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Abstract—With rapid growth in smart phones and mobile
data, effectively managing cellular data networks is important
in meeting user performance expectations. However, the scale,
complexity and dynamics of a large 3G cellular network make
it a challenging task to understand the diverse factors that
affect its performance. In this paper we study the RNC (Radio
Network Controller)-level performance in one of the largest
cellular network carriers in US. Using large amount of datasets
collected from various sources across the network and over
time, we investigate the key factors that influence the network
performance in terms of the round-trip times and loss rates
(averaged over an hourly time scale). We start by performing
the “first-order” property analysis to analyze the correlation
and impact of each factor on the network performance. We
then apply RuleFit – a powerful supervised machine learning
tool that combines linear regression and decision trees – to
develop models and analyze the relative importance of various
factors in estimating and predicting the network performance.
Our analysis culminates with the detection and diagnosis of
both “transient” and “persistent” performance anomalies, with
discussion on the complex interactions and differing effects of
the various factors that may influence the 3G UMTS (Universal
Mobile Telecommunications System) network performance.

I. INTRODUCTION

The wide adoption of smart phones and other mobile
devices such as smart tablets and e-readers has spurred rapid
growth in mobile data. In order to meet user performance
expectations and enhance user experiences, effectively manag-
ing cellular data networks is imperative: for example, quickly
trouble-shooting performance issues as they arise, or adding
additional capacity where the network elements are over-
loaded. Due to the sheer scale, complexity and dynamics of a
typical large scale cellular data network, there is a myriad of
diverse factors that may affect the performance of a cellular
data network, from the types, geographical locations and cov-
erage of various network elements (e.g., cell towers/NodeBs,
radio network controllers (RNCs), IP gateways) within the
network infrastructure, to the number of users served by each
network element, the amount of traffic generated by the users,
user usage patterns and behaviors (e.g., mixtures of dominant
applications) across different times of days and weeks, to user
handset side as well as the (application) server side issues. For
instance, the numbers of NodeBs and sectors as well as the
geographical coverage can vary significantly from one RNC
to another, and the usage patterns and application mixes differ
also markedly across the network and over time. Hence, teasing
out each factor individually is not an easy task. Not only is
there a vast array of diverse factors, but many of these factors
are also intertwined, exerting disparate influences in different
parts of the network. Furthermore, there may be latent factors

that are not explicitly accounted for, or captured at all in the
information and data that we can monitor and collect.

In this paper, utilizing the massive amount of performance
and other data collected in one of the largest cellular network
carriers in US, we set out to build macroscopic models that
can help identify the various major factors that may (or may
not) influence the network performance and assess their effects
across the network and over time in a large UMTS cellular data
network. This is as opposed to microscopic models that target
specific network elements or users, e.g., to trouble-shoot (tran-
sient or persistent) performance issues experienced by certain
network elements (e.g., cell towers) or users. Building effective
microscopic models requires far more detailed, fine-grained
(and often lower-level) measurement data. 1 Our approach is to
first take several major classes of factors and perform network-
wide correlation and other “first-order” analysis to understand
how significantly each of these major factors individually
influences the overall RNC-level network performance. This
provides us with a baseline understanding of the individual
effect (or lack thereof) that each of the major classes of factors
has on the overall network performance.

Next, to examine the collective effect of various fac-
tors on the network performance and sort out their relative
contributions, we apply RuleFit [1] – a powerful predictive
learning method via rule-ensembles, combining both linear
regression and decision trees. RuleFit provides both predictive
and interpretative capabilities that are needed for our analysis.
By aggregating as well as dividing the datasets along different
dimensions (e.g., based on geographical locations such as
states or along time such as days or weeks), we intelligently
apply RuleFit to build macroscopic models to assess and
dissect the various major factors that affect part or the whole
network, as well as their impact on the network performance
over time. For example, by comparing the model obtained
using the datasets from all RNCs with those obtained from
the RNCs located within certain geographical regions, we can
identify the major factors that have persistent network-wide
effect and uncover those factors that have marked impact at
certain locales or at certain times. Furthermore, by examining
the level of the overall contributions of all factors as well

1For instance, there are more than 500 low-level device counters associated
with antennas, NodeBs, and RNCs. Making sense of these device counter and
other low level statistics, especially how they relate to the overall network
performance is a vast challenge. Apart from providing the network operators
with a “big picture” view of network performance, our macroscopic models
are developed also as a first step towards addressing this challenge. It serves
as a guide to help the development of microscopic models using more detailed
and low-level data for network element specific performance prognosis and
problem diagnosis.
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as the relative importance of each factor and how they differ
across locales or over times, we can also infer whether there
are potential latent factors in play, affecting the network
performance in a way that cannot be quantified using the
factors explicitly included in the models. Significant deviations
from the model predictions may also signal anomalous events,
and can be used for diagnosis purposes (see Sections V & VI).

