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Abstract

The evidence based medicine paradigm demands scienti�c reliability, but modern research seems to overlook it sometimes. The power analysis 

represents a way to show the meaningfulness of �ndings, regardless to the emphasized aspect of statistical signi�cance. Within this statistical fra-

mework, the estimation of the e�ect size represents a means to show the relevance of the evidences produced through research. In this regard, this 

paper presents and discusses the main procedures to estimate the size of an e�ect with respect to the speci�c statistical test used for hypothesis 

testing. Thus, this work can be seen as an introduction and a guide for the reader interested in the use of e�ect size estimation for its scienti�c en-

deavour.
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Lessons in biostatistics

Introduction

In recent times there seems to be a tendency to 

report ever fewer negative �ndings in scienti�c re-

search (1). To see the glass “half full”, we might say 

that our capability to make �ndings has increased 

over the years, with every researcher having a high 

average probability of showing at least something 

through its own work. However, and unfortunate-

ly, it is not so. As long as we are accustomed to 

think in terms of “signi�cance”, we tend to per-

ceive the negative �ndings (i.e. absence of signi�-

cance) as something negligible, which is not worth 

reporting or mentioning at all. Indeed, as we often 

feel insecure about our means, we tend to hide 

them fearing of putting at stake our scienti�c rep-

utation. 

Actually, such an extreme interpretation of signi�-

cance does not correspond to what formerly 

meant by those who devised the hypothesis test-

ing framework as a tool for supporting the re-

searcher (2). In this paper, we aim to introduce the 

reader to the concept of estimation of the size of 

an e�ect that is the magnitude of a hypothesis 

which is observed through its experimental inves-

tigation. Hereby we will provide means to under-

stand how to use it properly, as well as the reason 

why it helps in giving appropriate interpretation to 

the signi�cance of a �nding. Furthermore, through 

a comprehensive set of examples with comments 

it is possible to better understand the actual appli-

cation of what is explained in the text.

Technical framework 

Stated simply, the “signi�cance” is the magnitude 

of the evidence which the scienti�c observation 

produces regarding to a certain postulated hy-

pothesis. Such a framework basically relies on two 

assumptions: 1) the observation is intimately af-

fected by some degree of randomness (a heritage 

of theory of error from which statistics derives), 

and 2) it is always possible to �gure out the way 

the observation would look like when the phe-
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nomenon is completely absent (a derivation of the 

“goodness of �t” approach of Karl Pearson, the 

“common ancestor” of modern statisticians). Prac-

tically, the evidence can be quanti�ed through the 

hypothesis testing procedure, which we owe to 

Ronald Fisher on one hand, and Jerzy Neyman and 

Egon Pearson (son of Karl) on the other hand (2). 

The result of hypothesis testing is the probability 

(or P-value) for which it is likely to consider the ob-

servation shaped by chance (the so-called “null-

hypothesis”) rather than by the phenomenon (the 

so-called “alternative hypothesis”). The size at 

which the P-value is considered small enough for 

excluding the e�ect of chance corresponds to the 

statistical signi�cance. Thus, what is the sense of a 

non-signi�cant result? There are two possibilities:

•	 there is actually no phenomenon and we ob-

serve just the e�ect of chance, and

•	 a phenomenon does exist but its small e�ect is 

overwhelmed by the e�ect of chance.

The second possibility poses the question of 

whether the experimental setting actually makes 

possible to show a phenomenon when there is re-

ally one. In order to achieve this, we need to quan-

tify how large (or small) is the expected e�ect pro-

duced by the phenomenon with respect to the 

observation through which we aim to detect it. 

This is the so-called e�ect size (ES).

