
Understanding the Behavior of In-Memory

Computing Workloads

Tao Jiang∗†, Qianlong Zhang∗, Rui Hou∗, Lin Chai∗, Sally A. Mckee‡, Zhen Jia∗, and Ninghui Sun∗

∗SKL Computer Architecture, ICT, CAS, Beijing, China
†University of Chinese Academy of Sciences, Beijing, China
‡Chalmers University of Technology, Gothenburg, Sweden

{jiangtao, zhangqianlong, hourui, chailin, jiazhen, snh} @ict.ac.cn

mckee@chalmers.se

Abstract—The increasing demands of big data applications
have led researchers and practitioners to turn to in-memory
computing to speed processing. For instance, the Apache Spark
framework stores intermediate results in memory to deliver good
performance on iterative machine learning and interactive data
analysis tasks. To the best of our knowledge, though, little work
has been done to understand Spark’s architectural and mi-
croarchitectural behaviors. Furthermore, although conventional
commodity processors have been well optimized for traditional
desktops and HPC, their effectiveness for Spark workloads
remains to be studied.

To shed some light on the effectiveness of conventional general-
purpose processors on Spark workloads, we study their behavior
in comparison to those of Hadoop, CloudSuite, SPEC CPU2006,
TPC-C, and DesktopCloud. We evaluate the benchmarks on
a 17-node Xeon cluster. Our performance results reveal that
Spark workloads have significantly different characteristics from
Hadoop and traditional HPC benchmarks. At the system level,
Spark workloads have good memory bandwidth utilization (up
to 50%), stable memory accesses, and high disk IO request
frequency (200 per second). At the microarchitectural level, the
cache and TLB are effective for Spark workloads, but the L2
cache miss rate is high. We hope this work yields insights for
chip and datacenter system designers.

I. INTRODUCTION

The explosive growth of digital IT devices and Internet

services has ushered in an era of big data. Off-line processing

like that of Hadoop has heretofore been the dominant paradigm

for big data processing. Recently, though, on-line big data

processing has received increasing attention. One motivation

is that many emerging Internet services require quick re-

sponses after efficient analytics on high-volume of datasets.

For instance, a website recommendation system would expect

on-line real-time analysis of customers willingness to buy

based on their click behavior. In order to provide low-latency,

in-memory computing is becoming the major approach for

big data on-line, real-time processing. One typical case is

Spark [29], a distributed computing framework similar to

Hadoop. In contrast, though, Spark stores intermediate results

in memory instead of on disk, and therefore it delivers lower

latencies than Hadoop’s storage-based approach.

From the hardware perspective, people want to learn

whether existing systems and CPU architectures can still meet

the challenges of big data workloads, and if not, what kind

of optimizations or even revolutions are required. In order

to answer such questions, it is necessary to analyze typical

big data workloads to understand their microarchitectural and

architectural behaviors.

Since Hadoop workloads contribute to the most important

off-line processing scenarios, researchers have spent much

effort investigating their runtime behaviors. The results of

these studies illustrate some mismatches between existing

hardware designs and Hadoop workload characteristics [17],

[19]. For example, Ferdman et al. [17] report that the cache

hierarchy of major commercial CPU architectures is inefficient

for many Hadoop workloads, especially considering the high

miss rates of both the I-Cache and the L2 cache.

However, there is very limited published work that inves-

tigates the microarchitectural and architectural behaviors of

on-line, real-time big data processing workloads. One key

question is whether server microarchitecture and memory

system designed mostly for traditional applications can effi-

ciently support these processing workloads. To try to answer

this question, we choose Spark workloads and capture the

behaviors of the microarchitecture and memory system via

hardware performance counters and a custom-made memory

trace collection device. Our work can help people gain a

deeper understanding of the behavioral characteristics of Spark

applications running on traditional data center servers and may

provide meaningful insights to data center system designers.

To put the performance numbers of Spark workloads in

perspective, we evaluate some traditional high-performance

benchmarks and scale-out benchmarks, including SPEC

CPU2006 [7], TPC-C [9], CloudSuite [17] and Desktop-

Cloud [20]. In order to compare with Hadoop, we evaluate

some Hadoop workloads with the same input datasets and

algorithms as our Spark workloads. We run the benchmarks

on a 17-node Xeon cluster. Compared to the high-performance

benchmarks, we find that the Spark workloads exhibit signif-

icantly different characteristics when compared to the Cloud-

Suite and DesktopCloud benchmarks. While these benchmarks

also differ from Hadoop benchmarks, the differences in mi-

croarchitectural behavior are relatively smaller, as they share

some characteristics. On the other hand, the difference in

memory behavior compared to Hadoop is obvious. The major

insights we derive are:

• Spark workloads experience higher disk IO than

22978-1-4799-6454-3/14/$31.00 ©2014 IEEE 22

Hadoop workloads. To our surprise, Spark workloads

have a high number of disk accesses per second. Since the

workloads have large input and output datasets and Spark

has shorter execution time than Hadoop, the average num-

ber of disk requests is larger. This phenomenon implies

that Spark workloads might benefit from replacing hard

disk with SSD.

