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The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important

issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality

of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-

matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are

remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no

one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration,

or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems,

as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations.
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The aim of this article is to review empirical, analytical, and sim-

ulation studies of the G-matrix with a focus on its stability and

evolution. This review is timely because a series of emerging

generalities about phenotypic evolution suggest that important

methodological advances lie just around the corner. New insights

into G-matrix evolution highlight certain themes in empirical

work that in turn may lay the foundation for those advances.

The study of phenotypic evolution is at a crucial juncture as

an onslaught of fresh empirical findings continues to foster the

development of new methodological tools in comparative biol-

ogy (Hohenlohe and Arnold 2008). On the empirical front, one

can argue for five emerging generalizations, although controversy

remains in some cases (Barton and Turelli 1989; Houle 1992;

Barton and Keithley 2002; Marroig and Cheverud 2004; Blows

and Hoffman 2005). (1) Genetic variation is abundant in most pop-

ulations for many kinds of characters (Mousseau and Roff 1987).

This apparent availability of genetic variation suggests that ge-

netic constraints might play at most a minor or transitory role

in adaptive radiation of simple traits such as size (Charlesworth

et al. 1982; Estes and Arnold 2007). (2) A variety of lines of ev-

idence suggest that phenotypic diversification is primarily driven

by selection rather than by drift alone (Estes and Arnold 2007).

(3) Significant evolutionary change can occur over a few gen-

erations, on an ecological timescale (Thompson 1998; Hairston
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Table 1. Summary of abbreviations and symbols.

Symbol Definition

AL Adaptive landscape
ISS Individual selection surface
P Phenotypic variance–covariance matrix before

selection, P-matrix
ω+P Strength of stabilizing selection (Gaussian AL),

matrix
ω Strength of stabilizing selection (Gaussian ISS),

ω-matrix
γ Strength of stabilizing selection (quadratic approx.

of ISS), γ-matrix
rω Selectional correlation, computed from ω

G Additive genetic variance–covariance matrix,
G-matrix

Ḡ Average of G over time
rg Genetic correlation, computed from G

M Mutational effects variance–covariance matrix,
M-matrix

rμ Mutational correlation, computed from M

CPC Common principal components, shared eigenvectors
Ne Effective population size

et al. 2005). (4) Despite evident capacity for rapid evolutionary

responses to environmental challenges, implied by (1–3), stasis

is a prevalent—perhaps the most prevalent—mode of evolution,

especially pronounced on long timescales (Gould 2002). (5) Cor-

related evolution of multiple traits is common, as reflected by

consistent patterns of trait association that are apparent at all lev-

els of divergence (Gould 1966; Harvey and Pagel 1991). Despite

the prevalence of these evolutionary patterns, which are at the

crux of adaptive radiation, we are still struggling to achieve a syn-

thetic understanding of their causes. Thus, the challenge for the

new analytical tools is to accommodate these emerging empirical

generalizations, even as we continue to test them. An important

conceptual realization is that our best hope of understanding cor-

related evolution and other patterns may lie with analytical tools

that use two powerful multivariate concepts, the adaptive land-

scape and the G-matrix (Arnold et al. 2001). In other words, we

argue that an understanding of the adaptive landscape and its ef-

fects on the G-matrix is central to a synthetic vision of emerging

generalities in the field of phenotypic evolution. We begin with the

adaptive landscape because it both directs the course of evolution

and has long-term effects on processes of mutation and inheri-

tance (Table 1 presents a summary of abbreviations and symbols

used in this article).

The Adaptive Landscape
The adaptive landscape (AL) for phenotypic traits is a powerful

integrative concept (Lande 1979; Arnold et al. 2001). We will

Figure 1. Individual selection surfaces and adaptive landscapes

for two phenotypic traits can be represented by matrices or con-

tour plots. The plots illustrate two kinds of bivariate stabilizing

selection. Eigenvectors (principal components) are shown with

dashed lines. The bivariate phenotypic mean is situated at the

adaptive peak (intersection of the dashed lines) and consequently

there is no directional selection. (A) An individual selection surface

with weak stabilizing selection on each trait (γ11 = γ22 = −0.20)

but no correlational selection (γ12 = 0). In this plot, expected indi-

vidual fitness (contours) is a function of trait values. Because the

curvature of this surface is weak, it can be approximated by a bi-

variate Gaussian surface described by the ω-matrix. (B) The adap-

tive landscape corresponding to the individual selection surface

described in (A). In this plot, average population fitness (contours)

is a function of average trait values. P is the within-population

variance–covariance matrix before selection. The elements in the

illustrated case are P11 = P22 = 1, P12 = P21 = 0. (C) An individual

selection surface with weak stabilizing selection on each trait and

positive correlational selection (ω12 = 44, rω = 0.9). (D) The adap-

tive landscape corresponding to (C). The P-matrix is the same as in

(B). Note that in these examples, the AL and the ISS have similar

curvature and orientation because selection is weak (i.e., ω-matrix

is large) relative to the P-matrix.

use the AL to organize the results and discussions that follow.

