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Abstract
Animal warning signals show remarkable diversity, yet subjectively appear to share visual features that
make defended prey stand out and look different from more cryptic palatable species. Here we develop
and apply a computational model that emulates avian visual processing of pattern and colour to
Lepidopteran wing patterns to show that warning signals have speci�c neural signatures that set them
apart not only from the patterns of undefended species but also from natural scenes. For the �rst time,
we offer an objective and quantitative neural-level de�nition of warning signals based on how the pattern
generates neural activity in the brain of the receiver. This opens new perspectives for understanding and
testing how warning signals function and evolve, and, more generally, how sensory systems constrain
general principles for signal design.

Introduction
Aposematic prey have striking colour patterns that warn potential predators that they are unpleasant or
unpro�table to eat 1–5. Despite their diversity in nature 6, some common visual characteristics, such as
being yellow or red, or having ‘high contrast internal boundaries’ or ‘repetitive elements’, are thought to be
the key features that enhance learned or unlearned aversions in predators 2,4,7,8. However, studies do not
consistently �nd that these speci�c visual characteristics are particularly effective at deterring predators
9–14, and any underlying general principles of warning signal design have yet to be identi�ed and
speci�cally quanti�ed. Therefore, although aposematism has long been a textbook example of
adaptation and a key testbed for evolutionary theory 4,8,15, we still don’t know what makes warning
signals effective.

In this paper, we take a radically different approach, testing the hypothesis that it is what the signals do to
the brains of predators that is the unifying design principle. In recent years, methods from visual
neuroscience have been successfully applied to camou�age patterns to understand how they reduce the
chances that prey stimulate neurons involved in predators’ visual detection systems 16–19. Here, we
signi�cantly expand this approach, by developing a novel objective and quantitative framework based
not only on the responses of classes of neurons, but on how the response of a whole visual network in
predators may underlie the design of these signals. We make the strong prediction that the warning
signals of aposematic prey will have been selected to produce speci�c neural signatures in the visual
processing systems of their predators, that are different from neural responses to both natural scenes
and the patterns of more palatable species. We propose that this neural activity de�nes the
distinctiveness and conspicuousness that facilitate predator aversion. Our results indicate that there is a
general principle of warning signal design that is shared by species that, super�cially, might look very
different from one another. Furthermore, our approach provides an objective measure of colour patterns
that can underpin a wide range of future studies in animal coloration.

Results
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A database of lepidopteran patterns
Whilst aposematism is taxonomically widespread, we focussed on how the colour patterns of
Lepidoptera stimulate the visual systems of birds. This is a well-established model system for the study
of defensive strategies, particularly aposematism and crypsis 20–22, and where the visual system of the
predator is also relatively well understood 23. From an initial literature search (see Methods for details),
we built a representative database of 125 species of Lepidoptera for our analysis (96 aposematic and 29
non-aposematic species). Samples of each species were located in museum collections, and their dorsal
and ventral sides were photographed using a hyperspectral camera (Fig. 1a,b).

Computational modelling of visual processing in the avian
brain
Initially, we applied a model to emulate bird retinal vision, based on what we know about their
photoreceptors. We used the best characterised model of avian vision, that of the chicken (Gallus gallus
domesticus) 23. Since colour and luminance are processed in distinct pathways, we separately estimated
the response to the patterns of double cones, thought to underlie luminance perception in birds23,24

(Fig. 1c); and responses using the four classes of simple cone photoreceptors respectively sensitive to
ultraviolet (U), short (S), medium (M) and long (L) wavelength, which underlie colour perception23

(Fig. 1f).

To investigate how variation in luminance is processed by the avian visual system, we built a model
based on the neurobiological architecture likely to underlie luminance perception in birds. The luminance
model consisted of units that encode luminance edges at speci�c topographical locations, for different
orientations and spatial scales (coarse to �ne). Our model was based on units found in the early visual
system of mammals25,26, but these are also thought to be analogous to neurons found in the avian visual
system27–29. The response of each unit was then modulated by the responses of surrounding units
following a standard centre-surround operation called ‘divisive normalization’, which is found extensively
across sensory systems and increases the sensitivity to salient features 30,31 (Fig. 1c). To explore the
variation in colour, we converted the responses of the simple cones into opponent channel information by
considering the L-M (‘red-green’), (L + M)-S (‘yellow-blue’), and U-S (‘ultraviolet-blue’) channels, which are
assumed to be at the basis of colour perception in birds23. We speci�cally selected the L-M channel for
our colour analysis, as variation across the L-M and the (L + M)-S channels was highly correlated for the
samples in our database and the response of the U-S channel was similar for the patterns of aposematic
and non-aposematic prey (see Supplementary Result 1) (Fig. 1f). After this �rst stage of modelling, each
hyperspectral photograph could be represented by two vectors of population activities (capturing activity
at each location, orientation and spatial frequency) that capture how luminance and colour are
neurobiologically encoded at the early stages of the avian visual system (Fig. 1d,g).