P-value limitations

A pitfall in hypothesis testing framework is that it 

assumes the null hypothesis is always determina-

ble, which means it is exactly equal to a certain 

quantity (usually zero). Under a practical stand-

point, to achieve such a precision with observation 

would mean to get results which are virtually iden-

tical to each other, since any minimal variability 

would produce a deviation from the null hypothe-

sis prediction. Therefore, with a large number of 

trials, such a dramatic precision would cause the 

testing procedure of getting too sensible to trivial 

di�erences, making them looking like signi�cant, 

even when they are not (3). To an intuitive level, 

let’s imagine that our reference value is 1 and we 

set precision level at 10%. By the precision range 

of 0.9–1.1 it would result, a 0.1% di�erence in any 

actual measure would be shown not signi�cant as 

1 + 0.1% = 1.001 < 1.1. Contrarily, increasing preci-

sion up to 0.01% would give a range of 0.9999–

1.0001, thus showing a 0.1% di�erence as signi�-

cant since 1.001 > 1.0001. With respect to experi-

mental designs, we can assume that each observa-

tion taken on a case of the study population cor-

responds to a single trial. Therefore enlarging the 

sample would increase the probability of getting 

small P-value even with a very faint e�ect. As a 

drawback, especially with biological data, we 

would risk to misrecognize the natural variability 

or even to measure error as a signi�cant e�ect. 

Development of ES measures

The issue of achieving meaningful results is meas-

uring, or rather estimating, the size of the e�ect. A 

concept which could seem puzzling is that the ef-

fect size needs to be dimensionless, as it should 

deliver the same information regardless of the sys-

tem used to take the observations. Indeed, chang-

ing the system should not in�uence the size of ef-

fect and in turn its measure, as this would disagree 

with the objectiveness of scienti�c research. 

Said so, it is noteworthy that much of the work re-

garding ES measuring was pioneered by statisti-

cian and psychologist Jacob Cohen, as a part of 

the paradigm of meta-analysis he developed (4,5). 

However, Cohen did not create anything which 

was not already in statistics, but rather gave a 

means to spread the concept of statistical power 

and size of an e�ect among non-statisticians. It 

should be noticed that some of the ES measures 

he described were already known to statisticians, 

as it was regarding to Pearson’s product-moment 

correlation coe�cient (formally known as r, eq. 2.1 

in Table 1) or Fisher’s variance ratio (known as eta-

squared, eq. 3.4 in Table 1). Conversely, he derived 

some other measures directly from certain already 

known test statistic, as it was with his “d” measure 

(eq. 1.1 in Table 1) which can be considered stem-

ming strictly from the z-statistic and the Student’s 

t-statistic (6).

A relevant aspect of ES measures is that they can 

be recognized according to the way they capture 

the nature of the e�ect they measure (5):
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Measure Test
Equation

Formula Number

Cohen’s d
t-test with equal samples size 

and variance
1.1

Hedge’s g
t-test on small samples / 

unequal size
1.2

Glass’s Δ
t-test with unequal variances / 

control group
1.3

Glass’s Δ* t-test with small control group 1.4

Steiger’s ψ (psi) omnibus e�ect (ANOVA) 1.5

Pearson’s r linear correlation 2.1

Spearman’s ρ (rho) rank correlation 2.2

Cramer’s V
nominal association (2 x 2 

table)
2.3

 (phi) Chi-square (2 x 2 table) 2.4

r2 simple linear regression 3.1

adjusted r2 multiple linear regression 3.2

Cohen’s f2

multiple linear regression 3.3a

n-way ANOVA 3.3b

η2 (eta – squared) 1-way ANOVA 3.4

partial η2 n-way ANOVA 3.5

ω2 (omega – squared) 1-way / n-way ANOVA 3.6

Odds ratio (OR)
2 x 2 table 4.1a

logistic regression 4.1b

TABLE 1. E�ect size measures
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E�ect size (ES) measures and their equations are represented with the corresponding statistical test and appropriate condition 

of application to the sample; the size of the e�ect (small, medium, large) is reported as a guidance for their appropriate 

interpretation, while the enumeration (Number) addresses to their discussion within the text.

MSE – mean squared error = SSerror / (N – k). Bessel’s correction – n / (n-1)[ ].

;  – average of group / sample. x, y – variable (value). GM – grand mean (ANOVA). s2 – sample variance. n – sample cases. N – total 

cases.  – summation.  – chi-square (statistic). u, v – ranks. m – minimum number of rows / columns. p – number of predictors 

(regression). k – number of groups (ANOVA). SSfactor – factor sum of squares (variance between groups). SSerror – error sum of square 

(variance within groups). SStotal – total sum of squares (total variance). xmyn – cell count (2 x 2 table odds ratio). e – constant (Euler’s 

number). β – exponent term (logistic function).