We will assume that the phenotypic traits in question have been

measured on (or transformed to) a scale on which intrapopulation

variances are roughly constant, irrespective of trait means. In

the AL for such traits, the vertical dimension is mean fitness of

a population (or its natural logarithm), expressed as a function

of trait means (Lande 1976a, 1979; Fig. 1). This AL is closely

related to the individual selection surface (ISS), in which the

vertical dimension is the expected relative fitness of an individual

2 4 5 2 EVOLUTION OCTOBER 2008



COMMENTARY

within a population as a function of trait values. Because the ISS

is empirically accessible, the AL is also amenable to measurement

and scrutiny; it is not a metaphor. The ISS can be approximated

using quadratic regression analysis of data on the relative fitness

of individuals and their values for phenotypic traits (Lande and

Arnold 1983; Brodie et al. 1995). In general terms, one can think of

the AL as the ISS averaged over the phenotypic trait distribution,

with the consequence that the AL is smoother with less curvature

than the ISS. Although one can specify cases in which the AL and

ISS are dissimilar, in many cases they will be similar, especially

when selection is weak. For such a case, shown in Figure 1, the

two surfaces have the same optimum (peak), and the AL is only

slightly less curved than the ISS.

The AL for phenotypic traits can be used to represent many

important features of evolution (Simpson 1944; Lande 1979,

2007; Arnold et al. 2001). The strength of stabilizing selection

acting on the characters can be represented by the curvature of the

landscape (Lande and Arnold 1983). Strong stabilizing selection

is represented by a peak with steep slopes, whereas weak stabi-

lizing selection is represented by a hilltop surrounded by gradual

slopes. Correlational selection can be represented by ridges, cor-

ridors, or tubes in a multivariate landscape (Lande and Arnold

1983; Wagner 1984, 1988; Bürger 1986a,b; Phillips and Arnold

1989; Blows et al. 2004; Blows 2007). An important general

property of the AL is that the population mean tends to evolve

upwards on this surface, toward an adaptive peak (Lande 1979,

1980a). The departure of the phenotypic mean from an adaptive

peak (e.g., because the mean drifts or the peak moves) induces

directional selection, which causes the mean to evolve back to-

ward the peak. The tempo of evolution can be captured by models

of peak movement (Lande 1976a; Slatkin and Lande 1976; Bull

1987; Felsenstein 1988; Charlesworth 1993a,b; Lynch and Lande

1993; Bürger and Lynch 1995; Hansen and Martins 1996; Lande

and Shannon 1996; Arnold et al. 2001). Long-term stability of

peak position results in evolutionary stasis; the phenotypic mean

evolves toward the stationary peak and remains in its vicinity.

The mean evolves in a stochastic pattern about such a stationary

peak if the population is of finite size, or if the peak itself moves

stochastically about a particular point. Sustained movement of

the peak in a particular direction results in phenotypic gradual-

ism, as the mean tracks the trend in peak movement. Landscape

dynamics can also be used to represent the ecological evens that

underlie adaptive radiations, for example, invasions of predators

or competitors or other kinds of environmental change that induce

selection (Simpson 1944; Schluter 2000). Before leaving this sur-

vey we should mention that we have assumed that selection is

frequency independent. When selection is frequency dependent,

the tendency to maximize fitness and some other properties of the

AL become problematic (Lande 2007).