While our study primarily focuses on macroscopic models,
it facilitates the microscopic diagnosis of the network perfor-
mance issues associated with certain part of the network or
specific network elements by pointing to potential problematic
features that are in play. Meanwhile, we believe that the
methodology developed in this paper can be applied to other
3G network architectures, and possibly also the emerging 4G
(LTE) cellular networks.

II. BACKGROUND AND DATASETS

In this section, we give a brief overview of the architecture
of the typical 3G UMTS network, and the datasets we collected
for our study.

A. UMTS Network Overview

Fig. 1: UMTS network architecture

As illustrated in Fig 1, a typical UMTS network consists
of two major entities, the UMTS Terrestrial Radio Access
Network (UTRAN) and the core network. UTRAN consists of
base stations (NodeB), and Radio Network Controllers (RNC)
which are connected to and control a number of NodeBs. Each
NodeB is typically configured with multiple sectors, e.g., 3 sec-
tors (the common configuration) in three different directions,
each covering 120 degree range. If there are more than three
sectors associated with one NodeB, multiple sectors are over-
lapped on each direction, and are distinguished using different
frequencies. Moreover, NodeB usually supports multi-carrier
technology. Via software configuration, each sector can support
multiple carriers in order to further increase its capacity. The
core network is comprised of the Serving GPRS Support Nodes
(SGSN) and the Gateway GPRS Support Nodes (GGSN). To
connect to, say, a web server located in the outside Internet,
a User Equipment (UE) will first contact the nearest NodeB.
After receiving the user data access requests on one of its
sectors, NodeB will handover the user requests to its upstream
RNC, which further forwards the data service requests to an
SGSN. In the core network, the SGSN establishes a tunnel
with a GGSN, using the GPRS Tunneling Protocol. The data
is carried as IP packets in the tunnel and finally reaches the
web server in the external Internet.

B. Datasets

For this study, we combine datasets collected from a variety
of sources in order to gain a more comprehensive view of the
various factors that may influence the network performance.
As mentioned in the introduction, these data sources include
static information regarding the UMTS infrastructure, such as
the GPS location (and zipcode) of each NodeB, the number
of sectors (and carriers) per NodeB, the corresponding RNCs
that NodeBs are associated with, the SGSNs that RNCs are
connected to, the equipment type and vendor of each RNC,
and so forth. To gain a sense of the population density and
demographics in each base station/RNC coverage area, we also
utilized the 2000 census data2, which contains the land area
coverage of each zip code. From these static data sources, we
can estimate the geographic areas that are covered by each
NodeB, RNC and SGSN, and get a sense of the population
density and other demographic information (e.g., rural vs.
small city vs. large metro, etc.). Therefore, these static factors
can help us identify the impact from the geographical coverage,
regional variations, the placement of the networking facilities,
and other infrastructure-related issues.

There are two major sources of dynamic data that are used
in our study. One is the IP traffic data collected periodically
at each GGSN. All the measurements were computed at the
RNC level, i.e. aggregated for all the users served by the
same RNC, and at the granularity of an hour. The timestamp
used throughout the paper refers to the local time of the
RNC location. From the IP traffic data, we obtain the RTT
and loss rate performance measurement data and the usage
related statistics such as the number of bytes, flows, packets,
average flow sizes, and so forth, as well as the application
classifications and mixes (e.g., email, VoIP, streaming video,
MMS, Appstore downloads) – traffic that cannot be classified
is labelled unknown. RTT is measured for the end-to-end
latency between the UE and the content provider that serves
the content to the mobile device. Loss rate is estimated using
the tcp-level packet retransmission rate. The other dynamic
data source contains more lower level information, such as the
total number of Radio Resource Control (RRC) [2] attempts
served by each RNC at every hour. An RRC attempt indicates
a connection establishment attempt between the UEs and the
UTRAN, and therefore the #RRC attempts can be a good
approximation of the #requests served at each RNC. The
datasets collected span more than 6 months. However, as
representative examples and for illustrative purposes, we will
focus on the datasets collected during a two-week period in
September 2011. To adhere to the confidentiality under which
we had access to the data, at places, we present normalized
views of our results while retaining scientifically relevant bits.

