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SUMMARY

Compiler optimizations are difficult to implement and add complexity to a compiler. For this reason,
compiler writers are selective about implementing them: they implement only the ones that they believe will
be beneficial. To support compiler writers in this, we describe a method for measuring the cost and benefits
of compiler optimizations, both individually and in synergy with other optimizations. We demonstrate our
method by presenting results for the optimizations implemented in the Jikes RVM on the PowerPC and
IA32 platforms.
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1. INTRODUCTION

Optimizing compilers make many passes over representations of the program being optimized, each
time applying one or more analyses or optimizations. Optimizations and analyses performed in a given
pass may interact with optimizations and analyses in the same or other passes, either directly (e.g.,
annotations) or indirectly (e.g., code transformations). These interactions may be positive (e.g., one
optimization may expose opportunities for another optimization) or negative (e.g., one optimization
may eliminate opportunities for another optimization). To complicate matters further, optimizations
may behave differently on different architectures.

Compiler writers are selective about implementing optimizations because optimizations are hard to
implement and debug. Moreover, since modern run-time environments (e.g., Java virtual machines)
interleave compilation and program execution, optimizations can increase overall execution time even
if they decrease application execution time. To help compiler writers in deciding which optimizations
to implement, we show how to evaluate the costs and benefits of optimizations, both in isolation
and in combination with other optimizations. We demonstrate our methodology on the optimizations
implemented in Jikes RVM running on the PowerPC and IA32 platforms.
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The remainder of this paper is organized as follows. Section 2 describes and discusses our
experimental methodology. Section 3 presents the results. Section 4 explains the reasons for our results.
Section 5 reviews prior work in the area. Finally, Section 6 concludes the paper.

2. METHODOLOGY

We now introduce our terminology, and describe our benchmarks, measurement infrastructure, and
measurement methodology.

Terminology
All Java systems make some distinction between parts of the system that are compiled in advance and
parts (loosely, application code) that are loaded and compiled at run time. For example, in Jikes RVM,
most of the system code is written in Java and pre-compiled into what is called the boot image. The
boot image includes the class loaders, compilers, garbage collector, etc. We use the same boot image,
optimized at level -O2 (i.e., highest level of optimization), for all of our experiments.

Benchmarks
To evaluate the effectiveness of optimizations, we report results for the commonly used SPECjvm98
benchmarks [12] (using input 100), SPECjbb2000 (which prior work has found to be representative of
real world applications), and ipsixql, a real-world application that implements an XML database. For
the SPECjvm98 benchmarks we use the single-threaded version of mtrt, called raytrace, to get easily
reproducible results. We use a modified version of SPECjbb2000 (called pseudojbb) that performs a
fixed number of transactions [3].

Infrastructure
We conduct our experiments using Jikes Research Virtual Machine (RVM) version 2.1.1 from IBM
Research [4]. Jikes RVM is designed to support research into virtual machines and includes an
aggressively optimizing just-in-time compiler and an adaptive compilation system [2].

Jikes RVM’s baseline compiler (abbreviated as BASELINE) is a fast non-optimizing compiler that
converts Java bytecodes, one at a time, to machine code. Jikes RVM’s optimizing compiler performs
one or more of the optimizations described in Table I. It performs the optimizations more or less in the
order given in the table (Jikes RVM performs some optimizations, such as loc cse, multiple times) [9].
The optimizations in Table I can be enabled or disabled individually using command line flags. Due to
space considerations, we describe the optimizations only briefly; our technical report [10] gives more
details. The “Home” column in Table I indicates the lowest optimization level (O0, O1, or O2) that
enables the optimization.

The optimizing compiler uses three intermediate representations: HIR (at about the bytecode level),
LIR (low level), and MIR (machine level). While converting between these representations, the
optimizing compiler performs a number of simple optimizations (such as limited forms of copy and
constant propagation). We modified these simplifications to allow us to enable and disable them using
command-line flags. We consider these simplifications to occur at a level below O0, which we call
IR; in other words, O0, O1, and O2 all perform these simplifications. Finally, the optimizing compiler
always performs linear-scan register allocation [11].
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Table I. Optimizations provided by Jikes RVM