It is useful to visualize both the AL and the ISS as surfaces

with fitness contours and characteristic axes (Fig. 1). For the

remainder of our review we will be concerned with a special case

in which multivariate stabilizing selection is relatively weak, so

that a single adaptive peak governs the deterministic behavior of

the multivariate trait mean (In contrast, effective population size

governs the stochastic behavior of the mean, in other words, its

drift). Despite the simplicity of this vision, we will depart from

the view of selection, introduced by Schmalhausen (1949) and

Fisher (1958), in which the surface is portrayed as a circular, hill-

shaped surface (Fig. 1A and 1B). In particular, we will allow for

the possibility of correlational selection (selection that directly

affects trait correlations within a generation), so that the surface

is a ridge, tilted in trait space (Fig. 1C and 1D). Correlational

selection is important because of the dominant role it plays in the

evolution of phenotypic integration by shaping trait correlations

(Lande 1980b). Finally, in a convention that will be important for

the rest of our article, we will capture the essential features of

the ridge and its orientation by drawing the principal components

or eigenvectors of our bivariate surfaces (Fig. 1). The principal

component (leading eigenvector) is oriented along the main axis

of the ridge. (Associated with each eigenvector is an eigenvalue

that measures the amount of curvature in that direction.) This

leading axis (with the largest eigenvalue) defines a dimension in

which fitness changes the least per unit change in the traits. In

the case of a bivariate normal (Gaussian) ISS (Fig. 1), the largest

eigenvalue is analogous to a variance; the larger the “variance,”

the less fitness changes per unit change in the traits. We will

refer to this dimension as the selective line of least resistance. An

important significance of this dimension is that for many kinds

of traits one can argue that peak movement is especially likely

along this selective line (Arnold et al. 2001). We now turn to two

entities that determine how the trait mean responds to the AL, the

G- and M-matrices.

G- and M-matrices in Dynamic
Equilibrium
The G-matrix is the central concept in understanding the inheri-

tance of multiple traits, each of which is affected by many genes

(Lande 1979; Arnold 1992; Lynch and Walsh 1998). Each indi-

vidual in a population possesses a genetic value for each phe-

notypic trait that it transmits to its offspring (Fisher 1918). We

can think of those genetic values as forming a statistical cloud

that might be shaped like a soccer ball or a cigar (Fig. 2). We

can represent the cloud with a G-matrix that consists of additive

genetic variances for the traits on its main diagonal and set of ad-

ditive genetic covariances between traits (arising from pleiotropy

and linkage disequilibrium) as its off-diagonal elements (Fig. 2).

EVOLUTION OCTOBER 2008 2 4 5 3



COMMENTARY

Figure 2. The distribution of additive genetic values for two traits

can be represented as a cloud of values or a matrix, G. Same con-

ventions as in Figure 2. (A) A data cloud with no genetic correlation

(rg = 0). (B) A data cloud with a strong positive genetic correlation

(rg = 0.9).

Alternatively, assuming a normal (Gaussian) bivariate distribution

of values, we can represent the cloud with a 95% confidence el-

lipse whose axes represent the principal components or eigenvec-

tors of the G-matrix (Fig. 2). The length of each axis is determined

by the corresponding eigenvalues of the G-matrix. (More exactly,

the distance along each axis, from the center of the ellipse to its

edge, is 1.96 times the square root of the corresponding eigen-

value). The longest axis of the ellipse (the leading eigenvector) is

of particular interest because it represents the dimension in trait

space for which there is the maximum amount of genetic vari-

ance. This dimension is sometimes called the genetic line of least

resistance (Schluter 1996).

Thinking of the G-matrix as an ellipse, we can imagine the

impact of opposing forces that buffet the G-ellipse each genera-

tion. For the moment our aim is to formulate an intuitive picture

of this buffetting; we will treat the effects more formally later on.

Selection, especially stabilizing selection, will nibble away at the

cloud each generation. The immediate effects of such selection act

within a generation and should tend to make the ellipse smaller,

while possibly altering its shape and orientation. The biggest ef-

fects of selection should occur in those dimensions of the AL

with the greatest curvature, for in those dimensions nibbling is

the strongest. In contrast, finite sampling of parents each genera-

tion should on the average reduce the size of the ellipse without

changing its shape or orientation. Mutation is the opposing pro-

cess that counteracts the reducing/torquing effects of selection

and drift. We can visualize the mutations that enter the population

each generation at a particular locus as a sample from a cloud

of pleiotropic values that can be represented either as a matrix

(the M-matrix) or a 95% confidence ellipse (Fig. 3). The leading

eigenvector of the M-matrix might be out of alignment with the

main axis of the AL. In such a case at equilibrium, the AL torques

the G-matrix in one direction each generation, while the input

from mutation (and recombination) torques G in the opposite

Figure 3. The distribution of new mutational effects on two traits

from a particular locus can be represented as a cloud of values or

a matrix, M. The 95% confidence ellipses for each data cloud are

shown. The axes inside each ellipse are eigenvectors (principal

components). (A) A cloud of mutations with no correlation (rμ =
0). (B) A cloud of mutations with a strong positive correlation in

mutational effects (rμ = 0.9).

direction. We can imagine the G-ellipse at equilibrium stochasti-

cally rocking to and fro, while pulsating in size and shape under

the opposing forces of selection, drift, and mutation. At another

extreme, this wobbling and pulsating of the G-ellipse might be

quite small should the main axes of the AL and M-matrix happen

to be aligned.

