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Abstract

Purpose of Review A growing body of evidence suggests that obesity and increased visceral adiposity are strongly and inde-

pendently linked to adverse outcomes and death due to COVID-19. This review summarizes current epidemiologic data,

highlights pathogenetic mechanisms on the association between excess body weight and COVID-19, compares data from

previous pandemics, discusses why COVID-19 challenges the “obesity paradox,” and presents implications in prevention and

treatment as well as future perspectives.

Recent Findings Data frommeta-analyses based on recent observational studies have indicated that obesity increases the risks of

infection from SARS-CoV-2, severe infection and hospitalization, admission to the ICU and need of invasive mechanical

ventilation (IMV), and the risk of mortality, particularly in severe obesity. The risks of IMV and mortality associated with

obesity are accentuated in younger individuals (age ≤ 50 years old). The meta-inflammation in obesity intersects with and

exacerbates underlying pathogenetic mechanisms in COVID-19 through the following mechanisms and factors: (i) impaired

innate and adaptive immune responses; (ii) chronic inflammation and oxidative stress; (iii) endothelial dysfunction, hypercoag-

ulability, and aberrant activation of the complement; (iv) overactivation of the renin–angiotensin–aldosterone system; (v) over-

expression of the angiotensin-converting enzyme 2 receptor in the adipose tissue; (vi) associated cardiometabolic comorbidities;

(vii) vitamin D deficiency; (viii) gut dysbiosis; and (ix) mechanical and psychological issues.

Summary Mechanistic and large epidemiologic studies using big data sources with omics data exploring genetic determinants of

risk and disease severity as well as large randomized controlled trials (RCTs) are necessary to shed light on the pathways

connecting chronic subclinical inflammation/meta-inflammation with adverse COVID-19 outcomes and establish the ideal

preventive and therapeutic approaches for patients with obesity.
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Introduction

The novel coronavirus disease 2019 (COVID-19) caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) represents an unprecedented public health challenge

with a significant impact onmorbidity and mortality as well as

an unparalleled economic and health crisis worldwide. In

March 2020, the World Health Organization (WHO) has of-

ficially declared COVID-19 a pandemic. Globally, as of

December 30, 2020, there have been 80,773,033 confirmed

cases of COVID-19, including 1,783,619 confirmed deaths

reported to WHO in 222 countries, areas, or territories with

cases, and these numbers continue to rise every day [1].

While SARS-CoV-2 is known to provoke substantial pul-

monary disease, comprising pneumonia and acute respiratory

distress syndrome (ARDS), COVID-19 may manifest with a

wide range of extrapulmonary manifestations [2•]. The case

fatality rate (CFR), i.e., the proportion of deaths fromCOVID-

19 compared to the total number of diagnosed patients, is

around 2.21%; while the estimated overall infection fatality

rate (IFR), i.e., the proportion of deaths among all infected

individuals including asymptomatic patients, ranges from

0.3 to 1% but is higher in older individuals with comorbidities

[1, 3], including obesity. The COVID-19 pandemic has taken

place at a time when the worldwide prevalence rate of over-

weight and obesity is greater than 39% for adults based on

WHO data in 2016 [4]. The prevalence of obesity is particu-

larly high in some countries such as the USA where the total

number of confirmed COVID-19 cases and deaths is one of

the highest in the world [1]. Data from the National Health and

Nutrition Examination Survey have indicated that the age-

adjusted prevalence of obesity among US adults was 42.4%

in 2017 and 2018 [5]. It has been estimated that the global

prevalence of overweight and obesity will exceed 57% by

2030 [6]. Individuals with obesity and COVID-19 are 113%

more likely to be admitted at hospitals, 74% more likely to be

admitted to the intensive care unit (ICU), and 48%more likely

to die compared to subjects with normal weight [7]. All these

data highlight the fact that COVID-19 and obesity pandemics

converge into a co-epidemic or syndemic requiring an urgent

and multidisciplinary approach [8].

Overweight and obesity are defined as excessive or abnor-

mal fat accumulation that may impair health. Based on the

WHO classification of obesity for adults of both genders and

all ages, overweight is defined as a body mass index (BMI)

greater than or equal to 25 kg/m2, and obesity as a BMI greater

than or equal to 30 kg/m2. A more detailed classification of the

severity of adulthood obesity includes 3 classes: class I

(moderate) with BMI 30–34.9 kg/m2; class II (severe) with

BMI 35–39.9 kg/m2; and class III (very severe) with BMI

greater or equal to 40 kg/m2 [9]. Although BMI is not consid-

ered the most reliable measure of body fat, it represents a prac-

tical and useful tool for assessing total body weight in a large

population [10]. According to several studies, BMI is a strong

independent risk factor for severe COVID-19, adjusting for

age, gender, social class, diabetes mellitus, hypertension, and

other comorbidities. In the largest descriptive epidemiologic

study of hospitalized US COVID-19 patients, it was shown that

77% of approximately 17,000 patients had obesity (48%) or

overweight (29%) [11]. Interestingly, higher BMI contributed

more to the risk of severe COVID-19 and mortality in younger

patients, i.e., those less than 50 years of age [12••, 13–16].

Obesity is associated with a wide range of adverse health

outcomes. The unfavorable effects of excess body weight in the

course of viral infections including COVID-19 have beenmain-

ly attributed to the metabolic perturbations and chronic inflam-

mation of the adipose tissue leading to impaired immunity

(blunted macrophage activation, impaired B and T lymphocyte

responses) and more severe clinical outcomes [17, 18].

As of December 20, 2020, approximately 300 reviews on

obesity and COVID-19 have been published in PubMed,

shedding light on specific aspects of the association between

obesity and COVID-19 without covering holistically epidemi-

ologic, pathogenetic, and potential preventive and therapeutic

aspects of the co-epidemic. The objective of this review is to

provide current epidemiologic data regarding the association

between excess body weight and COVID-19; to compare data

with previous pandemics (H1N1 influenza 1918, SARS 2002,

H1N1 influenza 2009, and Middle East respiratory syndrome

[MERS] 2012), discussing also the reason of not observing a

survival benefit (known as obesity paradox) of obesity in

COVID-19-related acute respiratory distress syndrome

(ARDS); to highlight potential pathophysiologic mechanisms

explaining the association between obesity and COVID-19; to

analyze racial/ethnic disparities in obesity and nutrition in

COVID-19; and, finally, to present preventive and therapeutic

implications and future perspectives.

Literature Search

PubMed, Scopus, Google Scholar, MedRxiv, and BioRxiv

databases were accessed to identify English language articles

published through December 20, 2020. Themain search terms

included “coronavirus,” “cytokine,” “human,” “infection,”

“metabolism,” “COVID-19,” “immunity,” “infection,” “influ-

enza,” “obesity,” “overweight,” and “SARS-CoV-2.”

Additional publications of relevance were retrieved by

reviewing the references of the eligible articles.

Current Evidence of Epidemiologic
Associations Between Obesity and COVID-19

Table 1 depicts the list of main studies and meta-analyses

associating obesity or BMI or visceral fat with COVID-19 risk
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and outcomes including the severity of infection, hospitaliza-

tions, hospitalizations in the ICU, administration of invasive

mechanical ventilation (IMV), and mortality [19–23, 24••,

25–30, 31••, 32–47].

Based on three meta-analyses, the odds of SARS-CoV-2

positivity in individuals with obesity is 46–78% higher com-

pared to individuals with normal weight [24••, 25, 26], while

higher BMI was associated with a 28% elevated risk of

COVID-19 per 1 standard deviation (SD) increase in kg/m2

in a study using UK Biobank data (N = 235, 928 participants)

after multivariable adjustment including age, gender, ethnici-

ty, and socioeconomic status [48]. BMI was less strongly as-

sociated with the risk of pneumonia or influenza [48].

Interestingly, the associations of forced expiratory volume in

one second (FEV1), i.e., an index of lung function that may be

improved with physical activity, and BMI with COVID-19

were linear, suggesting that even modest improvements in

lifestyle could be beneficial to the risk of severe COVID-19

symptoms [48].

While elderly patients present an increased risk for severe

COVID-19, younger patients with COVID-19 tend to have a

higher BMI than older patients, with children suffering from

obesity being at an elevated risk for severe disease [12••, 15, 16,

49, 50]. In a case series of 50 children and adolescents hospi-

talized with COVID-19 in a children’s hospital in New York

City, the most prevalent comorbidity was overweight (16%)

and obesity (22%). Obesity (BMI ≥ 95th percentile for age/

gender) was significantly associated with mechanical ventila-

tion in children 2 years or older (p = 0 .03) [50]. However,

pediatric studies do not have a sufficient sample size to examine

the independent association of BMI with severe COVID-19

outcomes. Based on data from 7606 patients hospitalized with

COVID-19 at 88 US hospitals enrolled in the American Heart

Association’s (AHA) COVID-19 Cardiovascular Disease

Registry, BMI ≥ 40 kg/m2 was associated with a significantly

greater odds of death or mechanical ventilation in those ≤50

years old (OR: 1.64, 95% CI: 1.23–2.21), and a moderately

increased risk in those 51 to 70 years old (OR: 1.40, 95% CI:

1.10–1.80), but no significant increase in risk for those > 70

years old (OR: 1.28, 95% CI: 0.83–1.95), adjusting for age,

gender, race/ethnicity, history of cardiovascular disease

(CVD), hypertension, diabetes, and chronic kidney disease

(CKD) [12••]. After adjustment for the abovementioned factors,

the association of BMI with death or mechanical ventilation

was strongest in adults ≤50 years, intermediate in adults 51 to

70 years, and weakest in adults > 70 years [12••]. Regardless of

infection, age-related alterations in metabolic inflammation ob-

served in obesity are still being under investigation, while this

impact requires further analysis in COVID-19 [49]. In a

Mendelian randomization study, genetic evidence supports

BMI as a causal risk factor for COVID-19 susceptibility and

severity [27, 51]. Collectively, all these findings support the

integration of BMI into the risk assessment of COVID-19.