III. PROBLEM SETTING & ILLUSTRATION

Due to the sheer scale, complexity and dynamics of the
large 3G UMTS cellular network, there are a myriad of
complex factors that may potentially affect the overall network
performance. Some of these factors may depend on other
factors, and interact with each other differently in different

2While the census data is almost 12 years old, the land area coverage per
zip code does not change drastically over the years. Moreover, we do not
make any direct conclusion based on the census data, but rather combine it
with other data and techniques for our study.
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Fig. 2: Two-week RTT time series across
all RNCs.
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Fig. 3: Two-week loss rate time series
across all RNCs.
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Fig. 4: Varying correlations between
RTT and loss rate spatial variability.

parts of the networks. To identify the major factors and tease
out the effect of each factor – and understand how they
affect the overall network performance in different parts of
the network and over time – are extremely challenging. In this
paper, we consider RTT and loss rate (aggregated at the RNC-
level and averaged hourly) as two key performance indicators.
In Figs 2 & 3 (best viewed in color), we plot the RTT and
loss rate performance of all RNCs in the network over a two-
week time period. The x-axis is the elapsed time in hours
since 12AM on Sep.2nd, 2011. The y-axis is the index of
all the RNCs, which are grouped based on the state they
(primarily) serve. The colorbar on the right is the indicator
of the RTT or loss rate performance level. As we observe
from the figure, not only that RNCs have large variability
across times (the temporal variability), e.g., a strong diurnal
pattern, but also across different RNCs (the spatial variability).
Moreover, the RTT and loss rate time series (averaged across
all RNCs) are positively correlated in a considerable manner,
i.e., correlation coefficient is greater than 0.7. This suggests
that time dependent factors, e.g., #bytes (byte count) and
#flows (flow count), are possibly one of the main drivers for
the performance variations over time.

On the other hand, the spatial variability of RTTs and
loss rates cannot be attributed to time dependent factors.
Clearly some geographic conditions and location-dependent
factors (e..g., varying usage patterns or different mixtures of
applications served by different RNCs) may come into play
here. In terms of their spatial variability, the RTT and loss
rate have very weak correlation (in most hours), with values
generally smaller than 0.4 and sometimes negatively correlated
(see Fig 4). In other words, suppose RNC A has larger RTT
than RNC B at a particular hour, it does not necessarily imply
that A is also likely to have larger loss rate than B in the same
hour. This suggests that there probably exists two separate sets
of factors which contribute to the spatial diversity in the RTT
and loss rate performance, respectively.

It is also interesting to observe that although their spatial
variability is weakly correlated (i.e., not statistically significant
enough to draw a causal explanation), there exhibits a distinct
diurnal pattern, as clearly shown in Fig 4. The variation is
also observed regarding the spatial variability of other usage
metrics, such as the #bytes and #flows. These observations
indicate that the overall network performance, whether RTT
or loss rate, can be affected by a combination of many factors.
Their relative importance or contribution to the network per-
formance not only differs across the network, but also varies

over time periodically.

IV. FIRST-ORDER PROPERTY ANALYSIS

In this section we start by looking into several major
classes of factors that are expected to have likely influence
on the RNC-level network performance. For each of them, we
present metrics for characterization and estimation, and per-
form network-wide correlation and other “first-order” analysis
to get a baseline understanding of the individual effect (or
lack thereof) that each of the major classes of factors has on
the overall network performance. Clearly, the complexity and
diversity of the network making it almost impossible to exhaust
all possible factors and perform similar analysis.

A. Usage Factors

User behaviors can affect the performance in a number
of ways due to the varying traffic load and application mix
over different time periods (e.g., the time of the day or the
day of the week) and across different parts of the network
(as represented by the RNCs). Foremost, it directly shapes the
diurnal patterns seen in the performance. The usage statistics
such as #bytes and #flows (per hour, averaged across all
RNCs) have strong correlation with the performance, with the
correlation coefficient being around 0.97 for RTT and 0.7 for
loss rate. Besides, the traffic load also has a large variation
across different RNCs. The largest byte count (and #RRC
attempts) at an RNC per hour can reach up to 10 times the
smallest among all RNCs. This large variation of traffic load
across RNCs is an illustration of the huge diversity (in terms
of users and their data access activity) that exists in the large
UMTS network.
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Fig. 5: Fractions of major applications on all RNCs.



4

In addition to the traffic load, application mix also exhibits
large variation and diversity over time and across the RNCs.
There are altogether 16 known categories of applications, and
one unknown category. Most RNCs see a significant increase
in streaming and appstore traffic during the nighttime, whereas
during the daytime, web, email and other traffic tend to
dominate. The breakdowns of the major applications such as
web, streaming, smart phone, email, appstore, as well as the
unknown traffic across different RNCs for one of the daytime
hours in our dataset are shown in Fig 5 (best viewed in
color). The x-axis is the index for all the RNCs, where the
RNCs within the same state are grouped closer to each other.
The composition of the traffic exhibits a clear geographical
distinction. While most RNCs contain a large portion of
streaming traffic, several clusters of RNCs contain much larger
portions of unknown traffic. A closer look at the dataset reveals
that they represent RNCs coming from 14 different states. As
will be discussed later, these states are also among those that
tend to persistently suffer the worst loss rate performance.

