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Abstract
We present empirical measurements of the packet delivery per-

formance of the Telos and MicaZ sensor platforms. At a high level,
their behavior is similar to that of earlier platforms. They exhibit
link asymmetry, a reception “grey region,” and temporal variations
in packet loss. Looking more deeply, however, there are subtle dif-
ferences, and looking deeper still, the patterns behind these com-
plexities become clear. Packet losses are highly correlated over
short time periods, but are independent over longer periods. En-
vironmental noise (802.11b) has high spatial correlation. Packet
loss occurs when a receiver operating near its noise floor experi-
ences a small decrease in received signal strength, rather than an
increase in environmental noise. These variations cause the recep-
tion “grey region.” While short-term link asymmetries are not un-
common, long-term asymmetries are rare. Based on these findings,
we suggest several ways in which current practices could be easily
changed that would greatly improve the efficiency, performance,
and lifetime of sensor networks.

1 Introduction
The complexities of low-power wireless networking are a ba-

sic challenge in sensor network research. Early studies established
that, in practice, networks of the lowest power devices — “motes”
— exhibit complex behaviors not easily captured by simple propa-
gation models. CSMA-based networks can easily suffer from a very
irregular form of the broadcast storm problem [28, 16], packet re-
ception rates over distance exhibit a large and highly variable “grey
region” [50] and node pairs often have asymmetric loss rates [6].
These studies established important considerations for sensor net-
work protocols [48, 23, 13, 43, 33] and have guided design deci-
sions and tradeoffs for a wide range of systems [44, 17, 12].

These early studies made many important observations that have
since become common knowledge within the community. Never-
theless, several important unknowns remain. First, while the early
studies quantified many important characteristics of packet deliv-
ery, they were unable to establish the root causes of these complex-
ities. In many cases, the hypothesis was hardware variations, such
as slight differences in receiver sensitivity [16] or oscillator calibra-
tion [48], but these effects were neither quantified nor empirically
measured, leaving the hypotheses unevaluated.

Second, the experimental variables used – distance, orientation,
environment – present a “human-eye” view of a network, in that
they are not variables that a node can easily observe. These are
excellent guides to people for designing or installing a sensornet
deployment, but they provide only a partial understanding of how
nodes themselves observe the network. Considering packet delivery
success and failure from a “mote-eye” view, in terms of what a mote
can readily observe, would give a greater sense of how protocols or
systems might make decisions based on this information.

Third, since these studies, the design space of mote platforms
and their radios has changed significantly. Some earlier plat-

forms had low-level software stacks on top of a wide range of ra-
dio technologies, including on-off keying (OOK) [20], amplitude
shift keying (ASK) [19], and frequency shift keying (FSK) [42],
while others used well-established full protocol stacks such as Blue-
tooth [26, 24]. More recently, many platforms, including the mi-
caZ [37], Telos [9], and IntelMote2 [4], have gravitated towards
a single data-link protocol, 802.15.4 [38], and even a single ra-
dio chip, the ChipCon CC2420 [21]. This newer technology dif-
fers significantly from earlier radios. For example, it operates in
the 2.4GHz band, rather than 900MHz (rene/mica) or 915/433MHz
(mica2), and uses offset quadratic phase shift keying (OQPSK)
with a direct-sequence-spread-spectrum (DSSS) encoding. These
changes suggest that 802.15.4-based platforms may behave quite
differently than early studies would suggest.

In this paper, we present the results of an initial set of experi-
ments that seek to shed light on these unknowns by answering the
simple question:

“What are the observable causes of packet success
and failure in modern platforms, and how can a node
detect them?”

Successfully answering this question would have broad implica-
tions for sensor networks. It will lead to more accurate link esti-
mators, which will improve the energy efficiency of almost every
routing protocol and thereby increase data yields and lengthen life-
times. It will lead to a quantitative understanding of the relationship
between noise and signal strength, improving channel-sense media
access protocols. It will provide insight on send queue and data-link
retransmission policies, reducing the number of failed packets that
waste energy. Answering this question would allow nodes to make
good decisions on when, how, and with whom to communicate,
which is a fundamental part of almost every sensornet application,
protocol, and architecture. In short, it would improve the reliability,
lifetime, and performance of mote-based sensor networks.

Our first step in answering this question is to establish what
about these networks is understood, what remains uncertain, and
whether or not these uncertainties present practical limitations in
sensor network deployments. In Section 2, we revisit three rele-
vant areas of prior work that provide the basis of this study: studies
of the packet delivery behavior of wireless networks, the algorithms
multihop and media access protocols use which consider these com-
plexities, and observations on how these protocols perform in real
world deployments in the face of unforeseen challenges. Taken to-
gether, these indicate that while we do understand what the com-
plexities inherent to low-power networking are, we still , do not
understand their root causes, how to effectively detect them, or how
to deal with them.

Our second step in answering this question is to decompose it
into smaller, more specific areas of inquiry. We describe our exper-
imental methodologies in Section 3. While simple experiments can
establish that at a high level current platforms have similar chal-
lenges to older ones [30], establishing root causes, however, re-



quires a broader set of experiments, as we must account for and
quantify many unknowns, such as temporal trends, spatial correla-
tion, environmental noise, channel effects, and hardware variations.

Section 4 describes our first set of experiments, which exam-
ine the relationship between packet deliveries and packet metadata
such as received signal strength (RSSI) and chip correlation (CCI).
Our results show that the reception “grey region” abruptly occurs
when RSSI values fall below a certain threshold, and temporal vari-
ations are more likely a result of changes in signal strength than
changes in the noise floor. In Section 5, we describe our second
set of experiments, which examine noise traces and determine that
there are variations in noise floor, that hardware is the cause, exter-
nal noise is highly correlated spatially, verify the spectrum analysis
that 802.11b interferes with most 802.15.4 channels, and show that
noise spikes are 802.11b traffic.

Section 6 asks the next sub-question: if hardware effects ac-
count for variations in observed noise floor, how does this relate
to link asymmetries? We answer this question by examining link
asymmetries over long and short time scales. We find that noise
floor variations are a cause of some packet reception rate (PRR)
asymmetries, temporal RSSI variations lead to very few long-term
but many short-term PRR asymmetries, and there are also RSSI
asymmetries, which play a factor in these effects. In Section 7 we
examine these temporal behaviors more closely, measuring the cor-
relation in packet delivery failures to quantify how a lost packet
might reflect a short-term change in PRR. We find that single packet
failures are often a negative indicator, in that after a single packet
failure the probability the next packet will be received is higher than
the average PRR, but subsequent packet failures are often positive
indicators, and might point to a temporary change in the PRR.

While our experiments explain many of the networking com-
plexities of 802.15.4 mote platforms, our results are far from com-
prehensive. For example, while we do examine noise from 802.11
networks, we do not consider the effects of interference from con-
current transmissions within the network. While there are interfer-
ence studies for the mica2 platform [34, 46], we are not aware of
similar work on 802.15.4 mote platforms. Similarly, although space
constraints prevent us from presenting all of our observations, our
data is still only an initial investigation: greater certainty of our
results is only possible after more comprehensive testing and inde-
pendent corroboration.

Nevertheless, we feel the data is conclusive enough to present
important findings on what the root caues of packet delivery failure
and success are, as well as what indicators can be used to detect
them. Overall, these findings suggest several ways in which cur-
rrent practices could be easily changed that would greatly improve
the efficiency, performance, and lifetime of mote-based sensor net-
works. We defer a discussion of these suggestions to Section 8.

2 Related Studies
Experiments with early mote platforms established that low-

power wireless networks have complex dynamics. These obser-
vations have guided the design and implementation of many proto-
cols and systems. However, deployments that used these protocols
and systems have demonstrated that many of them perform badly
in practice, suggesting that the dynamics are not yet understood
well enough. In this section, we overview these efforts, distilling a
set of factors and considerations that remain uncertain or unknown,
whose investigation may provide the knowledge that bridges the
gap between research evaluation and practical use.

