1〉 + 1
2L

‖∇ f (xk+1) − ∇ f (xk)‖2, we have

I1 + III3 + III5 ≤ −s
3
2 [k + α + 1 − β

+
(k + 2)(α − 1 − ν)β

k + α + 1

]

〈∇ f (xk+1), (k + α + 1)vk+1 − (k + 1)vk〉

−
s(k + 1)

2L

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]

‖∇ f (xk+1) − ∇ f (xk)‖2

−
1

2
s2 [k + α + 1 − β + 2(k + 2)β]

(k + α + 1 − β) ‖∇ f (xk+1)‖2 .

Utilizing (D.77) again, we have

I1 + III3 + III5 ≤ s2

[
Lβ2s

2
(k + 1) + (k + α + 1)

]

[k + α + 1 − β + (α − 1 − ν)β] ‖∇ f (xk+1)‖2

−
1

2
s2 [(2β + 1)k + α + 1 + 3β] (k + α + 1 − β) ‖∇ f (xk+1)‖2 .

Since β > 1/2, let n ∈ N
+ satisfy n =

⌊
2

2β−1

⌋

+ 1. When k ≥ n(α − 1 − ν)β −
(α + 1 − β), we have

I1 + III3 + III5 ≤ s2

[
Lβ2s

2
(k + 1) + (k + α + 1)

]

[k + α + 1 − β + (α − 1 − ν)β]

‖∇ f (xk+1)‖2

−
s2n

2(n + 1)
· [(2β + 1)k + α + 1 + 3β]

[k + α + 1 − β + (α − 1 − ν)β] ‖∇ f (xk+1)‖2 .

Given the monotonicity of the following function in k:

h(k) =

(
n(2β+1)
2(n+1)

− 1
)

k + n
2(n+1)

· (α + 1 + 3β) − α − 1

Lβ2(k+1)
2
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=
(2βn − n − 2)(k + 1) + (β − α)n − 2α

Lβ2(n + 1)(k + 1)
,

we know there exist constants cα,β,ν and k1,α,β,ν such that the step size satisfies 0 <

s ≤ cα,β,ν/L . When k ≥ k1,α,β,ν , the following inequality holds:

I1 + III3 + III5 ≤ −
s2

2

(
2βn

n + 1

−
n + 2

n + 1
− Lβ2s

)

(k − k1,α,β,ν)
2 ‖∇ f (xk+1)‖2 .

With the basic inequality for f (x) ∈ F1
L(Rn), f (x⋆) ≥ f (xk+1) + 〈∇ f (xk+1), x⋆

−xk+1〉, we know that there exists k2,α,β,ν such that when k ≥ k2,α,β,ν , I2 + III4 ≤
−s(ν − 2)(k − k2,α,β,ν) 〈∇ f (xk+1), xk+1 − x⋆〉.

Let kα,β,ν = max{k1,α,β,ν, k2,α,β,ν}+1. Summing up all the estimates above, when

β > 1/2, the difference of discrete Lyapunov function satisfies, for any k ≥ kα,β,ν ,

E(k + 1) − E(k) ≤ −
s2

2

(
2βn

n + 1
−

n + 2

n + 1
− Lβ2s

)

(k − kα,β,ν)
2 ‖∇ f (xk+1)‖2

− s(ν − 2)(k − kα,β,ν)
〈

∇ f (xk+1), xk+1 − x⋆
〉

−
s(2k + α + 3)(α − ν − 1)

2
‖vk+1‖2 .

Using the basic inequality for any function f (x) ∈ F1
L(Rn) 〈∇ f (xk+1), xk+1 − x⋆〉 ≥

f (xk+1) − f (x⋆), we can obtain the following lemma.

Lemma 10 Under the same assumption of Theorem 8, the limit limk→∞ E(k) exists,

and the summation of the following series exist:

∞
∑

k=0

(k + 1)2 ‖∇ f (xk+1)‖2 ,

∞
∑

k=0

(k + 1)
〈

∇ f (xk+1), xk+1 − x⋆
〉

,

∞
∑

k=0

(k + 1)( f (xk+1) − f (x⋆)),

∞
∑

k=0

(k + 1) ‖vk+1‖2 .

