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Abstract—In this paper, we characterize the performance of
an important class of scheduling schemes, called Greedy Maximal
Scheduling (GMS), for multi-hop wireless networks. While a
lower bound on the throughput performance of GMS is relatively
well-known in the simple node-exclusive interference model, it
has not been thoroughly explored in the more general K-hop
interference model. Moreover, empirical observations suggest that
the known bounds are quite loose, and that the performance
of GMS is often close to optimal. In this paper, we provide a
number of new analytic results characterizing the performance
limits of GMS. We first provide an equivalent characterization of
the efficiency ratio of GMS through a topological property called
the local-pooling factor of the network graph. We then develop an
iterative procedure to estimate the local-pooling factor under a
large class of network topologies and interference models. We use
these results to study the worst-case efficiency ratio of GMS on
two classes of network topologies. First, we show how these results
can be applied to tree networks to prove that GMS achieves the
full capacity region in tree networks under theK-hop interference
model. Second, we show that the worst-case efficiency ratio of
GMS in geometric network graphs is between 1

6
and 1

3
.

I. INTRODUCTION
Over the last few years there has been significant interest
in studying the scheduling problem for multi-hop wireless
networks [1]–[9]. In general, this problem involves determin-
ing which links should transmit (i.e., which node-pairs should
communicate) and at what times, what modulation and coding
schemes should be used, and at what power levels should
communication take place. While the optimal solution of this
scheduling problem has been known for a long time [2], the
resultant solution has high computational complexity and is
difficult to implement in multi-hop networks. For example,
under the simplest 1-hop interference model (also known as
the node-exclusive or primary interference model), where two
links interfere with each other only if they are within 1-hop
distance, the throughput-optimal policy of [2] corresponds to
a Maximum Weighted Matching (MWM) policy and its com-
plexity is roughly O(N 3) [10], where N is the total number of
nodes in the network. While the 1-hop interference model has
been used as a reasonable approximation to Bluetooth or FH-
CDMA networks ( [1], [11], [12]), a large class of systems
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can be modeled using the more general K-hop interference
models, in which any two links within K-hop distance cannot
be activated simultaneously. For example, the ubiquitous IEEE
802.11 DCF (Distributed Coordination Function) wireless net-
works is often modeled as the 2-hop interference model [13],
[14]. The complexity of the throughput-optimal policy of [2]
for the K-hop interference model is NP-Hard [15], and hence,
it is difficult to implement in practice.
In this paper, we are interested in a well-known subopti-
mal scheduling policy called the Greedy Maximal Scheduling
(GMS), which determines its schedule by choosing links in
a decreasing order of the backlog while conforming to inter-
ference constraints. GMS has low complexity [1], [16], [17]
and may be implemented in a distributed manner. However,
to date its performance is still not well-understood. We can
characterize the performance of GMS through its efficiency
ratio γ∗, which can be defined as the achievable fraction of
the optimal capacity region (see Definition 2). Under the 1-
hop interference model, it is relatively straightforward to show
that the efficiency ratio of GMS is at least 1/2, i.e., GMS can
sustain at least half of the throughput of the optimal policy.
However, simulation results suggest that the performance of
GMS is often much better than this lower bound in most
network settings. Under the K-hop interference model, we
do not even know how to characterize the efficiency ratio
of GMS in most network graphs. It has been shown only
in geometric network graphs that γ∗ ≥ 1

8 in the 2-hop
interference model [13] and γ∗ ≥ 1

49 in theK-hop interference
model with K ≥ 2 [15]. However, again simulation results
suggest that the actual performance of GMS is often much
better.
Recently, Dimakis and Walrand [18] have shown that if the
network topology satisfies the so-called local-pooling condi-
tion, then GMS can in fact achieves the full capacity region.
The idea is extended in [19], [20] to find network topologies
that maximize the throughput under GMS. Unfortunately,
realistic network topologies may not satisfy the local-pooling
condition. Hence, the true efficiency ratio of GMS in many
network scenarios remains unknown.
The main objective of this paper is to understand the
achievable efficiency ratio of GMS for a large class of net-
work topologies and interference models. Understanding the
performance limits of GMS is important for the following



reasons. First, it has been empirically observed in [3] that
the centralized GMS outperforms many distributed scheduling
schemes and achieves virtually the same throughput as the
throughput-optimal scheduling for a variety of networking
scenarios. Second, although there have been some recently
developed distributed scheduling schemes [8], [9] that can
achieve the maximum achievable throughput, the study of
GMS continues to remain attractive because, empirically, GMS
performs better than these schemes in terms of the resultant
queueing delay [3], [6]. Third, it has been known in [21] that
GMS can be also implemented in a distributed manner, which
is critical from the point of view of many multi-hop wireless
systems and applications. Finally, recent studies have proposed
even simpler constant-time-complexity random algorithms [3],
[4], [7] that appear to approximate the performance of GMS
by giving a larger weight to a link with a larger queue length.
In this paper, we provide a number of new analytical results
along this direction. We first generalize the notion of local-
pooling in [18] to the notion of local-pooling factor, which is a
topological property of a graph. We show that, under arbitrary
interference models, the efficiency ratio of GMS for a given
network graph is equal to the local-pooling factor of the graph.
We then develop an iterative procedure to determine a lower
bound on the local-pooling factor of a network graph, and a
sufficient condition for a lower bound on the worst-case local-
pooling factor over a class of network topologies. We next
apply these results to two classes of network topologies. First,
we show how these results can be applied to tree networks to
prove that GMS achieves the full capacity for any tree network
under a K-hop interference model. (This result was shown in
[20] by using a different approach.) Second, We also develop
much sharper bounds on the worst-case efficiency ratio for
geometric graphs than those known in the literature.
The rest of the paper is organized as follows. We first
describe our system model in Section II. We then provide
in Section III an equivalent characterization of the efficiency
ratio of GMS through the local-pooling factor of the underly-
ing network graph. We develop an iterative analysis method
estimating the local-pooling factor of a network graph in
Section IV. Using the new methodology, we show that GMS
achieves the full capacity region in tree topologies under the
K-hop interference model in Section V. We also provide new
results bounding the efficiency ratio of GMS in geometric
network graphs in Section VI. We conclude in Section VII.