B. Infrastructural Factors
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Fig. 6: Correlation of #RRC attempts served and #sectors,
#NodeBs deployed at each RNC.
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Fig. 7: The effect of NodeB coverage on RTT.

To meet the diversified user demands at different RNCs,
the number of NodeBs, sectors (and carriers) associated with
each RNC also vary accordingly, as shown in Fig 6. For
those regions with a large or an increasing number of UMTS
subscribers, multiple NodeBs are likely deployed in the same
geographical location. Both the number of devices being
placed and the geographical placement strategies used can
play a crucial role in influencing the network performance
experienced by the users in each region.

For example, a larger number of NodeBs within a geo-
graphical area of a fixed size can potentially improve the RTT
performance in that it leads to a decrease in the coverage
area per NodeB, and therefore smaller “last mile” network
latency between UEs and NodeBs. To confirm and verify this

intuition, we estimate the coverage area of each NodeB (which
is not directly accessible from our data) using a combination
of information from the census data and inference using the
Voronoi Diagram (based on the GPS locations of NodeBs).
The census data provides us with information such as the
land area covered by each zip code. Along with the zip code
information for each NodeB, we can approximately compute
the coverage area per NodeB. However, since multiple NodeBs
can be deployed even within the same zip code area, as such
this approximation may overestimate the real coverage area of
a NodeB. To overcome this problem, we also apply the Voronoi
Diagram to demarcate the serving area per NodeB, based on
the GPS locations of the NodeBs. The limitation with this
method is that not all US land areas (e.g., deserts and other
uninhabitable areas) are covered by the NodeBs. Therefore,
both methodologies may overestimate the coverage area in
some way. For this reason, we infer the coverage area per
NodeB by taking the minimum of the results obtained by both
methods. In Fig 7, the impact of our estimated NodeB coverage
area on the RTT performance is plotted. RNCs are ordered in
descending order of their RTT performance for both plots. As
expected, RNCs with NodeBs that have smaller coverage areas
tend to have smaller average RTT performance.

Similar to the location and placement of NodeBs, the
number of RNCs deployed in a geographical area and the
coverage areas of RNCs are likely driven by the user/subscriber
population and the load they generate. The same also holds
true for SGSNs, but to a lesser degree. In general, due to their
smaller numbers, RNCs and SGSNs are not as geographically
dispersed as NodeBs, but rather placed in a few selected
locations for ease of management. There is far less variability
in the distance between RNCs and SGSNs than there is
between NodeBs and RNCs. The latter highly depends on the
geographical coverage of each RNC, and varies from region
to region. Nonetheless, both distances can potentially have a
significant impact on the network performance, especially the
RTT performance.
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Fig. 8: The impact of the number of flows per sector on RTT
and loss rate performance.

In addition, the more sectors (or carriers) are configured on
each NodeB, the less load (#flows or #bytes) will be incurred
on each sector. The impact of the number of flows per sector
on the network performance using one-day data is shown in
Fig 8. For a better illustration of the overall trend, the x-axis
bucketizes the values of flows per sector, and y-axis averages
the RTT or loss rate over all the data points within each bucket.
As shown in the figure, there is a clear linear degradation trend
on the performance as the flows per sector increases.
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C. Network Element Factors

In addition to the aforementioned factors, the choice of
vendor for the network elements such as NodeBs and RNCs
may also have an effect on the network performance. This
may be due to the fact that different vendors can have fairly
different hardware specifications [3], resulting in different data
processing speeds and capacities.

In the large cellular network studied in this paper, two
major types of network elements are used, vendor-x and
vendor-y. The type of NodeB is usually chosen to be the same
as the RNC it connects to, most likely due to the hardware
level compatibility issue. As an illustration, the comparison
of the RTT and loss rate performance distributions of these
two types of network elements at two different hours is shown
in Fig 9, one for 12PM and the other for 4AM. While the
RTT performance distribution is quite similar for both types
for most of the 24 hours, all RNCs of vendor-x outperform
those from vendor-y in terms of their loss rate. Moreover,
such contrasting performance is persistently observed across
all 24 hours. More detailed investigation reveals that the
maximum capacity for NodeBs of vendor-x is 6 sectors and 12
carriers, whereas NodeBs of vendor-y only have 3 sectors and
6 carriers. To increase the capacity, additional carriers are con-
figured on vendor-y’s NodeBs through software configuration.
However, as the overall data processing capacity of the network
element is still constrained by the hardware capacity, NodeBs
of vendor-y tend to incur more packet losses, especially during
high loads.