• Spark workloads have good memory bandwidth uti-

lization and smooth memory accesses. Spark’s average

bandwidth is about 40% of the peak bandwidth, while

Hadoop only uses 15%. Burst memory accesses in Spark

workloads constitute more than 90% of the memory bus

traffic. The burst bandwidth is only 47% larger than

the average bandwidth, while that of Hadoop is 198%,

implying Spark’s memory accesses patterns are more

stable than Hadoop’s. In addition, hot pages in some

Spark applications account for up to 90% of the total

memory accesses, even though they only occupy 10% of

the total memory pages. Moreover, about 25% of Spark’s

memory accesses are to sequential addresses, compared

to about 9% of Hadoop. These numbers indicate that

high-bandwidth architectures are effective for in-memory

computing frameworks.

• The microarchitecture of general-purpose x86 server

processors works well for Spark workloads. Spark

workloads running on general-purpose x86 processors

have higher IPC (1, on average) than other benchmarks

apart from SPEC CPU. The branch misprediction ratios

of Spark workloads are lower than other benchmarks,

which implies that the existing branch predictor is ef-

fective for iterative computing. The cache and TLB are

effective, except that the L2 cache miss rate is high,

implying that opportunities exist for cache hierarchy

optimizations.

II. RELATED WORK

To the best of our knowledge, there is no comprehensive or

systematic research on the microarchitectural and memory ac-

cess characteristics of Spark, although many researchers have

studied the performance and resource utilization of data center

computer systems. Those studies employ the traditional high-

performance benchmarks, DesktopCloud, CloudSuite, virtual-

ization workloads, and big data analytic benchmarks [25], [18],

[26], [12], [13], [30].

Ferdman et al. [17] gather scale-out data center applications

to create CloudSuite, which focuses on off-line analysis and

web services. They find that scale-out workloads show very

poor performance on existing computer systems. Jiang et

al. [20] find that existing commodity processors are not as

suitable for DesktopCloud workloads as they are for traditional

desktop applications. Jia et al. [19] evaluate the microar-

chitectural characteristics of 11 representative data analysis

workloads, showing that such applications share characteristics

that distinguish them from DesktopCloud, HPC, and service

workloads.

Researchers have also developed some representative big

data benchmarks to analyze characteristics of data center

applications. Wang et al. [25] develop BigDataBench and

use it to show the specific microarchitectural behaviors of

big data applications: compared to traditional applications,

they have lower operation intensities and higher L2 cache

miss ratios, and the LLC shows high efficiency for such

applications. Furthermore, much research analyzes Hadoop

behavior. Among them, Ren et al. [24] provide insight into

performance and job characteristics via analyzing Hadoop

traces derived from a 2000-node production Hadoop cluster

in TaoBao, Inc.

III. METHODOLOGY

A. Hardware Platform

We perform our experiments on a 17-node x86 cluster. Each

node has two Intel Xeon 2.40GHz E5645 processors and 64GB

DDR3. To ensure the correctness of our microarchitectural

analysis, we turn off simultaneous multithreading (SMT) in

the BIOS. Every node has eight 7200 rpm SATA disks

with a capacity of one Terabyte. Table I lists the hardware

configuration of our experimental environment in detail.

TABLE I
HARDWARE CONFIGURATION

CPU Intel Xeon E5645 @ 2.40GHz

Sockets 2

Cores per Socket 6

L1I 32 KB, 4-way

L1D 32 KB, 8-way

L2 256 KB, 8-way

LLC (L3) 12MB, 16-way

Memory 64 GB DDR3 1333MHz

BIOS Configuration Hyper-Threading Disabled

Turbo-Boost Disabled

Hardware Prefetchers Enabled

B. Workloads

We analyze CloudSuite, SPEC CPU2006, TPC-C, and

DesktopCloud benchmarks together with Spark and Hadoop

to give comprehensive comparisons. For each experiment, we

plot the mean and standard deviations for 10 trials.

1) Benchmarks of Spark and Hadoop: Since there is no

authoritative benchmark on Spark and Hadoop, we carefully

select five classes of benchmarks from AMPLab, ICT Big-

DataBench, and other official test cases included in the Spark

and Hadoop installation packages. Each class is implemented

on both Spark and Hadoop with the same algorithms and input

datasets. Detailed information of these benchmarks is listed in

Table II.

Naive Bayes is one of the most important algorithms

from e-commerce. We select the version from BigDataBench,

which focuses on multi-disciplinary research, including a few

workloads covering search engine, social networks, and e-

commerce. Naive Bayes can represent the domain of social

23978-1-4799-6454-3/14/$31.00 ©2014 IEEE 23

TABLE II
SPARK AND HADOOP INPUT DATASET

Benchmark name Input Data Size

Naive Bayes 557GB

Grep 352.4GB

Hive and Shark 203.7GB

PageRank 4847571 nodes, 68993773
edges

Connected Components 4847571 nodes, 68993773
edges

networks and electronic commerce, and it is frequently used in

spam recognition and web page classification. BigDataBench

offers tools to generate input datasets for every benchmark.