We then used our model of sensory encoding to test for differences between the colour patterns of
aposematic and non-aposematic prey. We de�ned three summary statistics to characterise brain activity,
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which we refer to as a ‘neural signature’ (for full range of statistics considered, see Supplementary Result
1). For luminance, we computed the ‘luminance energy’ of the patterns using the standard deviation of
the luminance population activity, a metric that is a robust predictor of brain activity32,33. We also
measured ‘isotropy departure’, de�ned as how the distribution of signal across orientations differ from
that typically found in natural scenes. This metric was chosen because orientation is known to be
important in scene perception and in object categorization34,35 (Fig. 1e). For colour, we computed the
‘colour energy’, de�ned as the standard deviation of the L-M channel, akin to the computation of
‘luminance energy’ (Fig. 1h)36. These analyses delivered three numbers for each pattern, forming a neural
signature that can be plotted in a 3-dimensional ‘pattern space’16 (Fig. 1i).

Aposematic species have patterns with distinctive neural
signatures in the avian brain
Our next step was to test our prediction that the neural signatures of our aposematic and non-aposematic
species differ.

(i) Luminance. The patterns of aposematic prey had more luminance energy (Fig. 2a, top-left panel;
logistic regression, see Methods: χ2 = 49.32, df = 1, p = 2.18 x 10− 12, ΔAIC = 90.1–137.4 = -47.3) and
higher isotropy departure (Fig. 2a, middle panel, χ2 = 50.28, df = 1, p = 1.33 x 10− 12, ΔAIC = 89.1–137.4 =
-48.3) than non-aposematic prey. Although these two summary statistics were correlated (Spearman-rank
r = 0.59, 95% con�dence interval [0.47,0.70]), the predictive power of a model including both luminance
energy and isotropy departure (Fig. 2a, right panel) was better than that of a model including luminance
energy only (χ2 = 15.47, df = 1, p = 8.36 x 10− 5, ΔAIC = 76.6–90.1 = -13.5), or including isotropy departure
only (χ2 = 14.52, df = 1, p = 1.39 x 10− 4, ΔAIC = 76.6–88.9 = -12.3). Plotted in a 2-dimensional pattern
space, aposematic and non-aposematic species therefore tended to occupy different regions (Fig. 2b).

To explore the role of phylogeny, we repeated these comparisons in the �ve families in our dataset that
had both aposematic and non-aposematic species (Erebidae, Geometridae, Nymphalidae, Pieridae and
Pyralidae). We used a bootstrapping procedure to draw pairs randomly (with replacement) to repeatedly
resample the maximum number of possible pairs in these families, namely 26, and estimated the
luminance summary statistics for the two categories of patterns (see Supplementary Result 3).
Consistent with our overall �ndings, we found that both luminance energy and isotropy departure were
higher for aposematic than non-aposematic pair members in the �ve families (bootstrap procedure, all p 
< 10− 6, see Supplementary Result 3, with only luminance energy higher in Pieridae).

(ii) Colour. Colour energy was signi�cantly higher in aposematic than non-aposematic prey (Fig. 3a, left
panel, χ2 = 33.97, df = 1, p = 5.59 x 10− 9, ΔAIC = 105.4–137.4 = -40.0). Similarly to luminance, this result
was found consistently when considering pairs of species made of an aposematic species and a
randomly associated non-aposematic species in the same family (p < 10− 6 in the �ve families with both
aposematic and non-aposematic species, Supplementary Result 3).
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(iii) Combination of luminance and colour. Combining colour and luminance better discriminates between
aposematic and non-aposematic patterns than either dimension alone. The predictive power of a model
combining colour energy with the two luminance summary statistics (Fig. 3b) was higher than that of a
simpler model including only the two luminance summary statistics (χ2 = 5.66, df = 1, p = 0.0174, ΔAIC = 
73.0–76.4 = -3.4) or the colour summary statistics only (χ2 = 36.48, df = 1, p = 1.20 x 10− 8, ΔAIC = 73–
105.5 = -32.5). We also visualised luminance energy, isotropy departure and colour energy in a 3-
dimensional pattern space (Fig. 3c). The space can be separated into two regions, with aposematic
patterns typically associated with higher values for the three summary statistics compared to non-
aposematic patterns. The separation classi�ed correctly 87.2% of the species.