Optimization Home SSA? Description
inl new O1 Inline allocation of arrays and objects.
inl O0 Inline statically resolvable calls.
preex inl O1 Pre-existence based inlining [5].
guarded inl O1 Guarded inlining of virtual calls.
guarded inl interface O1 Guarded inlining of interface calls.
scalar replace aggregates O1 Treat fields/elements of objects as local variables.
monitor removal O1 Remove unnecessary synchronizations of non-escaping

objects. Flow insensitive.
static splitting O1 Create hot traces using static heuristics.
unwhile O2 Convert whiles into untils (i.e., loop inversion).
load elim O2 Yes Eliminate redundant loads [6].
redundant branch elim O2 Yes Eliminate redundant conditional branches using global

value numbering and dominance relationships.
store elim O2 Yes Eliminate dead stores [6].
expression folding O2 Yes Fold constants in addition and subtraction operations

using flow sensitive analysis within a method.
licm O2 Yes Loop invariant code motion.
gcse O2 Yes Global common subexpression elimination.
loc copy prop O1 Local copy propagation using flow sensitive analysis.
loc constant prop O1 Local constant propagation (i.e., within basic blocks)

using flow sensitive analysis.
loc sr O1 Local scalar replacement of loads of fields (i.e., within

basic blocks) using flow sensitive analysis.
loc cse O1 Flow sensitive local common subexpression elimination.
loc check O1 Flow sensitive elimination of null, array bounds, and

zero checks.

Measurement methodology
We conducted our experiments on a 1.0 GHz Pentium III processor with 512 MB of memory running
SUSE Linux 8.1 and on a 350 MHz PowerPC 750 processor with 576 MB of memory running Linux
PowerPC 2000Q4.

To obtain end-to-end measurements, we access a cycle-accurate timer immediately before the
program starts and immediately after the program ends. We ran each program twelve times and report
the average of the last eleven runs. We drop the first run because it also includes compilation time. We
perform a whole-heap garbage collection before every run in order to minimize memory management
interference between the runs.

We performed the compilation time measurements using the built-in mechanisms of Jikes RVM.
We took the measurements in separate runs to prevent them from interfering with the execution time
measurements.

Optimization combinations
In order to explore the synergy between optimizations, we consider optimizations individually and in
combination with other optimizations. We use the abbreviation pattern OPT< · · · > to describe the
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optimizing configurations. The · · · enclosed in the <> gives the set of optimizations that are enabled.
Recall that all optimizing configurations include register allocation. Here are the common patterns that
we use to describe the optimizing configurations:

• OPT<>: Perform no optimizations (except, of course, for register allocation).
• OPT<IR>, OPT<O0>, OPT<O1>, and OPT<O2>: Use optimization levels IR, O0, O1, and

O2 respectively. Note that OPT<O2> includes all optimizations.
• OPT<s+opt>: Perform all optimizations in the set s plus the optimization OPT<opt>. Per the

usual definition of sets, if opt is already in s, then OPT<s+opt> is the same as OPT<s>.
• OPT<s−opt>: Perform all optimizations in the set s except for opt. If opt is not in s, then

OPT<s−opt> is the same as OPT<s>.

For example, OPT<O1+load elim> enables all optimizations in O1 plus load elimination.
OPT<O2−load elim> performs all optimizations in O2 with the exception of load elimination.

3. RESULTS

We now present and discuss detailed results evaluating the optimizations implemented in Jikes RVM.
Section 3.1 gives the overall speedup due to the optimizations. Section 3.2 explores the individual and
synergistic benefit of optimizations. Section 3.3 presents similar results for compilation time.

3.1. Overall speedups

Figure 1 gives the execution time using various optimizing configurations as a fraction of the
execution time using the BASELINE configuration. The “mean” column gives the geometric mean
of all benchmarks. From Figure 1 we see that OPT<> (register allocation) gives the greatest benefits;
subsequent optimizations are also beneficial but not as dramatic. Also, we see that the speedups on the
PowerPC are often larger than those on the IA32. For example, register allocation reduces execution
time of db to 82% of BASELINE execution time on the IA32 and to 73% on the PowerPC. Also, while
the general shapes of the curves on the IA32 and PowerPC are similar, we see that on the PowerPC,
adding more optimizations almost always improves performance, whereas on the IA32 it can also
degrade performance (e.g., OPT<O2> is slower than OPT<O1> for mpegaudio on the IA32). The
reason for this is the small register set on the IA32 architecture (see Section 4.1).

3.2. Benefits of individual optimizations

In order to describe the benefits of individual optimizations, we need to introduce two additional
notations. We use T(OPT<s>) to refer to the running time of the benchmark optimized with
optimization set OPT<s>, and S(x, s) to refer to the speedup due to the optimization OPT<x> over
optimization set OPT<s> using the following equation:
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Figure 1. Ratio of execution time of various optimizing configurations to execution time of BASELINE for IA32
and PowerPC. The horizontal lines across each set of bars in (a) indicate the contribution of the boot image to the

bar.

