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Agenda

What limits the performance of fastest traversal 

methods on GPUs?

Memory speed (bandwidth, latency)?

Computation?

Resource conflicts (serialization, scoreboard, …)?

Load balancing?

How far from “theoretical optimum”?

How much performance on table?

Solutions that help today

Solutions that may help tomorrow



Terminology

Trace()

Unpredictable sequence of acceleration structure 

traversal and primitive intersection

SIMT

SIMD with execution divergence handling built into 

hardware

Computes everything on all lanes

Warp

Group of threads that execute simultaneously in a 

SIMD/SIMT unit, 32 in NVIDIA hardware



“Theoretical optimum”

Peak FLOPS as quoted by marketing?

Achievable only in special cases

Too conservative bound

Instructions issued/sec for a given kernel       

(i.e. program), assuming:

Infinitely fast memory

Complete absence of resource conflicts

 Tight upper bound when limited by computation



Simulator

Custom simulator written for this project

Inputs

Sequence of operations for each ray 

(traversal, intersection, enter leaf, mainloop)

Native asm instructions for each operation

Execution

Mimics GTX285 instruction issue [Lindholm et al. 2008]

Assumes all instructions have zero latency

Configurable SIMD width, default 32

Outputs

Practical upper bound of performance



Test setup

NVIDIA GeForce GTX285, CUDA 2.1

BVH (64 bytes per 2 child nodes)

Always tested together, proceeds to closer

Greedy SAH construction, early triangle splits

Max 8 triangles per leaf

Woop’s unit triangle test (48 bytes per tri)

Nodes in 1D texture -- cached

Triangles in global memory -- uncached

Hierarchical optimizations not used in traversal



Test scenes

Sibenik
(80K tris, 54K nodes)

1024x768, 32 secondary rays (Halton)

Average of 5 viewpoints

All timings include only trace()

Fairy
(174K tris, 66K nodes)

Conference
(282K tris, 164K nodes)



Packet traversal

Assign one ray to each thread

Follows Günther et al. 2007

Slightly optimized for GT200

All rays in a packet (i.e. warp) follow exactly the 

same path in the tree

Single traversal stack per warp, in shared mem

Rays visit redundant nodes

Coherent memory accesses

Could expect measured performance close to 

simulated upper bound



Packet traversal

Simulated 

Mrays/s

Measured

Mrays/s

% of 

simulated

Primary 149.2 63.6 43

AO 100.7 39.4 39

Diffuse 36.7 16.6 45

Only 40%!? Similar in other scenes.

Not limited by computation

Memory speed even with coherent accesses?

Simulator broken? Resource conflicts? Load 

balancing?

2.5X performance on table



Per-ray traversal

Assign one ray to each thread

Full traversal stack for each ray

In thread-local (external) mem [Zhou et al. 2008]

No extra computation on SIMT

Rays visit exactly the nodes they intersect

Less coherent memory accesses

Stacks cause additional memory traffic

If memory speed really is the culprit

Gap between measured and simulated should be 

larger than for packet traversal



Per-ray traversal

Simulated 

Mrays/s

Measured

Mrays/s

% of 

simulated

Primary 166.7 88.0 53

AO 160.7 86.3 54

Diffuse 81.4 44.5 55

55% -- getting closer with all ray types

Memory not guilty after all?



while-while vs. if-if

if-if trace()

while ray not terminated

if node does not contain primitives

traverse to the next node

if node contains untested primitives

perform ray-node intersection

while-while trace()

while ray not terminated

while node does not contain primitives

traverse to the next node

while node contains untested primitives

perform ray-node intersection



Per-ray traversal (if-if)

~20% slower code gives same measured perf

Memory accesses are less coherent

Faster than while-while when leaf nodes smaller

Neither memory communication nor computation 

should favor if-if

Results possible only when some cores idle?