It is important to realize that G might change on three

timescales. In the preceding discussion we focused on a short,

within-generation timescale. Within generations, G pulsates and

wobbles in response to opposing forces, even after it has equli-

brated to those forces. On a longer timescale, G might evolve in

response to a change in selection regime (e.g., a new AL) and

attain a new equilibrium state. If we think of the M-matrix as

a constant, for the moment, then we might imagine the newly

equilibrated G-ellipse to represent a compromise between the AL

and the M-ellipse. In particular, the leading eigenvector of G

should be intermediate between the leading eigenvectors of the

AL and M. On the other hand, the shape of G might be fatter

or narrower than M depending on the multivariate curvature of

the AL. Finally, let us relax our assumption that the M-matrix

is constant. Just as G might evolve in response to the AL, so

might M. Although we might expect M to evolve toward align-

ment (shared eigenvectors) with the AL, we should also expect

that evolution to be slower than the evolution of G for a simple

reason. The genetic values summarized by G make a direct con-

tribution to the phenotypic values of an individual. In contrast, the

mutational tendencies summarized by M contribute to phenotypic

values more rarely (by 2–4 orders of magnitude!) and even when

they do contribute, their average effect is small. In summary G

fluctuates on a very short timescale and evolves on both an in-

termediate timescale (on which M is effectively constant) and a

long timescale (during which M itself might evolve). When we
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turn to the results of simulation studies, in a later section, we

will explore the stability and evolution of G on all three of these

timescales.

Importance of the G-matrix
and Its Stability
The G-matrix plays a crucial role in formal theory for the evo-

lution of polygenic traits, including the population’s evolutionary

response to the AL. The G-matrix profoundly affects response of

the phenotypic mean to selection (Lande 1979). G can also be

used to reconstruct historical patterns of selection and to test ge-

netic drift as a null model for differentiation (Lande 1979; Jones

et al. 2004; Hohenlohe and Arnold 2008). In all three contexts,

stability of the G-matrix is an important but unresolved problem.

Because the G-matrix is bound to fluctuate in a population of

finite size (Lande 1979), the question of stability does not have

a simple yes or no answer. Instead we must consider a set of

more subtle issues. What types of quantitative characters have

relatively stable G-matrices and over what timescale? Are some

aspects of G-matrix structure more stable than others? How much

are evolutionary inferences affected by systematic and random

changes in the G-matrix? Although the importance of these is-

sues is both apparent and widely acknowledged, we have so far

been unable to settle them with the analytical machinery of alge-

bra and calculus.

Analytical Studies of G-matrix
Evolution and Stability
The theoretical characterization of the G-matrix after it has equi-

librated under a static regime of selection, mutation, and recom-

bination has only been achieved under various sets of simplifying

assumptions. These assumptions include additivity of genetic ef-

fects, linkage equilibrium, and infinite population size. Analytical

approximations for the magnitude of the constituent variances and

covariances at mutation–selection balance have been obtained for

only a narrow range of conditions defined by simplifying assump-

tions such as a multivariate Gaussian distribution of allelic effects

(Lande 1976b, 1980b; Turelli and Barton 1990), mutational ef-

fects that are much larger than the standing genetic variation

(Turelli 1985), and a certain model of constrained pleiotropic

effects (Wagner 1989). For finite populations, no theoretical pre-

dictions for the multivariate case have yet been derived. In addi-

tion, we do not have equations for the generation-by-generation

dynamics of the evolving G-matrix, except under very special

assumptions (Turelli 1985). Even in the case of a single charac-

ter, these issues are fairly complex, and it has been shown that

the dynamics of the genetic variance depends upon the higher

moments of the distribution of allelic effects as well as on other

genetic details (Barton and Turelli 1989; Bürger 2000). Conse-

quently, we cannot predict how much the G-matrix will wobble

and pulsate due to the interaction of genetic drift with selection,

mutation, and recombination, even if the AL remains constant.