II. NETWORK MODEL
We model a wireless network by a graph G(V, E, I), where

V is the set of nodes, E is the set of undirected links,
and I represents interference constraints (e.g., an |E|x|E|
interference matrix). For each link l, let I(l) denote the set
of links interfering with l. For convenience, we adopt the
convention that l ∈ I(l). We define the interference degree d(l)
as the maximum number of links in I(l) that do not interfere
with each other. We assume a time-slotted system, where the
length of each time slot is of unit length. We assume that in
each time slot, link l can transmit one packet provided that no

other links in I(l) are transmitting at the same time. If two
interfering links transmit at the same time, neither of them can
transmit any data. A set of active (i.e., transmitting) links forms
a feasible schedule in E if none of them interfere with each
other. Note that this model is very general and can represent a
large class of wireless networks. For example, in the so-called
K-hop interference model, two links within K-hop distance
interfere with each other. We can correspondingly define I(l)
as, for all links l ∈ E,

I(l) = {k ∈ E | the distance between links l and k

is less than or equal to K hops}.

A maximal schedule "M on E is defined as a feasible
schedule, such that, when all links in "M are activated, no
more links can be activated without violating the interference
constraint. We use a vector in {0, 1}|E| to denote a maximal
schedule "M such that the k-th element Mk is set to 1 if link
k ∈ E is included in "M , and to 0 otherwise. Let ME be
the set of all possible "M ’s and let Co(ME) denote its convex
hull. We define a maximal scheduling vector "φ in E as a vector
"φ ∈ Co(ME).
We assume that packets arrive to each link l according to
a stationary and ergodic process, and the average arrival rate
is λl. The capacity region (or stability region) under a given
scheduling policy is defined as the set of arrival rate vectors
"λ = {λ1,λ2, . . . ,λ|E|} such that the system is stable (i.e.,
all queues are kept finite). We define the optimal capacity
region Λ as the union of the capacity regions of all scheduling
policies. It is known that Λ is given by [2], [22], [23],

Λ =
{

"λ
∣

∣ "λ # "φ, for some "φ ∈ Co(ME)
}

, (1)

where "x # "y denotes that "x is component-wise dominated by
"y. Let Λ̊ denote the interior of Λ. It is well-known that the
scheduling policy of [2], which we refer to as the Maximal
Weighted Scheduling (MWS) policy, achieves the capacity
region Λ̊. MWS chooses a schedule at each time slot t that
maximizes the total queue weighted rate sum as

"M∗(t) = argmax
!M∈ME

∑

l∈E

ql(t)Ml,

where ql(t) is the backlog of link l at time t. However, this
policy has high computational complexity. The complexity
is O(N3) under the 1-hop interference model and is in
general NP-Hard under K-hop interference models (K ≥ 2).
In this paper, we are interested in a suboptimal (but much
simpler) policy called Greedy Maximal Scheduling (GMS) or
Longest Queue First (LQF) policy. GMS can be viewed as an
approximation of MWS. It operates as follows: at each time
slot, it first picks the link l with the largest backlog; it then
discards all links that interfere with link l; it then picks the
link with the largest backlog from the remaining links; and
this process continues until no links left. Our goal of the paper
is to characterize the efficiency ratio of GMS under arbitrary
network topologies. The efficiency ratio is defined as follows.
Definition 1: For a suboptimal scheduling policy, e.g.,



GMS, we say that it achieves a fraction γ of the capacity region
under a given network topology if it can keep the system stable
for any offered load "λ ∈ γΛ.
Definition 2: The efficiency ratio γ∗(G) of a scheduling
policy under a given network graph G(V, E, I) is the supre-
mum of all γ such that the policy can achieve a fraction γ of
the capacity region, i.e.,
γ∗(G) := sup{γ | the system is stable under all offered

load vectors "λ such that "λ # γ"φ

for some "φ ∈ Co(ME)}.

(2)

III. AN EQUIVALENT CHARACTERIZATION OF THE
EFFICIENCY RATIO OF GMS

In this section, we provide an equivalent characterization of
the efficiency ratio of GMS through its topological properties.
We first borrow the following definitions from [24].
Definition 3: A set of links L satisfies σ-local pooling, if

σ"µ ! "ν for all "µ,"ν ∈ Co(ML), where ML is the set of all
possible maximal schedules of links in L and Co(ML) is its
convex hull. In other words, for all "µ,"ν ∈ Co(ML), there
must exist some k ∈ L such that σµk < νk.
Definition 4: The local-pooling factor σ∗(G) of a graph

G(V, E, I) is the supremum of all σ such that every subset
L ⊂ E satisfies σ-local pooling. In other words,
σ∗(G) := sup{σ| σ"µ ! "ν for all L and all "µ,"ν ∈ Co(ML)}

= inf{σ| σ"µ % "ν for some L and some "µ,"ν ∈ Co(ML)}.
(3)

The notion of local-pooling is first introduced in [18]. Their
definition of local-pooling is equivalent to our definition of a
local-pooling factor of 1. It was shown in [18] that, if the local-
pooling factor of an arbitrary graph is 1, GMS can achieve the
efficiency ratio of 1. However, realistic network topologies
often do not have a local-pooling factor of 1. In our earlier
work [24], we show that under the 1-hop interference model,
the efficiency ratio of GMS under a given network graph is
equivalent to the local-pooling factor of the graph. We next
generalize this result to arbitrary interference models.
Proposition 1: The efficiency ratio γ∗(G) of GMS under a
given network graph G(V, E, I) is equal to its local-pooling
factor σ∗(G).
Remark: Since both γ∗(G) and σ∗(G) are determined by the
network G, in the sequel we will simply use γ∗ and σ∗ when
there is no source of confusion regarding the network G.
The proof of Proposition 1 is a straightforward extension of
that of Proposition 8 in [24] and its supporting lemmas. We
next sketch the main idea of the proof and refer the readers
to [24] for the details. First, given the network G, we can
obtain γ∗ ≥ σ∗ by showing that the network is stable under
GMS at any offered load "λ strictly within σ∗Λ. Specifically,
we can show that in the fluid limit the longest queue always
decrease under GMS. Then, we can show γ∗ ≤ σ∗ by con-
structing a particular traffic pattern with rate outside σ∗Λ such

(a) Topology (b) Maximal
schedule !M0

(c) Maximal
schedule !M2

Fig. 1. The 6-link cyclic network and the instances of maximal schedule
under the 1-hop interference model. The solid lines in (b) and (c) are the
active links.

that the system is unstable. Specifically, from two maximal
scheduling vectors "µ,"ν ∈ Co(ML) satisfying σ∗"µ % "ν, we
can construct a deterministic traffic pattern that makes the set
of queues in L unstable under GMS and whose offered load
is "λ = "ν + ε"eL ∈ Λ̊ for some ε > 0, where "eL is a vector
with ek = 1 for k ∈ L and ek = 0 for k /∈ L. Hence, we have
γ∗ ≤ σ∗ and the proposition follows.
To illustrate how to construct such a traffic pattern in the
latter part of the proof, we provide the following example.
Example:We consider the 6-link cyclic network graph under
the 1-hop interference model. We illustrate its topology in
Fig. 1(a) and number all links clockwise from 0 to 5. All
possible maximal schedules under this network graph are listed
below.