Grep belongs to the domains of search engines, social

networks, and e-commerce, and it is often used in log analysis,

web information extraction, and fuzzy search applications.

Dean and Ghemawat also use it in their work [15]. We again

select the version from BigDataBench.

Hive and Shark [3], [16], [28] are a popular data ware-

housing system and an SQL engine based on Hadoop and

Spark, respectively. To provide quantitative and qualitative

performance comparisons of these analytic frameworks, AM-

PLab has released benchmarks to help generate understandable

and reproducible results [8]. As presented, the input datasets

are generated using Intel’s Hadoop benchmark tools, and they

consist of two SQL tables with page ranking and user visiting

information embedded. The workload includes three SQL

queries. The first query scans and filters the dataset, the second

applies string parsing to each input tuple and then performs a

high-cardinality aggregation, and the last joins a smaller table

to a larger table and then sorts the results.

PageRank is used to determine the importance of a web

page [22]. PageRank-like algorithms are frequently used in

search engines. We select our PageRank benchmark from test

cases offered by GraphX [27] and Giraph [2], which are inte-

grated into Spark and Hadoop installation packages. Apache

Giraph is an iterative graph processing system based on

Apache Hadoop’s MapReduce implementation, which comes

from Google’s Pregel graph processing system [21]. GraphX

is a new parallel computing framework based on Spark.

Compared to Giraph, GraphX joins the benefits of data-parallel

and graph-parallel systems, and it performs graph computation

jobs well.

ConnectedComponents is also from the test cases for Spark

and Hadoop. It is common in the field of graph analysis. The

input data for both PageRank and ConnectedComponents are

downloaded from Stanford University website [6].

Spark and Hadoop are deployed on the same 17-node

cluster. One node acts as master and is responsible for task

scheduling, and the other 16 nodes serve as workers. All

nodes run CentOS 6.2 with the 2.6.32 kernel. The versions

of Hadoop and Spark are 1.0.4 and 0.9.1, respectively. For

analytic frameworks, we use Hive-0.12.0 and Shark-0.8.0. The

JDK version is 1.7.0.

2) Compared Benchmarks: A) SPEC CPU2006 bench-

marks include integer and floating point programs executing

with the reference input sets, and each execution is pinned to

a specified processor core.

B) TPC-C is used with 40 warehouses. The ramp-up time

is set to one minute, which is enough for the load to reach a

steady state.

C) CloudSuite represents a set of applications that dominate

today’s data centers. CloudSuite version 1.0 consists of six

benchmarks and, like BigDataBench, includes Naive Bayes.

Ferdman et al.’s [17] input dataset is too small (4.5GB) for a

17-node cluster, so we choose the version from BigDataBench

with an input dataset of 557GB. We run the other five

benchmarks from CloudSuite with the native input sets. The

input file for the Data Serving benchmark Cassandra [1]

in CloudSuite is a 10GB Yahoo! Cloud Serving Benchmark

(YCSB) dataset. For the Media Streaming benchmark, we set

up 20 Java processes with 50 client threads in each process.

For Web Serving, we use two nodes, with one as the web

server and the other as the database server. For Web Search

we set up one node as the index processing server with an

8GB dataset and a 3GB index set. For Software Testing, we

install Cloud9 [14] on five nodes, with one serving as the load

balancer and the others acting as workers.

D) DesktopCloud is one of the fastest growing segments

of the cloud computing market, replacing traditional desktop

computers with completely virtualized systems. The Xen-

based guest OS of Domain0 is CentOS 5.5 with the 2.6.18

Linux kernel. Windows XP and CentOS 5.5 are installed for

the other 14 Domains. To simulate real-world DesktopCloud

utilization, we perform various operations such as watching

videos, surfing web, anti-virus, browsing PDF, Office work,

and web downloading on installed virtual machines.

C. Measurement Tools

Intel VTune Amplifier [5] is a commercial application used

to analyze software performance for x86 based machines using

hardware performance counters. We use the Vtune command

line interface to profile our benchmarks and collect microarchi-

tectural statistics. In addition, we use CentOS system tools to

record utilization information for disk, memory, the CPU, and

the network per second. To ensure accuracy, we clear the file-

system cache and restart Hadoop and Spark before launching

each test for all benchmarks.

However, using system tools can not give us all the memory

information that we are interested in, such as the peak band-

width of the memory references. We thus use Hyper Memory

Trace Tracker (HMTT) [11], a hardware component situated

between the DIMM and memory controller, to record all off-

chip references. This helps us to better understand the in-

memory behavior of Spark and Hadoop.

Given that we only have one suite of HMTT devices on

hand, we set it up on a separate node not included in the 17-

node cluster. We deploy all systems and make the node act as

both master and workers, simultaneously. Every of memory

access trace collection is launched after the benchmarks are

24978-1-4799-6454-3/14/$31.00 ©2014 IEEE 24

running in a stable state, and every collection lasts for 10

minutes.