For all these reasons, the evolution and stability of the G-matrix

have been viewed as empirical issues (Turelli 1988) and pursued

as such over the last 25 years (Steppan et al. 2002).

Empirical Studies of G-matrix
Evolution and Stability
Various techniques for comparing G-matrices have been proposed

and each has strengths and weaknesses (Steppan et al. 2002). We

will summarize the empirical work using just one of these tech-

niques, the Flury hierarchy, because the format for comparisons

can be easily related to the analytical and simulation work on the

G-matrix (see Houle et al. 2002 for a discussion of limitations).

The Flury hierarchy is based on comparisons of eigenvectors and

eigenvalues (Flury 1988; Phillips and Arnold 1999; Arnold and

Phillips 1999). A useful feature of this approach is that these com-

parisons can be arranged in a hierarchy of tests (Fig. 4) that range

Figure 4. The Flury hierarchy for comparing G-matrices is a

nested series of hypotheses that are tested by comparing eigen-

vectors and eigenvalues. The hypotheses are listed on the left

and depicted on the right with 95% confidence ellipses. From

top to bottom, the hypotheses are: (A) equal matrices (eigenvec-

tors equal, eigenvalues equal), (B) proportional matrices (eigen-

vectors equal; eigenvalues proportional), (C) matrices with com-

mon principal components, CPC (eigenvectors equal, eigenvalues

not equal), and (D) unrelated matrices (eigenvectors and eigenval-

ues not equal). For more than n = 2 traits, an additional possible

hypothesis is partial CPC, in which up to n − 2 eigenvectors are

shared among matrices, but the remaining eigenvectors differ.
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from a test for equal matrices (identical eigenvectors and eigen-

values) to a test for unrelated matrices (dissimilar eigenvectors

and eigenvalues). As we will see, G-matrix comparisons often

fall in the intermediate territory in which some or all eigenvectors

are equal but eigenvalues are dissimilar.

The predominant empirical approach has been to com-

pare matrices sampled from nature or from experimental treat-

ments, each of which has strengths and weaknesses (Phillips and

McGuigan 2006). A strength of comparing matrices from natural

populations is that the results are likely to reflect configurations

under natural conditions. The histories of selection and popula-

tion size may be unknown, but at least they are representative

of the real world. A limitation in nonexperimental work is that

usually only two or three matrices are available for comparison,

because of the difficulty of assembling the large samples of fam-

ilies needed to estimate G. On the experimental side, G-matrices

have been compared after separate subpopulations have been ex-

posed to different mutagens, allowed to drift, or grown under

different rearing conditions. A strength of the approach is that

the nature of the treatments is known. A limitation is that some

natural forces that normally promote eigenvector stability may be

missing. Nevertheless, comparative work of this kind has revealed

some intriguing results.

G-matrices sampled from experimental and natural popu-

lations often show conserved aspects of structure. In particular,

the eigenvectors (principal components) of the matrix often are

conserved (Fig. 5). A large proportion of the comparisons that

Figure 5. Graphical summary of the results of empirical comparisons of G-matrices. Only 31 studies that made comparisons with the

Flury hierarchy are included here. From left to right, the four panels refer to studies that compared experimental populations of the

same species that have been exposed to different environmental treatments (n = 63 pairwise comparisons), males and females from

the same population (n = 12), conspecific populations sampled from nature (n = 97), or different species sampled from nature (n =
32). The outcomes of statistical tests are classified into categories described in Figure 4. Full CPC means that matrices had all principal

components (eigenvectors) in common; partial CPC means at least one but not all principal components are in common. Some studies

compared multiple pairs of matrices. In such cases, all of the outcomes are tabulated.

have been made show similarity in eigenvectors (equal, pro-

portional, partial CPC, or full CPC). In comparisons of exper-

imental treatments, sexes, conspecific populations, and different

species the proportion of comparisons with similar eigenvectors

is 78%, 75%, 74%, and 78%, respectively (see http://oregonstate.

edu/∼arnoldst/G comparisons/index.htm for more details and a

list of references). A survey of 35 additional studies that compared

G-matrices of different conspecific populations and species using

other methods yielded similar results. Evidence of matrix similar-

ity was found in 74% of those studies. Despite this strong signal

of stability across diverse comparisons, a variety of studies have

also shown that selection, such as that associated with character

displacement and adaptive radiations, can lead to differences in G,

even over short timescales (Fong 1989; Jernigan et al. 1994; Van

‘T Land et al. 1999; Roff 2002; Roff et al. 2004; Cano et al. 2004;

McGuigan et al. 2005; Doroszuk et al. 2008). Experiments have

also established that the G-matrix can wobble, inflate, and con-

tract in the absence of selection, especially in small populations

(Phillips et al. 2001).

