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We have critically investigated the ATR-IR spectroscopy data behavior of burned human teeth as opposed to the generally observed
behavior in humanbones thatwere subjected to heat treatment, whether deliberate or accidental. It is shown that the deterioration of
the crystallinity index (CI) behavior sometimes observed in bones subjected to high temperature appears to be of higher frequency
in the case of bioapatite from teeth. 	is occurs because the formation of the �-tricalcium phosphate (�-TCP) phase, otherwise
known as whitlockite, clearly ascertained by the X-ray di
raction (XRD) patterns collected on the same powdered specimens
investigated by ATR-IR.	ese results point to the need of combining more than one physicochemical technique even if apparently
well suitable, in order to verify whether the assumed conditions assessed by spectroscopy are fully maintained in the specimens
a�er temperature and/or mechanical processing.

1. Introduction

	estudy of burned human remains is of considerable impor-
tance in archaeology, forensic anthropology, and crime scene
investigations. We can have the presence of �re in many sit-
uations such as accidents and homicides. In fact �re is a com-
mon method for attempting to conceal evidence of criminal
activity inicted on human victims.

To know the temperatures at which a bone was subjected
is a great index to better understand the modi�cations

su
ered by bone structures due to combustion [1] to pro-

mote the di
erentiation between natural and anthropogenic

phenomena and to better interpret the techniques used in

the resolution of forensic cases where cremation or other �re

damage to remains is present [2–6].

At this microscopic scale, there are two key features inu-

enced by heating that are worth exploring: changes to the ele-

mental composition and changes to the crystalline structure

of the bone.
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	us, new and accurate experimental methods are
needed to clarify the variety of factors that lead to varying
levels of thermal e
ects.

It has been argued that the most appropriate means of
addressing microstructural studies of burned bones are the
physicochemical and spectroscopic approaches, such as the
Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray
di
raction (XRD) [7–14]. In recent years, many researchers
have turned their attention to alternative ways of studying
and identifying burned bones. For this purpose, the potential
of the crystallinity index (CI)—or splitting factor (SF)—
has been investigated intensively [9, 15–22], although the
applications on real forensic or archaeological scenarios are
still rare in literature [20–23]. CI can be measured with both
X-ray di
raction (XRD) and Fourier Transform Infrared
Spectroscopy (FT-IR). Although both methods have been
used in the literature [20, 21, 23], the CI values de�ned using
XRD cannot be directly compared to those created using FT-
IR [11, 18, 24].

XRD is ideal for de�ning a crystallinity parameter of
the bioinorganic phase as the pattern involves directly the
e
ect of 3D periodicity (i.e., the organization degree in all
directions) of the elementary cell, the smallest unit funda-
mental for expressing the physical, chemical, and symmetry
properties of a crystal. Conversely, the FT-IR spectroscopy
supplies a �ngerprint of the chemical environment surround-
ing the bond vibrations excited by the frequencies of the IR
incoming beam. Nevertheless, it should be maintained that
FT-IR is advantageous to de�ne a fresh bone because it is
particularly sensible to the presence of genetic matter as it

can be veri�ed in the frequency range 1300–1700 cm−1 [25].
On the contrary, hard X-ray radiation used in di
raction is
relatively insensitive to the presence of such component.

FT-IR spectroscopy has the potential for being portable
into the �eld, requires a very small amount of sample, can
be cheaper to use, and has been shown to be more accurate
at lower burning temperatures [16, 26, 27]. In particular,
the methodology of KBr FT-IR, for the sample preparation,
involves laborious dilution in a transparent means while with
FT-IR ATR (attenuated total reectance) the infrared beam
impinges directly a large area of the sample [18], maximizing
the reproducibility of the signals regardless the protocols
followed by the operator.

However, the accuracy of temperature determination
solely using the FT-IR approach has some critical aspects. In
the absence of long range order information, it is generally
assumed that the inorganic apatite component remains as a
single phase, but this may not always be the case once the
bone is subjected to a high-temperature treatment. In fact
when bioapatite is subjected to a thermal treatment, we can
�nd also amultiphase condition for the resultant product due
to a transformation of a part of hydroxylapatite (HA) to the�-
three-calcium-phosphate phase (�-TCP) of a mineral named
whitlockite [28].

	e presence of �-TCP as well as the presence of other
mineralogical phases due to various taphonomy e
ects can
strongly alter the shape of V4-V3 bands; consequently, the
calculation of the CI and all the recently proposed ratios

by 	ompson et al. [29] may not be correct. 	at is why a
multidisciplinary approach would be always advisable, possi-
bly with the combined use of various physicochemical tech-
niques such as ATR-IR and XRD.