•	 through a di�erence, change or o�set between 

two quantities, similarly to what assessed by 

the t-statistic 

•	 through an association or variation between 

two (or more) variates, as is in the correlation 

coe�cient r.

The choice of the appropriate kind of ES measure 

to use is dictated by the test statistic the hypothe-

sis testing procedure relies on. Indeed, it deter-

mines the experimental design adopted and in 

turn the way the e�ect of the phenomenon is ob-

served (7). For instance in Table 1, which provides 

the most relevant ES measures, each of them is 

given alongside the test statistic framework it re-

lates to. In some situations it is possible to choose 

between several alternatives, in that almost all ES 

measures are related each other. 

Di�erence-based family 

In the di�erence-based family the e�ect is meas-

ured as the size of di�erence between two series 

of values of the same variable, taken with respect 

to the same or di�erent samples. As we saw in the 

previous section, this family relies on the concept 

formerly expressed by the t-statistic of standard-

ized di�erence. The prototype of this family was 

provided by Cohen through the uncorrected stand-

ardized mean di�erence or Cohen’s d, whose equa-

tion is reported in Table 1 (eq. 1.1; and Example 1). 

Cohen’s d relies on the pooled standard deviation 

(the denominator of equation) to standardize the 

measure of the ES; it assumes the groups having 

(roughly) equal size and variance. When deviation 

from this assumption is not negligible (e.g. one 

group doubles the other) it is possible to account 

for it using the Bessel’s correction (Table 1) for the 

biased estimation of sample standard deviation. 

This gives rise to the Hedge’s g (eq. 1.2 in Table 1 

and Example 1), which is a standardized mean dif-

ference corrected by the pooled weighted stand-

ard deviation (8). 

A particular case of ES estimation involves experi-

ments in which one of the two groups acts as a 

control. In that we presume that any measure on 

control is untainted by the e�ect, we can use its 

standard deviation to standardize the di�erence 

between averages in order to minimize the bias, as 

it is done in the Glass’s delta (Δ) (eq. 1.3 in Table 1 

and Example 1) (9). A slight modi�cation of Glass’s 

Δ (termed Glass’s Δ*) (eq. 1.4 in Table 1), which em-

bodies Bessel’s correction, is useful when the con-

trol sample size is small (e.g. less than 20 cases) 

and this sensibly a�ects the estimate of control’s 

standard deviation. 

It is possible to extend the framework of di�er-

ence family also to more than two groups, correct-

ing the overall di�erence (di�erence of each ob-

servation from the average of all observations) by 

the number of groups considered. Under a formal 

point of view this corresponds to the omnibus ef-

fect of a 1 factor analysis of variance design with 

�xed e�ect (1-way ANOVA). Such an ES measure is 

known as Steiger’s psi (ψ) (eq. 1.5 in Table 1 and Ex-

ample 2) or root mean square standardized e�ect 

(RMSSE) (10,11).

As a concluding remark of this section we would 

mention that it is possible to compute Cohen’s d 



Biochemia Medica 2016;26(2):150–63  http://dx.doi.org/10.11613/BM.2016.015 

154

Ialongo C. Guide to e�ect size calculations

Example 1 

Two groups of subjects, 30 people each, is enrolled to test the serum blood glucose after the adminis-

tration of an oral hypoglycemic drug. The study aims to assess whether a race-factor might have an ef-

fect over the drug. Laboratory analyses show a blood glucose concentration of 7.8 ± 1.3 mmol/L and 7.1 

± 1.1 mmol/L, respectively. According to eq. 1.1 in Table 1, the ES measure is:

For instance, the power analysis shows that such a cohort (n1 + n2 = 60) would give 60% of probability 

to detect an e�ect of a size as large as 0.581 (that is the statistical power). Therefore we shall question 

whether the study was potentially inconclusive with respect to its objective. 

In another experimental design on the same study groups, the �rst one is treated with a placebo in-

stead of the hypoglycemic drug. Moreover this group’s size is doubled (n = 60) in order to increase the 

statistical power of the study. 