IV. EVALUATION AND ANALYSIS

This section presents the performance results of our ex-

periments, including execution performance, memory access

behavior, and microarchitectural behavior.

A. Execution Performance

1) Execution Time: Figure 1 shows the execution time

of Spark and Hadoop benchmarks. The execution time of

Hadoop benchmarks ranges from 2.7 times to 8.4 times those

of the corresponding Spark benchmarks. This is due to the

basic differences between the Spark and Hadoop frameworks:

the former places and processes the datasets in memory

whereas the latter frequently accesses disk. This observation

corroborates previous work by Zeharia et al. [29].

2) Disk I/O: Figure 2 shows disk requests per second for

Spark and Hadoop benchmarks. The frequency of reads/writes

varies with application types. However, Spark ratios of read

to write requests are similar to those of the corresponding

Hadoop applications. To our surprise, disk requests per

second for the Spark benchmarks are greater than for the

Hadoop benchmarks, on average. This may be due to the

fact that the Spark benchmarks run faster yet perform the same

number of disk accesses for the same input and output datasets.

B. Memory Access Behavior

1) Bandwidth: In general, one of the most important stan-

dards by which to evaluate application memory requirements

is the average bandwidth to access memory. However, memory

bandwidth does not remain constant throughout execution.

Thus, in order to better understand the memory access be-

haviors of Spark and Hadoop and possibly the differences

between them, we evaluate their burst bandwidths. To calculate

the average and burst bandwidth we sample the memory

bandwidths every 1ms, and define burst bandwidth to be the

average value of the top 10th percentile of the bandwidth

samples, as in Bao et al. [11].

Figure 3 shows the average and burst bandwidths of all the

Spark and Hadoop benchmarks. On average, the five Hadoop

applications only use 15% of the peak bandwidth of 6.4GB/s

(we limit the memory to 800MHz because that is HMTT’s

maximum sampling speed), while Spark’s average bandwidth

reaches about 40% of the peak bandwidth. This is 2.6 times

that of Hadoop, indicating that Spark can make much better

use of available memory bandwidth. In particular, the burst

bandwidth of NaiveBayes on Spark reaches more than 80%

of the peak bandwidth. Hadoop’s bandwidth can exceed 198%

of its average bandwidth, while Spark’s burst bandwidth is

only 47% higher. Hadoop’s higher burst bandwidth reflects

its uneven memory access behavior; Spark’s memory access

behavior is much more stable.

2) Page Access Frequency: Memory page access frequency

information is critical for optimizing application memory

allocation and management. In our experiments, we collect

the reference number of each memory page and perform

some statistical analysis. Figure 4 shows that 80% of the

memory requests access only 20% of the pages. Specifically,

for some Spark applications, 90% of the memory requests

access just 10% of the pages, which implies that the access

locality is good. Giving special attention to managing these

hot pages may improve system performance. Note that due to

its streaming behavior, such a hot page distribution is not as

clear for grep as for other benchmarks.

3) Burst Accesses: Figure 5 shows the cumulative distribu-

tion of the number of bursts of different sizes for all workloads.

A burst size of one indicates transmitting one cacheline on

the memory bus. In the following discussion, burst flows are

traffic flows with burst sizes larger than one. On average, with

about 60% of traffic flows on the memory bus being burst

flows, the percentage of burst flows of Spark workloads is

50% higher than that of Hadoop. What is more, the figure also

demonstrates that Spark workloads have larger burst sizes than

Hadoop, since the size of almost all Hadoop burst requests is

less than 16.

To further evaluate the memory access characteristics of

Spark and Hadoop, we calculate the total memory bus traffic

with different burst sizes. Figure 6 shows these cumulative

distributions. For Spark workloads, about 90% of the bus

traffic is bursts, while for Hadoop workloads, this is only

about 70%. Based on analysis of the two figures, we find

that Spark exhibits better memory bandwidth utilization.

Hadoop is limited by its larger proportion of non-burst memory

requests.

4) Sequential Accesses: Next we analyze memory stalls as

represented by L2 cache misses. We count the average number

of cycles during which the L2 MSHRs are not empty. Figure 7

shows memory stall statistics for the Spark and Hadoop

workloads. Although Spark has higher bandwidth utilization,

it exhibits little difference from Hadoop with respect to its

ratio of memory stalls, indicating that Spark’s main loop puts

little stress on the memory access module of the back-end of

the pipeline.

To see why, we use HMTT to analyze the characteristics of

the burst memory accesses. Figure 8 shows that Spark work-

loads have more memory requests with sequential addresses.

Specifically, about 30% of the memory requests of GraphX

workloads are sequential. In order to reduce the number of

cache misses, many processors use hardware prefetchers to

load cache lines before they are requested. Such mechanisms

have been shown to perform well with traditional bench-

marks [23]. We therefore speculate that frequently correct

prefetches reduce the number of pipeline stalls caused by the

load store unit.