2.1 Packet Delivery
Ganesan et al [15] analyzed different protocol layers for rene

motes, showing that even simple algorithms such as flooding had
significant complexity at large scales. They observed that many

node pairs had asymmetric packet reception rates, which they hy-
pothesized were due to receive sensitivity differences, which Cerpa
et al. [6] supported after swapping asymmetric node pairs and find-
ing that the asymmetries were a product of the nodes and not the
environment.

In order to better understand packet reception asymmetries, Woo
et al [48] looked at packet reception rates (PRR) over distance for
mica motes. They found that for a large range of distances, PRR
and distance had no correlation and attributed this to hardware mis-
calibration. Zhao et al [50] confirmed the prevalence of this “grey
region” but tentatively concluded that multipath effects were the
probable cause, noting that further study was needed. All of these
studies measured early mote platforms (e.g., rene, mica, and mica2)
whose data-link stacks (e.g., encoding, CSMA, start symbol detec-
tion) resided primarily in software.

Ganesan et al. [15] showed that packet collisions, hidden ter-
minals, link asymmetries, and the broadcast storm problem [28]
make flooding a problematic approach for building trees. White-
house et al. demonstrated that frequency shift keying (FSK) radios,
such as those on the mica2 platform, can recover from packet col-
lisions where the stronger packet starts later by constantly looking
for a start symbol [46]. Son et al. [34] took one step further and
measured a precise RSSI envelope for when mica2 packets can be
recovered. They showed that if the signal to interference plus noise
ratio (SINR) is above a threshold, PRR is very high (> 99.9%), and
that this threshold varies for different nodes. These results suggest
that SINR may be a good way to understand PRR more generally. If
noise behaves in a simple fashion and RSSI values are stable over
time, then RSSI might be a good determinant of packet delivery
success or failure.

Cerpal et al. showed that PRR rates can change significantly
over time, so that long-term PRR calculation can lead to very in-
accurate results [7], suggesting instead that an instanteous measure
of RNP – “required number of packets” – was preferable to a long-
term PRR. This work also introduced the idea of using conditional
probabilities in link estimation, an idea which we extend when con-
sidering the correlation between packet failures in Section 7.

Aguayo et al. [5] observed similar packet delivery behaviors in a
38-node 802.11 long haul urban mesh network, but concluded that
they were most likely due to multipath effects as there was little
correlation between PRR and SINR. However, their experimental
methodology differs from those of the sensor network studies. For
example, they consider average SINR ratios over second-long peri-
ods rather than on a per-packet basis. Nevertheless, the differences
in conclusions between the efforts are interesting. Since 802.11b
operates in the same ISM band (2.4 GHz) as 802.15.4 and uses a
similar modulation scheme (QPSK), 802.11b transmitters could be
significant sources of interference [47].

2.2 Sensor Networking
The conclusions of these experimental studies have greatly in-

fluenced sensor network protocol and system design. The grey re-
gion and link asymmetries have led some routing protocols to incor-
porate link estimation algorithms that maintain tables of candidate
next hops. For example, because initial studies suggested that RSSI
may not be well correlated with packet delivery success or fail-
ure, Woo et al. used packet sequence numbers to directly estimate
PRR [48]. The expense of doing so, however, has led several more
recent protocols, such as TinyOS’s Drain and MultiHopLQI [39],
as well as Moteiv Corporation’s Boomerang [8], to use single sam-
ples of the chip correlation indicator (CCI) of the CC2420 radio as
a measure of link quality; to the best of our knowledge, there are no
evaluations of this approach in the literature. In one contrasting ex-
ample, the collection layer of the SNMS management system uses
a sum of per-hop RSSI values to select parents [40].



Mote data link layers generally have a CSMA MAC and use
a constant randomized backoff policy. If the link layer detects an
active channel, it selects a backoff timer from a uniform distribution
over [a,b], where b is usually under a packet time. Each successive
busy channel detection resets the timer in the range [a,b]. Some link
layers, such as the mica2, will backoff indefinitely, while others,
such as the CC2420, will give up after a number (e.g., 8) tries.

Many TinyOS ad-hoc routing protocols use transmission queues
to absorb bursts of forwarding traffic. TinyDiffusion [14], for ex-
ample, maintains a 12-packet queue 1, beacon vector routing [13]
maintains a 32-packet queue 2, and the TinyOS AODV [1] imple-
mentation 3 uses a 10-packet queue. All of these queues use an im-
mediate retransmission policy. Once the link-layer finishes sending
a packet, the queue immediately submits the next packet for trans-
mission, where it enters the data-link layer backoff. There is no
mechanism to modify queue entries once they are submitted. To-
gether, this means that routing layers often enqueue several pack-
ets to a single destination, then transmit them back-to-back very
quickly. This approach may be appropriate if packet losses are inde-
pendent and identically distributed, but is not appropriate if packet
losses are correlated.

2.3 Deployment Experiences
While empirical measurements have influenced several aspects

of sensornet protocol design, such as demonstrating the need for
link estimation, there are many more which have never been eval-
uated. This has meant that, in practice, the protocols often operate
poorly when deployed.

Szewczyk et al. [35] presented network data from a deployment
on an island off the coast of Maine. The design of the network
assumed significant end-to-end packet losses would occur and so
oversampled the environment. They measured packet delivery per-
formance for a single-hop and a multihop network which used Woo
et al.’s algorithms. PRR was initially satisfactory, but the multihop
network deteriorated over time, with some networks delivering un-
der 30% of its packets, some of which was due to significant base
station outages. They note that while only 15% of the links that the
routing algorithm selected were stable and long-lived, those links
were responsible for 80% of the packets delivered.

Tolle et al. [41] reported similarly low yields from a network
designed to monitor the microclimate of redwood trees, although in
this case much of the network was unable to form a routing topol-
ogy. Furthermore, approximately 15% of the nodes in the deploy-
ment died one week into the deployment by exhausting their batter-
ies due to a problem in the time synchronization component of the
routing protocol.

These results suggest that a gap exists between research algo-
rithms and their performance in real deployments. While studies
have quantified many of the difficulties in low-power wireless that
make developing efficient and robust protocols difficult, none have
established how to detect them. Without such information, proto-
cols and systems will suffer from always being tuned to the envi-
ronment in which they were developed. The next section describes
a set of experiments whose purpose is to take the next step and
provide insight on not only packet delivery performance, but more
importantly, the causes of packet delivery success and failure.

3 Experimental Methodology
This section describes the radio, platforms, and testbeds we used

in our experiments, as well as the experiments themselves.

1tinyos-1.x/contrib/tinydiff/tos/lib/TXMan TM.nc
2tinyos-1.x/contrib/bvr/tos/commstack/BVRQueuedSendM.nc
3tinyos-1.x/contrib/hsn/tos/lib/SimpleQueueM.nc

3.1 CC2420
The CC2420 is a single-chip 2.4GHz band transceiver that is

802.15.4 compliant. 802.15.4 uses OQPSK modulation to send
chips at 2MHz. Each 4-bit symbol is encoded in to a pseudorandom
sequence of 32 chips. The CC2420 decodes a received symbol by
correlating it with all the 16 different possible symbols. 802.15.4
can operate in 16 different channels (in the ISM 2.4 GHz band),
which are spaced 5 MHz apart and occupy frequencies 2405 MHz
- 2480 MHz. Some of these frequencies overlap with 802.11b fre-
quencies, as shown in Figure 7.

The CC2420 provides two pieces of metadata about received
packets. The first is its received signal strength indicator (RSSI),
which is the strength in dBm of the RF signal received over the
first eight symbols after the start of a packet frame. RSSI can also
be sampled at other times, to detect the ambient RF energy. The
second is the chip correlation indicator (CCI), which is an unsigned
integer in the range of 50-110. The CC2420 calculates CCI over
the same eight symbols of a packet as RSSI. Roughly speaking,
CCI represents how close the received chip sequences were to the
decided symbols: a 110 means that they were very close, while a
50 means there were lots of wrong chips.