• "M0 = {1, 0, 1, 0, 1, 0}, "M1 = {0, 1, 0, 1, 0, 1},
• "M2 = {1, 0, 0, 1, 0, 0}, "M3 = {0, 0, 1, 0, 0, 1}, "M4 =

{0, 1, 0, 0, 1, 0}.
Note that the number of links included in a maximal schedule
is three for "M0 and "M1, and is two for "M2, "M3, and
"M4. Figs. 1(b) and 1(c) show the two instances of the
maximal schedules, i.e., "M0 and "M2. Note that if we take
two convex combinations "µ,"ν from maximal schedules (i.e.,
"µ,"ν ∈ Co({ "Mi}) as

"µ = 1
2
"M0 + 1

2
"M1 =

{

1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

}

,

"ν = 1
3
"M2 + 1

3
"M3 + 1

3
"M4 =

{

1
3 , 1

3 , 1
3 , 1

3 , 1
3 , 1

3

}

,

and hence, 2
3"µ % "ν. This implies that the 6-link cyclic network

does not satisfy σ-local pooling with σ ≥ 2
3 , i.e., its local-

pooling factor σ∗ must be no larger than 2
3 .

We now show that the efficiency ratio of GMS is no larger
than 2

3 by constructing a particular traffic pattern with offered
load "λ = "ν + ε

3"e such that the system is unstable under GMS,
where "e = {1, 1, 1, 1, 1, 1} and ε is a small positive number.
Assume that all queues in the system are of the same length
at time 0.
1) 1st time slot: One packet is applied to links 0 and 3.
Since GMS gives priority to links with a longer queue,
it will serve links 0 and 3. Therefore, at the end of time
slot 1, all queues will still have the same length.

2) 2nd time slot: One packet is applied to links 1 and 4.
For the same reason as above, GMS will serve links 1



and 4, and all queues will still have the same length at
the end of time slot 2.

3) 3rd time slot: With probability 1 − ε, one packet is
applied to links 2 and 5. With probability ε, two packets
are applied to links 2 and 5, and one packet is applied
to all other links. In both cases, links 2 and 5 have the
longest queue and will be served by GMS. At the end
of time slot 3, all queues still have the same length.
However, with probability ε, the queue length increases
by 1.

The pattern then repeats itself.
Over all links, the arrival rate is 1

3 + ε
3 and the queue length

increases by 1 with probability ε every three time slots. Hence,
the system with offered load "ν + ε

3"e is unstable under GMS.
However, the optimal policy (MWS) can support the offered
load "µ = 3

2"ν in this example. Hence, the efficiency ratio of
GMS is no greater than 2

3 , i.e., γ∗ ≤ 2
3 in this 6-link cyclic

network under the 1-hop interference model.
Remark: Note that the key in constructing the above traffic
pattern is that (i) we keep all queues in L of the same length
at all time, (ii) we inject packets according to the maximal
schedules that form the vector "ν so that these maximal
schedules will be picked by GMS at all time, and (iii) the
offered load is slightly larger than "ν, i.e., "λ = "ν + ε"eL so that
the queues of L grow to infinity together. In [24], we show
that such a traffic pattern can be constructed for all "µ,"ν such
that σ"µ % "ν.
Proposition 1 provides an equivalent characterization of the
efficiency ratio of GMS through the topological properties (i.e.,
the local-pooling factor) of the given graph. However, it can
still be quite difficult to compute the local-pooling factor for
an arbitrary network graph. In the next section, we will extend
the methodology of Proposition 1 to develop new approaches
to estimate the efficiency ratio and the local-pooling factor of
arbitrary network graphs.

IV. ESTIMATES OF THE LOCAL-POOLING FACTOR FOR
ARBITRARY NETWORK GRAPHS

In this section, we would like to answer the following
questions: (i) how do we estimate the local-pooling factor of
a given graph? and (ii) what types of graphs will have low
local-pooling factors? We now argue that both questions are
intimately related to the characterization of a set of unstable
links. We first state the following lemma.
Lemma 1: Given network graph G(V, E, I) with the local-
pooling factor σ∗, there exist a subset of links L ⊂ E, and
two maximal scheduling vectors "µ∗,"ν∗ ∈ Co(ML) such that
σ∗"µ∗ % "ν∗.

Proof: Assume that |E| is finite. Since for all L ⊂ E,
the set of maximal schedules ML has finite elements. Then
its convex hull Co(ML) is bounded and closed, and thus,
compact.
By definition of σ∗, for any k > 0, there must exist
a subset Lk, and two vectors "µk,"νk ∈ Co(MLk

) satisfy-
ing (σ∗ + 1

k
)"µk % "νk. Hence, we can obtain a sequence

{("µk,"νk)}. Since the number of subsets of E is finite, there

must exists a subsequence ("µkn
,"νkn

) ∈ Co(ML)xCo(ML)
for some L ⊂ E. Since Co(ML) is a compact set,
Co(ML)xCo(ML) is compact and hence, {("µkn

,"νkn
)} has

a convergent subsequence that converges to some element of
Co(ML)xCo(ML). Let ("µki

,"νki
) denote the subsequence

converging to ("µ∗,"ν∗) ∈ Co(ML)xCo(ML). Hence, from
(σ∗ + 1

ki
)"µki

% "νki
for all ki, we obtain "µ∗,"ν∗ ∈ Co(ML)

and σ∗"µ∗ % "ν∗.
The idea in the rest of the section is as follows. Suppose
that we want to show that σ∗ ≥ σ for some σ > 0. We want
to prove by a contradiction. Assume in contrary that σ∗ <
σ. Given a network graph G(V, E, I) with the local-pooling
factor σ∗, there exist a set Y ⊂ E and two "µ∗,"ν∗ ∈ Co(MY )
such that σ∗"µ∗ % "ν∗ from Lemma 1. According to the proof
of Proposition 1 (see the example in Section III), we can then
construct a traffic pattern with offered load "ν∗ + ε"eY such that
the queues of all links in Y increase to infinity together under
GMS. Let "λ∗(ε) = "ν∗ + ε"eY ∈ Λ̊ denote this offered load1.
We refer to this set Y as the unstable links. Clearly, if we can
show that Y = ∅, then this leads to a contradiction, which
then implies that σ∗ ≥ σ.
Towards this end, we first study the properties of this set Y
of unstable links.