C. Microarchitecture

1) IPC: Figure 9 shows the IPCs of the benchmarks we

evaluate. The figure shows that the Spark benchmarks achieve

25978-1-4799-6454-3/14/$31.00 ©2014 IEEE 25

naivebayes grep database pagerank CC
0

2

4

6

8

10

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

 Spark
 Hadoop

Fig. 1. Execution Time

Sp
ark

-na
ive
bay

es

Sp
ark

-gr
ep

Sp
ark

-sh
ark

Sp
ark

-gr
aph

x-p
age

ran
k

Sp
ark

-gr
aph

x-C
C

Ha
doo

p-n
aiv
eba

yes

Ha
doo

p-g
rep

Ha
doo

p-h
ive

Ha
doo

p-g
ira
ph
-pa
ger
ank

Ha
doo

p-g
ira
ph
-C
C

0

50

100

150

200

250

300

Di
sk

 R
ea

d/W
rit

e p
er

Se
co

nd Read
 Write

Fig. 2. Disk Accesses per Second

Sp
ark

-na
ive
ba
yes

Sp
ark

-gr
ep

Sp
ark

-sh
ark

Sp
ark

-gr
ap
hx
-pa
ger
an
k

Sp
ark

-gr
ap
hx
-CC

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap

h-p
age

ran
k

Ha
do
op
-gi
rap

h-C
C

0

1000

2000

3000

4000

5000

6000

Ba
nd

wi
dth

 (M
B/

s)

 Mean
 Burst

Fig. 3. Memory Bandwidth

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

um
ul

at
iv

e
D

is
tri

bu
tio

n(
%

)

Page Distribution Percentage

 Spark-naivebayes
 Spark-grep
 Spark-shark
 Spark-graphx-pagerank
 Spark-graphx-CC
 Hadoop-naivebayes
 Hadoop-grep
 Hadoop-hive
 Hadoop-giraph-pagerank
 Hadoop-giraph-CC

Fig. 4. Page Access Frequency

1 2 4 8 16 32 64
20

30

40

50

60

70

80

90

100

Ac
cu

m
ul

ati
ve

 D
ist

rib
ut

io
n(

%
)

Burst Length

 Spark-naivebayes
 Spark-grep
 Spark-shark
 Spark-graphx-pagerank
 Spark-graphx-CC
 Hadoop-naivebayes
 Hadoop-grep
 Hadoop-hive
 Hadoop-giraph-pagerank
 Hadoop-giraph-CC

Fig. 5. Burst Memory Access Distribution

1 2 4 8 16 32 64
0

10

20

30

40

50

60

70

80

90

100

Burst Length

Ac
cu

m
ul

ati
ve

 D
ist

rib
ut

io
n(

%
)

 Spark-naivebayes
 Spark-grep
 Spark-shark
 Spark-graphx-pagerank
 Spark-graphx-CC
 Hadoop-naivebayes
 Hadoop-grep
 Hadoop-hive
 Hadoop-giraph-pagerank
 Hadoop-giraph-CC

Fig. 6. Memory Bus Traffic Distribution

Sp
ark

-na
ive
bay

es

Sp
ark

-gr
ep

Sp
ark

-sh
ark

Sp
ark

-gr
aph

x-p
age

ran
k

Sp
ark

-gr
aph

x-C
C

Ha
doo

p-n
aiv
eba

yes

Ha
doo

p-g
rep

Ha
doo

p-h
ive

Ha
doo

p-g
ira
ph
-pa

ger
ank

Ha
doo

p-g
ira
ph
-CC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
em

or
y S

tal
l p

er
Cy

cle

Fig. 7. Memory Stall Cycles

1 2 4 8 16 32 64
65

70

75

80

85

90

95

100

Ac
cu

m
ul

ati
ve

 D
ist

rib
ut

io
n(

%
)

Number of Sequential Addresses

 Spark-naivebayes
 Spark-grep
 Spark-shark
 Spark-graphx-pagerank
 Spark-graphx-CC
 Hadoop-naivebayes
 Hadoop-grep
 Hadoop-hive
 Hadoop-giraph-pagerank
 Hadoop-giraph-CC