Aposematic species have patterns that stand out in typical
natural scenes
Aposematic signals are thought to have been selected to not only enhance predators’ abilities to
discriminate between palatable and defended prey, but to also increase prey conspicuousness in natural
environments and enhance predator avoidance 8. Speci�cally, we predicted that since visual detection is
easier for objects with higher luminance or colour energy 32,36; aposematic prey should have higher
values for these metrics compared to natural scenes, with non-aposematic prey more likely to match
natural scenes to enhance crypsis.

To test these predictions, we �rst presented patches of natural scenes to our model to extract their
luminance and colour neural signatures. We then compared the differences in frequency distributions of
our three summary statistics between natural backgrounds and those for aposematic and non-
aposematic prey (Fig. 4). In support of our predictions, we found that aposematic patterns had frequency
distributions with higher values compared to those of natural backgrounds, for all three summary

statistics (luminance energy, 
−
z = 0.55, Fig. 4a; isotropy departure, 

−
z = 1.43, Fig. 4b; see

Supplementary Result 4; colour energy, 
−
z = 1.72, Fig. 4c). In contrast, the frequency distributions for

non-aposematic prey were a much closer match to those of natural scenes, and even slightly lower in the

case of luminance energy (luminance energy, 
−
z = − 0.67, Fig. 4a; isotropy departure, 

−
z = 0.04,

Fig. 4b; colour energy, 
−
z = 0.21, Fig. 4c). This suggests that these aposematic patterns do not simply

have colours and patterns that are different from those found in natural scenes but have been selected to
deliver a stronger neural signature, and be more conspicuous in the natural world.

Discussion
By applying techniques from visual neuroscience to the study of aposematism, we show that
Lepidopteran warning signals produce characteristic neural signatures in avian predators’ brains. These
warning signals share common design principles that exploit the ways in which predators’ visual systems
process complex natural scenes to make aposematic prey “stand out”, both in the environment and with
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respect to the patterns of undefended species. Our quantitative framework represents a step change in
the study of aposematism by demonstrating that warning signals are best de�ned not by speci�c pattern
elements 2,4,8, but rather by how the entire pattern generates neural activity. Crucially, this novel approach
changes the way we view aposematism, and has important implications for how we measure and study
warning signals. It could also be applied to a number of signalling systems, promoting a wide-ranging
reassessment of the way we view signal evolution.

Our �ndings have clear implications for the way in which we conceptualize aposematism. They suggest
that the ultimate function of warning signals is not to exploit some unspeci�ed biases in predator
learning and memory towards particular colours or pattern elements 8,12,37 (e.g., being red or having
stripes), but instead to elicit strong and distinct neural signals in predators’ brains. Such a shift in
thinking about what warning signals are ultimately designed to do offers a number of insights. Firstly, it
may help explain why warning signals are easier to learn and remember. Special cognitive effects may
rely on what the brain does in response to patterns, not on the speci�cs of the pattern. Secondly, it helps
us to better understand warning signal diversity and predict signal e�cacy. As we have shown, there are
many ways to produce a strong neural signature, meaning that a range of patterns that look very different
may affect predators in very similar ways (see Fig. 3). Being able to quantify the neural activity elicited by
prey patterns means we can now more precisely predict the relative strength of different warning signals.
This will allow us to better identify species with patterns that fall outside what we consider the norm, and
challenge the assumption that warning signals without typical features are somehow ‘weak’ and less
effective 38,39.