3.2 Platforms
We used the Telos rev B mote [36] and the MicaZ mote [37]

as our two primary experimental platforms, both of which have a
CC2420 radio. The platforms have two principal differences. The
first is the microcontroller: Telos motes have a 16-bit Texas In-
struments MSP430 F1611 microcontroller, while MicaZs have an
8-bit Atmel ATmega128L. The second is their RF engineering: Te-
los motes have an integrated planar inverted F-style antenna (PIFA)
printed directly on the circuit board, while the MicaZs have a de-
tachable, quarter wave, monopole antenna connected to an MMCX
jack on the MicaZ circuit board. Additionally, they have some dif-
ferent passive components, like the oscillator, their components are
placed differently, and the Telos has an RF guard ring whereas the
MicaZ does not. For outdoor experiments, we used Telos rev B
motes.

To measure the interference effects of 802.11b on 802.15.4, we
used a Dell Optiplex SX280 (a small form-factor PC) with a USB
802.11b card attached and a Sony VAIO with integrated 802.11b.

3.3 Testbeds
Most of the experiments use the Intel Mirage [22] testbed, which

has 100 MicaZ motes, and a university testbed in our computer sci-
ence department building, which has approximately 30 Telos nodes
spread over approximately 2500 square feet. The nodes in both
testbeds are on the ceiling. We used the university testbed for two
reasons. First, it allowed us to repeat all of the Mirage experiments
with Telos motes, albeit with a different physical layout and possi-
bly different RF characteristics. Second, because Mirage is a public
resource, we could not ask its maintainers to swap nodes or other-
wise alter the environment.

In addition to the two wired testbeds, we used several other ad
hoc setups to explore specific questions which emerged from our
iterative analysis. The Outdoor testbed consisted of 11 Telos Rev.
B nodes arranged in line with 2 meter spacing placed on 6 cm high
plastic boxes in a grassy field. The Interference testbed consisted
of the 802.11b devices placed four feet apart with a Telos Rev. B
mote sitting half-way between the two laptops. The Comparison
testbed had a transmitter mote (MicaZ or Telos) placed approxi-
mately 4.5 m away from a MicaZ and Telos mote which were once
5 cm apart. The nodes in the comparison testbed were on cluttered
desks, approximately two feet above ground level, and during some
experiments people walking by broke line-of-sight (LOS) between
the nodes.



3.4 Experiments
With these platforms and testbeds, we performed six basic ex-

periments. In all experiments we gathered the RSSI and CCI of
every received packet, and kept track of all missed packets through
sequence numbers.

Burst Broadcast: Each node broadcast a burst of between 100 and
2000 packets, separated by a delay (variable between experiments),
and all other nodes that received this packet forwarded it over the
UART to the base station. A PC controlled when a node started a
burst and what inter-packet timing a node used.

Burst Unicast: Identical to burst broadcast, except that each node
sent a separate burst of packets to every other node.

Round Robin: A PC sent packets with a predefined rate, cycling
through the nodes as transmitters: if the PC sent k packets with
an inter-packet interval of t and there were n nodes, then each node

sent ⌊ k
n ⌋ packets and sent a packet every nt. All packets were broad-

casts. Nodes forwarded all packets received to the PC.

Background Noise: Each node sampled the noise level from the
RSSI register at 4Hz and sent this data back to the base station.
Each experiment collected data for 24 hours in order to examine
the long-term noise floor.

Correlated Noise: Similar to the background noise experiment, ex-
cept that a radio beacon synchronized the start of sampling. Sam-
pling was at 128Hz rather than 4Hz, and each experiment ran for
only a few minutes, limiting the effect of clock drift on time syn-
chronization.

RSSI Comparison. A single transmitter sent packets at 16Hz, cy-
cling through all of the available transmit power strengths (-30 dBm
to 0 dBm), so that the interval between two packets of the same
strength was approximately 2 seconds. This experiment was only
performed on the comparison testbed.

Interference: We placed a Telos node between the two 802.11b
devices set in ad-hoc mode. The PC ran an FTP server and the
laptop downladed a large file. The Telos node sampled RSSI and
sent it to a PC for collection. The mote continued sampling after
the transfer completed in order to compute the effect of the 802.11b
transmissions.

We repeated some experiments with different parameters. We
performed the Burst and Round Robin experiments at 6 differ-
ent power levels, ranging from -29 to 0 dBm, and three different
802.15.4 channels (11, 20, and 26). We performed the Burst Uni-
cast experiment on the university testbed with inter-packet times
of 10ms, 100ms, 1s, and 5s on channels 11 and 26. We collected
Background Noise data on channels 11, 20, and 26 in indoor en-
vironments using the Mirage, university, and outdoor testbeds. We
performed the Interference experiment with every combination of
802.11b and 802.15.4 channel.

4 Packet Reception
Prior studies have shown that wireless nodes have links with

intermediate loss rates, and these loss rates can vary over time. We
verified that these observations are true for the mote platforms in
our study by running round-robin experiments on the Mirage and
university testbeds. Figure 1 shows a packet delivery trace from
a 4 hour period of a single node in the Mirage testbed (node 4).
This trace, which is representative of the rest of the data, shows
that most links have either near-perfect or zero PRRs, but a small
number have the expected intermediate behavior. In particular, the
PRR from node 30 to node 4 is approximately 40%, varies from 0%
at 10-30 minutes to 75% at 40-80 minutes.

Figure 1. Packet reception over time (x axis) at node 4 from all
other 29 nodes (y axis). Every packet received is marked by a
’+’. Some nodes such as 2 and 3 have almost consistent packet
reception while node 30 has packet reception that varies over
time.

4.1 CCI, RSSI, and PRR Correlation
Radio propagation theory [31, 25] states that a low SNR thresh-

old causes packet delivery failure, and interference studies on some
mote platforms validate that this is a very good indicator on FSK
radios [34]. Sampling the ambient and packet signal strengths can
be a fast and inexpensive operation, as it may not even require pow-
ering up modulation hardware. However, initial studies argued that
signal strength might not be a good indicator of PRR [50]. Further-
more, initial experiments on the Telos platform suggested that CCI
might be a more accurate indicator of PRR.

One way to resolve these conflicting claims is to determine
whether RSSI and CCI are good indicators of PRR. Variations in
PRR are ultimately the result of variations of a channel’s bit error
rate, which a node can estimate with the CC2420’s CCI. This raises
the additional question of which is a better indicator of PRR: RSSI
or CCI?

To answer this question, we examined packet traces from burst
and round robin experiments on the Mirage and university testbeds,
as well as a burst experiment on the outdoor testbed, plotting PRR
versus RSSI and PRR vs CCI. As each burst has a short duration
of a few seconds, the burst experiment results are more likely to
be affected by brief noise spikes, but less likely to be affected by
environmental changes (such as people walking around) that affect
signal attenuation.

Figures 2(a), 2(c), and 2(e) show the RSSI results from the burst
experiments. Over a packet burst, RSSI values are very stable: for
most links the standard deviation is ≤ 1dBm. There is a strong
correlation between RSSI and PRR, in that there is a sharp cliff
around -87dBm: if a link is -87dBm or stronger, it is almost but
not completely certain to have a PRR ≥ 99%. The fact that the
variation between readings is small means that a single packet at
-86dBm is usually sufficient to determine whether a link is good
for the duration of a burst. Each of the plots has a small number of
outliers. We examine the causes of some of these in depth later, in
Section 4.3.

Figures 2(b), 2(d), and 2(f) show the CCI results. Over a packet
burst, CCI values vary widely: standard deviations of 10 are com-
mon. The mean values over all of the packets, however, show a
clear trend that corresponds to PRR. Combining the results from
Figure 2, this suggests that while RSSI can provide a quick and ac-
curate estimate of whether an incoming link is in the grey region or
not, averaging CCI values over a number of packets can provide an
estimate of where in the gray region a link is.