Fig. 8. Sequential Memory Accesses

26978-1-4799-6454-3/14/$31.00 ©2014 IEEE 26

Spark
-naiv

eb
ay

es

Spark
-gr

ep

Spark
-sh

ark

Spark
-gr

ap
hx-p

ag
era

nk

Spark
-gr

ap
hx-C

C

Had
oo

p-naiv
eb

ay
es

Had
oo

p-gr
ep

Had
oo

p-hive

Had
oo

p-gi
rap

h-pag
era

nk

Had
oo

p-gi
rap

h-C
C

40
0 p

erl
ben

ch

40
1 b

zip
2

40
3 g

cc

42
9 m

cf

44
5 g

ob
mk

45
6 h

mmer

45
8 s

jen
g

46
2 l

ibquan
tum

46
4 h

26
4re

f

47
1 o

mnetp
p

47
3 a

sta
r

48
3 x

ala
ncb

mk

IN
T_m

ean

41
0 b

wav
es

41
6 g

am
ess

43
3 m

ilc

43
4 z

eu
sm

p

43
5 g

rom
acs

43
6 c

act
usA

DM

43
7 l

esl
ie3

d

44
4 n

am
d

45
0 s

op
lex

45
3 p

ov
ray

45
4 c

alc
ulix

45
9 G

em
sF

DTD

46
5 t

on
to

47
0 l

bm
48

1 w
rf

48
2 s

phinx3

FP_m
ean

TPC-C

data
_se

rvi
ng

med
ia_

str
eam

ing

web
_b

ack
en

d

web
_fr

on
ten

d

web
_se

arc
h

sof
tw

are
_te

stin
g

Dom
ain

0

Dom
ain

U

0.0

0.5

1.0

1.5

2.0

2.5

3.0
IP
C

Fig. 9. IPC

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

50

100

150

200

250

In
str

uc
tio

n
Ca

ch
e

M
iss

 p
er

 K
ilo

-In
str

uc
tio

n

Fig. 10. L1I Miss per Kilo-Instruction

higher IPCs than the Hadoop benchmarks, the CloudSuite and

DesktopCloud workloads. Composed of service applications

with more interactive operations, we would expect the latter

two workloads to have lower IPCs. On the other hand, com-

pared to the traditional CPU-intensive benchmarks in SPEC

CPU2006, Spark’s IPCs are lower. This can be explained by

the fact that Spark has more I/O operations. To analyze this

more deeply, we collect detailed microarchitectural statistics

for the I-Cache, D-Cache, TLB, and branch predictor, and we

further investigate resource stalls.

2) L1I Cache: Instruction fetch efficiency directly affects

pipeline utilization. Figure 10 shows L1 instruction misses per

kilo-instruction (MPKI). It shows that the I-Cache miss rates

of the Spark and Hadoop benchmarks are lower than those

of the TPC-C, CloudSuite, and DesktopCloud workloads. For

the data analysis workloads, Spark and Hadoop have fewer

interactions than CloudSuite and DesktopCloud. However,

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

2

4

6

8

10

12

L1
D

 M
iss

 R
at

io
 (%

)

Fig. 11. L1D Miss Ratio

they have higher MPKI than SPEC CPU2006. Because both

Spark and Hadoop use Java Virtual Machine (JVM) to interpret

and execute Java byte code on the physical machine, their extra

I-Cache misses likely stem from the resulting larger software

stacks. The Spark and Hadoop benchmarks experience more

context switches among the different software layers.

3) L1D Cache: Figure 11 shows that the Spark and Hadoop

benchmarks have lower L1D Cache miss rates than the other

benchmarks, which indicates that they have better locality.

Therefore, the L1D Cache is not a performance bottleneck:

this indicates that the current L1 data cache works well for

both Spark and Hadoop.

4) TLB: The translation look-aside buffer (TLB) is a

common hardware structure to accelerate virtual-to-physical

address translation.

A TLB miss triggers a process called page walk to load

the associated translation into the TLB. Figure 12 presents

27978-1-4799-6454-3/14/$31.00 ©2014 IEEE 27

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

1

2

3

4

5

TL
B

M
iss

 R
at

io
(%

) ITLB
 DTLB

Fig. 12. TLB Miss Ratio

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

20

40

60

80

100

L2
 M

iss
 R

at
io

 (%
)

Fig. 13. L2 Miss Ratio

the ITLB and DTLB miss rates. The figure shows that both

the Spark and Hadoop ITLB and DTLB miss rates are lower

than those of TPC-C, CloudSuite, DesktopCloud and SPEC

CPU2006. Babka et al. [10] show that the average TLB miss

penalty is larger than the average L2 cache miss penalty, even

with hardware page-table walks. These lower miss rates arise

from the way Spark and Hadoop divide the full datasets into

small pieces that are processed in parallel. Moreover, they

maintain a one-to-one correspondence between jobs and CPU

cores to avoid frequent context switches. Therefore, each core

only processes one small-scale job at a time.

5) L2 Cache: Figure 13 shows that Spark and Hadoop

suffer higher L2 miss rates than SPEC CPU2006 but lower

than CloudSuite and DesktopCloud. Figure 14 shows that the

Spark and Hadoop L2 MPKI are lower than those of the other

benchmarks. These statistics indicate that the number of L2

cache references is relatively small. Therefore, the L2 cache

is not a performance bottleneck for Spark and Hadoop, even

though they suffer higher miss rates.

Among all the Spark and Hadoop benchmarks, the grep

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

20

40

60

80

100

120

140

160

L2
 M

iss
 p

er
 K

ilo
-In

str
uc

tio
n

Fig. 14. L2 Miss per Kilo-Instruction

applications have the highest L2 cache miss rates and MPKI.

Because grep must quickly process a large quantity of data,

its main operation is a low-overhead comparison. Furthermore,

grep streams these data sequentially, operating on each stream

element only once.