Although computer simulations of evolving G-matrices do

not solve all of the problems that plague empirical comparisons

and their interpretation, they do offer a complementary approach

to the problems of G-matrix evolution and stability. In particular,

simulation studies can help us understand the forces responsible

for eigenvector stability in comparative studies, as well as the

erratic wobbling of the matrix that can occur when selection is

experimentally removed.
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Simulation Studies of G-matrix
Evolution and Stability
Several studies have used a simulation-based approach to study

various aspects of quantitative trait evolution (Bürger et al. 1989;

Wagner 1989; Bürger and Lande 1994; Baatz and Wagner 1997;

Wagner et al. 1997; Reeve 2000), but only recently has this ap-

proach focused specifically on G-matrix evolution and stability

(Jones et al. 2003, 2004; Guillaume and Whitlock 2007; Jones

2007; Revell 2007). To make this approach practical, usually

one studies only two traits, each affected by 10–100 pleiotropic

loci. Despite these limitations, the programs simulate processes

of mutation, selection, population regulation, and inheritance in

populations of hundreds to thousands of individuals over thou-

sands of generations. An important feature of these simulation

programs is that—so far as is possible—their parameter values are

anchored in actual data. The programs are designed so that their

parameters mesh with available analytical theory, enabling both

cross-checking of results and realistic choices of values for de-

scriptors of mutation, selection, inheritance, population size, and

peak movement by reference to empirical surveys (Endler 1986;

Mousseau and Roff 1987; Kingsolver et al. 2001—see Jones et al.

2003; Estes and Arnold 2007). A consistent result with these sim-

ulation programs is that they confirm theoretical predictions about

the evolution of the phenotypic mean. For example, the trait mean

does evolve toward an optimum, and it tracks a moving optimum

with the theoretically predicted degree of lag. The main goal in

the new genre of simulation studies is to answer questions about

G and M that cannot be answered with available theory.

In the first study in this new simulation genre, Jones et al.

(2003) examined the evolution and stability of the G-matrix in

response to a stabilizing AL that is constant both in configura-

tion and position. Focusing first on the shortest time scale, within

generations, one of the main findings was that different aspects of

stability react differently to selection, mutation, and drift. In par-

ticular, small population size is a key factor causing fluctuations

in eigenvalues and their proportionality. In contrast, correlational

selection (large rω) and pleiotropic mutation (large rμ), as well as

large population size promote stability of the eigenvectors of the

G-matrix (Fig. 6). Eigenvector stability is especially enhanced

if correlational selection and pleiotropic mutation are not only

strong but have the same sign (i.e., aligned eigenvectors) (Jones

et al. 2003). Under these conditions, stability is retained even if

the position of the optimum fluctuates randomly from generation

to generation (Revell 2007).

Focusing on a longer time scale, we find that the G-matrix

evolves in expected ways to the AL and the pattern of mutation.

In the absence of correlational selection (rω = 0) and mutational

correlation (rμ = 0), the average G-ellipse is nearly circular,

although the ellipse fluctuates wildly about this average (first row

Figure 6. Evolution and stability of the G-matrix in response to

different patterns of mutation and selection (stationary optimum).

Each row shows the results (snapshots) from a single simulation

run lasting 2000 generations. The first three ellipses in each row

are the 95% confidence ellipses (or equivalent) for the M-matrix,

the adaptive landscape (ω + P matrix), and the resulting average

G-matrix (n = 2000 generations). These three ellipses are shown

on different scales. The average G-matrix is the reference size,

but the M-matrix is magnified by a factor of 3, and the ω + P

matrix is reduced by a factor of 10. The average P-matrix (n =
2000 generations) was added to the ω-matrix to compute the ω +
P matrix. The last eight ellipses in each row show snapshots of the

G-matrix (95% confidence ellipses) every 200 generations, shown

at the same scale as the average G-matrix. From top to bottom,

the values of mutation and selection and the resulting average

genetic correlation are: (A) rμ = rω = 0, rg = −0.09. (B) rμ = 0,

rω = 0.75, rg = 0.29. (C) rμ = 0.50, rω = 0, rg = 0.48. (D) rμ =
0.50, rω = 0.75, rg = 0.64. (E) rμ = 0.90, rω = 0.90, rg = 0.93. The

following parameters are the same for all rows: Ne = 342, ω11 =
ω22 = 49, and the mutational variances for each character are 0.05