V. PERFORMANCE MODELING

To understand the complex interaction of various factors
and assess their relative importance and contribution to the
network performance, we apply RuleFit [1] – a powerful
predictive learning method via rule-ensembles in our study.
RuleFit provides both predictive and interpretative capabilities
that are useful in a number of ways. First, it provides better
modeling accuracy, especially for such a large pool of factors
by combining linear regression and decision trees. Second,
Rulefit ranks the factors based on their importance to the output
performance, thereby enabling the relative importance analysis.
Third, by analyzing the fitting accuracy of the model across
states and hours, or comparing the model obtained using the
datasets from all RNCs with those obtained from the RNCs
located within certain geographical regions, we can identify the
major factors that have persistent network-wide effect as well
as uncover those factors that have marked impact at certain
locales or at certain times. Furthermore, by examining the level

of the overall contributions of all factors as well as the relative
importance of each factor and how they differ across locales
or over times, we can also infer whether there are potential
latent factors in play, affecting the network performance in
a way that cannot be quantified using the factors explicitly
included in the models. Significant deviations from the usual
model predictions may also signal anomalous events, and can
be used for diagnosis purposes.

In this section, we start with an overview of Rulefit, and
a description of the input features we use in Rulefit. By
focusing on a generalized model generated using one-day data,
important factors associated with the performance are revealed,
Next, the fitting accuracy as well as using it as a mechanism
to detect persistent performance anomalies is presented. The
predictability of the network performance is also discussed.

A. Rulefit Overview

Rulefit is a supervised rule-based ensemble learning tech-
nique. Given a set of input variables x, the ensemble prediction
is a linear combination of the predictions of each ensemble
members, which takes the form,

F (x) = a0 +

m
∑

i=0

amfm(x) (1)

where ai is the linear combination parameters, and fm(x) is a
set of base learners. They are different functions of the input
variables possibly derived from different parametric families.
In applying Rulefit, we choose base learners to be a set of
simple rules, along with a set of linear functions of the input
variables. The rules are generated using decision trees. Each
rule base learner is in the form of a conjunctive statement,

r(x) =
∏

j

I(xj ∈ sj) (2)

where sj is a subset of all the possible values of the input
variables. I(.) is an indication function, and the rule takes
value 1 only if all the arguments hold true. The parameters
ai of the linear regression model are estimated with a lasso
penalty. The importance of rule rk is measured using

Ik = |ak|
√

sk(1− sk) (3)

where sk is the support of the rule on the training data. An
input variable is considered important if it defines important
rule (or linear) predictors. The relative importance of an input
variable xl is defined as

Jl = Il +
∑

xl∈rk

Ik/mk (4)
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where Il is the importance of the linear predictor, and mk is
the total number of input variables that define the rule rk.

B. Predictor Variables

The input predictor variables to Rulefit as discussed in
Section IV are summarized into the following 35 metrics. Due
to space limitation, we refer the readers to [4] for a detailed
discussion of the mutual information among these variables.

Usage factors: 1) nRRC : number of RRC establishment
attempts, 2) nByte : number of bytes, 3) nF lows : number
of flows, 4) Bpflow : number of bytes per flow, 5) - 21)
fractions of 17 application categories, including misc, web, ftp,
instant messaging (IM), P2P, navigation (Nav), VPN, email,
Voip, game, Appstore, video optimization (opt), multimedia
messaging service (mms), push notification (push), smartphone
applications, streaming, and the unknown category.

Infrastructural factors: 22) B2RDist : distance between
NodeB and RNC, 23) R2SDist : distance between RNC and
SGSN, 24) nSector : number of sectors, 25) nCarrier :
number of carriers, 26) RRCpsec : number of RRCs per
sector, 27) RRCpcar : number of RRCs per carrier, 28)
nNodeB : number of NodeBs, 29) CovpNB : land coverage
per NodeB, 30) Bpsec : number of bytes per sector, 31)
Bpcar : number of bytes per carrier, 32) Fpsec : number
of flows per sector, 33) Fpcar : number of flows per carrier.

Network element factor: 34) device : network element device
type.

Besides, we also include geographical 35) state as one of
the input variables to capture any state specific features. All
features are considered numerical, except device and state,
which is in the form of an unorderable categorical variable.

C. Training & Prediction Sets

For the varying purpose of modeling, prediction, and
diagnosing the network performance, we organize our whole
datasets into subsets of data in three different ways.