Lemma 11 Under the same assumption of Theorem 8, the following limits exist:

lim
k→∞

∥
∥xk − x⋆

∥
∥ and lim

k→∞
(k + 1)

〈

xk+1 − x⋆, vk + β
√

s∇ f (xk)
〉

.

Proof of Lemma 11 Taking ν �= ν′ ∈ (2, γ − 1], we have

Eν(k) − Eν′(k) = (ν − ν′)

[

−sβ ·
(k + 1)(k + 2)

k + α + 1

(

f (xk) − f (x⋆)
)
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+ (k + 1)
√

s
〈

xk+1 − x⋆, vk + β
√

s∇ f (xk)
〉

+
(α − 1)

2

∥
∥xk+1 − x⋆

∥
∥

2
]

.

Given Lemma 10, the following limit exists:

lim
k→∞

[

(k + 1)
√

s
〈

xk+1 − x⋆, vk + β
√

s∇ f (xk)
〉

+
α − 1

2

∥
∥xk+1 − x⋆

∥
∥

2
]

.(D.85)

Define a function π(k) := 1
2

‖xk − x⋆‖2 + βs
∑k−1

i=k0
〈∇ f (xi ), xi+1 − x⋆〉. If we can

show the existence of the limit π(k) with k → ∞, we can guarantee lim
k→∞

‖xk+1 − x⋆‖
exists using Lemma 10. We observe the following equality:

(k + 1)(π(k + 1) − π(k)) + (α − 1)π(k + 1) − s (α − 1) β

k
∑

i=0

〈

∇ f (xi ), xi+1 − x⋆
〉

= (k + 1)
√

s
〈

xk+1 − x⋆, vk + β
√

s∇ f (xk)
〉

−
(k + 1)s

2
‖vk‖2

+
α − 1

2

∥
∥xk+1 − x⋆

∥
∥

2
.

Lemma 10 and (D.85) tell us there exists some constant C5 such that limk→∞
[(k + α)π(k + 1) − (k + 1)π(k)] = C

5, that is, taking a simple translation π ′(k) =
π(k) − C

5/(γ − 1), we have limk→∞
[

(k + α)π ′(k + 1) − (k + 1)π ′(k)
]

= 0.

Since E(k) decreases for k ≥ kα,β,ν , we have that ‖xk − x⋆‖2 is bounded. Using

Lemma 10, we obtain that π(k) is bounded; that is, π ′(k) is bounded. Thus we have

lim
k→∞

(k+2)α−1π ′(k+1)−(k+1)α−1π ′(k)

(k+1)α−2 = 0; that is, for any ǫ > 0, there exists k′
0 > 0 such

that
∣
∣π ′(k)

∣
∣ ≤

(
k′

0+1

k+1

)α−1 ∣
∣π ′(k′

0)
∣
∣+

ǫ
k−1∑

i=k′
0

(i+1)α−2

(k+1)α−1 . With arbitrary ǫ > 0, we complete

the proof of Lemma 11. ⊓⊔

Proof of (D.83) When k ≥ kα,β,ν , we expand the discrete Lyapunov function (D.84)

as

E(k) = s(k + 1)

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]

(

f (xk) − f (x⋆)
)

+
√

s(k + 1)ν
〈

xk+1 − x⋆, vk + β
√

s∇ f (xk)
〉

+
ν(α − 1)

2

∥
∥xk+1 − x⋆

∥
∥

2 +
s(k + 1)2

2

∥
∥vk + β

√
s∇ f (xk)

∥
∥

2
.
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Using Lemma 10 and Lemma 11, we obtain the first equation of (D.83). Additionally,

we have

s

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]
(

f (xk) − f (x⋆)
)

+
(k + 1)s

2

∥
∥vk + β

√
s∇ f (xk)

∥
∥

2

≤ s

[

k + α + 1 − β +
(k + 2)(α − 1 − ν)β

k + α + 1

]
(

f (xk) − f (x⋆)
)

+ (k + 1)s ‖vk‖2 + (k + 1)β2s2 ‖∇ f (xk)‖2 .

Using Lemma 10, we obtain the second equation of (D.83). ⊓⊔
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