For recalculating the e�ect size, the Glass’s Δ is used instead, as the �rst group here clearly acts as con-

trol. Knowing that its average glucose concentration is 7.9 ± 1.2 mmol/L, according to eq. 1.3 it is:

The ES calculated falls close to the Cohen’s d. However when the statistical power is computed based 

on new sample size (N = 90) and ES estimate, the experimental design shows a power of 83.9% which is 

fairly adequate. It is noteworthy that the ES calculated through eq. 1.2 gave the following estimate:

x x

Example 2

A cohort of 45 subjects is randomized into three groups (k = 3) of 15 subjects each in order to investi-

gate the e�ect of di�erent hypoglycemic drugs. Particularly, the blood glucose concentration is 8.6 ± 

0.2 mmol/L for placebo group, 7.8 ± 0.2 mmol/L for drug 1 group and 6.8 ± 0.2 mmol/L for drug 2 

group. In order to calculate the Steiger’s ψ, data available through the ANOVA summary and table were 

obtained using MS Excel’s add-in ToolPak (it can be found under Data→Data Anaysis→ANOVA: single 

factor):

ANOVA SUMMARY

Groups Count Sum Average Variance

Drug 1 15 116.3 7.8 0.06

Drug 2 15 102.3 6.8 0.03

Placebo 15 128.3 8.6 0.02
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also for non-Student’s family test as the F-test, as 

well as for non-parametric tests like Chi-square or 

the Mann-Whitney U-test (12-14).

Association – based family 

In the association-based family the e�ect is meas-

ured as the size of variation between two (or more) 

variables observed in the same or in several di�er-

ent samples. Within this family it is possible to do a 

further distinction, based on the way the variabili-

ty is described.

Associated variability: correlation 

In the �rst sub-family, variability is shown as a joint 

variation of the variables considered. Under a for-

mal point of view it is nothing but the concept 

ANOVA TABLE

Variance component DF MS F P F crit

Between 

Groups

SSfactor 22.5 2 11.24 288 < 0.01 3.2

Within 

Group

SSerror 1.6 42 0.04

Total SStotal 24.1 44

ss – sum of squares, DF – degrees of freedom, MS – mean 

squares.

Notice that the ANOVA summary displays descriptive statistics for the groups in the design, while the 

ANOVA table gives information regarding the results of ANOVA calculations and statistical analysis. Par-

ticularly with respect to power analysis calculations (see later on in Example 4), it shows the value of the 

components which are the between groups (corresponding to the factor’s sum of squares, SSfactor), the 

within groups (corresponding to the error’s sum of squares, SSerror) and the total variance (that is given 

by the summation of factor’s and error’s sum of squares). 

Considering that the grand mean (average of the all the data taken as a single group) is 7.7 mmol/L, the 

formula becomes:

x

From the ANOVA table we notice that this design had a very large F-statistic (F = 288) which resulted in 

a P-value far below 0.01, which agrees with an e�ect size as large as 4.51.

which resides in the Pearson’s product moment 

correlation coe�cient, which is indeed the pro-

genitor of this group (eq. 2.1 in Table 1 and Exam-

ple 3). In this regard it should be reminded that by 

de�nition the correlation coe�cient is nothing but 

the joint variability of two quantities around a 

common focal point, divided by the product of 

the variability of each quantity around its own bar-

ycentre or average value (15). Therefore, if the two 

variables are tightly associated to each other, their 

joint variability equals the product of their individ-

ual variabilities (which is the reason why r can range 

only between 1 and -1), and the e�ect can be seen 

as what forces the two variables to behave so. 

When a non-linear association is thought to be 

present, or the continuous variable were discre-

tized into ranks, it is possible to use the Spear-
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Example 3 

The easiest way to understand how the ES measured through r works is to look at scattered data:
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In both panels the dashed lines represent the average value of X (vertical) and of Y (horizontal). In panel 

A the correlation coe�cient was close to 1 and the data gave the visual impression of lying on a straight 

line. In panel B, the data of Y were just randomly reordered with respect to X, resulting in a coe�cient r 

very close to zero although the average value of Y was unchanged. Indeed the data appeared to be 

randomly scattered with no pattern. Therefore the e�ect which made X and Y to behave similarly in A 

was vanished by the random sorting of Y, as randomness is by de�nition the absence of any e�ect. 

man’s rho (ρ) instead (eq. 2.2 in Table 1) (6). Alter-

natively, for those variable naturally nominal, if a 

two-by-two (2 x 2) table is used, it is possible to 

calculate the ES through the coe�cient phi ( ) (eq. 