The most intuitive way to organize the data is based on the
date they were collected. Each subset of the datasets is a one-
day data, containing 24 hourly aggregated measurements for
all RNCs. This will facilitate our modeling and prediction of
the datasets on a daily basis. Starting from Sep.2nd, 2011, each
such dataset is labeled as TS-D-{mm/dd}. However, this orga-
nization of the datasets mixes the measurements performed at
different hours as well as from RNCs within different states. To
better understand the modeling accuracy at specific hours or at
particular RNCs, as well as help diagnose the problem specific
to certain hours or RNCs, we further reorganize the datasets
based on their hour TS-H-{hour}, and state information. For
simplicity, we perform this finer granularity analysis only on
the datasets collected over the first 10 days which observe less
anomalies compared to the rest of the days. By comparing
the model and important factors from different angles, we are
potentially able to diagnose the performance and narrow down
the issues to certain days, hours, or states.

D. Generalized Model

To gain insights of the important factors associated with
the performance, a generalized Rulefit model is generated and
discussed using the first day data TS-D-09/02. The model is
generalized in the sense that it is able to model the major
performance behaviors for RNCs within different states, across
different hours, and predict the performance in the near future.

Important factors: As one of the outputs of our model,
input predictor variables are ranked based on their relative
importance to the performance. The top 10 most important
factors contributing to RTT and loss rate for the generalized
model are listed in Tables I and II, respectively. The number
below each factor is the relative importance level of that factor,
where 100 is most important and 0 is least important. Both
RTT and loss rate prove to be highly state dependent, likely due
to the varying geographical conditions, localized user interest
or application mix, as well as other state specific latent factors.

Beyond the state factor, other important factors suggest
that RTT is mainly dependent on such architectural factors
as the coverage of NodeB, the distance between NodeB and
RNC, etc. To better improve the RTT performance, a better
placement strategy of the network elements is critical. For
instance, replacing NodeBs covering huge areas with larger
number of NodeBs covering smaller area and transmitting at a
lower power might be more cost-effective. Moreover, instead
of using a few selected locations for the placement of RNCs,
spreading them out may help reduce the distance between
NodeB and RNC.

On the other hand, loss rate is more dependent on such
factors as the network element type, the application mix, and
flow size (Bpflow). As we discussed earlier, network elements
of vendor-x exhibit persistently better loss rate performance
than those of vendor-y. Application mix and flow size are
highly dependent though. The streaming application is ranked
as the most important factor is due to the fact that its flow size
is much larger than all other applications.

In addition to uncovering important factors associated with
the network performance, the list of rules generated by the
model can also be interpreted as a set of possible actionable
steps that can be taken by the operators towards improved
performance (see [4] for more details).

Fitting accuracy and detecting persistent performance
anomalies: Due to the fact that the performance, as well as
the traffic load and application mix have large variations across
different RNCs and hours, our generalized model may not fit
equally well for all these scenarios. As depicted in Fig 10,
the performance at early morning hours, from 2AM to 4AM,
behaves fairly different from the rest of the hours. In fact, it
improves during those hours due to the decrease of the overall
traffic load and the change of application mix. While most
traffic originates from web, email, etc. during daytime hours,
streaming traffic that contains much larger flows becomes more
prevalent at early morning hours, leading to much better loss
rate performance than transmitting huge number of short-lived
flows. The improvement of loss rate performance at early
morning hours also partially explains the negative correlation
of RTT and loss rate as observed in Fig 4. Whereas loss rate
is susceptible to drastic change during early morning hours,
RTT is relatively stable as it is more dependent on such factor
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TABLE I: Top 10 factors and their relative importance to RTT performance.

P
P
P
P
P
P

TS
Rank

1 2 3 4 5 6 7 8 9 10

state CovpNB mms B2RDist jabber Fpsec nFlow email Bpflow Bpcar
TS-D-09/02 100 39.72 37.04 15.98 13.20 5.96 4.65 4.41 4.24 4.07

state nByte CovpNB nFlow Fpcar B2RDist Bpcar mms Fpsec RRCpsec
TS-D-09/12 100 77.24 53.19 33.28 22.64 19.06 17.85 13.81 12.58 9.34

state CovpNB B2RDist R2SDist Bpflow jabber RRCpsec nNodeB nCarrier mms
TS-H-10 100 43.30 17.02 10.73 8.29 6.33 5.53 4.00 3.76 3.74

TABLE II: Top 10 factors and their relative importance to loss rate performance.

P
P
P
P
P
P

TS
Rank

1 2 3 4 5 6 7 8 9 10

state stream device Bpflow Appstore mms Voip CovpNB R2SDist web
TS-D-09/02 100 61.74 46.30 36.43 28.57 19.13 15.75 9.84 9.09 7.91

Bpflow state unknown smartphone web nByte email nFlow RRCpcar Fpcar
TS-D-09/12 100 71.45 45.72 22.23 21.08 18.09 15.25 13.82 11.97 11.94

Bpflow state device stream email misc jabber Appstore mms unknown
TS-H-10 100 93.09 43.57 20.68 15.79 14.57 12.20 11.77 8.18 7.01
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Fig. 10: Hourly fitting accuracy on Sep.2nd.
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Fig. 11: Fitting accuracy across states on Sep.2nd.

as the coverage of NodeB and the distance between NodeB
and RNC.