Patients with obesity and type 2 diabetes mellitus (T2DM)

could be at an increased propensity to experience a more se-

vere infection associated with cytokine storm and a higher

prevalence of thromboembolic complications associated with

COVID-19 [12••]. Recent data have indicated that in patients

presenting with metabolic associated fatty liver disease

(MAFLD), obesity was associated with a 6-fold elevated risk

for severe COVID-19 after adjusting for age, gender,

smoking, diabetes, hypertension, and dyslipidemia [52, 53].

Besides, higher levels of serum inflammatory biomarkers such

as C-reactive protein (CRP), interleukin (IL)-6, ferritin, fibrin-

ogen, D-dimer, erythrocyte sedimentation rate (ESR), and lac-

tate dehydrogenase are predictive of subsequent critical illness

and worse outcome in patients with COVID-19 [2•]. The ma-

jority of these inflammatory biomarkers are slightly elevated

in individuals with obesity due to the chronic subclinical low-

grade inflammation that characterizes obesity [54–56]. Recent

data have shown that patients with obesity and COVID-19

exhibited higher initial and peak levels of CRP and ESR as

well as higher peak D-dimer in comparison to individuals with

normal weight and COVID-19 after adjusting for age, gender,

smoking, and comorbidities, suggesting greater disease sever-

ity characterized by more exuberant inflammation in individ-

uals with obesity [55].

According to recent meta-analyses of retrospective and

prospective cohort studies taking into account age, gender,

ethnicity, and comorbidities, obesity almost doubled or qua-

drupled the risk of hospitalization due to COVID-19 [24••, 26,

31••, 32, 46]; increased the odds of being admitted to the ICU

by 21–88% [24••, 26, 32, 37, 38, 46]; and increased the odds

of IMV by 66–113% [24••, 26, 32, 37, 46].

Very few data are published regarding adiposity measures

reflecting central obesity, such as waist circumference (WC)

and waist-to-hip ratio(WHR), and COVID-19 outcomes.

Based on 9386 participants from the UK Biobank study tested

for SARS-CoV-2, a higher WC was associated with an in-

creased risk of testing positive for SARS-CoV-2 in partici-

pants ≥ 65 years (relative risk [RR]: 1.12, 95% CI: 1.00–

1.27), adjusting for age, race, education, BMI, smoking status,

alcohol use, and comorbidities [57]. In a prospective observa-

tional cohort study analyzing 166 patients with respiratory

symptoms who presented at an emergency department in the

Netherlands, increased WHR was an independent risk factor

for respiratory distress in COVID-19 (OR 1.11, 95% CI:

1.02–1.20), adjusting for age, gender, BMI, and metabolic

syndrome. Based on recent meta-analyses of retrospective

studies, an abnormal fat distribution, particularly visceral ad-

ipose tissue (VAT) expansion determined by computed to-

mography (CT)-based quantification, was found to be a sig-

nificant independent factor of hospitalization, admission to the

ICU, and worse clinical outcomes such as the need of intuba-

tion, adjusting for age, gender, and BMI [46, 47]. Difficult

airway management and prone positioning (critical in the
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treatment of ARDS), which are routinely encountered with

elevated BMI and WC, further aggravate the problem

[58–60]. Patients with obesity are also at a higher risk for

venous thromboembolism and dialysis [12••].

The majority of studies and meta-analyses have shown that

obesity significantly elevated the hazard ratio of death amid

COVID-19 patients with or without T2DM or T1DM [24••,

26, 43–45, 61]. In a cohort study of 17 million British adult

NHS patients using national primary care electronic health

record data linked to in-hospital COVID-19 death data, the

effect of obesity was very significant and graded according

to the class of obesity with a hazard ratio for mortality being as

high as 2.28 (95% CI: 1.96–2.65) for individuals with very

severe obesity (BMI ≥ 40kg/m2), adjusting for age, gender,

ethnicity, and comorbidities [61]. Interestingly, in the large

study of AHA COVID-19 Cardiovascular Disease Registry,

very severe obesity was associated with an elevated risk of in-

hospital death only in those ≤50 years (HR: 1.36, 95% CI:

1.01–1.84), adjusting for age, gender, race/ethnicity, history

of CVD, hypertension, diabetes, and CKD [12••]. Among

25,952 SARS-CoV-2-positive patients in a large US cohort

of Veterans Affairs enrollees, very severe obesity was associ-

ated with a higher risk of mortality (HR 1.42, 95% CI: 1.12–

1.78) compared to normal-weight individuals, adjusting for

age, gender, race/ethnicity, and comorbidities, with the stron-

gest risk observed in those < 65 years of age [13].

Not only are subjects with excess body weight at an in-

creased risk for severe COVID-19 but also may spread

SARS-CoV-2 and influenza virus more easily with prolonged

virus shedding due to the higher viral load in the exhalation

and the increased ventilation volume [62–64]. Individuals

with obesity present a delay in synthesizing interferons which

permit more viral RNA replication, increasing the chances of

emergence of novel, more virulent viral strains [65].

Collectively from meta-analyses of retrospective and pro-

spective studies, and a myriad of smaller studies, it appears

clearly that obesity increases the risk of infection from

COVID-19, the risks of severe infection, admission to the

ICU, and IMV as well as the risk of mortality (particularly

severe obesity), adjusting for age, gender, ethnicity, and

comorbidities.

Is the Association Between Obesity
and Severe Infection Specific for COVID-19?

Obesity as a risk factor for the severity of infections is not a

new concept and is not restricted to COVID-19. Table 2 pre-

sents demographic and epidemiologic characteristics includ-

ing risk factors of severe disease in main pandemics.

Since the Spanish flu, the influenza A/H1N1 pandemic in

1918, it is known that malnutrition, observed in both under-

nutrition and overnutrition, is associated with an adverse

outcome in viral infections [66]. Obesity represents an impor-

tant risk factor for severe infection both forOrthomyxoviridae

(influenza viruses) and Coronaviridae infections.

Obesity was a risk factor for a prolonged duration of infec-

tion, complications, and mortality in the 1957–1960 “Asian,”

the 1968 “Hong Kong,” and the 2009 H1N1 influenza pan-

demics [67–72]. A study by the WHO regarding the 2009

H1N1 infection involving 70,000 individuals from 19 coun-

tries has shown that BMI ≥ 40 kg/m2 is a risk factor for severe

disease (unadjusted HR: 15.0, 95% CI: 9.5–20.4) and mortal-

ity (unadjusted HR: 36.3, 95% CI: 22.4–50.1) [73].

In a public health surveillance data of 534 California resi-

dents over 20 years of age and hospitalized with 2009 H1N1

infection, BMI ≥ 40kg/m2 (OR: 2.8, 95% CI: 1.4–5.9) and

BMI ≥ 45 kg/m2 (OR: 4.2, 95% CI: 1.9–9.4) were associated

with death after adjusting for age, gender, race/ethnicity, mis-

cellaneous immunosuppressive conditions, and asthma [71].

The same increased risk of disease severity, hospitalizations,

adverse responsiveness to treatment, and mortality due to obe-

sity has also been shown in seasonal influenza infections and

other respiratory infections [68, 74, 75]. In a cohort of 4778

hospitalized and outpatient patients with seasonal influenza

(778 with seasonal influenza; 2,636 with coronavirus,

metapneumovirus, parainfluenza, and rhinovirus respiratory in-

fections; and 1364 with influenza-like illness but no respiratory

virus isolated) in Mexico, very severe obesity was associated

with increased odds for hospitalization for both influenza (OR:

18.4, 95% CI: 7.83–47.4) and other causes of respiratory infec-

tions (OR: 1.89, 95% CI: 1.34–2.65), adjusting for age, gender,

and presence of chronic conditions [68]. In a meta-analysis

from six cross-sectional studies of 3059 subjects who were

hospitalized for H1N1 infection, the pooled OR estimate for

the risk of ICU admission or death was 2.01 (95% CI: 1.29–

3.14) for very severe obesity [75]. In parallel with viral infec-

tions, obesity may alter the progress of bacterial infections that

complicate viral respiratory infections [76].

However, based on a study from the Centers for Disease

Control and Prevention’s Influenza Hospitalization Surveillance

Network of almost 10,000 hospitalized cases of laboratory-

confirmed influenza in the USA, there was no evidence of obe-

sity as a risk factor for requiring mechanical ventilation or mor-

tality during the 2012–2013 influenza season [77].

Despite vaccination and the robust generated antibody ti-

ters against influenza vaccines by adults with obesity, obesity

increases the risk of manifesting influenza and influenza-like

disease [69]. In a prospective study of 1022 vaccinated sub-

jects from NC, USA, vaccinated adults with obesity had dou-

ble the risk for laboratory-confirmed influenza or influenza-

like disease (RR: 2.01, 95% CI: 1.12-3.60) compared to

normal-weight participants, adjusting for vaccine year, age,

gender, and smoking status [69].