Given CCI’s statistical nature, this variance makes sense. Since
the CC2420 calculates CCI over eight separate symbols of 32 bits
each, even if the chip errors are independent there will be signifi-
cant statistical variation. The CC2420 data sheet does not describe
exactly how it computes a CCI value, otherwise we could apply
statistical models to try to determine whether chip errors are inde-



(a) PRR vs RSSI, Indoor Telos (b) PRR vs CCI, Indoor Telos

(c) PRR vs RSSI, Indoor MicaZ (d) PRR vs CCI, Indoor MicaZ

(e) PRR vs RSSI, Outdoor Telos (f) PRR vs CCI, Outdoor Telos

Figure 2. PRR versus RSSI and PRR versus CCI in a short
packet burst. Each data point is a directional node pair.
The error bars show one standard deviation of the measured
RSSI/CCI values. The two platforms have similar distributions,
and Telos behaves similarly indoors and outdoors.

pendent or correlated.

4.2 Long-Term Behavior
Figure 2 shows that RSSI is very stable over a short burst of

packets. Environmental changes, however, can cause significant
changes in propagation gain. RSSI is a very good predictor of
whether a short-term link is high quality or not. This raises a follow-
up question: is RSSI a good long-term predictor of PRR?

Figures 3(a), and 3(c) show the answer to this question. RSSI
and PRR show the same relationship as in the burst experiment:
there is a sharp cliff around -87dBm. RSSI values, however, have
much greater variance, and there are more outliers. Figures 3(b),
and 3(d) show the CCI plot of a long-term experiment. These CCI
plots is very similar to that of a burst experiment, but just as with
RSSI has more noise and variation.

Looking closer at the outliers in Figure 3 (the five or so data
points with an average RSSI around -85dBm and PRRs between
60% and 20%) show that their RSSI variation is higher than most of
the other links. These links could represent data points that moved
between the plateau of good connectivity and the cliff of variable
connectivity: because the plot is not a straight line, they appear as
outliers below the knee of the curve.

4.3 Node 4
The plots in Figures 2- 3 lead to several hypotheses. The first

is that temporal variations in PRR are more likely due to variations

(a) PRR vs. RSSI, Indoor Telos (b) PRR vs. CCI, Indoor Telos

(c) PRR vs. RSSI, Indoor Mi-
caZ

(d) PRR vs. CCI, Indoor MicaZ

Figure 3. PRR versus RSSI and PRR versus CC2420 CCI in
an 8 hour trace. Each data point is a directional node pair.
The error bars show one standard deviation of the measured
RSSI/CCI values.

in received signal strength than noise. This is because if the noise
floor variations were to be large we would see a wider cliff in the
plots of RSSI vs PRR. The second is that outliers on the curve are
caused by a link moving between the plateau of good connectivity
and the shelf of highly variable connectivity.

As an initial test of these hypotheses, we looked in depth at the
behavior of a single node over a 4-hour trace, node 4 from the Mi-
rage round-robin experiment at channel 11. We examined four data
series: the packet reception over time, the instantaneous ambient
signal strength sampled at 10Hz, a smoothed noise plot where each
data point represents the average over 40s, and the RSSI of pack-
ets received from one particular node whose connectivity showed
temporal variation (node 30).

The first trace is the same as Figure 1, rotated 90 degrees. The
middle two traces show the signal strength values observed at node
4. The left of these two traces shows instantaneous signal strength
measurements. The plot shows that there are many large spikes
of approximately 35dBm. However, the time scale of the plot ob-
scures the fact that these spikes comprise only a small percentage
of the samples, and makes it difficult to see the actual noise floor.
The right-center plot is therefore a coarser grained plot where each
data point is the average over 400 samples (40s). The fact that the
averages are between -93 and -92.5dBm shows that the noise spikes
are rare. Furthermore, there does not seem to be a strong correlation
between noise values and the PRR from node 30; while the period
between ten and thirty minutes had some noise spikes and a very
low PRR, the period of highest noise (around the 200 minute mark)
had a burst of packet successes. This suggests that noise is not the
principal factor behind temporal variations in PRR.

The far right plot of Figure 4 is an expansion of the column of
node 30 in the far left plot: it shows the RSSI of packets received
from node 30. Node 4 received one packet with an RSSI of -93
dBm, two with -92dBm, many at -91 and -90dBm, and a few at -
89dBm. Making conclusive statements on the relationship between
RSSI and PRR requires sampling the signal from node 30 for every
packet, received or not. As this trace only shows received packets,
we can only make reasonable hypotheses at what the causes are. For



Figure 4. Observed behavior at node 4. The first plot on the left shows packet loss over time. The second plot shows the measured
signal strength of the channel, which shows very, short-lived spikes. The third plot shows the singnal strength of the channel averaged
over 400 samples (40s), which shows that there are not significant variations. The last plot, on the right, shows the RSSI distribution
of packets received from node 30 over time.

example, while node 4 received packets at both -91 and -90dBm, the
receptions at -90dBm form dense clumps, while the receptions at -
91dBm are sparsely scattered. This suggests that the dense clumps
of packet receptions – the periods of higher PRR – are correlated
with periods of higher received signal strength.

The threshold for reasonable packet reception at node 4 seems
to be approximately -91dBm. This raises the question of whether
this threshold is due to environmental noise or other factors. The
CC2420 datasheet [21] says that its receive sensitivity is on average
-94dBm, with a worst-case sensitivity of -90dBm. The mode of
its measured noise values is -94dBm, and the CC2420 has a 3dB
sensitivity.

5 Interference and Noise
The prior section showed that long-term changes in PRR are

the result of changes in the RSSI of a borderline link dips slightly.
However, the RSSI grey region (where RSSI values that can have
intermediate PRRs) in Figures 2- 3 is approximately 6dBm wide.
This is significantly greater than the expected receive sensitivity of
3dBm. While the noise floor at a given node is fairly stable, it is
possible that the RSSI grey region is due to inter-node differences
in the noise floor. Additionally, the noise traces had large spikes
of 35dBm or more. If these spikes are not spatially correlated –
that two nodes close to each other do not both observe them – then
this would be a significant problem for CSMA algorithms. Further-
more, understanding the source of these spikes and whether or not
they can be avoided through channel selection could improve the
throughput and energy efficiency of protocols.

5.1 Noise Floor Differences
We ran a background noise experiment on the univeristy testbed,

using 802.15.4 channel 11, collecting approximately 160,000 sam-
ples from each mote. Figure 5 shows a two-minute subset of the

Figure 5. Sampled signal strength trace and histogram. (a)
Sampled Signal Strength (dBm) measured over a two minute
period at a single mote; (b) A histogram of the sampled signal
strength over 11 hours measured at the same mote.



values measured at a single node as well as a histogram of the val-
ues over an 11 hour period. 59.4% of the samples have a value of
-99 dBm, 10.3% have a value of -100 dBm, and 0.002% have a
value less than or equal to -101 dBm. This indicates that the mode
of the samples is a good estimator of a mote’s noise floor. The
distribution of samples is right-tailed, with more than 8.6% of the
samples having a value greater than -85 dBm.

Table 1. Distribution of estimated noise floor across 25 motes.

SSI (dBm) -99 -98 -97 -96 -95 -94

# Nodes 7 6 11 0 0 1

Figure 5 is representative of the other motes with one exception.
Table 1 shows the distribution of the noise floor values across the
motes in the university testbed. The noise floor at all but one mote
falls in the range -99 dBm to -97 dBm. The outlier had a noise
floor of -94 dBm. To determine whether the higher noise floor in-
dicates an enviromental difference at the mote’s location or a hard-
ware anomaly, we swapped the positions of the outlier and a quieter
node and re-ran the experiment. The noise floors showed that the
outlier values were due to the node and not the environment.

5.2 Correlated Noise
Our first background noise experiment collected signal strength

statistics at 4 Hz, which is sufficient to measure the noise floor and
obtain the overall distribution of noise values. One of the key obser-
vations of the background noise experiment is that the distribution
of noise values across nodes are quite similar. The traces also show
noise spikes of varying amplitude ranges. This raises the question
of whether the noise at different motes is merely statistically simi-
lar or actually well correlated. Since background noise experiments
do not synchronize sampling across motes, answering this question
requires running a correlated noise experiment.