As both RTT and loss rate are highly state dependent, the
fitting error across different states using the same generalized
model also observes a large variation, as shown in Fig 11,
The x-axis is the state index. In particular, the performance
observed in states labeled as 29, 30, 31 is much worse than
other states. These performance anomalies (improving or re-
gressing) exist persistently, rather than persisting for just one or
two days. Therefore, by comparing the fitting accuracy across
states and hours (or RNCs if datasets at a finer granularity
time scale are available), Rulefit is able to help us detect
these anomalies. More importantly, it can also provide the
operators with a high-level guide in performing microscopic
diagnosis regarding the performance issues specific to certain
states, hours, (and RNCs) (see Section VI).

It is also worth noting that loss rate has persistent worse
fitting accuracy than RTT, which suggests possible missing
latent factors in our model. Loss rate performance is therefore
far more complicated and could depend on lots of other factors
that were not captured in our dataset.

Predictions: It is also interesting to understand the predictabil-
ity of the network performance of the 3G cellular network.
Some of the factors are normally stable, and therefore can
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Fig. 12: Prediction of a two-month duration.

be easily predicted from historical data (and prepared for
future needs when necessary), whereas other factors are more
dynamic leading to poor predictability of the performance.

For this purpose, we conduct a prediction of the perfor-
mance for a two-month duration using the observations in the
first week (i.e., Sep.2nd to Sep.8th). Considering the day of
week pattern of the overall performance, we use the same day
within the first week to predict the same day performance of
future weeks. The daily prediction errors as characterized by
normalized root mean square errors(NRMSE) are shown in
Fig 12. Note that the prediction error for the first week is the
indication of the fitting accuracy of the model generated by
Rulefit for the real data.
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Our observations are two-fold. First, most of the future
RTT performance is quite predictable mainly due to the fact
that it is more dependent on infrastructure related factors.
Second, similar to the poor fitting accuracy of the generalized
model to the loss rate performance, the prediction error is much
larger in loss rate than in RTT. The “complexity” of loss rate
performance is partially attributed to its dynamic nature of the
user related factors such as the usage statistics and application
mix as well as the possible dynamic latent factors such as the
handoff rate that were not captured in our datasets.

VI. PERFORMANCE DIAGNOSIS

In this section, we discuss the utility of our macroscopic
models in performing microscopic diagnosis of performance
anomalies, both transient and persistent, and revealing the
possible existence of latent factors.

A. Transient Performance Regression
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Fig. 13: Prediction error across states on Sep.12th.

As shown in Figs 2 & 3, the RTT and loss rate performance
on Sep.12th exhibit extraordinary large values. This type of
performance regressions is transient in the sense that it appears
irregularly and disappears after sometime. To diagnose such
anomalies, we utilize the macroscopic model generated using
Rulefit to guide us in identifying the attributable factors and
entities that are in play. To be more specific, we extract the key
factors associated with the anomaly by applying the relative
importance analysis, and tag the problem to a subset of states,
hours (or RNCs if possible) by comparing the fitting accuracy
across different states as well as over time. To gain insights of
the underlying behavioral change associated with the factors
as suggested by Rulefit, we combine our macroscopic model
with microscopic diagnosis whenever possible.

As an illustration, we diagnose the anomaly on Sep.12th
by comparing the important factors generated from Rulefit
using TS-D-09/02 and TS-D-09/12. As summarized in Tables I
and II, the #bytes starts to play a more critical role in RTT
performance, while the #bytes per flow also replaces the state
factor and becomes the most important in loss rate, both
suggesting the possible issue related to the change of traffic
load on that day. By comparing the fitting accuracy across
states, as manifested in Fig 13 (using the same state index
as in Fig 11), as well as across different hours, we conclude
that the anomaly happened at all hours on that day, however
only within a subset of states (as indicated by the large
fitting errors). Based on these heuristics, we speculate that the
problem is likely due to the drastic change of traffic load in
this subset of states.

As one step further beyond our high-level macroscopic
model, we compare the number of bytes served on Sep.2nd

and Sep.12th for each individual state. The results indicate that
those states with larger fitting errors also experienced a drastic
drop of traffic on that particular day. Therefore, our assumption
is indeed borne out by our investigation of the measurement
data itself. A more detailed analysis reveals that the drop of
traffic load not only happened to a subset of RNCs within
those states, but rather, all RNCs within those states. Moreover,
these states are by chance all located on the east coast. Based
on these induction, we believe that the degradation of the
performance was not attributed to holidays or particular events,
which normally incur more traffic than usual. Rather, it could
be an issue associated with the network carrier itself, such as
the failure of SGSN or GGSN that can have a large impact on
all the RNCs on east coast.