Finally, in the previous SARS/2002 and Middle East respi-

ratory syndrome (MERS)/2012 pandemics, which are caused
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by the coronaviruses SARS-CoV-1 and MERS-CoV respec-

tively, obesity was listed among risk factors of MERS (but not

SARS), along with male gender, older age, diabetes, hyper-

tension, chronic heart disease, and chronic obstructive pulmo-

nary disease (COPD) [65, 78•, 79, 80]. In a meta-analysis of

637 MERS-CoV cases (representing approximately 40% of

the WHO confirmed cases) in 12 retrospective studies with a

small number of cases (range: 5–261) [80], obesity was pres-

ent in 16 ± 2% (95% CI: 12–19%) of cases. In the SARS

pandemic with 8422 cases and 916 deaths, risk factors for

severe disease and mortality included older age (≥ 65 years

old) and presence of comorbidities, especially diabetes but not

obesity [81]. As observed in a retrospective cohort study of

144 adult patients in the greater Toronto area (Toronto’s

SARS outbreak), with a diagnosis of suspected or probable

SARS, diabetes was associated with poor outcomes, such as

death, ICU admission, and mechanical ventilation (RR: 3.1,

95% CI: 1.4–7.2), adjusting for age and comorbidities

(COPD, cancer, and CVD) [78•]. Due to the paucity of well-

designed studies with multivariable analyses, the lack of data

on BMI in many studies, and the small number of patients

with SARS and MERS in studies, the role of obesity has not

been thoroughly explored [65, 78•, 79, 80].

Overall, obesity is associated with both the risk and sever-

ity of respiratory infections; however, the association of obe-

sity, particularly very severe obesity, with adverse outcomes

including mortality is more prominent and consistent with

2009 H1N1 influenza and COVID-19 pandemics.

Does SARS-CoV-2 Infection Challenge
the “Obesity Paradox” Observed in ARDS?

Based on findings from meta-analyses, overweight/obesity is

related to a decrease in mortality risk in adult patients with

ARDS and sepsis [17, 18, 82, 83•, 84, 85]. This survival benefit

Table 2 Demographic and clinical characteristics and obesity as a risk factor in main pandemics

Pandemic H1N1

influenza, 1918

Pandemic H1N1

influenza, 2009

SARS pandemic,

2002

MERS pandemic, 2012 COVID-19

pandemic, 2019–

2020

First emergence Near-simultaneous

appearance in

March–April 1918 in

North America,

Europe, and Asia

April 15, 2009, CA,

USA

November 16, 2002,

Foshan, China

April 4, 2012, Zarqa,

Jordan

December 7, 2019,

Wuhan, China

♂ to ♀ ratio Not known 1.14:1 1.13:1 1.78–2.03:1 1.27:1

Incubation period, days 2–7 1–4 2–7 2–14 4–12

Transmission, Ro 2 1.75 2.4 2.5 2.5

Herd immunity threshold 35% (Geneva, spring

wave)

75% (Geneva, fall wave)

25% (South Africa) 72% - 60–80%

% of patients with mild

disease

↑ ↑ ↓ ↓ ↑

CFR 2.5% or ~4%, or ~10% 0.5%

IFR: ≈0.1%

9.6% 34.3% CFR: 2.21% ‡

IFR: 0.3–1%

Number of deaths 17,000,000–100,000,000 151,700–575,400 774 858 1,783,619 ‡

Mean age at death (years) 27·2 37·4 > 65

Median age: 75

(Toronto SARS

outbreak)

> 65 > 65

Risk factors for severe

disease

Age (≤ 5 y.o., 20–40 y.o.

and ≥ 65 y.o.)

Age (≤ 5 y.o. and ≥ 65

y.o.)

Pregnancy

Comorbidities (CHD,

COPD, and DM)

↑ Age

Male gender

Comorbidities (DM,

COPD, and CHD)

↑ Age

Male gender

Comorbidities (HTN,

DM, COPD, and

CHD)

↑ Age

Male gender

Comorbidities (HTN,

DM, COPD, and

CHD)

Obesity as a risk factor Malnutrition

(undernutrition and

overnutrition)

Subjects with obesity

(BMI ≥ 30 kg/m2)

and very severe

obesity (BMI ≥ 40

kg/m2)

Not enough evidence

for the role of

obesity

Not enough evidence

for obesity. Obesity

present in 16 ± 2%

(95% CI: 12–19%)

of cases

Subjects with obesity

(BMI ≥ 30 kg/m2)

and very severe

obesity (BMI ≥ 40

kg/m2)

‡As of December 30, 2020, based on https://covid19.who.int/

BMI, body mass index; CFR, case fatality ratio; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus;

HTN, hypertension; IFR, infection fatality rate; MERS, Middle East respiratory syndrome; SARS, severe acute respiratory syndrome; y.o., years old

224 Curr Obes Rep  (2021) 10:214–243

https://covid19.who.int/


has been termed the “obesity paradox,” and it has also been

observed in various acute and chronic diseases, including heart

failure, coronary artery disease, and chronic renal disease [17,

18]. However, the “obesity paradox” has been severely criticized

on the grounds of flawed methodology. Indeed, a plethora of

observational studies supporting the obesity paradox present sig-

nificant limitations, such as their retrospective design, the hetero-

geneous study populations, the lack of adjustment for important

confounding factors (severity of disease, preexisting illness and

comorbidities, recent weight loss due to chronic disease, and the

effects of treatment to outcome), the inherent limitations of mea-

sures of adiposity, and the presence of selection bias [17].

Moreover, in contrast to studies on adult populations, increased

severity of sepsis and organ damage has been observed in pedi-

atric patients with obesity compared to children of normal weight

[86, 87]. However, some studies on pediatric patients do not have

a sufficient sample size to explore the independent association of

obesity with adverse outcomes in ARDS and sepsis. Thus, the

epidemiologic finding of the survival benefit of obesity in ARDS

should be interpreted with caution.

As previously discussed in “Current Evidence of

Epidemiologic Associations Between Obesity and COVID-

19,” obesity represents an independent risk factor of infection,

severe disease, and lethality. Main pathogenetic mechanisms

linking obesity to the severity of COVID-19 include the impaired

innate and adaptive immunity, chronic subclinical inflammation,

endothelial dysfunction, and thrombotic tendency observed in

obesity. Also, one potentialmechanism involves the upregulation

of the angiotensin-converting enzyme 2 (ACE2) receptor, the

membrane-bound aminopeptidase interacting with the viral en-

velope spike glycoprotein of the SARS-CoV-2, in adipocytes of

individuals with obesity and diabetes. Hence, the adipose tissue

acts as a reservoir of the coronavirus allowing its replication and

shedding, exacerbating the severity of disease and adverse out-

comes through amplification of immune and cytokine activation

[88, 89]. Of note, an association between BMI and respiratory

tract viral load has not been confirmed [90]. Other factors asso-

ciating obesity with COVID-19 severity include (i) difficulties in

placing patients with obesity in prone positioning, which is crit-

ical in managing ARDS, due to shortages of staff and equipment

in the pandemic; (ii) the increased risk of impaired right ventric-

ular contraction observed in patients with obesity, attributed to

both increased sympathetic activation and circulating plasma

volume; and (iii) the potential of difficulties in accessing care

for patients with obesity during the pandemic [91].

How Could the Meta-Inflammation in Obesity
Intersect with and Exacerbate Underlying
Pathogenetic Mechanisms in COVID-19?

COVID-19 is characterized by a plethora of heterogeneous

symptoms ranging from mild fatigue, anosmia, ageusia to

life-threatening pneumonia, cytokine storm, and multiorgan

failure [2•].

SARS-CoV-2 enters human cells through the envelope spike

glycoprotein, which is situated on the surface of the virus, being

responsible for the host-to-host transmission, facilitating the entry

of the virus into target cells. This glycoprotein binds to the

ectoenzyme ACE2, a membrane-bound aminopeptidase, for cell

entry. In addition, the cellular serine protease TMPRSS2 is need-

ed for the prime entry of SARS-CoV-2 through ACE2. In the

respiratory tract, ACE2 has the property to degrade angiotensin I

into inactive angiotensin 1–9 and angiotensin II into angiotensin

1–7, which exerts anti-inflammatory, vasodilator, and anti-

fibrotic actions [2•]. When ACE1 enzymatic activity is increased

and ACE2 is suppressed, angiotensin II exhibits pro-

inflammatory actions via the angiotensin 1 receptor (AT1R) or

AT2R, stimulating aldosterone production, increasing blood

pressure, vascular permeability, and the risk of ARDS. ACE2

has emerged as a potent counter-regulator of the renin–angioten-

sin–aldosterone system (RAAS). Both SARS-CoV-2 and

SARS-CoV-1 enter host cells via the ACE2 receptor, which is

expressed in various tissues and organs, disrupting the beneficial

biological activities of ACE2 (anti-inflammatory, anti-prolifera-

tive, anti-fibrotic, vasodilatory, and vascular protective) on

counteracting the negative effects of the RAAS [92].

COVID-19 leads to increased cell apoptosis, triggering the

stimulation of chemokines and pro-inflammatory cytokines,

and the recruitment of inflammatory cells. SARS-CoV-2 pro-

vokes elevated apoptosis of lymphocytes, resulting in

lymphocytopenia and impaired function associated with

hypercytokinemia termed “cytokine storm” [92]. This mech-

anism resembles the macrophage activation syndrome

(MAS), observed frequently in sepsis and severe viral infec-

tions, and characterized by the overproduction of circulating

CXC-chemokine ligand 10 (CXCL10), monocyte

chemoattractant protein-1 (MCP-1), macrophage inflammato-

ry protein 1-α (MIP1-α), interleukin (IL)-2, IL-6, IL-7, tumor

necrosis factor-α (TNF-α), and so on. MAS is linked to

ARDS and multiorgan failure [93]. Key mechanisms that play

a role in the pathogenesis of multi-organ involvement second-

ary to SARS-CoV-2 infection include (i) direct viral toxicity;

( i i ) impa i rmen t o f the immune re sponse ; ( i i i )

hyperinflammation; (iv) endothelial injury and thrombotic

tendency; and (v) dysregulation of the RAAS [2•, 94–98].