(as in Fig. 3).

in Fig. 6). At the opposite extreme, when the leading eigenvectors

of the AL and the M-matrix are both inclined at an angel of 45◦,

the leading eigenvector of G is pitched at the same angle (last row

in Fig. 6). Between these two extremes, G tends to evolve to a

shape and orientation that represents an intermediate compromise

between the AL and M. In other words, the simulation results

confirm our intuition and theoretical expectations (Lande 1980b)

that G should evolve toward alignment with the AL and M.

These results allow us to interpret the features of conser-

vation observed in comparative studies of actual G-matrices. In

small simulated populations, and in the absence of restraining fac-

tors, the G-matrix fluctuates wildly in size and orientation. Both

the eigenvalues and the eigenvectors of the matrix are unstable.

Thus, the stability of the G-matrix that has commonly been ob-

served in comparative studies should not be taken for granted. It
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Figure 7. Contrasting conditions can promote instability or sta-

bility of the G-matrix on an adaptive landscape with a moving

optimum. Results from simulations using the Jones et al. (2004)

program are shown in this figure. In both cases the peak of the

adaptive landscape (solid red dot) has moved from the bottom

left to the upper right at the same rate. Peak position is shown ev-

ery 300 generations. The bivariate phenotypic mean (intersection

of the axes of the G-matrix, shown as a blue ellipse) tracks the

moving peak and is also shown every 300 generations. Effective

population size is relatively small (Ne = 342). (A) No correlated

pleiotropic mutational effects (shown as a circular green ellipse,

rμ = 0) and no correlational selection (shown as a circular adap-

tive landscape, red contours, rω = 0) promote instability of the

G-matrix. Notice that G (blue ellipses) changes in size, shape, and

especially in orientation from snapshot to snapshot. (B) Strong

mutational correlation (rμ = 0.9) and strong correlational selec-

tion (rω = 0.9), combined with peak movement along the selec-

tive line of least resistance, promote stability in the size, shape,

and orientation of the G-matrix. Notice that the cigar-shaped G-

matrices hardly vary from snapshot to snapshot. Although the

three stability-promoting conditions are combined here, other sim-

ulations show that they make individual contributions to the sta-

bility and evolution of the G-matrix.

must arise from a factor or set of factors that confer stability. The

Jones et al. (2003) simulation study suggests that this set of fac-

tors includes large population size, as well as strong, persistent,

and coordinated patterns of correlational selection and pleiotropic

mutation. The fact that eigenvector stability of G-matrices is so

frequently observed suggests that this set of circumstances is com-

mon in nature. We will return to the issue of coordinated patterns

of mutation and selection later in this article.

In another study, Jones et al. (2004) allowed the adaptive peak

to move while the landscape itself maintained a constant config-

uration (Fig. 7). This model of selection corresponds to temporal

change in the environment or the invasion of a new adaptive zone

(Simpson 1944). The addition of a moving optimum yielded sev-

eral important new insights. First, evolution along a selective line

of least resistance (i.e., along the eigenvector corresponding to

the leading eigenvalue of the AL) increased stability of the ori-

Figure 8. The M-matrix tends to evolve toward alignment with

the adaptive landscape. This figure summarizes the results of sim-

ulations in which one feature of the M-matrix, the mutational

correlation (rμ), was allowed to evolve as the orientation of the

adaptive landscape was varied. In different runs the selectional

correlation (rω) was held constant at 0.90 by systematically vary-

ing the elements of the ω-matrix, so that the orientation of the

leading eigenvector of the adaptive landscape (angle of correla-

tional selection) varied from about 19–45 degrees (replotting of

data shown in Fig. 5 of Jones et al. 2007). Each point represents

the mean of 50 replicate runs (± SE).

entation of the G-matrix relative to stabilizing selection alone

(Fig. 7B). Evolution perpendicular to genetic lines of least resis-

tance decreased G-matrix stability. Second, evolution in response

to a continuously changing optimum can produce persistent mal-

adaptation for correlated traits, because the evolving mean never

catches up with the moving optimum. Furthermore, when the op-

timum for one trait moves, but the optimum for the other trait

does not, the mean of that second trait can be permanently dis-

placed from its optimum as a consequence of correlated responses

to selection. Overall, these results show that directional selection

actually can increase stability of the G-matrix.