6) Last Level Cache: The last level cache (LLC) is the last

defense to mitigate the speed gap between the processor and

the off-chip memory. Most server processors thus devote a

large portion of chip area to the LLC. Figure 15 shows that

all benchmarks except the grep application rarely suffer LLC

misses. These results indicate that the LLC works well for

almost all benchmarks, even though the L2 cache does not.

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

10

20

30

40

50

60

LL
C

M
iss

 p
er

 K
ilo

-In
str

uc
tio

n

Fig. 15. LLC Miss per Kilo-Instruction

7) Branch Prediction: Branch predictors reduce stalls in

the instruction pipeline and improve the performance of CPU.

To reduce the frequency and cost of mispredictions, the branch

predictors in modern processors tend to be quite sophisticated.

Figure 16 shows that the Spark branch prediction miss rate

is lower than those of other benchmarks. Furthermore, the

Hadoop branch prediction miss rate is also lower than most

28978-1-4799-6454-3/14/$31.00 ©2014 IEEE 28

of the others’. This reveals that the branch instructions of our

Spark and Hadoop benchmarks are highly predictable. One

possible reason is that the Spark and Hadoop benchmarks

prefer simple algorithms. Our results indicate that the Intel

branch predictor works well for these benchmarks.

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0

1

2

3

4

5

6

7

8

Br
an

ch
 M

iss
-p

re
di

ct
io

n
Ra

tio
 (%

)

Fig. 16. Branch Miss-Prediction Ratio

8) Resource Stalls: Figure 17 shows the pipeline stall

cycles caused by different operations, including register allo-

cation stalls, reservation station full stalls, and reorder buffer

full stalls. The resource stalls of the Spark and Hadoop

benchmarks are higher than those of the TPC-C, CloudSuite,

and DesktopCloud, but lower than those of the traditional

CPU-intensive SPEC CPU2006 benchmarks. As expected,

these results correspond to the computational intensities of the

various benchmarks.

Sp
ark
-na
ive
ba
yes

Sp
ark
-gr
ep

Sp
ark
-sh
ark

Sp
ark
-gr
ap
hx
-pa
ger
an
k

Sp
ark
-gr
ap
hx
-C
C

Ha
do
op
-na
ive
ba
yes

Ha
do
op
-gr
ep

Ha
do
op
-hi
ve

Ha
do
op
-gi
rap
h-p
ag
era
nk

Ha
do
op
-gi
rap
h-C

C

SP
EC
IN
T_
me
an

SP
EC
FP
_m
ean

TP
C-
C

da
ta_
ser
vin
g

me
dia
_st
rea
mi
ng

we
b_
ba
ck
en
d

we
b_
fro
nte
nd

we
b_
sea
rch

sof
tw
are
_te
sti
ng

Do
ma
in0

Do
ma
inU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Re
so

ur
ce

 S
ta

lls
 (s

ta
ll

cy
cl

es
 p

er
 c

yc
le

) Reorder Buffer full stalls
 Regster Allocation stalls
 Reservation Station full stalls

Fig. 17. Resource Stalls Breakdown

D. Discussion

Our experiments demonstrate that the memory access char-

acteristics of the Spark and Hadoop workloads differ, in spite

of their using the same algorithms and same input datasets.

The Spark workloads could be further optimized to improve

the efficiency of their memory referencing behavior.

On the chip level, previous work shows that general-

purpose x86 server processors are not well suited to scale-out

workloads [17]. In our experiments, the Spark benchmarks

fare better than the Hadoop and scale-out benchmarks. Our

Spark workloads exhibit high L2 cache miss rates, but low

L1 cache and LLC miss rates. These results indicate that

opportunities exist for cache hierarchy optimizations. On the

memory level, the Spark’s average bandwidth is about 40% of

the peak bandwidth, while Hadoop only uses 15% of the peak

bandwidth. The burst bandwidth of some Spark applications

is up to 80% of the peak bandwidth, indicating that Spark

workloads may benefit from memory bandwidth optimizations

such as improving memory frequency and using devices such

as the Hybrid Memory Cube (HMC) [4]. With respect to disk

I/O, the access frequency of Spark workloads is much higher

than Hadoop workloads, implying that Spark workloads might

benefit from I/O optimizations.

V. CONCLUSION

In-memory computing is becoming one of the most popular

approaches for real-time big data processing. It is thus impor-

tant to better understand how the architecture and microar-

chitecture affect the performance of in-memory computing

in order to determine whether existing systems can handle

such workloads efficiently. In this paper, we use hardware

performance counters and a custom-made memory trace col-

lection device to analyze the behavior of Spark, Hadoop, SPEC

CPU2006, TPC-C, CloudSuite, and DesktopCloud workloads.

We gather a large set of performance statistics for all these

workloads to show that with respect to many architectural

features, the behavior of the Spark in-memory computing

framework differs from Hadoop, scale-out service applica-

tions, DesktopCloud, and traditional high performance work-

loads.