Figure 6. Sampled signal strength over 10 seconds and across
six motes.

We ran a correlated noise experiment on the university testbed.
To avoid picking up other TinyOS users, we measured channel 20
(the default TinyOS channel is 11). Figure 6 shows the noise level
over 10 seconds at six different motes that are located at the five
convex corners of the testbed and the one centrally-located concave
corner and Table 2 shows their correlation coefficients. The data
appear well correlated both visually and statistically. The correla-
tion coefficients range from 0.80 to 0.97, which when squared gives

Table 2. Correlation coefficients of the noise measurements.

Node 1 6 13 19 26 28

1 1.00 0.85 0.95 0.80 0.82 0.80

6 0.85 1.00 0.83 0.91 0.88 0.84

13 0.95 0.83 1.00 0.78 0.80 0.77

19 0.80 0.91 0.78 1.00 0.97 0.94

26 0.82 0.88 0.80 0.97 1.00 0.97

28 0.80 0.84 0.77 0.94 0.97 1.00
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(a) 802.11b and 802.15.4 spectrum usage.

(b) Measured 802.11b interference with
802.15.4 (dBm).

Figure 7. Interactions between 802.11b and 802.15.4.

a range of 0.64 to 0.94, and describes the proportion of variance in
common between the noise levels at different motes.

5.3 Interference from 802.11b
The plots in Figure 6 show that the periodic noise spikes are

correlated over space. While it is possible that there were other
802.15.4 devices using channel 20, there is a more likely cause:
802.11b. The standard beacon period for an 802.11b access point is
100 Kµsec (0.1024 sec or 9.7656 Hz), which is consistent with the
data, and there was an access point located close to mote 28.

802.11b and 802.15.4 share the 2.4GHz spectrum band. Be-
cause of their different data rates, their channels occupy differ-
ent spectrum widths. Figure 7 shows how they overlap. Because
802.11b channels 1, 6, and 11 do not overlap significantly with
each other, they are what most wireless APs use. To better measure
the level of interference that 802.11b causes in the 802.15.4 band,
we performed an interference experiment for every combination of
802.15.4 and 802.11b channels. Figure 7 shows the difference in re-
ceived signal strength between the presence and absence of 802.11b
traffic. The data indicate an inopportune choice of 802.15.4 channel
can result in even 35 dBm to 45 dBm of interference from 802.11b
traffic. The data also shows that only 802.15.4 channel 26 is largely
immune from 802.11b interference. This suggests that the selec-
tion of the 802.15.4 should consider the channel of a nearby 802.11
network as 802.11b interferes with 802.15.4 in a way that reduces
packet reception rates [10, 47].

One plausible conclusion from these experiments is that the de-
fault 802.15.4 channel should be set to 26 to minimize 802.11b in-



Figure 8. The effect of an 802.11 access point on an 802.15.4
node on channel 20. The access point and node are separated
by 2 m and a wall. (a) Sampled signal strength with the access
point operating. (b) Sampled signal strength with the access
point unplugged. Difference between two indicates spikes are
interference from 802.11b beacons.

terference. While this is a perfectly reasonable conclusion given
our results, it is important to recognize that multi-channel radios
are often optimized for the center channel, so selecting by default
a channel at one extreme may lower the radio performance. In ad-
dition, channel 26 may not always be free of 802.11b interference:
while the Figure 7 shows simple, distinct 802.11 channel widths of
22MHz, in reality the specification is a bit more complex.

In the United States, there are 11 legal 802.11b channels num-
bered from channel 1, which has a center frequency of 2.412 GHz,
to channel 11, which has a center frequency of 2.462 GHz. There
are 16 available 802.15.4 channels numbered from 11, which has a
center frequency of 2.405 GHz, to channel 26, which has a center
frequency of 2.480 GHz. Both the 802.11b and 802.15.4 center fre-
quencies are separated by 5 MHz but the 802.11b channels have a
much greater bandwidth. The 802.11b standard specifies the cen-
ter frequency of each channel as well as a spectral mask for that
channel. The spectral mask requires the signal be attenuated by
30 dB or more from its peak energy at ± 11 MHz from the center
frequency, and attenuated by at least 50 dB from its peak energy
at ± 22 MHz from the center frequency.4 Therefore, even though
our experiments show little interference from 802.11b on 802.15.4
channel 26, for a sufficiently powerful transmitter, there could still
be considerable interference.

Figure 6 demonstrates how this can manifest. The simplistic de-
piction in Figure 7 would suggest that 802.15.4 channel 20 would
not experience interference from 802.11 channels 6 and 11 that ac-
cess points use, but the noise spikes in Figure 6 suggest otherwise.
To verify that the spikes were coming from the access point, we per-
formed two additional background noise experiments across multi-
ple 802.15.4 channels. Figure 8 shows the signal strength at the
node closest to the intefering 802.11 access point. A decrease of 15
dBm to 20 dBm in peak signal strength is observed when the access
point is turned off. Figure 9 shows the signal strength at a node fur-
ther away from the access point and the less pronounced decrease
in signal strength. The key difference appears to be a reduction in
the density but not peak signal strength of interfering traffic, sug-
gesting that the second node is situated between two access points
and continues to sense traffic from the other access point.

In the previous section we saw that packet reception rates and
RSSI showed a strong correlation, and long-term temporal vari-

4In contrast, 802.15.4 channels have a 3 MHz “bandwidth.”

Figure 9. The effect of an 802.11 access point on an 802.15.4
node on channel 20. The access point and node are separated
by 7 m and a wall. (a) Sampled signal strength with the ac-
cess point operating. (b) Sampled signal strength with the ac-
cess point unplugged. Smaller spikes correspond with greater
distance from access point. More frequent spikes in (a) and
remaining spikes in (b) indicate interference from two access
points.

ations in PRR could be attributed to variations in signal strength
rather than noise. However, there is an RSSI grey region of approx-
imately 6dBm in which PRR is highly variable. In this section we
examined this grey region more closely, and showed that nodes can
have a range of noise floors, which represent one form of hardware
variation. We also examined the sources of noise spikes and estab-
lished that they are from 802.11b traffic, they have strong spatial
correlation, and can be for the most part avoided by selecting the
right 802.15.4 channel.

6 Packet Reception Asymmetry
The prior sections showed RSSI can effectively predict whether

a packet will be lost, that there are long-term temporal variations
in RSSI and inter-node variations in noise floor. These conclusions
give us the basis from which we can address two major unanswered
questions: why are there asymmetric links, and how can a node de-
tect them? For this study, we define a bidirectional link between a
node m and a node n to be asymmetric if |PRRm −PRRn| > 0.4.5

But before we address these questions, we first quantify how com-
mon asymmetric links are in 802.15.4, as there are interesting tem-
poral complexities to consider.

6.1 Temporal Characteristics of Asymmetry
Using a unicast burst experiment on 30 nodes of the Mirage

testbed on channel 11, we measured the PRR between every node
pair and from this computed link asymmetries. This experiment has
two interesting qualities: first, the two directions of a node pair may
have been measured several minutes apart, and the PRR is calcu-
lated over a very brief interval. We repeated this experiment twice,
once on a Wednesday evening and once on a Saturday afternoon.
Figure 10 shows the results. There are many asymmetric links.
However, looking more closely, only two of the 16 or so asym-

5While ETX might be a better metric, as it reflects the true cost
of a link, ETX has interesting temporal properties due to its assum-
ing a retransmission policy. As Section 7 will show, this means
that ETX cannot be considered in a precise fashion without making
constraining assumptions that might reduce the applicability of the
conclusions.