A. Properties of unstable links
For a subset L ⊂ E, we let IL(l) = I(l)∩L denote the set of
links in L that interfere with link l, and define the interference
degree dL(l) as the maximum number of links in IL(l) that
can be scheduled at the same time without interfering with
each other. We begin with the following two lemmas.
Lemma 2: If "λ ∈ Λ̊, then

∑

j∈IL(l) λj ≤ dL(l) for all l ∈ L
and all L ⊂ E.

Proof: The lemma can be proven by a contradiction. We
assume that there exist a subset L ⊂ E and a link l ∈ L
such that

∑

j∈IL(l) λj > dL(l). Since "λ is within Λ̊, it can
be stabilized by some scheduling policy. However, at any
time, any schedule must satisfy the interference constraints
and thus, cannot serve more than dL(l) links out of IL(l).
Hence, the summation of any feasible service rate over IL(l)
cannot exceed dL(l), which is smaller than the sum of the rates
with which packet arrives at IL(l). Therefore, the network
is unstable, which contradicts our assumption. The result of
Lemma 2 then follows.
Lemma 3: Assume that Y is the set of unstable links under

GMS with the offered load "λ∗(ε) = "ν∗ + ε"eY , then for all
l ∈ Y ,

∑

j∈IY (l) λ
∗
j (ε) > 1.

Proof: Note that "ν∗ ∈ Co(MY ) is a convex combination
of elements ofMY . For each element "M ∈ MY , if none of
links in IY (l)\{l} is picked, then l must be picked. Hence,
∑

j∈IY (l) Ml ≥ 1. We then have
∑

j∈IY (l) νl ≥ 1 and
∑

j∈IY (l) λ
∗
l (ε) > 1 for all ε > 0.

Lemma 4: Assume that "ν∗ ∈ 1
d
Λ̊ for some d ≥ 1 and that

Y is the corresponding set of unstable links under GMS, then

1Note that there exists some small ε > 0 such that !λ∗(ε) ∈ σΛ̊ because
!ν∗ ∈ σ∗Λ ⊂ σΛ̊.



for all links l ∈ Y , its interference degree in Y must be larger
than d, i.e., dY (l) > d.

Proof: We prove the lemma by a contradiction. Suppose
that there is a link l ∈ Y with dY (l) ≤ d. Pick "λ∗(ε) =
"ν∗ + ε"eY such that "λ∗(ε) is strictly within 1

d
Λ ⊂ 1

dY (l)Λ,
we have

∑

j∈IY (l) λ
∗
j (ε) ≤ 1 from Lemma 2. However, by

Lemma 3, we should have
∑

j∈IY (l) λ
∗
j (ε) > 1. This is a

contradiction. Hence, dY (l) must be larger than d.
From Lemma 4, we can derive the following main result.
Proposition 2: Given a network graph G(V, E, I), assume
that a sequence of links {l1, l2, . . . , l|E|} and a sequence of
sets {L1, L2, . . . , L|E|, L|E|+1} with L1 = E and L|E|+1 = ∅
satisfy that Li+1 = Li\{li} and dLi

(li) ≤ d for all 1 ≤ i ≤
|E| with some d ≥ 1. Then the local-pooling factor is bounded
by 1

d
, i.e., σ∗ ≥ 1

d
.

Proof: We prove the proposition by a contradiction.
Suppose that σ∗ < 1

d
, then there exists "µ∗,"ν∗ ∈ Co(MY )

such that σ∗"µ∗ % "ν∗. Further, "ν∗ ∈ 1
d Λ̊ since σ∗ < 1

d . Let Y
denote the corresponding set of unstable links. We now show
that Y must be ∅, which is a contradiction.
If Y *= ∅, we can pick the link l ∈ Y with the smallest index
in the set {l1, l2, . . . , l|E|}, say l = lj . Then we have that all
links li /∈ Y for 1 ≤ i < j and hence, Y ⊂ Lj . Since "ν∗ ∈ 1

d
Λ̊

and lj ∈ Y , we have dY (lj) > d from Lemma 4. Since we
also have dY (lj) ≤ dLj

(lj) from Y ⊂ Lj , and dLj
(lj) ≤ d

from our assumption, we arrive at a contradiction and, thus
Y = ∅.
Clearly, if there exists a number d such that dE(l) ≤ d
for all l ∈ E, then the assumption of Proposition 2 holds for
any sequence of links {l1, l2, . . . , l|E|}. Hence, σ∗ ≥ 1

d
and

the efficiency ratio of GMS is no smaller than 1
d . Note that a

similar conclusion has been drawn for Maximal Scheduling.
In [13], it has been shown that if dE(l) ≤ d for all l ∈ E, then
given "λ ∈ 1

d
Λ̊, a Maximal Scheduling policy can stabilize the

network. However, Proposition 2 is in fact much stronger than
the results in [13] and the efficiency ratio of GMS can often
be shown to be larger than that of Maximal Scheduling. We
highlight this important difference with the following example.
Example: Consider N + 1 nodes n1, n2, . . . , nN+1 lying
in a straight line from left to right. Each node is connected
only to its immediate neighbors. We denote link (ni, ni+1)
by li. Assume the 1-hop interference model. For this network
graph, since dE(l) ≤ 2 for all links, the efficiency ratio of
GMS is no smaller than 1

2 . However, GMS in fact achieves
the full capacity for this graph. The reason is that there always
exists a link at the end of the line with interference degree of
1. The existence of this link in fact determine the efficiency
ratio of GMS. To see this, we pick the sequence of links in
Proposition 2 as {l1, l2, . . . , lN}. We first look at link l1 on
the end of the line. Let L1 = E. Since dL1

(l1) = 1, the
assumption of Proposition 2 holds for i = 2. Now, we let
L2 = L1\{l1} and move our attention to the next link l2. Since
dL2

(l2) = 1, the assumption of Proposition 2 holds for i = 2.
We can apply this procedure iteratively to links l3, l4, . . . , lN .
Therefore, after the N -th iteration, we will have sequences of

{l1, l2, . . . , lN} and {E = L1, L2, . . . , LN+1 = ∅} satisfying
Li+1 = Li\{li} and dLi

(li) ≤ 1 for all 1 ≤ i ≤ N . Then
from Proposition 2, σ∗ ≥ 1.
This example motivates us to develop the following iterative
procedure to derive a lower bound for the local-pooling factor
in arbitrary network graphs.