2.4 in Table 1). In case of unequal number of rows 

and columns, instead of eq. 2.4, the Cramer’s V can 

be used (eq. 2.3 in Table 1), in which a correction 

factor for the unequal ranks is used, similarly to 

what is done with the di�erence family. 

Explained variability: general linear models 

In the second sub-family the variability is shown 

through a relationship between two or more vari-

ables. Particularly, it is achieved considering a de-

pendence of one on another, assuming that the 

change in the �rst is dictated by the other. Under a 

formal standpoint, the relationship is a function 

between the two (in simplest case) variables, of 

which one is dependent (Y) and the other is inde-

pendent (X). The easiest way to give so is through 

a linear function of the well-known form Y = bX + 

e, which suits the so-called general linear models 

(GLM), to which ANOVA, linear regression, and any 

kind of statistical model which can be considered 

stemming from that linear function belong. Partic-

ularly, in GLM the X is termed the design (one or a 

set of independent variables), b weight and e the 

random normal error. In general, such models aim 

to describe the way Y varies according to the way 

X changes, using the association between varia-

bles to predict how this happens with respect to 

their own average value (15). In linear regression, 

the variables of the design are all continuous, so 

that estimation is made point-to-point between X 

and Y. Conversely, in ANOVA, the independent var-

iables are discrete/nominal, and thus estimation is 

rather made level-to-point. Therefore, the ways 

we assess the e�ect for these two models slighlty 

di�er, although the conceptual frame is similar.

With respect to linear regression with one inde-

pendent variable (predictor) and the intercept 

term (which corresponds to the average value of 
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Y), the ES measure is given through the coe�cient 

of determination or r2 (eq. 3.1 in Table 1). Notewor-

thy, in this simplest form of the model, r2 is noth-

ing but the squared value of r (6). This should be 

not surprising because if a relationship is present 

between the variables, then it can be used to 

achieve prediction, so that the stronger the rela-

tionship the better is the prediction. For mutiple 

linear regression, where we have more than one 

predictor, we can use the Cohen’s f2 instead (eq. 

3.3a in Table 1) in which the r2 is corrected by the 

amount of variation that predictors leave unex-

plained (4). Sometimes the adjusted r2 (eq. 3.2 in 

Table 1) is usually presented alongside to r2 in mul-

tiple regression, in which the correction is made 

for the number of predictors and the cases. It 

should be noticed that such a quantity is not a 

measure of e�ect, but rather it shows how suitable 

the actual set of predictors is with respect to the 

model’s predictivity.

With respect to ANOVA, the linear model is rather 

used in order to describe how Y varies when the 

changes in X are discrete. Thus, the e�ect can be 

thought as a change in clustering of Y with respect 

to the value of X, termed the factor. In order to as-

sess the magnitude of the e�ect, it is necessary to 

show how much the clustering explains the varia-

bility (where the observations of Y locate at the 

change of X) with respect to the overall variability 

observed (the scatter of all the observations of Y). 

Therefore, we can write the general form of any ES 

measure of this kind:

Recalling the law of variance decomposition, for a 

1-way ANOVA the quantity above can be achieved 

through the eta-squared (η2), in which the varia-

tion between clusters or groups accounts for the 

variability explained by the factor within the de-

sign (eq. 3.4 in Table 1 and Example 4) (4,6). The 

careful reader will recognize at this point the anal-

ogies between r2 and η2 with no need for any fur-

ther explanation. 

It must be emphasized that η2 tends to in�ate the 

explained variability giving quite larger ES esti-

mates than it should be (16). Moreover, in models 

with more than one factor it tends to underesti-

mate ES as the number of factors increases (17). 

Thus, for designs with more than one factor it is 

advisable to use the partial-η2 instead (eq. 3.5), re-

marking that the equation given herein is just a 

general form and the precise form of its terms de-

pends on the design (18). Noteworthy, η2 and 

partial-η2 coincide in case of 1-way ANOVA (19,20). 