(a) Wednesday (b) Saturday

Figure 10. PRR Asymmetry for 30 nodes in the Mirage testbed
over a 200 packet unicast burst for two different trials. The
30 nodes were a subset of the testbed nodes that covered the
entire lab area. While they are shown in a circle solely for visu-
alization purposes, nodes close to each other on the circle were
close to each other in the testbed. Nodes having asymmetry are
connected using a colored line, where the red end of the line is
the node that had trouble receiving packets. A larger gradient
on the line indicates higher asymmetry. While each trial had
a significant number of asymmetric links, there are only two
(N14-N26 and N17-N4) present in both.

metrics links occur in both experiments. This suggests that there
may be significant temporal effects in link asymmetry.

To determine the time scale of variations in PRR asymmetry, we
examined the data from the round-robin experiment used in Fig-
ure 4 and calculated link asymmetry over four separate one hour
periods. Figure 11 shows the results. It is clear that a few links
such as N17→N4 are consistently asymmetric while some such as
N18→N10 are not. Furthermore, the number of asymmetric links
is much smaller. These results suggest that there are significant dif-
ferences between long-term and short-term link behavior.

Since Section 4 showed that temporal variations in RSSI were
the cause of temporal changes in PRR, it is a reasonable hypothesis
that it is the cause here as well. Figure 4 supports this hypothesis:
in the second hour, node 4 is able to receive packets from node 30
because the RSSI increased to be mostly -90dBm readings rather
than -91dBm, as also seen in Figure 11(b).

Table 3. Distribution of estimated noise floor across the motes
in the Mirage round robin experiment. Only 26 of the 30 nodes
reported noise data.

SSI (dBm) -98 -97 -96 -95 -94 -93 -92

# Nodes 5 8 4 3 2 3 1

6.2 Causes of Asymmetry
Together, the RSSI temporal variation results from Section 4 and

the inter-node noise variation results from Section 5 present a pic-
ture of what causes asymmetric links and why they might change
over time. Table 3 shows the distribution of noise floors in the Mi-
rage round-robin experiment. Just as with the university testbed,
there are significant inter-node variations, which would affect SNR
and therefore lead to PRR asymmetry. However, in comparison to
the university testbed (Table 1), they have a larger range and are
also several dBm higher. This could be due either to environmental
variations or differences between the platforms. These minor dif-
ferences aside, round-robing experiments on the university testbed
had similar asymmetry results.

Figure 13 ties all of these results together. It shows node 4’s
view of its communication. It receives no packets below its noise
floor (mode). Figure 3(c) showed that the distributions of RSSI

(a) PRR Asymmetry, Indoor
MicaZ, First Hour

(b) PRR Asymmetry, Indoor
MicaZ, Second Hour

(c) PRR Asymmetry, Indoor
MicaZ, Third Hour

(d) PRR Asymmetry, Indoor
MicaZ, Forth Hour

Figure 11. Hour-by-hour asymmetry plots for a four hour
round-robin experiment on the Mirage testbed. The visualiza-
tion methodology is the same as in Figure 10. A small number
of links such as N17→N4 are consistently asymmetric and there
are also transiently asymmetric links such as N18→N10. Node
4 also seems to be a “bad node,” in that many of the stable asym-
metric links have it as a bad receiver.

Figure 12. RSSI variation over time at nodes 30 (+) and at
node 4 (×) for packets received from each other. Both observe
variation of a few dB, and 4 observes an RSSI of approximately
2dBm lower than 30 does.



Figure 13. Average noise at node 4 and RSSI of packets received
from all nodes for round robin experiment on Mirage. The cir-
cle on each vertical line marks the average RSSI while the ends
of each line correspond to the minimum and maximum RSSI
of packets received from that node. It receives no packets be-
low its noise floor (-93dBm), and very few below one standard
deviation above that (-90dBm).

Figure 14. Disribution of RSSI asymmetries in the Mirage
round-robin experiment. 50% of all communicating node pairs
have pairwise RSSI differences of 2dBm or below.

values are fairly small: most had standard deviations of 1dB or less.
This plot, however, shows that there are several extreme outliers.
Node 4 receives no packets below its noise floor (-93dBm), and
very few below one standard deviation above that (-90dBm), and
its noise floor is one of the highest, as shown by the distribution in
Table 3.

Returning to Figure 11, node 4 had four asymmetric links, with
nodes 17, 19, 22, and 30. In each of these asymmetric links, node
4 was the bad receiver. Examining the RSSI of these links, we can
see that all of them are on the edge of receivable RSSI. One, in
particular, 19, has no successfully delivered packets. Examining
the reverse direction, node 19’s noise floor was -98dBm, and the
average RSSI of received packets from node 4 was -93dBm; un-
less there were significant RSSI asymmetry in node 4’s favor, it is
unlikely to receive any packets.

RSSI asymmetry also contributes to PRR assymetry. While RF
theory (and the laws of physics) state that the two directions of RF
propagation have identical attenuation, in practice this is not the
case. Figure 14 shows a distribution of the RSSI asymmetries in the
Mirage round-robin experiment. The largest asymmetry is 6dBm.

7 Packet Loss Correlation
Examining link asymmetries showed that there are significant

short-term variations in PRR, but that over longer time periods
PRRs are stable. This suggests that in addition to being able to
gauge long-term PRR values, motes may need to be able to quickly
adapt to abrupt and transient changes. Independent and identically
distributed (i.i.d.) events are a common assumption in routing pro-
tocols and the formulation of wireless networking. In this model,

the success or failure of each packet transmitted is independent and
uniform. The results in Section 6 directly contradict this abstrac-
tion. However, if packet delivery is not i.i.d., what is it?

If packet delivery failures are not independent, they are corre-
lated. More precisely, consider the conditional probability F(n),
which is the probability that the next packet will fail if the past n
failed. The temporal behavior observed in Section 6 suggests that
a more expressive form might be useful in practice, F(n, t), where
t denotes the time interval between the packets. If F(n) is uniform
for all n, then packet delivery failures are i.i.d. By definition, if
F(n, t) is uniform, then F(n,kt) for any integer k must be uniform
as well. If packet delivery failures are not independent, then F(n, t)
will not be uniform.

7.1 Correlation Periods
We ran a series of broadcast burst experiments on the university

testbed using channel 11 and 26 to compute F(n, t) for a range of
t values. The differences in time scale of the short-term and long-
term experiments in Section 6 were over three orders of magnitude
(seconds versus hours). By examining packet failure correlations at
a wide range of time scales, we can hopefully understand the degree
of temporal dynamics in PRR variation.

Figure 15 shows F(n, t) for channel 26 2000 packet bursts with t
values of 5ms, 10ms, 100ms, and 1s. Each graph represents the re-
sults from a single chosen unidirectional link; each experiment had
over 700 links. Each link selected experienced an overall packet
reception rate between 40% and 60%6, and was chosen because it
is representative of the common behavior observed. The plots show
that packet losses are not i.i.d. Instead, the conditional probabil-
ity of packet delivery failure fluctuates greatly, often with a value
greater then 90%, even though the packet reception rate is around
50%.

F(n, t) describes the conditional probability of loss, but it does
easily represent how common strings of losses are. The probability
that there will be k consecutive losses with a packet timing of t is
P(k, t), which is defined as

P(c, t) = (1−F(c, t)) ·
c−1

∏
n=1

F(n, t)

Figures 15(e)-15(h) show the corresponding P(c, t) for the
F(n, t) plots. We see that in all four graphs, single packet loss bursts
make up over 50% of loss sequences. Looking at the top 4 graphs,
we see that, given the fact that only one packet has been lost since
the last successful transmission, the probability that the next packet
is lost is approximately the expected 1 - PRR. Coupled with the bot-
tom four graphs, this suggests that a good portion of the losses that
occur after a successful transmission are due to a short-lived con-
dition, and consequently are independent of the result of the next
transmission. However, by the same token, we notice that begin-
ning with 2 consecutive losses, the probability of losing the next
packet increases rapidly. Therefore, this suggests that if at least two
consecutive packets are lost, then there exists a correlation between
successive packet transmissions. Since the test was performed on
channel 26, 802.11b interference should have been minimal. Only
one node broadcasted at a given time, to the best of our knowledge
no other devices were operating on channel 26 concurrently, and
as Figure 8 showed, channel 26 sees little if any interference from
other devices. We therefore assume that packet losses due to inter-
ference are unlikely.