Figure 1 depicts the links between obesity and the severity

of COVID-19 clinical presentation, which is associated with

metabolic and immune dysregulation. Based on currently

available evidence, the following pathophysiologic mecha-

nisms linking obesity to COVID-19 severity are discussed.

Impaired Innate and Adaptive Immunity

Individuals with obesity present both innate and adaptive im-

mune dysfunction. Natural killer (NK) cells constitute effector
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lymphocytes of the innate immune system, which destruct

virus-infected cells, such as SARS-CoV-2-infected cells, and

tumor cells through the production of chemokines and inter-

feron (IFN)-γ. There is mounting evidence suggesting that

NK cell activity is reduced in obesity [99]. Diet-induced obese

mice presented adverse clinical outcomes following respirato-

ry viral infections such as influenza due to the reduction of NK

cytotoxicity and mRNA expression of antiviral type I IFNs in

the lungs [100].

Furthermore, macrophage activations against an antigen in

conjunction with B- and T-cell responses, particularly CD8+

responses to viruses, are diminished in obesity [65]. Adaptive

immunity is impaired in obesity with a plethora of studies

indicating a decline in naive CD4+ cells and an imbalance

of CD4+ T helper cells with a shift toward Th17 and Th22

responses [101, 102]. Moreover, adipocytes in obesity infil-

trate organs that produce and store immune cells, such as bone

marrow, spleen, and thymus [7]. Likewise, patients with

COVID-19 exhibit lower counts of CD4+ and CD8+ with

an elevated ratio of proinflammatory Th17 cells [102].

Interestingly, expression of IFN-γ by CD4+ cells is reduced

in patients with severe COVID-19, and decreased circulating

IFN-γ is a risk factor of lung fibrosis in COVID-19 [103].

Therefore, inadequate antiviral response and host immune

dysregulation may act synergistically, contributing to the de-

velopment of severe COVID-19 in patients with obesity.

Meta-Inflammation in Obesity and Immune
Dysregulation

Obesity represents a state of chronic low-grade subclinical

inflammation tied with metabolic dysfunction, known as me-

ta-inflammation. The dysfunctional hypertrophic adipose tis-

sue in obesity synthesizes an excessive amount of adipokines

including MCP-1, leptin, IL-6, IL-8, and plasminogen activa-

tor inhibitor-1 (PAI-1), which triggers the recruitment of in-

flammatory cells, especially polarized M1 macrophages

[104–106]. In turn, the secretion of proinflammatory cyto-

kines such as IL-6, IL-8, TNF-α, MCP-1, and IL-1β by mac-

rophages and the elevated circulating free fatty acids that up-

regulate the nuclear factor-κΒ (NF-κΒ) pathway create a fa-

vorable milieu for the hyper-inflammatory response promoted

through MAS in severe COVID-19 [107]. The pro-

inflammatory state in obesity is further stimulated by the de-

pletion of regulatory T cells (Tregs), which is linked to infil-

tration of immune cells and a rise in inflammation.

Like other coronaviruses infections, SARS-CoV-2 may

generate a “cytokine storm” which can lead to ARDS or mul-

tiple organ failure. Cytokine storm is generally characterized

by increased cytokine levels, acute systematic inflammatory

symptoms, and secondary organ dysfunction attributed to an

aberrant response to a pathogen if a pathogen is present [108].

COVID-19-associated cytokine storm is characterized by the

release of increasing amounts of IL-6, IL-1β, IL-12, IFN-γ,

macrophage inflammatory protein (MIP) 1a and 1β, TNF-α,

and vascular endothelial growth factor (VEGF), with IL-6

being the most predictive cytokine of respiratory failure

[49]. Besides elevated cytokine levels and activated CD4+

and CD8+ T cells, increased CRP and D-dimer levels as well

as hypoalbuminemia are also observed. In contrast to other

cytokine storm disorders, SARS-CoV-2-associated cytokine

storm is characterized by lymphopenia, more frequent throm-

boembolic events, and less severely elevated cytokine levels,

such as IL-6 [109••, 110].

The coexistence of obesity and associated disorders such as

diabetes and hypertension with COVID-19 is linked to a more

severe clinical course because of the preexisting chronic in-

flammation that characterizes obesity and/or a decreased

threshold for the development of organ dysfunction due to

the dysregulated immune response [108]. In particular, late-

stage, excessive inflammation contributes significantly to

mortality [111••]. Remarkably, as seen in SARS and MERS,

IL-1β levels are upregulated in COVID-19 patients, attributed

to the activation of the NOD-like receptor family pyrin do-

main containing 3 (NLRP3) inflammasome which is triggered

by the SARS-CoV-2 viroporin [112]. Of note, NLRP3 expres-

sion is upregulated in obesity and plays a pivotal role in the

activation and recruitment of macrophages [113].

Interestingly, the addition of the antirheumatic agents that

block IL-1, IL-6, and inflammasome actions, such as

anakinra, tocilizumab, and colchicine, in the standard of care

in severe COVID-19 has shown promising results in

nonrandomized clinical trials [114–117]. However, two large

RCTs of anti-IL-6 receptor antibody treatment did not docu-

ment a survival benefit in severe COVID-19 [118, 119].

Neutralization of a particular cytokine may not be effective

if it is not the key component of the excessive pathologic

inflammation circuit, which is considered an immunodeficien-

cy state, predisposing patients, especially with obesity, to in-

fections [108].

Adipose tissue, traditionally considered an energy storage

organ, orchestrates immunometabolic functions by the pro-

duction of adipokines such as leptin and adiponectin.

Hyperleptinemia and leptin resistance, which are often ob-

served in common obesity, are implicated in the expansion

of Th1 cells and increased secretion of pro-inflammatory cy-

tokines that sustain and enhance the development of immuno-

inflammatory responses [120, 121]. Remarkably,

hyperleptinemia and leptin resistance may aggravate clinical

outcomes in respiratory infections, including COVID-19 [18,

122, 123]. Hypoadiponectinemia, frequently observed in obe-

sity, may also facilitate a magnified inflammatory reaction

directed to pulmonary capillaries [124]. In addition, resistin

and lipocalin-2, two adipokines that are overexpressed in obe-

sity and metabolic disorders [125, 126], were found amid the

strongest predictors of critical illness in COVID-19 patients
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Fig. 1 Underlying pathophysiologic mechanisms and factors linking

obesity to severe COVID-19. ACE2, angiotensin-converting enzyme 2;

CHD, coronary heart disease; eNOS, endothelial nitric oxide synthase;

GERD, gastro-esophageal reflux disease; HTN, hypertension; IFN,

interferon; IL, Interleukin; IMV, invasive mechanical ventilation;

MAFLD, metabolic associated fatty liver disease; MCP-1, monocyte

chemoattractant protein-1; Mets, metabolic syndrome; NK, natural

killer; NLRP3, NOD-like receptor family pyrin domain containing 3;

NO, nitric oxide; PAI-1, plasminogen activator inhibitor-1; RAAS,

renin-angiotensin-aldosterone system; T2DM, type 2 diabetes mellitus;

TNF-α, tumor necrosis factor-α; Tregs, regulatory T cell. (All images are

derived from the free medical site http://smart.servier.com/ by Servier

licensed under a Creative Commons Attribution 3.0 Unported License)
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[127, 128]. It would be of interest to assess the clinical utility

of circulating adipokines as biomarkers of clinical severity

and prognosis in patients with COVID-19 and obesity.

Endothelial Dysfunction and Oxidative Stress

The role of the endothelium and endothelial injuries has been

underscored in the pathogenesis of COVID-19 [129, 130].

Venous and arterial endothelium of several organs expresses

ACE2 [131]. Histopathologic studies in patients with

COVID-19 have revealed microscopic evidence of viral inclu-

sion structures in endothelial cells, accumulation of inflamma-

tory cells, such as activated neutrophiles and macrophages, in

the endothelium, and endotheliitis found in multiple vascular

beds of the heart, kidney, lungs, small intestine, and liver [2•].

Moreover, there is an over-responsive redox reaction to

SARS-CoV-2. Reactive oxygen and nitrogen species may

provoke unprecedented damage (redox storm) and activation

of the innate and adaptive immune responses, with subsequent

immune and cytokine storms. The clinical presentation of

COVID-19 may be worse in susceptible patients with

preexisting endothelial dysfunction. Dysfunction of the sys-

temic microcirculation, including pulmonary vascular dys-

function, and increased endothelial permeability are well de-

scribed in obesity and metabolic syndrome [132, 133]. The

vasculoprotective and anti-inflammatory properties of nitric

oxide (NO) are decreased in hyperinsulinemia and

hyperleptinemia, which are common characteristics in obesi-

ty, due to (1) the reduction of the insulin-stimulated

phosphoinositide 3-kinase (PI3K)-endothelial nitric oxide

synthase (eNOS); (2) the chronic exposure of endothelial cells

to hyperleptinemia; and (3) the increased oxidative stress at-

tributed to RAAS, which results in the destruction of NO and

the reduction of its bioavailability [107, 134, 135].