In this sense, we present in this paper a collection of
comparative examples using animal and human bones com-
bined with synthetic apatite heat-treated at selected temper-
atures. 	e trend of CI was inspected in order to identify
advantages and limitations of the use of the FT-IR spectro-
scopic technique in the study of burned bones.

2. Material and Methods

	ehuman bones fragments and teeth employed in this study
were kindly made available from the Universitat Autonoma
de Barcelona (Spain). 	e cremated human teeth originate
from the Necropolis of Monte Sirai (Carbonia, Italy). 	e
pig bone specimens were kindly made available from the
Department of Animal Biology, University of Sassari (Italy).
Synthetic powder hydroxylapatite was synthesized byAldrich

ChemistryⓇ.

	e samples were heat-treated in air using a NEY mu�e
furnace at selected temperatures (500-700-900-1100∘C for 10
and 40 minutes), using a rate of 20∘C/min both for heating
and for cooling the bone specimens.

FT-IR spectra were collected in ATRmode with a Bruker
Alpha Platinum-ATR interferometer in terms of absorbance
versus wavenumber ] in the range 370–4000 cm−1, with a res-
olution of 4 cm−1. Each spectrum was obtained by averaging
256 interferograms. 	e loose powder was dispersed inside a
hole cavity of spheroidal shape with its surface aligned to the
plate de�ning it.

	e crystallinity index adopted here is the same as
that used in the majority of archaeological and forensic

applications.	e absorption bands at 605 and 565 cm−1 were
used following baseline correction, and the heights of these
absorptions peaks were summed and then divided by the
height of the minimum between them [30].

	e bone samples were analyzed with a Bruker M4
Tornado �-XRF spectrometer using a Rh X-ray source model
MCBM50–0.6 Bworking at 50 kV and 600�Aunder vacuum
(20mbar) and using an Al �lter 12.5 �m thick. In order to
check the macroscopic chemical homogeneity, a series of 20
spectra were collected for each bone specimen. Each spec-
trum was accumulated for 600 s.

	e XRD patterns were collected using Bruker D2 Phaser
instrument working at a power of 30 kV and 10mA in the
Bragg-Brentano vertical alignment with a Cu-Ka tube emis-
sion (� = 1.5418 Å).

	e width of divergent and antiscatter slits was 1mm
(0.61∘); primary and secondary axial Soller slits of 2.5∘ were
also mounted with a linear detector LYNXEYE with 5∘

opening and a monochromatisation by Ni foil for the Kb
radiation. 	e powder patterns were collected in the angular
range 9∘–140∘ in 2� with a step size of 0.05∘. 	e collection
time of each pattern was pursued for 47min. Our sample
holder for XRD analysis is a circular cavity of 25mm in
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Figure 1: 	e ATR transmittance spectrum of a human unburned
bone (bottom pattern) and that for the same specimen treated at the
500–1100∘C temperature range. It is possible to appreciate a whole
conventional evolution of bands as discussed in the text.

diameter and 2mm in depth, containing about 190mg of
powder bone.

Digitized diagrams were initially subjected to preproc-
essing for qualitative phase recognition according to the

programs HighscoreⓇ and MatchⓇ and then analyzed quan-
titatively according to the Rietveld method [31], using the
programmeMAUD [32]. It is worth noting that one stringent
requirement of any Rietveld program needs the correct load-
ing of the crystal structure solution of substances not only
concerning space group and lattice parameters but also
including atomic location of the asymmetric unit [33].

3. Results and Discussion

In Figure 1, we report a conventional behavior of the FT-
IR spectra collected in ATR mode as a function of reported
temperature values (500, 700, 900, and 1100∘C, for 10minutes)
for a human bone.

Summarizing briey, the V4(PO4) and V3(PO4) bands

occur in the 500–700 and 850–1200 cm−1 range, respectively.
	e series of bands in the range 1300–1800 cm−1, particularly
those at 1417 and 1660 cm−1, are attributed to the presence
of carbonate groups in bone material and to the organic
genetic components, respectively, and can be used as a means
for quantitative evaluation of their presence during drying
[18, 34].