Having a colour pattern space where dimensions correlate with receiver’s perception is the gold standard
for understanding the evolution of animal coloration 16, and our approach provides exactly this. It allows
us to measure patterns in a more biologically relevant way, and predict the strength of a warning signal
based on its position in our pattern space. Our work has compared animal patterns against a wide range
of generic signalling environments, so is immediately applicable for aposematic species that use a range
of visually distinct habitats 40,41. It is possible that the separation in pattern space between animal
pattern and habitat might be even stronger if the speci�c signalling background was known. The
computational tools we have developed can also be used to signi�cantly enhance empirical approaches
to assessing what features make aposematic colour patterns effective. Previous work in this area has
predominantly manipulated those speci�c pattern features thought to be important, such as being red or
striped, and then measuring the effects changes have on prey survival (e.g., 9,13,42−44). However, these
kinds of manipulations automatically alter other aspects of the whole pattern, explaining why such
studies are often di�cult to interpret 44,45. In contrast, our approach allows us to not only know how
manipulations alter how the whole signal is perceived by predators, but also to generate completely novel
stimuli that sit in different areas of pattern space and vary in the degree to which they share features with
aposematic patterns from a predator’s perspective.
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Our approach is based on well-known components of visual systems that are likely to be conserved
across a range of species 46,47, meaning that it could potentially be used to study the patterns of animals
across different contexts with a wide variety of receivers. Whilst our model could be re�ned as we learn
more about avian brains, especially the machinery of avian colour vision, the key point is that it enables a
paradigm shift in the study of visual communication. In short, visual communication needs to be
understood from the perspective of how signals stimulate receivers’ brains 7,48−50, and particularly, how
visual systems are designed to code information. Two recent studies have considered male sexual
signals from a similar perspective, and suggest that they could be designed to enhance female
preferences by being processed more e�ciently 51,52. Our �ndings show that knowledge of signal
processing is also key to understanding a very different class of signal. However, crucially the
mechanism through which this occurs is in stark contrast to previous studies: signal e�cacy in increased
by being more costly to process 53–55 rather than more e�cient 50–52. Consequently, our �ndings have
wide-ranging implications for the study of signal design by raising the intriguing possibility signals
intended to attract receivers are selected to enhance processing e�ciency, and those intended to deter or
repel receivers are selected to inhibit it. Understanding how different classes of animal signals are
designed to elicit quanti�ably different neural and behavioural responses in will be a fruitful area for
future study.

Methods
Building a database of Lepidoptera patterns. We �rst searched Google Scholar from 1980 onwards using
the term “aposem*”. From the studies returned in this search, we identi�ed aposematic Lepidopteran
species, and selected them for our study where evidence was consistent with them being defended (for
example, being rejected by predators, or larvae feeding on toxic host plants). We then searched for
‘palatable’ species from the same families for a representative sample of palatable non-aposematic
species (any Batesian mimics of aposematic species were excluded). Again, we checked the literature for
evidence of palatability for each species used. In total, we identi�ed 96 aposematic (AP) species, and 29
palatable, non-aposematic (non-AP) species from the same families which could be sourced from
museum collections. We collected hyperspectral images using museum specimens from the Natural
History Museum (BMNH), London, UK, the Manchester Museum (MMUE), Manchester, UK, and the
American National Museum (AMNH), New York, USA. In total, we photographed the dorsal and ventral
sides of 331 specimens (AP, N = 244, average number of specimens per species 5.1, std 2.9; non-AP, N = 
87, average 6, std 2.8) from the selected species, giving a total of 676 hyperspectral images. Two
specimens were removed from the analysis because no scan of their ventral side had been recorded. See
Table S1 and Table S2 for a full list of respectively all the species and specimens that were imaged, and
online Supplementary Information for a description of these tables.