B. An iterative approach

We present the procedure in Algorithm 1, which bounds the
local-pooling factor of the underlying graph, i.e., the efficiency
ratio of GMS. At each iteration, the algorithm picks up a link
and check the interference degree of the chosen link in the
remaining network graph.

Algorithm 1 Do iterations(G(V, E))
Initialization: L1 ← E, d ← 1

1: for 1 ≤ i ≤ |E| do

2: Choose a link li from Li

3: if dLi
(li) ≥ d then

4: d ← dLi
(li)

5: end if
6: Li+1 ← Li\{li}
7: end for
8: return d

Let de denote the returned value at the end of the algo-
rithm. We show that the local-pooling factor σ∗ of the graph
G(V, E, I) is at least 1

de
.

Lemma 5: Given G(V, E, I), if we obtain de from Algo-
rithm 1 with a sequence of {l1, l2, . . . , l|E|}, then σ∗ ≥ 1

de
.

Proof: The lemma directly follows from Propo-
sition 2. Note that the resulting sequence of links
{l1, l2, . . . , l|E|} and the corresponding sequence of sets {E =
L1, L2, . . . , L|E|+1 = ∅} satisfy two conditions of Li+1 =
Li\{li} and dLi

(li) ≤ de for all 1 ≤ i ≤ |E|. Hence, by
Proposition 2, σ∗ ≥ 1

de
.

The outcome of the algorithm depends on the sequence of
links chosen. One possibility is to choose at each iteration i
the link with the smallest interference degree in Li, i.e., in
line 2 of Algorithm 1, we choose li such that

li ← argmin
k∈Li

dLi
(k). (4)

This choice of li tends to produce smaller value of de. This
procedure can be used to estimate the local-pooling factors of
arbitrary network graphs.

C. The worst-case local-pooling factor over a class of graphs

We are often interested in the worst-case efficiency ratio
of a scheduling policy for a class of network graphs. This
information is useful when the exact network topology is
unknown. Let P be a set of network graph with certain
topological property and let σ+(P) and γ+(P) denote the



worst-case local-pooling factor and the worst-case efficiency
ratio, respectively, over all graphs in P, i.e.,

σ+(P) = inf{σ∗(G) | G ∈ P},

γ+(P) = inf{γ∗(G) | G ∈ P}.

We have σ+(P) = γ+(P) from Proposition 1.
We next use the methodology of Section IV-B to derive a
condition for a lower bound of σ+(P). Given P, define d+(P)
to be a positive integer with the following property: For any
G ∈ P, there must exist a link l∗ such that d(l∗) ≤ d+(P)
and further, G\{l∗} ∈ P. We call d+(P) as the recurrent
interference degree of P. The following proposition shows that
if we can find such a recurrent interference degree d+(P), the
worst-case efficiency ratio of GMS is bounded by 1

d+(P) , i.e.,
σ+(P) ≥ 1

d+(P) .
Proposition 3: Given a network graph G(V, E, I) ∈ P with
a recurrent interference degree d+(P), the local-pooling factor
is bounded by σ∗(G) ≥ 1

d+(P) .
Proof: Proposition 3 can be proven as Lemma 5. Since

G(V, E, I) ∈ P, there exists link l∗1 ∈ E with d(l∗1) ≤ d+(P)
and G\{l∗1} ∈ P. Let L1 = E and L2 = E\{l∗1}. Since
G\{l∗1} ∈ P, there exists link l∗2 ∈ L2 with dL2

(l∗2) ≤ d+(P)
and G\{l∗1, l

∗
2} ∈ P. Repeating this procedure until no link

remains, we obtain a sequence of links {l∗1, l∗2 , . . . , l∗|E|} and
a sequence of sets {E = L1, L2, . . . , L|E|+1 = ∅} satisfying
Li+1 = Li\{l∗i } and dLi

(l∗i ) ≤ d+(P) for all 1 ≤ i ≤ |E|.
Hence, from Proposition 2, we conclude that σ∗(G) ≥ 1

d+(P) .

In the following section, we show how Proposition 3 can
be applied to a class of network graphs.

V. TREE NETWORK GRAPHS UNDER THE K -HOP
INTERFERENCE MODEL

We first study the efficiency ratio of GMS for tree networks.
In [18], [19], it has been shown that GMS achieves the
full capacity in tree networks under the 1-hop interference
model. We now show how to use the result in the previous
section to prove that GMS achieves full capacity for tree
network topologies under K-hop interference model. (This
result was shown in [20] by using a different approach.) Let
TK be the set of network graphs whose topology forms a tree
and the interference relationship is governed by the K-hop
interference constraints. Recall that in the K-hop interference
model, any two links within a K-hop distance cannot transmit
at the same time.
Proposition 4: GMS achieves the full capacity for tree
networks under the K-hop network model, i.e., σ+(TK) = 1.

Proof: It is sufficient to show that d+(TK) = 1 from
Proposition 3.
Consider a tree network graphGt(V, E, I) ∈ TK . We define
the depth of link l in E, denoted by D(l), as the number of
hops from link l to the root node of the tree. Let l∗ be the
link with the largest depth, i.e., l∗ := argmaxl∈E D(l). Since
l∗ is a leaf link of the tree, Gt\{l∗} is still a tree, and thus it
belongs to TK .





Fig. 2. Tree network graph with the deepest link l∗. Two links x, y ∈ IE(l∗)
interfere with each other.