Simulated 

Mrays/s

Measured

Mrays/s

% of 

simulated

Primary 129.3 90.1 70

AO 131.6 88.8 67

Diffuse 70.5 45.3 64



Work distribution

Histograms of warp execution times

Fewer extremely slow warps in if-if

Slowest warp 30% faster in if-if

Otherwise similar

CUDA work distribution units

Optimized for homogeneous work items

Applies to all NVIDIA’s current cards

Trace() has wildly varying execution time

May cause starvation issues in work distribution

Need to bypass in order to quantify 



Persistent threads

Launch only enough threads to fill the machine 

once

Warps fetch work from global pool using atomic 

counter until the pool is empty

Bypasses hardware work distribution

Simple and generic solution

Pseudocode in the paper



Persistent packet traversal

Simulated 

Mrays/s

Measured

Mrays/s

% of 

simulated

Primary 149.2 122.1 82

AO 100.7 86.1 86

Diffuse 36.7 32.3 88

~2X performance from persistent threads 

~85% of simulated, also in other scenes

Hard to get much closer

Optimal dual issue, no resource conflicts, infinitely 

fast memory, 20K threads…



Persistent while-while

Simulated 

Mrays/s

Measured

Mrays/s

% of 

simulated

Primary 166.7 135.6 81

AO 160.7 130.7 81

Diffuse 81.4 62.4 77

~1.5X performance from persistent threads 

~80% of simulated, other scenes ~85%

Always faster than packet traversal

2X with incoherent rays



Speculative traversal

“If a warp is going to execute node traversal 

anyway, why not let all rays participate?”

Alternative: be idle

Can perform redundant node fetches

Should help when not bound by memory speed

5-10% higher performance in primary and AO

No improvement in diffuse

Disagrees with simulation (10-20% expected)

First evidence of memory bandwidth issues?

Not latency, not computation, not load balancing…



Two further improvements

Currently these are slow because crucial 

instructions missing

Simulator says 2 warp-wide instructions will help

ENUM (prefix-sum)

Enumerates threads for which a condition is true

Returns indices [0,M-1]

POPC (population count)

Returns the number threads for which a condition is 

true, i.e. M above



1. Replacing terminated rays

Threads with terminated rays are idle until warp 

terminates

Replace terminated rays with new ones

Less coherent execution & memory accesses

Remember: per-ray kernels beat packets

Currently helps in some cases, usually not

With ENUM & POPC, +20% possible in ambient 

occlusion and diffuse, simulator says

Iff not limited by memory speed



2. Local work queues

Assign 64 rays to a 32-wide warp

Keep the other 32 rays in shared mem/registers

32+ rays will always require either node traversal or 

primitive intersection

Almost perfect SIMD efficiency (% threads active)

Shuffling takes time

Too slow on GTX285

With ENUM + POPC, in Fairy scene

Ambient occlusion +40%

Diffuse +80%

Iff not limited by memory speed



Conclusions (1/2)

Primary bottleneck was load balancing

Reasonably coherent rays not limited by 

memory bandwidth on GTX285

Even without cache hierarchy

Larger scenes should work fine

Only faster code and better trees can help

E.g. Stich et al. 2009

~40% performance on table for incoherent rays

Memory layout optimizations etc might help

Wide trees, maybe with enum & popc?



Conclusions (2/2)

Encouraging performance

Especially for incoherent rays

Randomly shuffled diffuse rays 20-40M/sec

GPUs not so bad in ray tracing after all

Persistent threads likely useful in other 

applications that have heterogeneous workloads



Acknowledgements

David Luebke for comments on drafts, 

suggesting we include section 5 

David Tarjan, Jared Hoberock for additional 

implementations, tests

Reviewers for clarity improvements

Bartosz Fabianowski for helping to make CUDA 

kernels more understandable

Marko Dabrovic for Sibenik

University of Utah for Fairy Forest



CUDA kernels available

http://www.tml.tkk.fi/~timo/ 

NVIDIA Research website (soon)

Download, test, improve

Thank you for listening!