A most regarded ES for ANOVA, which is advisable 

Example 4

Recalling the ANOVA table seen in Example 2, we can compute η2 accordingly:

Thereafter for ω2 we got instead:

x

If we recall the value we got previously for ψ (4.51) we notice a considerable di�erence between these 

two. Actually, ψ can be in�uenced by a single large deviating average within the groups, therefore om-

nibus e�ect should be regarded as merely indicative of the phenomenon under investigation. Note-

whorthy, it should be possible to assess the contrast ES (e.g. largest average vs others) properly rear-

ranging the Hedge’s g. 
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to use in place of any other ES measure in that it is 

virtually unbiased, is the omega-squared (ω2) (eq. 

3.6 in Table 1 and Example 4) (16,18,21). Lastly, it 

should be noticed that Cohen’s f2 can also suit n-

way ANOVA (eq. 3.3b) (4). It should be emphasized 

that in general it holds η2 > partial-η2 > ω2.

Odds ratio 

The odds ratio (OR) can be regarded as a peculiar 

kind of ES measure because is suits both 2 x 2 con-

tingency tables as well as non-linear regression 

models like logistic regression. In general, OR can 

be tought as a special kind of association family 

ES for dicothomous (binary) variables. In plain 

words, the OR represents the likelihood that an 

event occurs due to a certain factor against the 

probability that it arises just by chance (that is 

when the factor is absent). If there is an associa-

tion then the e�ect changes the rate of outcomes 

between groups. For 2 x 2 tables (like Table 2) the 

OR can be easily calculated using the cross prod-

uct of cells frequency (eq. 4.1a in Table 1 and Ex-

ample 5A) (22). 

Factor (X)
Outcome (Y)

1 0

1 x1y1 (Ppresent) or a x1y0 (1 – Ppresent) or b

0 x0y1 (Pabsent) or c x0y0 (1 – Pabsent) or d

1 – presence; 0 – absence. The terms presence and absence 

refer to the factor as well as to the outcome.

a,b,c,d – common coding of cell frequencies used for the 

cross product calculation. 

TABLE 2. 2 x 2 nominal table for odds ratio calculation

Example 5A

Getting OR from 2 x 2 tables is trivial and can be easily achieved by hand calculation as it is possible by 

the table below:

Factor
Outcome

present absent

present 44 23

absent 19 31

Therefore using eq. 4.1a in Table 1 it can be calculated:

x

x

It is noteworthy that in this case the Cramer’s V gave also an intermediate ES (0.275). Nonetheless they 

represent quite distant concepts in that Cramer’s V is aimed to show wheter variability within the cross-

tab frame is due to the factor, while OR shows how factor changes the rate of outcomes in a non-addi-

tive way. 

However, OR can be also estimated by means of 

logistic regression, which can be considered simi-

lar to a linear model in which the dependent vari-

able (termed the outcome in this model) is binary. 

Indeed, a logistic function is used instead of a line-

ar model in that outcome abruptly changes be-

tween two separate statuses (present/absent), so 

that prediction has to be modelled level-to-level 

(23). In such a model, �nding the weight of the de-

sign (that is b in the GLM) is tricky, but using a log-

arithmic transformation, it is still possible to esti-
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mate it through a linear function. It is possible to 

show that b (usually regarded as beta in this 

framework) is the exponent of a base (the Euler’s 

number or e) which gives the OR (23). Noteworthy, 

each time there is a unit increase in the predictor, 

the e�ect changes according to a multiplicative 

rather than additive e�ect, di�erently than what 

seen in GLM. A major advantage of logistic regres-

sion relies in its �exibility with respect to cross ta-

bles, in that it is possible to estimate ES accounting 

for covariates and factors more than binary (multi-

nomial logistic regression). Moreover, through lo-

gistic regression it is also possible to achieve OR 

for each factor in a multifactor analysis similarly to 

what is done through GLM.

Con�dence interval 

Considering that they are estimates, it is possible 

to give con�dence interval (CI) for ES measures as 

well, with their general rules holding also in this 

case, so that the narrower the interval the more 

precise the estimate is (24). However, this one is 

not a simple task to achieve because ES has non-

central distribution as it represents a non-null hy-

pothesis (25). The methods devised to overcome 

such a pitfall should deserve a broader discussion 

which would take us far beyond the scope of this 

paper (10,11,26).