We next show that the interference degree d(l∗) of link l∗ is
1. It suffices to show that any two links x, y ∈ I(l∗) interfere
with each other. Let nx (or ny) denote the closest common
parent node of x (or y) and l∗. Note that both nx and ny

lie on the line from link l∗ to the root node. Without loss of
generality, we assume that ny is a parent of nx as shown in
Fig. 2. Let a, b, c, and d denote the number of links placed
between link y and node ny , between node ny and node nx,
between node nx and link l∗, and between node nx and link
x, respectively. We have the following constraints.

• a + b + c ≤ K − 1 since link y interferes with link l∗.
• d ≤ c since link l∗ has the maximum depth.
We thus have a+b+d ≤ K−1. In other words, any two links
x, y ∈ I(l∗) interfere with each other, and hence, d(l∗) = 1.
In summary, for a graph Gt(V, E, I) ∈ TK , there exists a
link l∗ ∈ E with the largest depth and its interference degree
is d(l∗) = 1. Further, Gt\{l∗} ∈ TK . Therefore, we conclude
that TK has a recurrent interference degree d+(TK) = 1 and
the result of Proposition 4 follows.
Proposition 4 show that GMS is a throughput-optimal
scheduling policy in tree networks under K-hop interference
models. However, when the network topology is not a tree, in
general GMS will not have an efficiency ratio of 1. In fact,
whenever K ≥ 2, we can construct network topologies, in
which the efficiency ratio of GMS can be arbitrarily small
under the K-hop interference model. (We refer readers to our
technical report [25] for the construction of these topologies.)
As the reader can see in [25], these topologies are somewhat
artificial and may not exist in practice. On the other hand, in
our prior work [24], we have shown that GMS achieves d̃

2d̃−1

under the 1-hop interference model, where d̃ is the largest node
degree of the network graph. This suggests that the worst-
case performance limits of GMS may be better when there
are additional constraints on the graph. Therefore, in the next
section, we focus on geometric graphs and revisit the question
of the worst-case efficiency ratio of GMS.



VI. ESTIMATES OF THE LOCAL-POOLING FACTOR FOR
GEOMETRIC NETWORK GRAPHS

In this section, we are interested in the performance of
GMS in geometric network graphs, in which the connectivity
between nodes and the interference between links depend on
their geometric locations. We assume that nodes lie on a finite
two-dimensional space. We assume that two nodes ni and nj

form a link if their distance s(ni, nj) is less than the communi-
cation range c, and two links li(n1

i , n
2
i ) and lj(n1

j , n
2
j) interfere

with each other if the distance between any two of the four
nodes {n1

i , n
2
i , n

1
j , n

2
j} is less than the interference range r. We

say that a geometric network graph operates under the K-hop
(interference) model if r = (K − 1)c. Chaporkar et al. [13]
have shown that the efficiency ratio of Maximal Scheduling is
bounded by 1

8 in arbitrary geometric graphs under the 2-hop
model, and Sharma et al. [15] have shown that it is no smaller
than 1

49 under any K-hop model. In this section, we will show
that GMS typically has better efficiency ratios than Maximal
Scheduling studied in [13], [15].
Our methodology is again based on Proposition 3. Note that
the edge links in a geometric graph typically have a smaller
interference degree than the links in the middle of the graph.
If we can bound the interference degree of some edge links
l to a number d, we can then use Proposition 3 to show that
the efficiency ratio is 1

d . We will use the methodology first on
the 2-hop model, then on K-hop models.

A. Geometric graphs under the 2-hop model
Let Gg denote the set of graphs conforming to geometric
constraints. Given a geometric network graph Gg(V, E, I) ∈
Gg, we can assign a two-dimensional coordinate (x, y) for
each node. We say that node A is to the left of node B if
A’s x-coordinate is less than B’s x-coordinate. Then for each
link l, we can define the left end-point (i.e., node) nL(l) and
right end-point nR(l). If the two end-points have the same x-
coordinate, we assign them to the left or the right arbitrarily.
We consider the set of all right nodes of all links NR

V =
{nR(l) ∈ V | l ∈ E}. We say node n in NR

V is located at the
edge if there exist a line through node n such that all other
nodes in NR

V are in the interior of one of the half-planes. Note
that since the graph is on a two-dimensional finite space, there
always exist some right nodes that are on the edge. Let the
left-most node nR

V denote the edge node that has the smallest
x-coordinate in NR

V . All other nodes of NR
V are in the interior

of a half-plane (see Fig. 3) whose boundary is through nR
V .

We define a left-most link as a link whose right node is nR
V .

Assuming that every node in V is connected by some links
of E (otherwise, we can remove the node from V ), we can
always find at least one left-most link l∗ in E.
Let GK

g denote the set of geometric network graphs under
the K-hop model. The following lemma specifies the perfor-
mance limits of GMS in geometric network graphs under the
2-hop model.
Proposition 5: The worst-case efficiency ratio of GMS in
geometric graphs under the 2-hop model is 1

6 , i.e., γ+(G2
g) ≥

1
6 .



Fig. 3. Geometric network graph under the 2-hop model. Downward is the
left direction of the coordinate system as indicated by a big arrow. For each
link, its left node is colored in white and its right node in black. The node
nR

V is the left-most right node, the link l∗ is the left-most link. Note that all
other right nodes must be within an angle of less than 180o from nR

V . This
figure shows how 6 other links can be placed within the interference range
of l∗ and they do not interfere with each other. Note that each node of the
6 links must be outside an interference range of c of each other, and further,
their right node must be inside an angle less than 180o from nR

V .

From Proposition 1, it suffices to show σ+(G2
g) ≥ 1

6 . Since
a geometric network graph G(V, E, I) ∈ G2

g has at least one
left-most link l∗ and G(V, E, I)\{l∗} ∈ G2

g , it suffices to
show that d(l∗) ≤ 6. It then follows that G2

g has a recurrent
interference degree d+(G2

g) ≥ 6, and σ+(G2
g) ≤ 1

6 by
Proposition 3. Due to lack of space, we refer the readers to [25]
for the detailed proof of d(l∗) ≤ 6. In Fig. 3, we show how 6
links that do not interfere with each other can be placed within
the interference range of l∗. In [25], we show that this is the
largest number of non-interfering links one can put in I(l∗).
Recall that Maximal Scheduling achieves an efficiency ratio
of 1

8 in geometric graphs under the 2-hop model. Our result
shows that GMS indeed outperforms Maximal Scheduling. In
the rest section, we show that the performance gap is even
bigger for K ≥ 2.