Our spectra evolution in such range con�rms the use-
fulness and convenience of the proposed approach. We can
also note increasing sharpening of the V3 and V4 bands
attributed to phosphate groups. In particular, the V4 bands
are further used as a means to study the CI evolution through
numerical evaluation of the splitting factor SF in the pertinent
range selected as a function of temperature and reported in
Figure 2.

On this clear evidence, the calibration of the CI as
a function of temperature has been reversed in order to
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Figure 2: 	e V4(PO4) bands are also magni�ed in the frequency
range where the CI crystallinity index or SF splitting factor are
worked out numerically and their �gures reported.

estimate the temperature to which a bone specimen was
subjected a�er a �re event [18–20].

It is obvious that the reliability of such results depends on
the validity of assumptions involved in the study underway
and strictly maintained by the sample under investigation.
In particular, the infrared spectroscopy is sensible to the
vibrationsmodes around selected atomic species (or molecu-
lar groups) in a solid, crystalline matrix. It is expected that
such matrix when subjected to thermal treatment enforces
its crystalline properties, that is, its degree of (3D) spatial
organization in the course of a thermal treatment. 	is may
occur in at least two di
erent but concomitant ways: (i)
crystal growth and (ii) elimination of imperfections from the
regular lattice. In both cases, it is implicitly assumed that the
main parameters governing the crystal symmetry (i.e., the
symmetry operation, i.e., the space group assumed by the
crystal) are not changing. Whether this occurs or not can be
inspected clearly by X-ray di
raction.

Figure 3 shows the behavior of the ATR-IR spectra of
human teeth as a function of reported temperature values
(500, 700, 900, and 1100∘C, for 40 minutes). Tooth enamel is
another bioapatite product whose crystallinity study versus
temperature could be addressed by ATR similar to human

bones. Making reference to the range 1300–1800 cm−1, we
may note better the carbonate bands (and their progressive
disappearance) rather than those of the genetic material, here
less evident.

Of course these bands are disappearing in the high-
temperature spectra. If we follow simultaneously the V4 band
evolution we may envisage a complex progression of signals
(see Figure 4).
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Figure 3: 	e spectra evolution as a function of temperature
treatment for a human tooth shows an unconventional behavior for
the V4(PO4) band in terms of crystallinity index values. We can also
note an additional peak which appears at ca. 1123 cm−1 as indicated
by arrows.
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Figure 4: Magni�cation of the V4 band evolution; we may envisage
a complex progression of signals. In this case, the values of SF do not
present an increasingmonotonic trendwith temperature but remain
nearly constant around 3.3-3.4. Note the shoulder which appears at
about 547 cm−1 attributable to �-TCP phase.

In this case the values of SF do not present an increasing
monotonic trend with temperature but remain nearly con-
stant around 3.3-3.4.

As a matter of fact, in the temperature range 700–1100∘C
from the XRD pattern we were able to recognize the presence
of �-TCP phase. On account of the new system created,
the IR bands of �-TCP are expected to overlap with the

bands of bioapatite. An additional peak at ca. 1123 cm−1 (see
Figure 3) and the shoulder which appears at about 547 cm−1
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Figure 5: 	e ATR experiment involving synthetic hydroxylapatite
displays the emergency of high-temperature features sensibly a
ect-
ing the conventional band shape and sharpening, to the point of
making any CI determination useless.

(see Figure 4) as indicated by arrows are attributable to �-
TCP.

To this regard, Figure 5 shows ATR-IR curves in cor-
respondence with the V4(PO4) band for the transformation
behavior of synthetic hydroxylapatite as a function of the
indicated temperatures. Although the curve of unburned
synthetic hydroxylapatite shows features di
erent from
untreated bioapatite, we may notice that, from 700 up to
1100∘C, the high temperature bands with new components
are heavily a
ected with respect to their original shape to the
point of making any SF determination useless.

Figures 6, 7, and 8 refer to the changes of the V4 band
shape due to the presence of �-TCP at various levels in three
di
erent specimens, all of them subjected to high temperature
heat treatment, supplemented with XRD patterns and corre-
sponding Rietveld �t.