B. Persistent Performance Anomalies

To diagnose the performance regressions that persist within
a subset of problematic states as discussed earlier, we intend
to adopt the same methodology in diagnosing the transient
anomalies. Similarly, we apply Rulefit to the training sets
collected in different states. Due to the elimination of state
factor, the RTT fitting accuracy gets improved for all states.
However, it does not hold true for loss rate. The explained
variance of the loss rate model improves for those states
with good performance while degrades to only 50% for those
states with poor loss rate performance. This suggests that there
may exist possible latent factors that play a critical role but
were missing out in our feature list. This phenomenon is also
partly revealed by our previous observation as shown in Fig 5,
where proportions of the ”unknown” category of traffic in
those problematic states are much larger than the rest of the
states. The missing latent factors might be quite correlated
with the unknown type of traffic, and therefore suggesting
a finer-granularity investigation of this type of traffic by the
operators. Other latent factors might include the state specific
geographical and demographic conditions. For instance, in big
metro area, the large number of tall buildings can lead to fairly
poor performance. In addition, large user density can lead to
the placement of many microcells, i.e. base stations of smaller
sizes and transmitting at a lower power [5]. As a result, users
traverse more quickly through different cells. The poor handoff
process therefore may also lead to the interruption of service.

Similarly, to better understand the varying loss rate per-
formance at different hours, we apply the same techniques for
training sets collected at different hours. The important factors
for one of the daytime hours TS-H-10 are shown in Tables I
and II. Unlike RTT, whose important factors at daytime hours
turn out to be similar to the generalized model, loss rate is
highly dependent on Bpflow during the daytime hours. This is
consistent to our observation that most applications prevalent
during those hours have smaller flow sizes (as compared to the
prevalent streaming traffic with larger flow sizes in the early
morning hours), resulting in a larger number of smaller flows,
and therefore degraded loss rate performance.

VII. RELATED WORK

There have been quite a few efforts regarding the evaluation
or improvement of celluar network performance, such as
MobiPerf [6] and existing online tools, e.g., [7], [8]. Compared
with our datasets, their measurement studies are all based on
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client side factors, without enough insights pertaining to the
carrier network itself. A recent study [9] studied the important
factors affecting the application performance. However, the
performance modeling and diagnosis, as well as the perfor-
mance differences across the network were not fully under-
stood. Besides, unlike previous studies, which either consider
the performance indicator for a specific set of applications such
as VoIP and streaming [10]–[12], or consider the performance
impact from only a few factors [13]–[15], we evaluate the
RTT and loss rate performance that are critical to most of the
applications and try to catch up as many factors as we can
in modeling the performance. Other performance evaluation
works include a study of the impact of variable 3G wireless
link latency and bandwidth on the TCP/IP performance [16],
the design of a better handoff decision algorithm using the
mobile terminal location and area information [17], perfor-
mance evaluation of cellular networks using more realistic
assumptions [18], and a remodeling of handoff interarrival
time [19]. However, they are all simulation based work, and the
studies were performed under certain restricted assumptions. In
terms of methodology, a comparative study of various analysis
methods of network performance was performed in [20].
However, none of them was applied to real data and verified
to be an effective approach in detecting and diagnosing the
performance issue. To our best knowledge, our work is the
first attempt to identify a large set of factors in affecting the
performance across the network as well as over time, and
perform modeling and diagnosis based on them.

VIII. CONCLUSIONS

In this paper we have studied the RNC-level performance
in a large UMTS cellular network, with the goal to provide
a ”big picture” understanding of the various major factors
that may influence the overall network performance across
the network and over time. Our major contributions are the
following. i) Large scale data collection: Our study utilizes
massive data periodically collected from diverse sources over
more than six months within one of the largest UMTS cellular
network carriers, whose coverage spans the whole United
States. ii) Identification of a rich set of factors: We identify
a rich set of features or factors along different dimensions.
While the features gathered in our study are clearly not
exhaustive, new factors can be easily accommodated in our
models. iii) Macroscopic modeling and anomaly detection:
The macroscopic models developed in our study provide
a better understanding of how various factors may have a
differing effect on the network performance across the network
or over time. By comparing the fitting accuracy of the models
across networks and over time, persistent anomalies specific
to certain locales or hours can be detected. iv) Diagnosing
anomalies and unveiling potential latent factors: We illustrate
how the operators can use macroscopic models as a guide
to trouble-shoot performance anomalies. Our models can also
help unveil potential latent factors, whose effect can be in-
ferred, for example, by comparing the explained variances
produced by models feeding on different (sub)sets of data and
by performing the relative importance analysis.
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