Nonetheless quite easy methods based on estima-

tion of ES variance can be found and have been 

shown to work properly up to mild sized e�ects as 

is for Cohen’s d (Example 6) (25). For instance, CI 

estimation method regarding OR and can be easi-

ly achieved by the cells frequency of the 2 x 2 table 

(Example 5B) (6). 

We would remark that although CI of ES might ex-

quisitely concern meta-analysis, actually they rep-

resent the most reliable proof of the ES reliability. 

An aspect which deserves attention in this regard 

is that CI of ES reminds us that any ES actually 

measured is just an estimate taken on a sample, 

and as such it depends on the sample size and var-

iability. It is sometimes easy to misunderstand or 

forget this, and often the ES obtained through an 

experiment is erroneously confused with the one 

hypothesized for the population (27). In this re-

gard, running power analysis after the fact would 

be helpful. Indeed, supposing the population ES 

being greater or at least equal with the one actu-

ally measured, it would show the adequacy of our 

Example 5B

In order to calculate the CI of OR from Example 5A it is necessary to compute the standard error (SE) as 

follows:

First, it is necessary to transform the OR taking its natural logarithm (ln) for using the normal distribu-

tion to get the con�dence coe�cient (that one which corresponds to the α level). Therefore we got ln 

(3.12) = 1.14, so that:

x

A back transformation through the exponential function makes possible to get this result in its original 

scale. Hence, if e0.38 = 1.46 and e1.90 = 6.72, the 95% CI is 1.46 to 6.72. Noteworthy, if the interval doesn’t 

comprise the value 1 (recalling that ln (1) = 0), the OR and in turn the ES estimate can be considered sig-

ni�cant. However, we shall object that the range of CI is quite wide, so that the researcher should pay 

attention when commenting the point estimation of 3.12.
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Example 6 

Using the data from Example 1, we can calculate the Cohen’s d variance estimate with the following 

equation:

x x x x

Then, we can use this value to compute the 95% CI accordingly:

x x

Therefore the estimate falls within the interval ranging -0.150 and 1.312. Interestingly, this shows that 

the value of the ES estimated through that design was unreliable, because the con�dence interval com-

prises the zero value. Indeed the experimental design aforementioned gave a non-statistically signi�-

cant result when testing the average di�erence between the two groups by means of unpaired t-test. 

This is in accordance with the �nding of an underpowered design, which is unable to show a di�erence 

if there is one, as well as to give for it any valid measure. 

experimental setting with respect to a hypothesis 

as large as the actual ES (28). Such a proof will 

surely guide our judgment regarding the proper 

interpretation of the P-value obtained whereby 

the same experiment. 

Conversion of ES measures 

Maybe the most intriguing aspect of ES measures 

is that it is possible to convert one kind of measure 

into another (4,25). Indeed, it is obvious that an ef-

fect is as such regardless to the way it is assessed, 

so that changing the shape of the measure is noth-

ing but changing the gear we use for measuring. 

Although it might look like appealing, this is some-

how a useless trick except for meta-analysis. More-

over, it might be even misleading if one forgets 

what each kind of ES measure represents and is 

meant for. This kind of “lost-in-translation” is quite 

common when the conversion is made between 

ES measures belonging to di�erent families (Ex-

ample 7).

Contrarily, it seems to be more useful to obtain ES 

measure from the test statistic whenever the re-

ported results lack of any other means to get ES 

(4,13,21). However, as in the case of Cohen’s d 

from t-statistic, it is necessary to know the t score 

as well as the size of each sample (Example 7).

Interpreting the magnitude of ES

Cohen gave some rules of thumb to qualify the 

magnitude of an e�ect, giving also thresholds for 

categorization into small, medium and large size 

(4). Unfortunately, they were set based on the kind 

of phenomena which Cohen observed in his �eld, 

so that they can be hardly translatable into other 

domains outside behavioural sciences. Indeed 

there is no means to give any universal scale, and 

the values which we take as reference nowadays 

are just a heritage we owe to the way the study of 

ES was commenced. Interestingly, Cohen as well 

as other researchers have tried to interpret the dif-

ferent size ranges using an analogy between ES 

and Z-score, whereby there was a direct corre-

spondence between the value and the probability 

to correctly recognize the presence of the investi-

gated phenomenon by its single observation (29). 