We evaluate execution time, disk accesses per second,

memory bandwidth utilization, page access frequency, and the

burst and sequential access patterns of Spark and Hadoop

benchmarks. Our results indicate that the Spark benchmarks

use several times more memory bandwidth and have much

higher burst behavior. Moreover, Spark workloads have more

sequential burst accesses than Hadoop workloads. We also

collect performance numbers on the L1 I and D caches, the

TLB, the L2 cache, the LLC, and the branch predictor, and we

track resource stalls. Our experimental results demonstrate that

current Intel commodity processors are sufficiently efficient for

in-memory computing.

VI. ACKNOWLEDGMENTS

We thank our reviewers for their comments and suggestions.

David Meisner provided valuable assistance in preparing the

final copy of this manuscript. We also thank Licheng Chen for

his help on evaluation with HMTT. This work was supported

by the Strategic Priority Research Program of the Chinese

29978-1-4799-6454-3/14/$31.00 ©2014 IEEE 29

Academy of Sciences under grant No. XDA06010401, Na-

tional Science Foundation of China under grant No. 61100010,

No. 61402438 and No. 61402439.

REFERENCES

[1] Apache Cassandra.
http://cassandra.apache.org.

[2] Apache Giraph. https://giraph.apache.org/.

[3] Apache Hive. http://hive.apache.org/.

[4] Hybrid Memory Cube.
http://www.hybridmemorycube.org/.

[5] Intel VTune Amplifier XE 2013.
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

[6] LiveJournal Social Network.
http://snap.stanford.edu/data/soc-LiveJournal1.html.

[7] SPEC CPU2006. http://www.spec.org/cpu2006/.

[8] The Big Data Benchmark of AMP Lab.
https://amplab.cs.berkeley.edu/benchmark/.

[9] TPC-C.http://www.tpc.org/tpcc/default.asp.

[10] V. Babka and P. Tuma, “Investigating cache parameters of x86 family
processors,” in Computer Performance Evaluation and Benchmarking,
January 2009, vol. 5419, pp. 77–96.

[11] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song, , and J. Xu,
“HMTT: A platform independent full-system memory trace monitoring
system,” in International Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS), June 2008, pp. 229–240.

[12] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience (SPE), vol. 41, no. 1, pp.
23–50, January 2011.

[13] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine provisioning
based on analytical performance and QoS in cloud computing envi-
ronments,” in International Conference on Parallel Processing (ICPP),
September 2011, pp. 13–16.

[14] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9:
A software testing service,” The ACM SIGOPS Operating System
Review, vol. 43, no. 4, pp. 5–10, January 2010.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of ACM, vol. 51, no. 1, pp. 107–113,
January 2008.

[16] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: Fast data analysis using coarse-grained distributed
memory,” in International Conference on Management of Data (SIG-
MOD), May 2012, pp. 689–692.

[17] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in Architectural Support for Programming Languages and Operating

Systems (ASPLOS), March 2012, pp. 37–48.

[18] N. E. Jerger, D. Vantrease, and M. Lipasti, “An evaluation of server
consolidation workloads for multi-core designs,” in IEEE International

Symposium on Workload Characterization (IISWC), September 2007,
pp. 47–56.

[19] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing data
analysis workloads in data centers,” in IEEE International Symposium

on Workload Characterization (IISWC), July 2013, pp. 66–76.

[20] T. Jiang, R. Hou, L. Zhang, K. Zhang, L. Chen, M. Chen, and N. Sun,
“Micro-architectural characterization of Desktop Cloud workloads,” in
IEEE International Symposium on Workload Characterization (IISWC),
November 2012, pp. 131–140.

[21] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in International Conference on Management of Data (SIG-

MOD), June 2010, pp. 135–146.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Stanford InfoLab, Tech. Rep.,
November 1999.

[23] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” in International Symposium on Computer

Architecture (ISCA), April 1994, pp. 24–33.

[24] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou, “Workload character-
ization on a production Hadoop cluster: A case study on Taobao,” in
IEEE International Symposium on Workload Characterization (IISWC),
November 2012, pp. 3–13.

[25] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“BigDataBench: a big data benchmark suite from internet services,” in
International Symposium On High Performance Computer Architecture
(HPCA), Feburary 2014, pp. 488–499.

[26] H. Xi, J. Zhan, Z. Jia, X. Hong, L. Wang, L. Zhang, N. Sun, and
G. Lu, “Characterization of real workloads of web search engines,” in
IEEE International Symposiumon Workload Characterization (IISWC),
November 2011, pp. 15–25.

[27] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and
I. Stoica, “GraphX: Unifying data-parallel and graph-parallel analytics,”
Computer Science Databases, Feburary 2014.

[28] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: SQL and rich analytics at scale,” in International Conference

on Management of Data (SIGMOD), June 2013, pp. 13–24.
[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Hot Topics in Cloud

Computing (HotCloud), June 2010, pp. 10–10.
[30] C. Zheng, J. Zhan, Z. Jia, and L. Zhang, “Characterizing OS Behavior

of scale-out data center workloads,” in Workshop on the Interaction

amongst Virtualization, Operating Systems and Computer Architecture

(WIVOSCA), June 2013.

30978-1-4799-6454-3/14/$31.00 ©2014 IEEE 30