Hypercoagulability, Thrombotic Tendency, and the
Aberrant Activation of Complement

Recent studies have reported that COVID-19 is associated

with a high prevalence of arterial and venous thrombotic com-

plications that include venous thromboembolism, myocardial

infarction, and ischemic stroke [130]. Based on a US registry

of hospitalized patients with COVID-19, 35.3% of critically ill

and 2.6% of noncritically ill patients presented thrombotic

events [136•]. The risk of thromboembolism is lower but un-

determined in nonhospitalized patients [137]. SARS-CoV-2

infection-mediated endothelial injury, characterized by in-

creased von Willebrand factor levels, and endotheliitis may

lead to increased thrombin synthesis, suppression of fibrino-

lysis, activation of complement pathways, and initiation of

thromboinflammation, resulting in microthrombi deposition

in the lungs, heart, and kidneys [2•]. Histopathologic findings

from autopsies of 38 patients with COVID-19 revealed the

presence of microvascular thrombi, neutrophil extracellular

traps, and neutrophil–platelet aggregates [138]. Interestingly,

the immunohistological examination of the lungs and skin

from patients with COVID-19 has shown the deposition of

components of the alternative and lectin complement path-

ways [139].

In comparison to non-COVID-19 disorders, the thrombotic

events in COVID-19 are related to SARS-CoV-2

endotheliitis, are more platelet dependent, and are associated

with a hypercoagulability state characterized by increased

levels of coagulation factors and acquired antiphospholipid

antibodies as well as a decrease of endogenous anticoagulant

proteins [140]. In particular, prothrombotic abnormalities in-

clude elevated levels of fibrinogen, D-dimer, and factor VIII.

In COVID-19, thrombotic complications are more frequent in

cases with severe systemic inflammation and respiratory dis-

tress [140].

Patients with obesity are more susceptible to the coagulop-

athy induced by the SARS-CoV-2 infection, adding to the

severity and mortality risk of COVID-19 [7]. Obesity is char-

acterized as a prothrombotic state exhibiting (i) platelet dys-

function and altered platelet indices; (ii) increased levels of

PAI-1, which is oversecreted by the excess adipose tissue,

impairing fibrinolysis; (iii) elevated thromboxane metabolites;

(iv) upregulation of procoagulant factors and adhesion mole-

cules, such as P-selectin, by the obesity-driven chronic inflam-

mation; and (v) decreased anticoagulant regulatory proteins,

such as antithrombin and protein C [141]. Interestingly, obe-

sity is also characterized by modest elevations of the proteins

of the complement pathways which could serve as a niche of

pathologic inflammation and microthrombosis [142].

Adipocytes constitute a major source of several components

of the complement system [143]. Increased adiposity and in-

sulin resistance are associated with upregulated levels of C3,

C3a, and properdin among others [142, 143].

Overactivation of the RAAS

As mentioned above, the maladaptive function of the RAAS,

which participates in important physiologic processes of the

organism such as blood pressure regulation, vascular perme-

ability, and electrolyte and fluid balance, represents another

potential pathogenetic mechanism of COVID-19-related tis-

sue damage. The ACE2–angiotensin II balance is altered by

both SARS-CoV-2 infection and obesity. Activation of RAAS

in obesity with elevated levels of angiotensin II results in

increased blood pressure, direct effects on the myocardium,

and endothelial dysfunction [144]. Obesity, which is a well-

established risk factor for CVD, is associated with left ventric-

ular hypertrophy, diastolic dysfunction, and heart failure

[145].

In the lungs, downregulation of ACE2 receptors, which are

expressed predominantly by alveolar type 2 pneumonocytes
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(AT2) that express surfactant, causes immune-cell infiltration

and expression of inflammatory cytokines resulting in lung

edema and acute respiratory failure being mediated through

angiotensin II [146]. In obesity, ectopic lipid deposition may

appear in the cells of pulmonary alveoli, such as AT2,

resulting in ultrastructural abnormalities, pulmonary inflam-

mation, foam cell accumulation, altered surfactant production,

and increased circulating surfactant proteins A and D

[147–149]. “Fatty lung,” the ectopic lipid deposition in AT2

cells, may influence the extent of alveolar damage caused by

SARS-CoV-2 infection, participating in the causal pathway

whereby obesity aggravates COVID-19 [61].

Overexpression of ACE2 in Adipose Tissue

Adipose tissue is considered a reservoir for influenza A and

SARS-CoV-2 viruses [150]. SARS-CoV-2 shows tropism

and high affinity for the ACE2 receptor, which is

overexpressed in adipose tissue compared to lung tissue, and

may favor prolonged viral shedding in subjects with obesity

[88]. ACE2 upregulation in adipocytes from patients with

obesity and T2DM permits viral entry and replication in the

adipose tissue, potentially aggravating the severity of infec-

tion. However, BMI was not associated with increased initial

respiratory tract viral load in a recent study [90].

Obesity-Associated Comorbidities

Individuals with obesity are more likely than individuals with

normal weight to present other obesity-related comorbidities

that are independent risk factors for severe COVID-19, includ-

ing hypertension, T2DM, metabolic syndrome, MAFLD, cor-

onary heart disease, lung disease, and sleep apnea [7, 12••,

151, 152]. Obesity, metabolic syndrome, and T2DM share

common pathogenetic pathways, mainly the chronic, low-

grade inflammatory state, which could contribute to a more

severe course of COVID-19. Indeed, meta-inflammation and

impaired immune responses provide the ideal conditions for

viral replication and enhanced pathogenesis. Delayed defense

mechanisms trigger viral spread and replication, while exces-

sive cytokine release favors persistent infections in these high-

risk subjects [64]. Hyperglycemia, a key hallmark of T2DM

which frequently accompanies obesity, may lead alone to sig-

nificant alterations in macrophage function. In patients with

diabetes, hyperglycemia and glycolysis may bolster SARS-

CoV-2 replication in monocytes via the reactive oxygen spe-

cies (ROS)/hypoxia-inducible factor 1-alpha (HIF-1α) path-

way activation resulting in secondary T-cell dysfunction

[153]. Both insulin and leptin signaling are pivotal in the in-

flammatory response of T cells and the secretion of IFN-γ and

TNF-α through the upregulation of cellular glycolysis [154].

Importantly, patients with improved metabolic control were

less likely to present severe COVID-19 and death [155].

Vitamin D Deficiency in Obesity

Based on a recent meta-analysis of 8176 COVID-19 patients

participating in 26 studies, individuals with severe COVID-19

presented 65% (OR: 1.65, 95% CI: 1.30–2.09) more vitamin D

deficiency (< 50 nmol/L) compared with mild cases of the infec-

tion. Interestingly, a serum vitamin D concentration of less than

75 nmol/L increased hospitalization by 81% (OR: 1.81, 95% CI:

1.41–2.21) andmortality by 82% (OR: 1.82, 95%CI: 1.06–2.58)

from COVID-19 [156]. However, vitamin D deficiency (OR:

1.35, 95% CI: 0.80–1.88) was not associated with an increased

likelihood of COVID-19 infection [156, 157].

At the molecular level, vitamin D and its receptor (VDR),

which is expressed on immune (B cells, T cells, and antigen-

presenting cells) and pulmonary epithelial cells, plays an im-

portant role in both the innate and adaptive immune responses

[158]. Vitamin D induces the transcriptional expression of

antimicrobial peptides such as cathelicidins and defensins.

Cathelicidins act by destructing the bacterial cell membranes

and the enveloped viruses such as SARS-CoV-2, while

defensins enhance chemotaxis of inflammatory cells through

increased capillary permeability [158]. At the same time, vi-

tamin D decreases pro-inflammatory cytokines, such as IL-6

and TNF-α, which are involved in the development of the

cytokine storm in COVID-19 that precedes ARDS [159].

Remarkably, obesity is associated with vitamin D deficien-

cy due to the lipophilic nature of the adipose tissue which acts

as an isolator of vitamin D rather than a depot [160]. Other

mechanisms linking higher BMI to lower vitamin D include

the lesser skin exposure to sunlight, the diminished outdoor

physical activity, the lower vitamin D intake, and the reduced

intestinal absorption of vitamin D [161, 162].

Interestingly, vitamin D deficiency has been found to be an

independent risk factor for the development of ARDS, its

severity, and mortality. Notably, a bulk of recent studies have

reported that vitamin D deficiency is associated with severe

COVID-19 and a higher risk for progression to ARDS [163].

Interestingly, the biologic pathways involved in the pleiotro-

pic actions of vitamin D intersect with the dysregulated mech-

anisms during COVID-19-related ARDS, providing some

possible explanations behind this association. Vitamin D and

its metabolites are implicated in the ACE2 expression, modu-

late genes associated with thrombotic pathways, particularly

those related to angiogenesis, activate the lung-protective

cathelicidin, and downregulate pro-inflammatory cytokines

blocking the cytokine storm, such as TNF-α, IL-6, IL-8, IL-

12, and IFN-γ [163]. Collectively, vitamin D deficiency may

be a potential link between obesity and COVID-19-associated

ARDS [164]. However, the exact efficacy of vitamin D sup-

plementation for the prevention of or as a potential adjunct

therapeutic option for COVID-19 remains to be determined.