S(x,s) =


T(OPT<s−x>)−T(OPT<s>)

T(OPT<IR>) if x ∈ s

T(OPT<s>)−T(OPT<s+x>)
T(OPT<IR>) if x /∈ s

(1)

Figure 2 gives the performance benefit of optimizations on the IA32 and PPC respectively for
the ipsixql benchmark. The graphs for other benchmarks are mostly similar; our technical report
[10] contains all the graphs. The graphs have four points for each optimization. The “S(x, IR)”
points (labeled “|”) for each optimization present the benefit of turning on only optimization x
along with the IR optimizations. The “S(x, O0)” points (labeled “0”) give the benefit of turning on
a single optimization, x, when all other optimizations in O0 are already enabled. “S(x, O1)” and
“S(x, O2)” (labeled “1” and “2”) are defined similarly. Unlike Figure 1, which is normalized to
execution time of BASELINE, Figure 2 normalizes all speedups to execution time with OPT<IR>
to make it easy to understand the effect of the optimizations. OPT<IR> includes register allocation,
simple transformations performed during conversion between intermediate representations, and simple
optimizations on HIR. Positive values indicate speedups; negatives are slow-downs.

From Figure 2 we see that most optimizations offer little benefit either by themselves or in synergy
with other optimizations. Across all the benchmarks, inlining is the most consistent optimization,
significantly benefiting all except one (db) benchmark on both architectures. Other optimizations,
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Figure 2. Individual and combined improvement due to optimizations for ipsixql

such as gcse benefit individual benchmarks. Optimizations (particularly the O2 optimizations) also
sometimes degraded performance on the IA32 (but not the PPC). Thus, the O2 optimizations are a
double-edged sword on the IA32: sometimes they offer significant benefits (e.g., gcse for ipsixql) but
other times they degrade performance.

From Figure 2 we also see relatively little synergy between optimizations: in other words the S(x,
IR), S(x, O0), S(x, O1), and S(x, O2) points are usually close to each other. This goes against common
wisdom that indicates that inlining interacts positively and significantly with other optimizations by
exposing opportunities for them.

3.3. Compilation times

We applied our method for measuring the individual and synergistic benefit of optimizations to measure
the individual and synergistic costs of compilation. As expected, the O0 and O1 optimizations are
fast, taking an insignificant time compared to T(OPT < IR >). The O2 optimizations can easily take
50% or more of T(OPT < IR >) and interact poorly with inlining. In some cases, performing an O2
optimization with inlining enabled could take three times T(OPT < IR >). This occurs because O2
optimizations are mostly quadratic time optimizations and increasing the code size can rapidly increase
their cost.
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BEHAVIOR OF COMPILER OPTIMIZATIONS 7

4. EXPLANATION FOR OUR RESULTS

This section explores the reasons for the behavior describe in Section 3 and tries to interpret our results
more broadly than our current set of benchmarks.

4.1. Why do optimizations behave differently on different architectures?

From the data in Section 3 and particularly Figure 1 we see two main differences between our data for
the PowerPC and IA32 architectures: (i) we get slightly better speedup on the PowerPC than on the
IA32 (i.e., the bars in Figure 1 are often lower for PowerPC than for IA32); and (ii) in raytrace we get
a severe performance degradation from register allocation on the IA32 but not on the PowerPC.

We hypothesized that the reason for the difference between the two architectures was due to the
small number of registers on the IA32 compared to the PPC. To test this we modified the linear scan
register allocator in Jikes RVM so that it would use approximately the same number of registers on the
PowerPC as available on the IA32. We then repeated our experiments and plotted graphs similar to the
ones in previous sections. Our results confirmed that our hypothesis was indeed correct.

4.2. A closer look at SSA-based optimizations

From Figure 2 we see that gcse, an SSA-based optimization, benefits ipsixql; overall, we found that all
the SSA based optimizations benefited at least one program. We wanted to determine if the benefit of
these optimizations comes from the optimizations themselves or from the SSA form. Converting into
and out of SSA transforms the code (e.g., it splits live ranges much like a register allocator might) and
thus may affect performance.

To investigate this possibility, we measured the performance of our benchmarks with the IR
optimizations plus SSA form without performing any SSA-based optimizations on the IA32. We
compared this performance to a configuration that performed the IR optimizations plus one SSA-based
optimization.

We found that frequently the SSA-based optimizations did not improve performance once we
subtracted out the benefit of just going through SSA form without performing any optimizations. In
other words, the conversions into and out of SSA form were helping the (relatively naive) register
allocator to make better decisions.

4.3. Kernel benchmarks

Section 3 reports that most optimizations offer little or only occasional benefits. This could be because
(i) Our benchmarks suite is poor; (ii) The optimizations are implemented incorrectly; or (iii) The
optimizations are actually useless. To investigate this we created up to 8 kernel benchmarks for each
optimization. The kernel benchmarks for a given optimization heavily exercise that optimization and
thus represent an optimistic situation for the optimization. For example, kernels for inlining contained
calls to an inlinable method in a tight loop executed millions of times. Since these kernels are small
programs, we were not only able to measure them with optimizations but were also able to inspect the
machine code produced as a result of compiling and optimizing them.
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Figure 3. Results of running kernel benchmarks

Our experience in writing and inspecting the optimized versions of the kernel benchmarks revealed
that Jikes RVM’s optimizations are actually implemented correctly. In other words, the lack of benefits
due to many optimizations is not because Jikes RVM implements them poorly.