B. Geometric graphs under K-hop models
It is well-known in the literature that the worst-case ef-
ficiency ratio of Maximal Scheduling in geometric graphs
degrades when K increases [13], [15]. We next show that
this is not the case for GMS. In fact, the worst-case efficiency
ratio of GMS tends to increase as K increases. In the next
lemma, we compare two graphs G1(V, E1, I) ∈ GK1

g and
G2(V, E2, I) ∈ GK2

g with K1 > K2. Note that both G1

and G2 have the same set of nodes V and have the same
interference range r. However, the communication range of
G1 is c1 = r

K1−1 , which is smaller than that of G2, (i.e,
c2 = r

K2−1 ).
Proposition 6: Given a set of nodes V and their location,
if K1 > K2, the local-pooling factor of the network graph
G1(V, E1, I) ∈ GK1

g is no smaller than the local-pooling factor



of the network graph G2(V, E2, I) ∈ GK2
g , i.e., σ∗(G1) ≥

σ∗(G2).
Proof: Note that the set of nodes is the same and the

interference range is also identical for both G1 and G2.
Suppose that we have a subset L ⊂ E1 in G1 and two maximal
scheduling vectors "µ,"ν ∈ Co(ML) such that σ"µ % "ν. If the
same vectors "µ,"ν are also valid maximal scheduling vectors
in G2, then we have σ∗(G1) ≥ σ∗(G2) from the definition of
the local-pooling factor. Toward this end, we first show that
two maximal scheduling vectors in a subset of links in G1 are
also valid maximal scheduling vectors in G2.
Since the interference range is fixed, G1 has a smaller
communication range than G2. Hence, any link in G1 is
also a link in G2, i.e., E1 ⊂ E2. We consider the subset
L ⊂ E1. From E1 ⊂ E2, we have L ⊂ E2. Further, since
the interference range is identical, the interference constraints
between links in L do not change. Specifically, two links in
L that interfere with each other under the K1-hop model also
interfere under theK2-hop model. Hence, maximal scheduling
vectors "µ,"ν in L under the K1-hop model are valid maximal
scheduling vectors in L under the K2-hop model.
Therefore, if there exist two maximal scheduling vectors

"µ,"ν ∈ Co(ML) satisfying σ"µ % "ν and a subset L of links
in G1, the same maximal scheduling vectors and the same
subset L are valid for G2. This implies that the local-pooling
factor under the K2-hop model is no greater than σ. Hence,
σ∗(G1) ≥ σ∗(G2).
Combining Proposition 5 and 6, we obtain the following
result.
Theorem 1: The worst-case efficiency ratio of GMS in
geometric graphs under K-hop models is no smaller than 1

6 ,
i.e., γ+(GK

g ) ≥ 1
6 for K ≥ 2.

How tight is this bound? We next present a network graph in
GK

g with local-pooling factor of 1
3 .

Lemma 6: There exists a large number K0 such that for all
K > K0 and σ arbitrarily close to 1

3 , some geometric graph
G(V, E, I) ∈ GK

g has the local-pooling factor no larger than
σ, i.e., σ∗(G) ≤ σ.
It suffices to construct a graph such that there exists two
vectors "µ,"ν ∈ Co(ME) that satisfy σ"µ % "ν. Due to lack of
space, we sketch the main idea in this paper. For the detailed
proof, we refer the readers to [25].
We construct a network graph G(V, E, I) ∈ GK

g as follows.
First, when K is very large, we can think of a link as a point
and its interference range as a circle with radius r because the
communication range is close to zero. Second, we form two
set of links L1 and L2. Suppose that |L1| and |L2| are finite but
very large, and |L1| = |L2|. Remember that we approximate
a link by a point. The links from L1 form a circle C1 with
radius R at origin O, and links from L2 form another circle
C2 with radius R +

√
3

2 r at the same origin O. In Fig. 4, we
show the small arcs from the two circles. Since the radius R is
very large, the two arcs can be approximated by two parallel
lines. Since |L1| and |L2| are very large, there exists a link at
almost every point of the two arcs.

We now find two maximal scheduling vectors "µ,"ν ∈
Co(ML1∪L2

). To form "µ, take any maximal schedules of the
form in Fig. 4(a), where active points (i.e., links) are colored
in black. Since |L1| and |L2| are very large, there will be a
large number of such maximal schedules and we produce "µ
by taking the convex combination with equal weights of these
schedules. Similarly, to form "ν, we take maximal schedules
of the form in Fig. 4(b) and produce "ν by taking the convex
combination with equal weights of them. Clearly, the maximal
schedules in Fig. 4(a) are more efficient than those in Fig. 4(b).
We next show that the ratio of "µ,"ν is close to 1

3 .
Assuming that points (i.e., links) are uniformly distributed
on C1 and C2, then the distance between activated links in
Fig. 4(a) is approximately 1

3 of the distances between activated
links in Fig. 4(b). Hence, the schedules that form "µ serves 3
times more links than the schedules that form "ν. We thus
obtain that 1

3"µ is approximately equal to "ν. In the technical
report [25], we show this with a more formal proof and
conclude that σ"µ % "ν with σ close to 1

3 .
Lemma 6 leads to the following corollary.
Corollary 1: There exists a geometric network graph

G(V, E, I) ∈ GK
g with K ≥ 2, in which the efficiency ratio

of GMS is no more than 1
3 .

Proof: From Lemma 6, there exist a number K0 and
graphs G(V, E, I) ∈ GK

g for all K ≥ K0 such that σ∗(G) ≤
1
3 . By Proposition 6, we also have network graphs GK ∈ GK

g

for all K ≤ K0 such that σ(GK) ≤ σ(GK0
) ≤ 1

3 . Therefore,
we have σ+(GK

g ) ≤ 1
3 for all K ≥ 2.

From Theorem 1 and Corollary 1, we can bound the worst-
case efficiency ratio of GMS in arbitrary geometric network
graphs under the K-hop model as

1

6
≤ γ+(GK

g ) ≤
1

3
. (5)

Recall that in [15], the worst-case efficiency ratio of GMS
is 1

49 , if K ≥ 2. Hence, our result indicates that GMS
significantly outperforms Maximal Scheduling.