Figure 6(a) shows a conventional pattern of a cremated
human tooth from an archaeological cremation.	e burning
temperature reached during the process is unknown. Nev-
ertheless, the value of SF (5.68) permits estimating roughly

the temperature [18–20]. Note that the peak at 562 cm−1 is
of intensity higher than that of the peak at 600 cm−1. 	e
XRD phase analysis of Figure 6(b) shows that in addition to
the predominating presence of bioapatite (red curve) there
is a weak appearance (11% wt.) of the �-TCP phase (blue
curve). Accordingly, the bar sequences at the bottom mark
the expected position of peaks for the indicated phases. 	e
curve below represents the residuals, that is, the di
erence
between the square root of calculated and experimental
intensities, respectively.

Figure 7(a) shows a pig bone which was treated at
1100∘C in a mu�e furnace for 10 minutes. With respect
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Figure 6: A detailed comparison of di
erent FT-IR curves collected for three di
erent bioapatite specimens with the correspondent XRD
patterns and relevant Rietveld phase evaluation.	e distortions of ATR curves with respect to the conventional expected behavior are strictly
related to the amount of �-TCP phase which was stimulated by the high-temperature treatment as it clearly emerges from XRD analyses.
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Figure 7: A detailed comparison of di
erent FT-IR curves collected for three di
erent bioapatite specimens with the correspondent XRD
patterns and relevant Rietveld phase evaluation.	e distortions of ATR curves with respect to the conventional expected behavior are strictly
related to the amount of �-TCP phase which was stimulated by the high-temperature treatment as it clearly emerges from XRD analyses.

to the previous case, we may notice a substantial change

of the band shape. In addition, the peaks at 568 cm−1 and
601 cm−1, respectively, show approximately the same height.
Also note that the prominent shoulder previously indicated
by the arrow in Figure 4 here is missing. According to the
Rietveld �t of the XRD pattern (data points), this specimen
had developed 24% of �-TCP and 86% of bioapatite (see
Figure 7(b)).

Figure 8(a) represents an extreme case, in which a human
toothwas treated in a furnace at 1100∘C for 40minutes. In this
case, the relative intensities of the peaks at 569 and 603 cm−1,
respectively, are reversed with respect to the curve recorded
for the specimen shown in Figure 6(a).

Analysis of the correspondent XRD pattern has estab-
lished the presence of 70% �-TCP phase for such spec-
imen (see Figure 8(b)). Re�ned lattice parameters turned

out to be 10.37 and 37.23 Å to compare with the values of
� = 10.42 and 37.42 Å, respectively, for pure commercial �-
TCP (synthesized by Aldrich ChemistryⓇ).

	e appearance of �-TCP from human bones seems
di�cult to account for [35] and has been related to the envi-
ronmental pH and/or to presence of magnesium ions which
may substitute for calcium. 	e transformation process
involves multiple intermediates, the stability of which
depends on the cation (Ca andMg) activities and the solution
pH. However, in our studies of biomaterials such as bones
and teeth, we never observed the �-TCP phase nor the clear
presence of magnesium ions from XRF spectroscopy.

As is shown in Figure 9, the X-ray uorescence spectra
did not show evaluable peaks attributed to magnesium
(1.25 keV) for a list of specimens where high-temperature
formation of �-TCP was reported. As is also seen in Figure 6,
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the presumed role of Mg ions in stabilizing the �-TCP phase.
Nevertheless there are other weak peaks from other elements (Al,
S, and Cl) whose role should be inspected.

there are other chemical elements such as chlorine, sulphur,
andperhaps aluminium thatmay be relatedwith the observed
transformation. A high-temperature treatment seems to be
the necessary requisite in order to observe conversion of
bioapatite to �-TCP [28].

In fact, Elliott [36] has suggested for bioapatite a general

chemical equation of the type A5(BO4)3(X), where A = Ca2+

or Mg2+ ions, B = P or S, and X = F−, OH−, or (1/2)CO32−.

When A = Ca2+, B = P(V), and X = OH−, we meet the
chemical equation of synthetic apatite transforming to pure
�-TCP:

2Ca5 (PO4)3OH 
→ 3Ca3 (PO4)2 + CaO +H2O (1)

Of course in such high temperature reaction, gaseous water
is supposed to be evolved, which may account for sporadic
observations of teeth eruption and explosion during heat-
treatment, while solid CaO can rehydrate to Ca(OH)2 (port-
landite) a�er cooling down at room temperature.