Hyperspectral image acquisition. Imaging system. To acquire the database of Lepidoptera we used a
hyperspectral imaging system built around an ultraviolet hyperspectral imaging camera (Resonon Pika
NUV (Resonon Inc., MT USA) covering the 350 nm − 800 nm spectral range, with a spectral resolution of 1
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nm.) The camera was �tted with a near ultraviolet 17 mm focal length objective lens. To maximize the
homogeneity of the light �eld, the specimens were illuminated by four blue enhanced halogen lamps
(SoLux, 35W, 12V-MR16 GU5.3 4700K) placed 22 cm apart on a squared �xture light and oriented
vertically toward the horizontal scanning plane. Spatial calibration. The hyperspectral camera acquires
data one line at a time. It then reconstructs a two-dimensional image by joining up the consecutive lines
collected by translating the camera along the object in the direction perpendicular to that of the camera’s
imaging line. The resulting hyperspectral images are three-dimensional tables of size px_slit x 
px_image x Nλ, where px_slit is the number of pixels in the imaging line, px_image is the number of
lines scanned along the direction of translation, and Nλ= 451 is the number of spectral bands
considered. We carefully set the scanning speed to ensure that relative distances in the real scene were
preserved in the scanned image for all directions in the image plane (Supplementary Method 1). Spectral
calibration. Once the illumination had stabilized, 20 minutes after switching the lights on, the dark current
was measured by blocking the objective lens with a cap. We then placed a reference piece of pure
polytetra�uorethylene (Berghof optical PTFE 98%, Berghof Fluoroplastic Technology GmbH, Eningen,
Germany) in the scanning plane. This material has a diffuse re�ection, and a �at re�ectance spectrum in
the range of frequencies we considered, 350 nm – 800 nm (minimum re�ectance of 0.978 at 350 nm,
average of 0.991 ± 0.0053 std over the range of frequencies). The measurement of the reference piece
was used to calibrate the imaging system by correcting for the effects of illumination and obtaining the
absolute re�ectance of the specimen, scaled between 0 (re�ectance 0) and 105 (re�ectance 1), using a
standard procedure provided by the software (SpectrononPro 2.101, Resonon Inc., MT, USA). The spectral
calibration was repeated periodically during the scanning sessions. Specimen setting. Each tethered
specimen of Lepidoptera was placed on a background made of matte and diffuse black �ocked paper
(Thorlabs, Inc., Newton, NJ, USA) with its height adjusted so that the wing plane coincided with the
scanning plane. All the specimens were scanned with the same distance to the objective lens (237 mm)
to ensure that the relationship between pixel size in the hyperspectral images and the specimen’s real size
was the same for the whole database. The database consists of 662 hyperspectral images and is
available at https://arts.st-andrews.ac.uk/lepidoptera/.

Modelling the avian visual system. We developed a model to simulate the effect of Lepidoptera patterns
on avian perception. The model emulates the neural response of the avian early visual system to any
pattern, with luminance and colour treated separately to re�ect the evidence that colour and luminance
are processed in separate pathways in the avian visual system23. Luminance. Double cone
photoreceptors are thought to be responsible for luminance processing in birds and underpin the �rst
stage of edge, contour and texture perception24,56,57. The hyperspectral images were �rst converted into
luminance using the spectral sensitivity of double cones in the chicken (Gallus gallus domesticus) retina,
taking into account media absorption and oil droplet correction58,59. Luminance information was then
processed by a population of model ‘units’ distributed topographically on a regular grid, emulating
neurons tuned to respond to edge information at different spatial locations, orientations and spatial
scales. The receptive �elds of these units were modelled using Gabor functions60. Technically, the
response of a unit is obtained by convolving the luminance image with the receptive �elds of the unit61.
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To consider only information about pattern rather than contrast with the background, we discarded
responses from the units whose receptive �elds were not totally included within the area de�ned by the
specimen body. For every location in each Lepidoptera image, these computations yielded the strength of
response to luminance edges at a number of different spatial scales and orientations (Fig. 1c). For each
image, this modelling gave a vector of values providing a biologically plausible neural representation of
the �rst stages of luminance pattern perception in the avian brain (Fig. 1d). Supplementary Method 2
provides a complete technical description of the part of the model based on luminance. Colour. We
converted the hyperspectral images into cone responses using the quantum catches of the ultraviolet (U),
short (S), medium (M) and long (L) wavelength sensitive cones, using the spectral sensitivity of these
receptors for chicken, corrected for media absorption and oil droplets58,59, and the spectrum of a
standard daylight illuminant (D65)58,59,62 (Fig. 1f, left). To emulate colour processing, we followed the
modelling of opponent chromatic signals described in23 and focussed on the output of the ‘red-green’
channel, L − M (Fig. 1f, right). We obtained a vector of values that represented how ‘red-green’
information in the pattern was encoded in the avian brain. See Supplementary Method 2 for a
comprehensive description.