VII. CONCLUSION
In this paper, we have provided new analytical results on the
achievable performance of GMS for a large class of network
topologies under general K-hop interference models. We first
provide an equivalent characterization of the efficiency ratio
of GMS through the local-pooling factor of the underlying
graph. We then provide an iterative procedure to estimate the
local-pooling factor of arbitrary graphs. This new procedure
allows us to estimate the worst-case efficiency ratio of GMS
for a large set of network graphs and interference models. In
particular, we observe that GMS achieves the optimal capacity
region in tree networks under the K-hop interference model.
Further, in geometric network topologies under the K-hop
interference model, we show that the worst-case efficiency
ratio of GMS increases with K , and is between 1

6 and
1
3 .

For future work, there remain many interesting open prob-
lems in these directions. For example, the bounds of the worst-
case efficiency ratio in geometric network graphs are still not











(a) An instance of (dense) maximal schedules
!Mi; !µ ∈ Co({ !Mi})











(b) An instance of (sparse) maximal schedules
!Mj ; !ν ∈ Co({ !Mj})

Fig. 4. A geometric network graph G(V, E, I) ∈ GK
g and !µ,!ν ∈ Co(ME) such that 1

3
!µ # !ν. With K → ∞, we assume that a link is a point and its

interference range is a circle with radius r. Figures illustrate an instance of maximal schedules from !µ and !ν, respectively. Note that since links are uniformly
and closely placed on circles C1 and C2 (a small fraction of them is shown in the figures), the interference range of active links in each maximal schedule
must cover C1 and C2. Let !µ consist of dense maximal schedules and let !ν consist of sparse maximal schedules. From the uniform placement of (finite)
links on C1 and C2, the time required to serve all links for a unit time is determined by the distance between two neighboring active links in C1 (or C2).
Since the distance is r in dense maximal schedules and 3r in sparse maximal schedules, we have 1

3
!µ # !ν.

tight. Further, we may study interference models other than
the geometric model.

REFERENCES

[1] X. Lin and N. B. Shroff, “The Impact of Imperfect Scheduling on
Cross-Layer Congestion Control in Wireless Networks,” IEEE/ACM
Transactions on Networking, vol. 14, no. 2, pp. 302–315, April 2006.

[2] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximal Throughput in
Multihop Radio Networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, December 1992.

[3] C. Joo and N. B. Shroff, “Performance of Random Access Scheduling
Schemes in Multi-hop Wireless Networks,” in IEEE INFOCOM, May
2007.

[4] X. Lin and S. Rasool, “Constant-Time Distributed Scheduling Policies
for Ad Hoc Wireless Networks,” in IEEE CDC, December 2006.

[5] L. Tassiulas, “Linear Complexity Algorithms for Maximum Throughput
in Radio Networks and Input Queued Switches,” in IEEE INFOCOM,
April 1998.

[6] G. Sharma, C. Joo, and N. B. Shroff, “Distributed Scheduling Schemes
for Throughput Guarantees in Wireless Networks,” in the 44th Annual
Allerton Conference on Communications, Control, and Computing,
September 2006.

[7] A. Gupta, X. Lin, and R. Srikant, “Low-Complexity Distributed Schedul-
ing Algorithms for Wireless Networks,” in IEEE INFOCOM, May 2007.

[8] S. Sanghavi, L. Bui, and R. Srikant, “Distributed Link Scheduling with
Constant Overhead,” in ACM SIGMETRICS, June 2007.

[9] E. Modiano, D. Shah, and G. Zussman, “Maximizing Throughput in
Wireless Networks via Gossiping,” Sigmetrics Performance Evaluation
Review, vol. 34, no. 1, pp. 27–38, 2006.

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, 1982.

[11] B. Hajek and G. Sasaki, “Link Scheduling in Polynominal Time,” IEEE
Transactions on Information Theory, vol. 34, no. 5, September 1988.

[12] S. Sarkar and L. Tassiulas, “End-to-end Bandwidth Guarantees Through
Fair Local Spectrum Share in Wireless Ad-hoc Networks,” in IEEE
CDC, December 2003.

[13] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput Guarantees in Max-
imal Scheduling in Wireless Networks,” in the 43rd Annual Allerton
Conference on Communication, Control and Computing, September
2005.

[14] X. Wu and R. Srikant, “Bounds on the Capacity Region of Multi-
hop Wireless Networks Under Distributed Greedy Scheduling,” in IEEE
INFOCOM, April 2006.

[15] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “On the Complexity of
Scheduling in Wireless Networks,” in ACM Mobicom, September 2006.

[16] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the Stability
of Input-Queued Switches with Speed-Up,” IEEE/ACM Transactions on
Networking, vol. 9, no. 1, Feburary 2001.

[17] N. McKeown, “Scheduling Algorithms for Input-Queued Cell Switches,”
Ph.D. dissertation, University of California at Berkeley, 1995.

[18] A. Dimakis and J. Walrand, “Sufficient Conditions for Stability of
Longest-Queue-First Scheduling: Second-order Properties using Fluid
Limits,” Advances in Applied Probability, vol. 38, no. 2, pp. 505–521,
2006.

[19] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling Distributed
Throughput Maximization in Wireless Mesh Networks: A Partitioning
Approach,” in ACM Mobicom. New York, NY, USA: ACM Press, 2006,
pp. 26–37.

[20] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop Local Pooling
for Distributed Throughput Maximization in Wireless Networks,”
MIT/LIDS, Tech. Rep. 2719, July 2006. [Online]. Available: http:
//stuff.mit.edu/people/gilz/pub.html

[21] J.-H. Heopman, “Simple Distributed Weighted Matchings,” eprint,
October 2004. [Online]. Available: http://arxiv.org/abs/cs/0410047

[22] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power Allocation and Rout-
ing in Multibeam Satellites with Time-varying Channels,” IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 138–152, 2003.

[23] R. L. Cruz and A. V. Santhanam, “Optimal Routing, Link Scheduling
and Power Control in Multi-hop Wireless Networks,” in IEEE INFO-
COM, San Francisco, April 2003.

[24] C. Joo, X. Lin, and N. B. Shroff, “Performance Limits of Greedy
Maximal Matching in Multi-hop Wireless Networks,” in IEEE CDC,
December 2007.

[25] ——, “Understanding the Capacity Region of the Greedy Maximal
Scheduling Algorithm in Multi-hop Wireless Networks,” Purdue
University, Tech. Rep., 2007. [Online]. Available: http://netlab.snu.ac.
kr/∼cjoo