Unfortunately, there is no well-de�ned temperature for
the above transformation reaction to occur, the main reasons
being that, apart frompH, bioapatitemay be stabilized unpre-
dictably also by grain boundaries, defects, and inclusion of
various chemical species di�cult to identify and evaluate
properly.

	e appearance of �-TCP phase from bones appears to
be sporadic and seems to occur at temperatures around
1100∘C [28]. Conversely for teeth, we have observed a more
systematic occurrence of �-TCP at temperatures as low as
750∘C.

Figure 10 shows the sequence of Rietveld �t for the human
teeth which were thermally treated in a furnace at 700, 750,
900, and 1100∘C for 10 minutes at a rate of 20∘C/min and then
cooling in air. 	e patterns show the appearance of the �-
TCP phase (blue full line) occurring at a temperature as low
as 750∘C and following peak sharpening.

A �-TCP amount of ca 5% from an otherwise bioapatite
matrix can be ascertained from the XRD patterns in the
2� range 26–37 using our experimental conditions paying
attention to its most intense peak (0, 2, 10) occurring at 2�
= 31.18∘ in reason of their lattice parameters � = 10.37 and � =
37.21 Å, respectively.

As can be seen in Figure 7, such shoulder emerges more
clearly with other diagnostic peaks of �-TCP at higher
temperatures of treatment, because of sharpening of the
peaks related to the increase of the average crystallite size for
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Figure 10: 	e series of XRD patterns for a tooth heat-treated at
700–1100∘C temperature range suggest that the occurrence of�-TCP
is observable by heating the specimen in a furnace as low as 750∘C
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both bioapatite and �-TCP phases and/or release of internal
strain.

Two other points are worth noting fromRietveld analysis:

(i) 	e amount of �-TCP separated at temperatures as
high as 1100∘C remains approximately around 14%.

(ii) 	e lattice parameters of �-TCP remain essentially
unchanged during the thermal process and the values
are slightly below those determined in the literature
of the “supposed magnesium stabilized” phase. Com-
parison with the XRD quantitative data reported in
Figure 6(b) suggest that the holding time at a �nal
temperature may help the kinetics of decomposi-
tion, at parity of temperature rate increase selected.
Finally, we would like to add that the unknown phase
reported from thermal treatments of dental tissue
and synthetic hydroxylapatite in the synchrotron
radiation patterns of Sui et al. [37] (� is not reported
but calculable as ca. 0.69 Å) is very likely the �-TCP
phase.

We should note that such presence of�-TCP is hardly distinct
in the V4 band of phosphates in the ATR-IR spectrum because
of their relative importance in comparison to bioapatite.
Nevertheless, the P–O bond length distribution of phosphate
in bioapatite [38] is certainly di
erent from phosphate bond
length distribution in �-TCP [39].

4. Conclusions

	euse of ATR-IR spectroscopy in the study of burned bones

using the V4 band of phosphates in the range 500–700 cm−1

may deserve special care in the case of occurrence of �-TCP

(or equivalently other phosphate phases that in principle can
react a�er chemical or physical treatments applied to the
bioapatite). 	is is because the range of frequencies where
the CI of bioapatite is determined turns out to be heavily
a
ected by other bands of similar phosphate groups like those
allocated in the �-TCP crystal structure. 	is emphasize the
use of XRD as a valuable tool for supplementing the studies
by ATR-IR on human bones and teeth to assess or reject
occurrence of high-temperature �res both in forensic and in
archaeological bone sample remains. Even when the shape
of the V4 band is di
erent from the expected pro�le, the
comparison between ATR-IR and XRD data may contribute
to reconstruct the �ring processes to which the bones were
subjected.

For example, the presence of �-TCP in human teeth as
revealed by XRD may be additional evidence of a thermal
treatment equivalent to at least 750∘C. Normally the CI
values from ATR-IR spectra conducted for estimating the
heat treatment are correlated just to theXRDpeak sharpening
from the apatite phase, throughout a line broadening analysis.
On the other hand, also analysis of the V4 band of phosphates
deviating from the conventional shape so far examined can
be interpreted more rigorously.

	e reason why �-TCP appears at relatively moder-
ate temperature in teeth examined here in comparison to
bones still remains obscure, and further studies need to be
addressed acquiring information about chemical species and
following the crystal structure parameters.
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