Extraction of pattern neural signatures. To determine a global ‘neural signature’ of a Lepidoptera pattern,
we extracted summary statistics of the model encoding activity in response to the pattern, related to
established correlates of pattern, texture and colour perception. We considered two statistics based on
luminance information and one based on colour. (i) Luminance energy. The luminance energy for
encoding a pattern was computed as the contrast energy of the model encoding activity in response to
the pattern, in other words as the standard deviation of the vector of responses of the units in the model.
Variation in contrast-energy is a robust predictor of stimulus visibility and strength of brain activity32,33.
(ii) Isotropy departure. Our measure of distribution of orientations considered how the evenness of the
distribution of edge orientations at each location on the patterns compares to the typical evenness found
in natural images. Orientation distributions are important in scene perception and object
categorization34,35,54. (iii) Colour energy. The colour energy for encoding a pattern was computed as the
contrast energy of the L − M opponent channel, i.e., as the standard deviation of the vector of responses
to the pattern of the modelled ‘red-green’ units. This colour counterpart of luminance energy is a strong
predictor of stimulus visibility36. Thus, our summary ‘neural signature’ provided three numbers per
pattern. Lepidoptera in the database varied in size, with body area ranging from 1.15 to 90.10cm2

(mean 14.09, standard deviation 10.43). Importantly, the three neural signatures considered allowed us
to compare different patterns independently of their size as the signatures are scale-invariant: they do not
depend on the size of the pattern. Full technical details on neural signatures are given in Supplementary
Method 3.

Natural scenes. We computed the luminance neural signatures of natural images using 4096 randomly
selected patches of size 512 x 512 pixels in the subset of van Hateren’s database of calibrated natural
images that do not contain man-made objects63. For the colour neural signature, we considered 1024
patches of size 512 x 512 in Foster and Nascimento’s database of hyperspectral natural images,
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discarding images with man-made objects64. While this database does not include the UV range, it
includes the full range of frequencies used for computing the response of L and M cones, and therefore
the colour signature.

Statistical analyses. We used logistic regressions to analyse the relationship between the categorical
variable ‘pattern category’ (AP, non-AP) and the continuous variables luminance energy, isotropy departure
and colour energy. Logistic models were �tted in R65 using generalized linear models (function glm).
Standard hypothesis testing was done using likelihood ratio tests against a χ2 distribution whose degrees
of freedom was the difference in degrees of freedom of the models. Models were also compared using
the Akaike Information Criterion (function AIC). The logistic regressions were also used to predict the
probability of a pattern’s category (AP, non-AP) given the neural signatures of the pattern. The boundaries
for the binary classi�cation in the pattern spaces shown in Fig. 2 (2-dimensional, luminance) and Fig. 3
(3-dimensional, luminance-colour) correspond to a threshold probability p(aposematism) = 0.5.

To analyse how the energy, isotropy and colour statistics compared within Lepidoptera families, we used
generalized linear mixed models �tted in R with the function glmer in the package lme466. We compared
models with and without the binary independent variable ‘pattern category’ with ‘family’ as a random
factor.

As a measure of the difference between the patterns and the natural backgrounds they might be seen
against, we used signed z-scores (how many SD’s the mean of each distribution is away from that of the
natural scene distribution). To compute this, we shifted and scaled the signature to have an axis in which
the distribution for natural scenes was standardized (i.e., had a mean of 0 and a SD of 1) and next
computed the mean of the transformed signature for AP and non-AP patterns. The distributions of neural
signatures of AP, non-AP patterns and natural scenes (Fig. 4) are kernel distributions computed using
Matlab’s67 function ksdensity with default parameters, i.e., using a normal kernel function.
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Schematics showing how a perceptual space quantifying patterns was built from a model and image
database a, A set of aposematic (top, specimen shown, Arctia caja, dorsum) and non-aposematic species
(bottom, Oeneis jutta, dorsum) was identi�ed (referred to as AP and non-AP, respectively). b, Dorsal and
ventral sides of specimens were scanned using a hyperspectral imaging system (350-800 nm). c,
Modelled luminance pathway. Scans were converted to luminance using the absorption curve of double
cones found in chickens (Gallus gallus domesticus). Each black box represents the receptive �elds of a
population of units regularly distributed on a spatial (‘retinotopic’) grid and sensitive to edges with a given
orientation (4 pictured here) and spatial scale (2 extreme scales represented). The response of the model
was computed by considering processing of the luminance images by this population of units, followed
by a process of nonlinear normalization of each unit response by the response of neighbouring units. d,
Luminance model output. The output of the luminance model was a vector representing activity at each
location for each orientation and spatial scale, in response to each pattern. This can be visualised as
histograms of activity for each orientation, where each block represents a particular scale. For example,
the yellow-boxed region in c delivers higher response at vertical orientation for AP than non-AP patterns
(see yellow boxed areas, orange = AP, blue = non-AP). e, Two main summary statistics of the model
encoding activity, one based on the strength of the model population response (x-axis, ‘luminance
energy’) and the other one based on the distribution of response strength across orientations (y-axis,
‘isotropy departure’), describe a neural signature that can be described as a ‘pattern space’. f, Modelled
colour pathway. Scans were converted to colour response using cone absorption curves of the chicken.
We considered a regularly distributed grid of ‘red-green’ opponent neurons with a standard normalization.
g, The output of the colour model was a vector of encoding activity in response to each pattern (as per d,
representing response at each location for each orientation and spatial scale). The AP pattern delivers a
more varying response (top) than the non-AP pattern (bottom). h, A one-dimensional colour space was
constructed considering a single summary statistic of the colour encoding activity based on the strength
of the population response (‘colour energy’). i, 3-dimensional luminance and colour neural signatures
form a 3-dimensional pattern space in which AP and non-AP patterns occupy distinct locations.