Currently, a number of RCTs are actively investigating the

potential benefits of vitamin D supplementation.
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Gut Dysbiosis in Obesity

The gut microbiome may modulate the host immune re-

sponse, protect from infection, and dissipate the subsequent

damage from infection [165]. Gut dysbiosis is another sig-

nificant factor which may be implicated in the higher risk of

severe COVID-19 in obesity. Obesity per se is characterized

by a reduction in gut microbiota diversity and richness, a

significantly higher abundance of Firmicutes, and a lower

abundance of Bacteroidetes as well as an aberrant compo-

sition of the gut microbiome. However, there is still much

debate on the exact microbial signature of a healthy or an

obese gut microbiome [166–168]. Due to gut dysbiosis in

obesity, the gut lipopolysaccharide (LPS), known as endo-

tox in , may be dev ia ted f rom the immunos i l en t

Bacteroidetes LPS subtypes to the diverse proinflammatory

LPS subtypes, particularly from phyla secreting more in-

flammatory LPS, with a capacity to activate the toll-like

receptor (TLR)-4-NF-κB pathway and elicit the secretion

of inflammatory cytokines [168]. In a preprint study, it

was shown that an interaction between SARS-CoV-2 spike

protein and LPS, forming a high molecular weight aggre-

gate, leads to aggravated inflammation with increased ex-

pression of NF-κB and cytokine responses in a mouse mod-

el [169]. Overall, gut microbiome dysbiosis and subsequent

endotoxemia represent a supplementary pathophysiological

explanation for increased COVID-19 severity in obesity.

Modulation of the gut microbiota could positively impact

COVID-19 disease progression. More studies are needed to

explore whether altering the gut microbiota through diet

might be a feasible adjunct to the COVID-19 treatment

armamentarium.

Mechanical Issues Related to Obesity and Physical
Inactivity

Individuals with obesity present mechanical issues associated

with excess weight. In particular, health care and prognosis in

patients with obesity and COVID-19 are affected due to (i) the

difficulties of insertions of vascular catheters and intubation

attributed to excess adiposity; (ii) the lack of ICU facilities,

such as bariatric hospital beds, to accommodate patients with

severe obesity; (iii) the challenges encountered to obtain a

proper imaging diagnosis; (iv) the poor mobility of patients

with obesity; and (v) the difficulties to transport and position

(e.g., prone positioning) patients with obesity by the nursing

staff [170, 171].

Moreover, a large WC restricts thoracic expansion with

suppression of the lung parenchyma at the lung bases,

resulting in compromised lung ventilation and the decrease

of oxygen supply [172]. In a large study, greater respiratory

disease severity, such as severe hypoxemia and higher preva-

lence of radiographic abnormalities on chest X-ray, was

observed in patients with obesity [12••]. Decreased functional

respiratory capacity, pulmonary expiratory reserve volume,

and respiratory system compliance are also included in the

adverse respiratory mechanical factors observed in obesity.

Interestingly, the increased thoracic mass could play an im-

portant role for higher positive end-expiratory and peak pres-

sures to maintain adequate oxygenation in mechanically ven-

tilated patients with obesity in comparison to patients with

normal weight [12••].

In addition to adverse respiratory mechanical factors, sub-

jects with obesity often present hiatus hernia with gastro-

esophageal reflux disease which could affect appropriate ab-

sorption of orally administered drugs [65]. Overall, all these

physical/mechanical features may complicate the clinical

course of patients with obesity and COVID-19.

Furthermore, physical inactivity and sarcopenia due to the

loss of muscle mass may contribute to altered immune re-

sponses in obesity, particularly leptin response and the delay

in type I IFN responsiveness to infection [65]. Very few stud-

ies have addressed the independent association of physical

inactivity with COVID-19 outcomes. In a community-based

cohort study of 387,109 adults from the UKBiobank, physical

inactivity (RR: 1.32, 95% CI: 1.10–1.58), smoking (RR: 1.42,

95% CI: 1.12–1.79), and obesity (RR: 2.05, 95% CI: 1.68–

2.49) but not heavy alcohol consumption (RR: 1.12, 95% CI:

0.93–1.35) were related to increased risk of hospitalization

due to COVID-19 after adjusting for age and gender and mu-

tually for each lifestyle factor [173]. In a Mendelian random-

ization study of 941,280 individuals of European ancestry

conducted by the COVID-19 Host Genetic Initiative, a per-

SD increase in genetically predicted physical activity was as-

sociated with a lower risk of severe respiratory COVID-19

(OR: 0.19, 95% CI: 0.05–0.74) but not with COVID-19 hos-

pitalization (OR: 0.44, 95% CI: 0.18–1.07) [174]. These stud-

ies highlight the importance of maintaining a healthy lifestyle

in lowering the risk of severe COVID-19.

Psychological Issues in Obesity

Obesity presents a bidirectional association with mental health

disorders [175], such as depression and anxiety, which are

often exacerbated by the stigma experienced by some individ-

uals with obesity as a result of their excess weight. Obesity is a

frequently stigmatized somatic characteristic. There is signif-

icant empirical evidence that individuals with obesity elicit

negative feelings such as anger, disgust, blame, and dislike

in others [176]. Subjects with obesity are commonly the tar-

gets of derogatory comments, prejudice, and other poor treat-

ment in many settings, including health care [176]. Moreover,

there is mounting evidence that physicians, nurses, medical

students, and other health care professionals have negative

opinions about individuals with obesity [176–178].
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Experiences of discrimination and awareness of stigma-

tized status may increase stress in patients. Other conse-

quences include avoidance of clinical care when patients per-

ceive that their excess body weight could be a source of em-

barrassment in the hospital setting [179]. Elevated BMI has

been associated with lower utilization of health care [180].

The long-term implication of avoidance and postponement

of health care is that individuals with obesity may present with

more advanced and difficult to treat conditions [176]. In par-

ticular, subjects with obesity and COVID-19 may delay seek-

ing medical care and follow up, attributed to the fear of being

stigmatized, increasing the risk of severe COVID-19 and mor-

tality [7]. The portrayal of obesity by media has been recog-

nized as one of the most significant factors for the develop-

ment and maintenance of weight stigma attitudes and discrim-

inatory behavior [181]. Interestingly, as news sources under-

score obesity as a risk factor for severe COVID-19, individ-

uals with obesity may delay seeking care due to the perceived

stigma and personal vulnerability [180]. As a result, people

with obesity do not feel welcome in the health care

environment.

Moreover, clinic equipment often designed for use with

patients of smaller weight, such as waiting room chairs, hos-

pital beds, scales, blood pressure cuffs, and examination

gowns, could also promote identity threat for patients with

obesity [176]. All the abovementioned factors are important

for all health care issues related to obesity but are particularly

highlighted in the context of the COVID-19 pandemic.

Weight stigma represents one significant missing link be-

tween obesity and the risk of critical COVID-19 that requires

a further emphasis on research and clinical practice.

Collectively, health care avoidance due to weight stigma

may act synergistically with any underlying pathogenetic

mechanism to severe infection and mortality amid patients

with obesity and COVID-19.

Racial/Ethnic Disparities in Nutrition
and Obesity in the Context of COVID-19
Pandemic

The severity of COVID-19 in subjects with obesity may ex-

plain the disproportionate toll of the pandemic in some com-

munities. For example, Black, Latino, and Native Americans

and other minority groups are experiencing higher rates of

infections, poor outcomes, and deaths from COVID-19 than

non-Hispanic White subjects. All these minority groups face

obstacles in accessing health, social services, education, and

affordable, healthy food [182••]. These disparities combine to

render also rates of obesity remarkably high in these groups.

Indeed, the biggest increases in the prevalence of obesity were

shown amid Mexican American men and Black and Mexican

American women compared with non-Hispanic White men

and women [152]. Poor diet in conjunction with smoking

are amid the prevailing underlying causes of death. The ability

to eat a healthy diet, low in sugar and processed foods but rich

in fruits, vegetables, nuts, and fish, depends on access to af-

fordable healthy nutrients. For example, children living in

racially segregated communities are prone to develop obesity

due to barriers to accessing high-quality, nutritious food and

poor walkability. Interestingly, health inequalities in nutrition

and obesity correlate significantly with the racial and ethnic

disparities associated with SARS-CoV-2 infection. The age-

adjusted hospitalization rates due to COVID-19 are approxi-

mately 5 and 4.5 times greater in Native Americans and Black

Americans, respectively, compared to those of White

Americans [182••]. The Bronx borough of New York (where

Black and Latinomainly reside), which displays elevated rates

of obesity and associated disorders attributed to the higher

levels of poverty and food insecurity, has presented elevated

rates of hospitalizations and mortality related to COVID-19

[183]. The parallel rise of obesity and COVID-19 within racial

and ethnic groups may reflect a complex interplay of contrib-

uting parameters that are stemming from the social determi-

nants of health which include, among others, socioeconomic

status, racism and ethnic discrimination, access to health ser-

vices, healthy food, and education, the geographic location,

and social and community contexts [182••].

Implications in Prevention and Treatment

Table 3 summarizes the implications in the prevention and

therapeutic management of COVID-19 in patients with obe-

sity and obesity-associated metabolic disorders. Individuals

with obesity, particularly young adults, are at higher risk for

severe COVID-19, IMV if hospitalized, and mortality [12••].

These important findings support clear public health messag-

ing and rigorous compliance to COVID-19 prevention strate-

gies in subjects with obesity of all ages.