Figure 3 presents results of kernel benchmarks on IA32. Each group of bars in Figure 3 presents
the speedups for a single optimization on all of its kernels (smaller is better). Except otherwise noted,
Figure 3 gives data for S(x, IR). For most optimizations we wrote multiple kernels in order to try to
present the most optimistic case to the optimization. In some cases we were able to derive kernels based
on published examples. For example, we based one of the kernels for load elimination on the example
in the paper that introduced load elimination [6]. We also wrote kernel tests that were not expected to
exhibit any benefit to verify the validity of optimizations (not shown in Figure 3). Based on the results
of our kernel tests, we classify each optimization into three categories as follows:

• Beneficial: Optimizations that easily give significant benefit. These are optimizations for
which we could easily construct kernel tests that benefited greatly due to the corresponding
optimization. Optimizations in this group are inl new, inl, guarded inl, guarded inl ifc, gcse, and
loc sr. Of these optimizations only inl gave consistent and significant benefit for our benchmarks.
This emphasizes the need to use kernel as well as real benchmarks when determining the full
potential of an optimization.
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BEHAVIOR OF COMPILER OPTIMIZATIONS 9

• Limited: Optimizations with limited applicability. These are optimizations for which we were
able to construct kernels that contained opportunities for the optimization, but constructing the
kernels was hard. There were two reasons that contributed to the difficulty of coming up with
kernels for optimizations in this group: (i) the optimization was often subsumed by simpler
optimizations in OPT<IR> and thus we had to come up with kernels that would not be optimized
by the simpler optimizations but would be optimized by the target optimization; and (ii) the
optimization required other optimizations, usually inlining, also to run in order to be effective.
Optimizations in this group are scalar repl aggr, unwhile, loc copy prop, loc constant prop,
loc cse, and loc check.

scalar repl aggr works well for arrays, but it needs to have inl enabled to be effective for
objects because object allocation is always followed by a call to a constructor. The escape
analysis used with scalar repl aggr assumes the worst case about calls (Table I). Thus, to get
the improvement due to scalar repl aggr in Figure 3 we enabled inlining.

unwhile was not effective because most modern Java source to bytecode compilers, including
IBM’s Jikes compiler (which we used), perform rudimentary loop inversion. However, when
we used version 1.4.2 of Sun’s javac compiler, which does not perform loop inversion on the
IA32/Linux platform, we found unwhile improved the performance of our test programs by up
to 8%.

loc copy prop, loc constant prop, and loc check were often subsumed by optimizations in
OPT<IR>. loc cse was not subsumed by simpler optimizations but still failed to yield any
benefit in one of our test cases even though we could confirm by looking at machine code that it
applied.

• Cannot Explain: Optimizations that we cannot yet explain. These optimizations had
unpredictable behavior, probably due to severe interactions with the underlying hardware.
Seemingly insignificant changes to the kernels would lead to significantly different behavior.
The different behavior was accompanied by wide swings in the number of L1-cache misses
(which we measured using performance counters). The optimizations in this group are load elim
and store elim. We are continuing our efforts to understand the behavior of these optimizations.
These optimizations further underline the benefit of using our strategy of using kernel tests:
effectiveness of an optimization may be indirect and it is worthwhile to confirm where the
benefits are coming from using kernel tests.

5. RELATED WORK

While there has been much work on looking at the costs and benefits of optimizations (e.g., [1, 7, 8] we
are not aware of any prior work that thoroughly explores the synergies between optimizations and uses
kernel benchmarks along with real benchmarks to explore the full potential for the optimizations.

6. CONCLUSIONS

Compiler optimizations interact with each other and the environment in many ways. An optimization
may increase or decrease the effectiveness of another optimization. An optimization that yields
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significant benefit on one architecture may yield much less benefit on another architecture. An
optimization that decreases application execution time may increase overall execution time if the
optimization itself is expensive. To help compiler writers balance these considerations and thus build
compilers that are both effective and efficient, we presented a detailed study of the cost and benefit
of optimizations. We present results for twenty optimizations (all implemented in Jikes RVM), on two
architectures (IA32 and PowerPC), and using nine benchmarks (including SPECjvm98, SPECjbb2000,
and an XML database).

Besides exploring the cost and benefit of individual optimizations, we also report on the effects of
interactions between optimizations and between optimizations and architectures. To explain our results,
we report and explain results for a number of kernel programs we wrote to explore the behavior of the
optimizations. We expect our results will provide valuable guidance to compiler writers.
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