Unfortunately, although alluring, this “percentile-

like” interpretation is insidious in that it relies on 

the assumption that the underlying distribution is 

normal.
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Example 7

The data which were used to generate scatterplot B of Example 3 are compared herein by means of un-

paired t-test. Therefore, considering the average values of 16 ± 6 and 15 ± 6, we obtained a t-statistic of 

0.453. Hence, the corresponding Cohen’s d ES was:

x x

x x xx

It should be noticed that panel B of Example 3 reported a correlation close to 0, that is no e�ect as we 

stated previously. By the same groups let’s calculate now the Cohen’s d from r:

x x

Not surprisingly we obtain a negligible e�ect. Let’s now try again with the data which produced the 

scatterplot of panel A. While the statistical test gives back the same result, this time the value of d ob-

tained through r changes dramatically:

x x

The explanation is utterly simple. The unpaired t-test is not a�ected by the order of observations within 

each group, so that shu�ing the data makes no di�erence. Conversely, the correlation coe�cient relies 

on data ordering, in that it gives a sense to each pair of observations it is computed with. Thus, comput-

ing d through r gives an ES estimate which is nothing but the di�erence or o�set between observa-

tions that would have been produced by an e�ect as large as the one which produced an association as 

much strong. 

An alternative way of �guring out ES magnitude 

relies on its “contextualization”, that is taking its 

value with respect to any other known available 

estimation, as well as to the biological or medical 

context it refers to (30). For instance, in complex 

disease association studies, where single nucleo-

tide polymorphisms usually have an OR ranging 

around 1.3, evidence of an OR of 2.5 should not be 

regarded as moderate (31). 

Computing ES

The calculation of ES is part of the power analysis 

framework, thus the computation of its measures 

is usually provided embedded within statistical 

software packages or achieved through stand-

alone applications (30,32). For instance, the soft-

ware package Statistica (StatSoft Inc., Tulsa, USA) 

provides a comprehensive set of functions for 

power analysis, which allows computing ES as well 

as CI for many statistical ES measures (33). Alterna-

tively, the freely available application G*Power 

(Heinrich Heine Universitat, Dusseldorf, Germany) 

makes possible to run in stand-alone numerous ES 

calculations with respect to the di�erent statistical 

test families (34,35). Finally, it is possible to �nd on-

line many comprehensive suites of calculators for 

di�erent ES measures (36-38). 

Notwithstanding, it should be noted that any ES 

measure showed in tables within this paper can be 

used for calculation with basic (not statistical) 

functions available through a spreadsheet like MS 
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Excel (Microsoft Corp., Redmond, USA). In this re-

gard, the Analysis ToolPak embedded in MS Excel 

allows to get information for both ANOVA and lin-

ear regression (39). 

Conclusions (Are we ready for the efect 

size?)

In conclusion the importance of providing an esti-

mate of the e�ect alongside the P-value should be 

emhasized, as it is the added value to any research 

representing a step toward the scienti�c trueness. 

For this reason, researchers should be encouraged 

to show the ES in their work, particularly reporting 

it any time the P-value is mentioned. It should be 

also advisable to provide CI along with ES, but we 

are aware that in many situations it could be rather 

discouraging as there is still no accessible means 

for its computation as it is with ES. In this regard, 

calculators might be of great help, although the 

researchers should always bear in mind formulae 

to recall what each ES is suited for and what infor-

mation it actually provides. 

In the introduction of this paper, we were wonder-

ing whether negative �ndings were actually de-

creasing in scienti�c research, or rather we were 

observing a kind of yet unexplained bias. Of 

course, the dictating paradigm of P-value is lead-

ing to forgetting what is scienti�c evidence and 

what is the meaning in its statistical assessment. 

Nonetheless, through the ES we could start teach-

ing ourselves of weighting �ndings against both 

chance and magnitude, and that would be a huge 

help in our appreciation of any scienti�c achieve-

ment. By the way, we might also realize that the 

bias probably lays in the way we conceive nega-

tive and positive things, the reason why we tend 

to mean the scienti�c research as nothing but a 

“positive” endeavour regardless to the size of what 

it comes across. 
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