Besides general measures regarding prevention of the risk

of infection such as wearing masks, social distancing and reg-

ular hand washing, adoption of a healthy lifestyle with a diet

characterized by less consumption of ultraprocessed foods and

beverages, and more consumption of vegetables, legumes,

fresh fruits, and selected whole grains is of paramount impor-

tance. A significant change in dietary habits has occurred dur-

ing the COVID-19 pandemic. Interestingly, a large Italian

population study has documented that during the first lock-

down, almost one third of the participants consumed less

healthy foods, while half of them reported weight gain

[184]. It is possible that stay-at-home policies in conjunction

with social distancing may exacerbate weight gain via their

effects on physical activity and diet patterns. Current data and

expert opinion highlight the significance of vitamins D and C,

minerals such as zinc, nutraceuticals such as curcumin, and
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Table 3 Special considerations in the prevention and therapeutic management of COVID-19 in patients with obesity and associated metabolic

disorders

Intervention/Risk Problems/Considerations Recommendations

Preventive measures

General measures ✓ ↑ risk for severe COVID-19, IMV if hospitalized and

mortality in individuals with obesity

✓ Wearing mask, regular hand washing, and social

distancing based on WHO and CDC guidelines

✓ Rigorous compliance to COVID-19 prevention strategies

in subjects with obesity

Adoption of a healthy

lifestyle and diet

✓ A healthy and balanced diet strengthens the immune

system

✓ Weight loss

✓ ↓ Sedentary living

✓ ↓ Consumption of processed foods and beverages

✓ ↑ Consumption of vegetables, legumes, fresh fruits and

selected whole grains

Physical exercise ✓ Regular physical activity strengthens the immune system ✓ Continuation of moderate physical activity

Optimal metabolic

control

✓ ↓ Morbidity and ↓ mortality with optimal metabolic

control in patients with obesity and T2DM

✓ Optimal metabolic/glycemic control in patients with

obesity and T2DM

Vitamin D

supplementation

✓ ↑ risk of severe COVID-19 with vitamin D deficiency

Lower serum 25OHD in patients with obesity

✓ Vitamin D supplementation to maintain circulating

25OHD within the optimal levels (75–125nmol/L)

Influenza vaccination ✓ ↓ Outpatient visits associated with influenza

✓ ↓ Risk of simultaneous coinfection

Vaccination against

SARS-CoV-2

✓ Obesity, particularly severe obesity, among priorities for

vaccination

Outpatient management

Optimal metabolic

control

✓ ↓ Severe COVID-19 and mortality with optimal

metabolic/glycemic control in patients with obesity and

T2DM

✓ Optimal metabolic control in patients with obesity and

T2DM

✓ FPG ≤ 6.1 mmol/L and 2 h postprandial glucose ≤ 7.8

mmol/L for non-senile DM patients with mild COVID-19

✓ FPG ≤ 7.8 mmol/L and 2 h postprandial glucose ≤ 10

mmol/L for older DM patients with mild COVID-19

Utilization of telehealth

visits

✓ ↑ Utilization of telemedicine services should be promoted

Monitoring of oxygen

saturation, heart rate and

blood pressure

✓ Normal SpO2 is ≥ 95%. Some patients with chronic lung

disease or sleep apnea, which is often associated with

obesity, may have levels ≈ 90%.

✓ CDC defines severe COVID-19 in people who have

respiratory frequency > 30 breaths per minute, SpO2 <

94% on room air at sea level (or, for patients with chronic

hypoxemia, a decrease from baseline of > 3%)

✓ Refer for further evaluation and possible treatment if

SpO2 reading is below baseline

Pharmacotherapy in COVID-19

Metabolic/Glycemic

control

✓ Improved outcomes with optimal glycemic control during

hospitalization

✓ ↓ AKI, DIC, ARDS, septic shock, acute cardiac

dysfunction

✓ Individualized glycemic goals based on age,

comorbidities, and the severity of infection

✓ FPG levels ≤ 10 mmol/L or postprandial/random levels ≤

13.9 mmol/L may be acceptable for older patients

hospitalized with severe COVID-19

Remdesivir ✓ Potential risks in patients with obesity and fatty liver

disease

✓ Potential risk of hyperglycemia

✓ Administration in hospitalized patients with severe

COVID-19

✓ Not recommended in patients with ALT ≥ 5× the upper

limit of normal

✓ Not recommended in patients with eGFR < 30 mL/min

per 1.73 m2

Dexamethasone ✓ Risk of hyperglycemia and susceptibility to infections ✓ Administration in severe COVID-19

Monoclonal antibody

therapy with

bamlanivimab or

REGN-COV2

✓Not authorized for patients who are hospitalized or require

oxygen therapy due to COVID-19

✓ For the treatment of mild-to-moderate COVID-19 in adult

and pediatric patients who are at high risk for progressing

to severe COVID-19 and/or hospitalization, including

those who are ≥ 65 years of age or who have certain

chronic medical conditions including patients with BMI ≥

35 kg/m2 and cardiometabolic disorders

232 Curr Obes Rep  (2021) 10:214–243



Table 3 (continued)

Intervention/Risk Problems/Considerations Recommendations

Anti-coagulants ✓ ↑ Endothelial dysfunction and hypercoagulable state in

obesity

✓ Pharmacologic prophylaxis for thromboembolic events in

patients with cardiometabolic risk factors in the absence

of contraindications

Anakinra (anti-IL-1R)

Tocilizumab (anti-IL-6)

✓ Used in the cytokine storm of severe COVID-19

✓ Optimal COVID-19 infection management with TCZ is

not achieved during hyperglycemia in both diabetic and

nondiabetic patients

Pharmacotherapy in associated metabolic disorders

Statins ✓ ↑ ACE2 levels in murine models

✓ ↓ Odds of mortality from

✓ COVID-19 amid statin users

✓ Anti-inflammatory actions

Continuation of treatment‡

ACE inhibitors/ARBs ✓ Previous debate on ↑ risk of SARS-CoV-2 infection

susceptibility due to the ↑ ACE2

✓ Continuation of treatment in the absence of

contraindications‡

GLP-1R agonists ✓ Potential dehydration risk due to gastrointestinal adverse

effects

✓ Beneficial anti-inflammatory, anti-obesogenic,

insulin-sensitizing, and cardioprotective actions

✓ Discontinuation in severe COVID-19

✓ Regular meals and maintenance of fluid intake

Metformin ✓ Risk of AKI

✓ Risk of lactic acidosis in severe COVID-19 with

hemodynamic instability and hypoxia

✓ ↑ Risk of hypoglycemia and adverse gastrointestinal

effects with the use of hydroxychloroquine and

chloroquine

✓ Anti-inflammatory actions, ↓ serum inflammatory

biomarkers

✓ Monitoring of renal function

✓ Discontinuation in severe COVID-19

PPAR-γ agonists

(pioglitazone)

✓ Improvement of hepatic steatosis and inflammation

✓ Insulin-sensitizing and anti-inflammatory actions

✓ Discontinuation in patients with severe COVID-19 if

presence of fluid retention and worsening of heart failure

DPP-4 inhibitors ✓ Beneficial effects in MERS as DPP4 receptor is a

functional MERS-CoV target

✓ Potential beneficial effects in COVID-19???

✓ Good safety profile

✓ Continuation in mild COVID-19 cases

SGLT2 inhibitors ✓ ↓ Complications and mortality in hospitalized patients

with mild–moderate COVID-19 with risk factors for

severe complications (DARE-19)

✓ Risk of euglycemicDKA exacerbated by dehydration and

↓ insulin

✓ Preservation of CV and renal function is important for

favorable outcomes in patients with obesity and T2DM

✓Maintenance in mild COVID-19 due to nephroprotective

and cardioprotective potential

Insulin ✓ Monitoring of serum K+ levels for the prevention of

hypokalemia

✓ ↑ Insulin in hospitalized patients with severe

hyperglycemia and/or DKA

✓ Risk of hypoglycemia

✓ Continuation of treatment

✓ Frequent monitoring of blood glucose

✓Dose adjustment depending on glycemic control, severity

of COVID-19, and the use of other drugs

Patients with obesity and

underlying fatty liver

disease

✓ Risk of cytokine storm

✓ Remdesivir is not recommended in patients with ALT ≥

5× the upper limit of normal

✓ Close monitoring of hepatic transaminases, prothrombin

time, fibrinogen, ferritin, CRP, ESR, IL-6, and D-Dimer

Risk of diabetes ✓ Potential ↑ risk of T2DM in COVID-19 patients as shown

in the previous pandemic of SARS where hospitalized

patients without steroid treatment and hx of T2DM

developed T2DM

✓ HbA1c should be assessed in patients with COVID-19

with hyperglycemia and/or ketoacidosis to identify

potential undiagnosed DM

‡ Position statement by the European Society of Cardiology, the American College of Cardiology, the American Heart Association, and the Heart Failure

Society of America

ACE, angiotensin-converting enzyme; AKI, acute kidney injury; ALT, alanine aminotransferase; ARBs, angiotensin receptor blocker; CDC, Centers for

Disease Control and Prevention;CRP, C-reactive protein;CV, cardiovascular;DIC, disseminated intravascular coagulation;DKA, diabetic ketoacidosis;

DM, diabetes mellitus; DPP-4, dipeptidyl peptidase 4; eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation rate; GLP-1R,

glucagon-like peptide 1 receptor; IL, interleukin; MERS, Middle East respiratory syndrome; PPAR-γ, peroxisome proliferator-activated receptors-γ;

SGLT2: sodium glucose co-transporter 2; TCZ, tocilizumab

233Curr Obes Rep  (2021) 10:214–243



the maintenance of adequate hydration, proposing also mod-

erate consumption of fat, preferably unsaturated fats, and

avoidance of salt and sugar intake [94, 185, 186]. The

Mediterranean diet represents one of the healthiest dietary

approaches globally, recognized for its demonstrated preven-

tive actions in T2DM and cardiometabolic disorders in a

plethora of trials [187]. Compliance with the Mediterranean

diet which presents anti-inflammatory, anti-oxidant, and im-

munomodulatory properties may influence the course of car-

diometabolic disorders including obesity that predisposes to

severe COVID-19 [105, 188]. Furthermore, regular physical

activity and weight loss are positively related to favorable

outcomes in cardiometabolic disorders and immunologic

health (immune activation, immune modulation of inflamma-

tion, and vaccination efficacy) [65]. Interestingly, prior meta-

bolic surgery with subsequent weight loss and improvement

of metabolic abnormalities was related to decreased rates of

hospitalizations, admissions in the ICU, and mortality in pa-

tients with obesity who became infected with SARS-CoV-2

[189–191].