Guillaume and Whitlock (2007) have shown that strong mi-

gration can also affect G-matrix evolution and stability. Consider

the case of an island population that receives migrants from a

larger mainland population with a different adaptive peak. The

effects of migration depend on its strength and the direction of

peak movement. Strong migration can stabilize the G-matrix if

peak movement during island–mainland differentiation is along

a selective line of least resistance. In this case, migration can

exaggerate the cigar shape of the G-matrix. Destabilization by

migration is also possible if peak movement is perpendicular to

the selective line of least resistance. In this case, a cigar-shaped

G-matrix can be fattened and rotated by migration.
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Stability and Evolution of the
G-matrix When Mutational Effects
Evolve
In the simulation studies discussed so far, the evolution of G was

constrained because the process of mutation was not allowed to

evolve. If we allow M to evolve, we might expect it to evolve to-

ward alignment with the AL (Lande 1980b; Jones et al. 2007). In a

simplified approach with two characters, Jones et al. (2007) found

that even though the M-matrix experiences extremely weak se-

lection, it does indeed evolve in response to the AL in predictable

ways. In particular, the M-matrix tends to evolve toward align-

ment with the AL (Fig. 8). This result is important because it

indicates that the M-matrix, like the G-matrix, can be shaped by

the AL. Furthermore, an evolving M-matrix confers greater sta-

bility on G than does a static mutational process. Thus, this recent

study increases optimism that G-matrix stability may be a firmly

rooted empirical reality.

At the same time, additional simulation studies are needed

that will move past the simplifying assumptions used in the first

round. The approach of Jones et al. (2007) was simplified by as-

suming that gene effects were purely additive and variation in the

mutation process was contrived in the sense that it did not arise

naturally from genetic architecture. In real genetic systems, vari-

ation in pleiotropic mutation arises from nonadditive interactions

between genes (epistasis) (Cheverud 1996; Hermisson et al. 2003;

Carter et al. 2005). Thus, a current challenge is to understand how

the G- and M-matrices evolve in more realistic systems of genetic

architecture that include dominance and epistasis.

Conclusions
Our review of theoretical and empirical work on G-matrix sta-

bility and evolution reveals several results that could shape new

methodologies for analyzing adaptive radiations. One important

result is supported by empirical, analytical, and simulation stud-

ies. The G-matrices of characters under multivariate stabilizing

selection in large populations may be relatively stable in size and

shape and show a stable orientation that is aligned with the AL.

Theoretical work, for instance, indicates that alignment between

G and the AL is produced directly by stabilizing and correlational

selection and indirectly as the M-matrix evolves toward alignment

with the landscape. Furthermore, the simulation studies indicate

that movement of the adaptive peak can confer additional stabil-

ity on the orientation (eigenvectors) of the G-matrix, especially

when that movement is aligned with the leading eigenvector of

the landscape. These results are important because they identify

a class of phenotypic characters whose adaptive radiations can be

analyzed by assuming relative constancy of the G-matrix.

Our review also reveals three important, unresolved issues in

phenotypic evolution that may hold the key to understanding the

five emerging generalizations listed at the start of this article. First,

long-term persistence in the configuration of the AL seems likely

on several grounds (Estes and Arnold 2007) and could produce

persistent, coordinated patterns of both pleiotropic mutation and

inheritance (Arnold et al. 2001; Jones et al. 2007). Although

landscape persistence seems plausible, the jury is still out on

this important empirical issue. Comparative studies of the AL

are still so rare that we may have to settle for indirect evidence

for persistence. Thus, the patterns of stasis and constrained trait

divergence that have been regularly observed in the fossil record

are telling because they suggest persistent stabilizing selection

(Estes and Arnold 2007). Second, the simulation work indicates

that the structural stability of the G-matrix that has regularly been

observed in comparative studies could arise from alignment of

G with persistent ALs. Here again is an unresolved empirical

question, one that will require comparing G with ALs. Third, the

simulation studies have also shown that the evolution and stability

of G is affected by the direction of movement of the adaptive peak.

On first principles one can argue that peak movement is likely to

occur along selective lines of least resistance (Arnold et al. 2001).

Once again, the jury is out. We urgently need more case studies in

which the coevolutionary pattern of means of multiple populations

or species can be compared with the pattern of selection within

populations (Hohenlohe and Arnold 2008).
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