Figure 2
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Luminance energy and isotropy departure summary statistics and luminance pattern space. a, Energy,
isotropy and the best linear combination between energy and isotropy statistics of the model population
activity in response to AP (orange) and non-AP (blue) patterns. Each panel shows the distribution of one
of these measures for AP species (orange, N = 96) and non-AP species (blue, N = 29). Each coloured point
represents data from a single species, where the statistic value is the average calculated from both sides
(dorsal and ventral) of every specimen available for that species. Boxplots show the median, the 25th and
75th percentiles (lower and upper hinges), the lowest measured values within Q1 (�rst quantile) and 1.5 x
Q1 (lower whisker) and the highest observed value within Q3 (third quantile) and 1.5 x Q3 (upper
whisker). b, Scatterplot of the energy and isotropy summary statistics de�nes a 2-dimensional pattern
space for the model population activity in response to the Lepidoptera patterns. Each point represents the
average over all specimens and sides (dorsal and ventral) for one of the 125 species in the database. The
pattern space illustrates an overall higher luminance energy and isotropy departure for the warning
signals involved in AP patterns (orange dots) compared to the non-AP species (blue dots). Background
colour corresponds to predicted pattern category (pale orange, AP species; pale blue, non-AP) according
to the binary classi�cation provided by a logistic regression of pattern category on luminance energy and
isotropy departure for the full luminance pattern space (see Methods). Each species can be identi�ed in
Supplementary Result 2, Figure S3.

Figure 3

Colour energy neural signature and combined 3-dimensional pattern space. a, Colour energy (left) and b,
best linear combination between energy, isotropy departure and colour statistics in response to AP
(orange) and non-AP (blue) patterns. Each panel show the distribution of one of these measures for AP
species (orange, N = 96) and non-AP species (blue, N = 29). All the conventions are the same as in Fig. 2.
c, Scatterplot of the energy, isotropy and colour summary statistics for the model population activity in
response to the Lepidoptera patterns. Each dot in this 3-dimensional pattern space represents the average
over all specimens and sides (dorsal and ventral) for one of the 125 species in the database. The pattern
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space illustrates an overall higher energy, isotropy departure and colour energy for aposematic patterns
(orange dots) compared to the patterns of non-aposematic species (blue dots). Background colour
corresponds to predicted pattern category (orange, AP species; pale blue, non-AP species) according to
the binary classi�cation provided by a logistic regression of pattern category on luminance energy,
isotropy departure and colour energy for the full 3-dimensional pattern space. Insets show the dorsal (D,
left side) and ventral (V, right side) colouration of two AP species with adjacent neural signatures
(Diaethria clymena, left, and Danaus plexippus, right) to illustrate how the patterns of aposematic species
can look very different, but have similar statistics. Image credit: D. clymena dorsal and ventral adapted
from Geoff Gallice (CC-BY-2.0); D. plexippus adapted from Didier Descouens (CC BY-SA 3.0).

Figure 4

Comparison of neural signatures of aposematic, non-aposematic patterns and natural scenes.
Distributions of a, luminance energy, b, isotropy departure and c, colour energy for (black line) natural
images, (blue) non-AP species and (orange) AP species. The density plots were obtained using a normal
smoothing kernel (see Methods).
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