More than 10 trials on vitamin D supplementation and

COVID-19 are registered on the ClinicalTrials.gov website.

Nevertheless, it is still uncertain whether vitamin D

supplementation may decrease the risk of severe SARS-

CoV-2 infection. Although vitamin D deficiency was not

linked to a higher risk of COVID-19, severity and mortality

of COVID-19 were associated with lower vitamin D levels

[156]. Hence, individuals with obesity who are at higher risk

of vitamin D deficiency during this pandemic may consider

taking vitamin D supplements to maintain circulating 25(OH)

D within the optimal levels (75–125nmol/L) [192].

Emphasis is also placed on influenza vaccination during

the 2020–2021 influenza season because it coincides with

the circulation of SARS-CoV-2. Symptoms of COVID-19

and influenza cannot be distinguished without specific tests

for both viruses. Vaccination against influenza will reduce the

need for outpatient visits associated with influenza and de-

crease the unclear risk of simultaneous coinfection with both

viruses.

Obesity is a priority for the vaccination against SARS-

CoV-2. Individuals with severe obesity (BMI ≥ 40 kg/m2)

should be considered high risk for severe COVID-19 infection

and may warrant prioritization for a COVID-19 vaccine

[12••]. However, it is important to mention that subjects with

obesity present lower antibody levels, a weaker influenza-

specific CD8+ T-cell function, and 2 and 3 times increased

incidence of influenza despite vaccination in comparison to

normal-weight subjects [69].

Maximal utilization of telemedicine services should be pro-

moted along with frequent self-monitoring of blood glucose.

Through continuous daily remote monitoring of patients with

obesity and asymptomatic or mild–moderate COVID-19, phy-

sicians may intervene timely in cases of deterioration in vital

signs and symptoms, referring the patient to the hospital [193].

Of note, advances in biosensor technologies rendered possible

the continuous monitoring of physiologic factors using wear-

able biosensors detecting a variety of parameters, such as

blood oxygen saturation, skin temperature, respiratory rate,

blood pressure, pulse rate, and daily activities [194]. Despite

issues regarding accuracy, monitoring arterial oxygenation

through pulse oximetry at home by pocket oximeters and

smart phone-based systems may prove beneficial in reducing

complications associated with severe infection by detecting

early severe hypoxemia in the absence of dyspnea, a problem

unofficially referred to as “silent hypoxemia” [194].

Optimal metabolic control in patients with obesity and

T2DM is important in both outpatient and inpatient therapeu-

tic management, preventing hospitalization, severe COVID-

19, and complications [53, 155]. Hemoglobin A1c should be

determined in patients with obesity who exhibit hyperglyce-

mia and/or ketoacidosis to reveal potential undiagnosed dia-

betes [2•]. Continuation of treatment with oral antidiabetic

agents depends on the risk of severe COVID-19 and the gen-

eral health status of the patients [195]. Metformin has shown

anti-inflammatory effects, decreasing inflammatory bio-

markers and reducing the mortality rate from COVID-19 in-

fection. However, it presents the risk of acute kidney injury

(AKI) and lactic acidosis in severe COVID-19. Glucagon-like

peptide-1 (GLP-1) agonists present beneficial anti-inflamma-

tory, anti-obesogenic, and metabolic properties among sub-

jects with T2DM and obesity [53]. Besides ACE2, dipeptidyl

peptidase 4 (DPP4), a functional target of MERS-CoV, could

serve as a binding target for SARS-CoV-2; nevertheless, pre-

liminary data do not suggest a notable effect of DPP4 inhibi-

tors on SARS-CoV-2 susceptibility [196]. DPP4 inhibitors

exhibit a good safety profile and can be continued based on

the patient’s tolerance [197]. Sodium-glucose cotransporter-2

(SGLT-2) inhibitors might provoke side effects in patients

with severe COVID-19, increasing the risk of dehydration

and euglycemic diabetic ketoacidosis (DKA); thus, there are

published recommendations supporting the discontinuation of

these drugs among patients with severe COVID-19 to reduce

the risk of acute metabolic decompensation [53, 196]. Lastly,

patients who take insulin at home as a last resort must be

encouraged to continue adjusting the dose based on their

blood glucose levels.

Therapy with statins and antihypertensive agents can be

continued in patients with obesity and dyslipidemia or hyper-

tension, respectively. Whether upregulation of ACE2 by ACE

inhibitors or angiotensin-receptor blockers (ARBs) increases

the risk of SARS-CoV-2 infection or is protective against

ARDS has been extensively debated. A position statement

from the American and European cardiovascular societies rec-

ommended the continuation of ACE inhibitors/ARBs in pa-

tients with COVID-19 if there is no other reason for discon-

tinuation (e.g., hypotension, AKI) [198].
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Patients with obesity and T2DM with MAFLD may pres-

ent an elevated risk for experiencing a cytokine storm; there-

fore, it is necessary to monitor closely the transaminases, C-

reactive protein, IL-6, D-dimer, ferritin, fibrinogen, prothrom-

bin time, fibrinogen, and lymphocyte count [199–201]. If

available, remdesivir is suggested for hospitalized patients

with severe COVID-19. Remdesivir, which was recently ap-

proved by the FDA for hospitalized adults and pediatric pa-

tients above 12 years of age and weighing at least 40 kg for the

treatment of COVID-19, is not recommended when serum

alanine aminotransferase (ALT) are 5 times the upper limit

of normal and should be discontinued if ALT rises above this

level during treatment [202–205]. The pharmacokinetics of

remdesivir in the setting of renal insufficiency is unclear.

Therefore, remdesivir is not recommended in patients with

an estimated glomerular filtration rate < 30 mL/min per 1.73

m2. Health care providers should bear in mind the possibility

of hyperglycemia with the administration of remdesivir in

patients with T2DM and obesity [205].

Evidence from a large trial that has recently been published

by the RECOVERYCollaborative Group advocates the use of

dexamethasone in the management of severe COVID-19 (i.e.,

patients who are on supplemental oxygen or IMV), showing a

reduction in mortality by 8–25% [111••]. Potential side effects

of glucocorticoids in severely ill patients with obesity and

T2DM include hyperglycemia and susceptibility to other in-

fections, including bacterial, fungal, and Strongyloides infec-

tions. Furthermore, due to the increased thromboembolic risk,

particularly in obesity, published evidence has supported the

administration of therapeutic anticoagulants such as low-

molecular-weight heparin in the inpatient setting, especially

in the ICU [2•, 7, 206]. However, the optimal dose in

anticoagulation is an area of active investigation. Whether

thromboprophylaxis should be employed in nonhospitalized

patients with COVID-19, who present risk factors for throm-

bosis, such as obesity, is a pressing question. The PREVENT-

HD trial is actually evaluating this issue [207].

In November 2020, the FDA issued emergency use autho-

rizations for the investigational monoclonal antibody therapy

bamlanivimab (November 9, 2020) and REGN-COV2, a

combination of two monoclonal antibodies casirivimab and

imdevimab (November 21, 2020), for the treatment of mild-

to-moderate COVID-19 in adult and pediatric patients who

are at high risk for progressing to severe COVID-19 and/or

hospitalization [208, 209]. These include those who are ≥ 65

years of age or who have certain chronic medical conditions

including patients with BMI ≥ 35 kg/m2 and cardiometabolic

disorders, i.e., diabetes, hypertension, and CVD. Monoclonal

antibody therapy is not authorized for patients who are hospi-

talized or require oxygen therapy due to COVID-19. While

the effectiveness and safety are being evaluated, monoclonal

antibody therapy was shown in clinical trials to decrease

COVID-19-related hospitalization or emergency room visits

in patients at high risk for disease progression within 28 days

after treatment when compared to placebo.

Finally, it is important to mention that patients with obesity

are often excluded from clinical trials [7]. Historically, indi-

viduals with increased BMI have been underrepresented from

drug trials due to the coexistence of related chronic conditions

(i.e., diabetes, CVD) that may obscure the results of the trials

[210, 211]. However, the clinical trials to test the safety and

efficacy of coronavirus vaccines did not have exclusion

criteria based on BMI [212, 213]. There is a need to enroll

individuals with higher BMI in COVID-19 treatment trials to

learn more about the efficacy and safety of treatments as well

as pharmacokinetics and therapeutic dosages.

Conclusions

Obesity and increased visceral adiposity have emerged as sig-

nificant risk factors for adverse outcomes associated with

COVID-19. Potential mechanisms, through which the excess

adipose tissue provides the ideal conditions for enhanced viral

pathogenesis leading to severe COVID-19, include (i) im-

paired innate and adaptive immune responses; (ii) chronic

inflammation and oxidative stress; (iii) endothelial dysfunc-

tion, hypercoagulability, and aberrant activation of the com-

plement; (iv) overactivation of the RAAS; (v) overexpression

of ACE2 in the adipose tissue; (vi) associated cardiometabolic

comorbidities; (vii) vitamin D deficiency; (viii) gut dysbiosis;

and (ix) mechanical and psychological issues. Evidence from

geographic and ethnic variations affecting susceptibility to

SARS-CoV-2 infection may shed light on the hidden links

between dysregulated metabolism and worse outcomes.

Mechanistic and large epidemiologic studies using big data

sources with omics data exploring genetic determinants of risk

and disease severity as well as large RCTs are necessary to

delineate pathways connecting chronic subclinical meta-

inflammation with adverse COVID-19 outcomes and estab-

lish the ideal preventive therapeutic approaches for patients

with obesity.
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