6The link selected for the 1s burst had an overall packet recep-
tion rate of 81%, as there existed no links that had an overall packet
reception rate between 10% and 80%.



(a) F(n,5ms) (b) F(n,10ms) (c) F(n,100ms) (d) F(n,1s)

(e) P(c,5ms) (f) P(c,10ms) (g) P(c,100ms) (h) P(c,1s)

Figure 15. F(n, t) and P(n, t) for 4 values of t using channel 26 on the university testbed. The 5ms, 10ms, and 100ms plots are
2000 packets, while the 1s plot is 60000 packets. Each F,P pair is from a single node pair with an intermediate PRR, but link PRR
variations mean that each t value is a different node pair.

(a) 500ms Round Robin (b) 500ms Round Robin

Figure 16. F(n, t) and P(c, t) plots from a representative pair
in a round-robin experiment on the university testbed using
802.15.4 channel 26.

However, as packet losses are not i.i.d,, some process is creating
a dependency. Returning to the results of Section 4, the tempo-
ral variations in RSSI suggest a possible cause. Because there is
temporal correlation in RSSI, down-swings cause periods of lower
PRR, which in turn create a statistical dependency in packet loss.

7.2 Long Term Correlation
Consequently, the cause of this correlation can not be deter-

mined from this data set alone, and requires additional experiments.
Since this data was for packets separated by delays of one second
or less, the next natural question is whether this correlation exists
for greater amounts of delay.

Given that packet losses are not i.i.d. due to temporal RSSI cor-
relation, the next natural question is whether these dependencies
exist for greater inter-packet timings. Because burst experiments
run serially, running a long-term experiment for an entire testbed is
prohibitively long, long enough that there could be significant en-
vironmental changes. Therefore, to examine longer-term behavior,
we ran a round-robin experiment on the university testbed, also us-
ing channel 26. In both cases, packet transmissions are timed so as
not to interfere: the round robin experiment can be thought of as n
burst experiments running in parallel.

Although this used a different experimental methodology, the
data can be examined in the same way. Only one node transmits
at a given time, and using a 500ms delay between node transmis-
sions, the effective delay is 14s (500ms * 28 nodes per round). The
trace lasted for 12 hours, during which each node broadcast ap-
proximately 3000 packets. Figure 16 displays the results of this ex-
periment. Initially, it seems no different from the short-term burst
results, but a closer look reveals some subtle differences. Just as in
the short experiments, given a successful transmission followed by
a packet loss, the probability that the next packet is lost is approx-
imately 1 - PRR. However, from there, the probabilities increase
more rapidly than in the burst experiments, and remain reasonably
stable.

Further and deeper exploration into this phenomena is needed in
order to be able to state the cause definitively, but the data seems to
point to an interesting result. The nearly flat portion of the graph
seems to indicates that at that point, successive packet losses are
independent of each other. Recall that if losses are independent,
the probability of the next packet being lost is 1 - PRR. Looking
at the graph, this would imply a PRR of approximately 15%, while
we know that the overall PRR for that link is closer to 60%. The
explanation for this could be that with packets spread so far apart,
two or three consecutive losses could indicate that the quality of
the link has temporarily deteriorated, and this deterioration is fairly
stable and long-lived.

More interestingly, the shape of the curve suggests an interesting
relationship between different PRR states. A single loss indicates a
relatively low probability of additional losses (25%), and 65% of all
losses are single loss events. This indicates that most of the time,
the PRR is above 75%. The long tail in Figure 16(b) shows that
there are a small number of long strings of packet losses, beyond
what would be expected statistically from a uniform PRR. Within
these long tails, F(n) is reasonably stable, around 85%. This sug-
gests a predimoniantly bimodal behavior; drawing a parallel to the
observations of node 4 in a Mirage round-robin experiment (Fig-
ure 4), this suggests movements between two different principal
signal strengths.



8 Implications and Future Work
As with any study, some of the observations in Sections 4- 7 are

conclusive, while others are preliminary or speculative. The former
establish a set of guidelines for protocol and system design, many of
which contradict currently held beliefs and practices, while the lat-
ter provide future areas of investigation and experimental method-
ologies.

In the platforms we measured, there are three root causes which
lead to a very complex set of higher level behaviors. The basic ex-
planation behind these causes is the signal to noise ratio, where the
noise is predominantly a hardware effect, as we did not consider
concurrent transmissions. The first cause is that a node pair can
have significant (as much as 6 dBm) signal strength asymmetry, but
the asymmetry between 50% of pairs is within 1dBm. The second
is that RSSI values change over time. This leads to temporal vari-
ations in PRR as intermediate links oscillate between high and low
SNR, resulting in packet losses that are not i.i.d. The third is dif-
ferences in what noise floor nodes observe, which is a product of
their hardware. The fact that these causes can be easily measured,
combined with their results, such as packet loss correlation, the
temporal dynamics of asymmetry, and the grey region, has broad
implications on the design and implementation of many systems,
protocols, and algorithms, such as those we discussed in Section 2.

8.1 MAC Protocols
The interference 802.11b introduces can greatly effect MAC

protocols, as the 802.11b device may not consider an 802.15.4 sig-
nal strong enough to warrant backoff, given that the latter is nar-
rowband in comparison to the former. However, 802.11b can inter-
fere with 802.15.4 and cause significant packet losses. This means
that MAC protocols cannot assume that they are the sole users of
the channel, which means that analytical results showing optimal
behavior in a closed system may be very difficult to apply to real-
world systems.

Furthermore, 802.11b interference may affect low power listen-
ing MAC layers [11, 29] that use RSSI as a wakeup signal. 802.11b
packets can lead a protocol to wake up, wasting energy. However,
given that most sensornets are heterogeneous and have 802.11b-
based microservers [12] or similar devices, this behavior could also
be used in a productive fashion. Because 802.11b has a longer range
and these devices are not as energy-constrained, a microserver can
issue a wakeup signal to most of the network.

Deployments in similar environments to those we measured
could take advantage of the fact that RSSI values are stable over
the short term to make intelligent MAC decisions. For example, if
an RTS/CTS protocol such as SMAC [49] can assume that RSSI
does not change significantly over a rapid 30 packet burst, since
there is a strong correlation between RSSI and PRR, the CTS can
estimate how many retransmissions may be needed in order to more
tightly limit the wakeup time.

Some data-link protocols use link-level retransmissions in con-
junction with explicit or implicit acknowledgements. Generally, the
policy in these schemes is to retransmit immediately. Our results in
packet loss correlation suggest that repeated immediate retransmis-
sions may be ineffective. Instead, if faced with multiple consecu-
tive losses, servicing another send request to another node may be a
more efficient use of both the channel and a node’s energy reserves.

Finally, the default clear channel assessment (CCA) value on the
CC2420 is -72dBm. CC2420 stacks in most sensor network oper-
ating systems that support CC2420 platforms, such as TinyOS [2],
SOS [18], and MOS [3], use this value. If the CC2420 less then -
72dBm in the channel, it will transmit a packet. The PRR vs. RSSI
plots in Figure 3 show that this can cause nodes to transmit packets
that collide with ones which the nodes could readily receive since
reception below 90dBm is common. Additionally, because 802.11b

is a major source of interference and is highly spatially correlated
and RSSI assymetries are limited to approximately 6dB, a MAC
protocol could use an adaptive CCA scheme, in which it selects a
CCA value based on its estimate of the RSSI asymmetry, correla-
tion between noise values, and receive sensitivity in the presence of
interference.

8.2 Link Estimation
Studies of earlier platforms argued that RSSI was not a good

PRR indicator [50]. Our results show that this conclusion does not
hold for more recent platforms, which has significant effects for
link estimation. As RSSI values are stable and have low variance,
changes can be detected very quickly. While by themselves RSSI
values do not provide very much information about the PRR grey
region, combined with a knowledge of the receiver’s noise floor,
they can. Of course, RSSI asymmetry means that a transmitter must
estimate the RSSI at its destination, but nonetheless, a transmitter
can at the very least quickly and accurately estimate whether it is
using an intermediate or good link.

Most of our results focused on the relationship of RSSI with
packet delivery behavior, but the CCI data in Figures 2 and 3 show
that CCI can also be very useful. Although CCI readings are noisy,
such that a single reading on an intermediate link provides very
little information, the average CCI over several packets can be an
accurate predictor of PRR. Combined with the RSSI results, this
suggests that a hybrid estimator, one which generally uses RSSI
but if needed takes advantage of CCI, might be an effective way to
inexpensively detect good links yet be able to effectively consider
intermediate ones.

Finally, there are often tradeoffs in link estimation between es-
timation cost, agility, and accuracy. The temporal effects and vari-
ations shown in Sections 4 and 6 suggest that, just as a hybrid ap-
proach for estimation itself is possible, a hybrid approach in terms
of time could be worthwhile. In this model, nodes maintain long-
term estimates, which short-term variations can temporarily over-
shadow, but which provide a longer-term assessment of a possible
neighbor. The information used for these two mechanisms might
be very different, as they have different resource-fidelity tradeoffs,
especially given that probing a bad link can be more costly than just
using a different one.

8.3 Network Protocols and Localization
Short-term PRR variations mean that network protocols must

be able to either quickly (e.g., within a few packets) change routes
or store packets for later forwarding. The former policy may have
problematic interactions with underlying link estimators, however,
as sudden shifts in traffic patterns may affect the estimation algo-
rithm depending on when and how it gathers data.

Mote RAM constraints and the belief that many links are asym-
metric made neighbor blacklisting an unattractive approach for
early protocols. However, our measurements show that there are
very few long-term asymmetric links; this means that revisiting
this assumption and using this technique in protocols running on
CC2420 networks may be useful.

Given the ubiquity of 802.11b, it is very likely that sensor net-
works deployed in indoor (especially office or urban) environments
will be within range of a few 802.11b base stations. Section 5 sug-
gests that nodes can use these beacons for RSSI-based distance es-
timation. There is a tremendous amount of literature on the sub-
ject, and while most deployed efforts have shown that it is unlikely
to compute very precise locations [45], others have shown that it
can produce good rough estimates [27]. As 802.11b beacons have
a regular period, nodes could possibly distinguish sources without
needing to decode the signal, although the details of channel over-
lapping (and the fact that a mote may not be able to know which



802.11 channel is being used) could introduce significant complex-
ity.

8.4 Wireless Networking
While we believe this study is the first to closely examine many

aspects of the behavior of low-power, 802.15.4-based devices, there
have been in-depth studies of 802.11 [5, 32]. These two proto-
cols use the same spectrum and have similar modulation schemes
(BPSK or QPSK vs. OQPSK). However, these studies and ours
reach opposite conclusions. Aguayo et al. observe very little cor-
relation between SNR and PRR [5] and attributes this to mulitpath
effects, while Creis asserts that RSSI asymmetries are a product of
the environment rather than the node or wireless card [32].

The Aguayo et al. study used Roofnet, a much larger-scale net-
work that operates on the roofs of buildings in a dense urban area. It
is possible that the differences in our conclusions stem from differ-
ences in environment. Alternatively, as their study was in an urban
area, there is almost certainly be a great deal of interfering traffic, a
complexity that our study does not consider.

Another possibility is that the discrepancies come from differ-
ences in experimental methodology. Our results show that 802.15.4
can have significant short-term RSSI variations, which we measure
on a packet-by-packet basis. Aguayo et al., undoubtedly due to
the fact that 802.11b has many more packets per second, consider
the SNR averaged over a second. Furthermore, their hardware en-
ables them to measure the noise floor immediately before and after
a packet, which our experimental setup did not. Just as viewing
PRR vs RSSI, it may be that averaging SNR over time intervals
leads to different conclusions than on a packet-by-packet basis.

8.5 Open Questions
On one hand, our data point strongly at a wide range of con-

clusions that have broad implications for a broad spectrum of prob-
lems in wireless sensor networking. On the other, and is often the
case in these studies, they raise just as many questions as they an-
swer. This is in part due to several limitations in our studies: we
did not consider concurrent transmissions, while our data indicates
that outdoor deployments behave similarly, the variety that this en-
vironment class encompasses deserves greater study, and we did
not consider some of the more complex aspects of 802.15.4, such
as acknowledgments.

Going forward, we believe our results raise several important
questions which, if answered, could provide excellent insight on
what challenges in this domain are inherent, and what challenges
are temporary. Specifically,

1. 6dBm seems too great an RSSI asymmetry to be the result of
CMOS electronics. What causes the observed hardware variations?

2. Are long-term RSSI trends caused by the surrounding environ-
ment or aspects of the hardware?

3. Why does 802.15.4 show very different behavior from what has
been reported for 802.11? How much of this is hardware and how
much of it is the physical layer?

Our belief is that for wireless sensor networks to truly become
robust, long-lived, and effective tools for society, we must under-
stand their networking deeply and fully, and hope that this work is
an initial step towards this goal.
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A Hardware Comparison
Our experiments use both Telos Rev B and MicaZ motes. Al-

though both of these motes use the CC2420 radio, their different
antenna, passive component, and physical layout choices raise the
question of whether these differences affect signal strength and
packet delivery performance. To explore this question, we per-
formed a series of side-by-side RSSI comparison experiments on
the comparison testbed. Each experiment had a transmitter mote
send packets to two side-by-side receiver motes. One receiver was
a micaZ and one was a Telos. We used two different receiver pairs,
{{MicaZ1,Telos1} and {MicaZ2,Telos2}, and two different trans-
mitters, MicaZ3 and Telos3, generating data traces from eight node
pairs.

The two receivers in each experiment were placed side-by-side
approximately 5 cm from each other and equidistant from the trans-
mitter which was approximately 4.5 m away. The nodes were all
on cluttered desks. For successive experiments in which the same
transmitter was used, the transmitter was not moved between the
experiments. Each transmitter sent packets on 802.15.4 channel 11
at a 16Hz rate, cycling through all of the available transmit power
strengths (-30 dBm to 0 dBm) so that the interval between two pack-

(a) MicaZ TX to Telos 1 (b) MicaZ TX to MicaZ 1

(c) Telos TX to Telos 1 (d) Telos TX to MicaZ 1

Figure 17. RSSI value distributions from experiments measur-
ing the effect of a platform. The X axis is transmit power and
the Y-axis is RSSI. Each cell corresponds to packets transmit-
ted at a power level that were received with an RSSI value, and
the darkness of the cell indicates how many were received.

ets of the same strength was approximately two seconds. Every
packet transmission had a unique sequence number, allowing us to
compare the RSSI of a single transmission at two receivers.

We provide a cautionary note against generalizing the results
reported here. First, since only channel 11 was used in this exper-
iment, we cannot generalize about the radio performance of Telos
and MicaZ motes since the radio hardware for the different motes
may be optimized for a different center frequencies. Second, since
different antennas have different directional gain, yet our experi-
ments only considered one direction, we cannot generalize about
omni-directional antenna gain. Third, since multipath effects can
cause variations in received signal strength. Despite these caveats,
this data provides a quantitative basis for comparing the results of
the earlier sections.

Figure 17 shows the results. On one hand, there are what seem
to be a few trends: micaz nodes, for example, tend to have lower
RSSI values than their Telos counterparts, but the distribution of
their RSSI values seems to be tighter. On the other, given the noise
and complexity in the data, drawing concrete conclusions from this
small study is problematic. At first glance, it seems that their RF
behavior are more complex than a simple determination of one be-
ing “better” than the other. For example, while higher RSSI values
can let a node transmit further, more stable RSSI values can make
its algorithms run better, and which is preferable depends on the
protocol as well as traffic pattern. While our results are in and of
themselves unclear, what is clear is that this may deserve an entire
study by itself.
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