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Abstract

This paper analyzes the special features of electricity spot prices derived from

the physics of this commodity and from the economics of supply and demand

in a market pool. Besides mean-reversion, a property they share with other

commodities, power prices exhibit the unique feature of spikes in trajectories.

We introduce a class of discontinuous processes exhibiting a ”jump-reversion”

component to properly represent these sharp upward moves shortly followed by

drops of similar magnitude. Our approach allows to capture - for the first time to

our knowledge - both the trajectorial and the statistical properties of electricity

pool prices. The quality of the fitting is illustrated on a database of major US

power markets.
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I. Introduction

A decade ago, the electricity sector worldwide was a vertically integrated industry

where prices were set by regulators and reflected the costs of generation, transmis-

sion and distribution. In this setting, power prices used to change rarely, and in an

essentially deterministic manner. Over the last ten years, major countries have been

experiencing deregulation in generation and supply activities (transmission, and even

more so, distribution activities generally remaining under the state authority). One

of the important consequences of this restructuring is that prices are now determined

according to the fundamental economic rule of supply and demand. Supply is pro-

vided by generators and demand is represented by industrial consumers and power

marketers buying electricity in the pool to sell it to end-users. There is a ”market

pool” where bids placed by generators to sell electricity for the next day are con-

fronted to purchase orders and equilibrium prices are defined as the intersection of

the aggregate demand and supply curves for each hour (or half-hour) in the day.

In a parallel way, deregulation of the energy industry has paved the way for a

considerable amount of trading activity, both in the spot and derivative markets. It

has provided utilities with new opportunities but challenges as well. The volume risk

they have been used to analyze and account for in their revenue projections is now

augmented by price risk. This price risk has forced the industry to go into financial

practices such as hedging, use of derivatives and, quite importantly, to identify and
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price the options embedded in energy contracts that have been written for decades.

Accordingly, the scheduling of plant operation and maintenance has become the sub-

ject of even increased scrutiny and concern.

In contrast to stocks and bonds, electricity prices are affected by transmission

constraints, seasonality, weather, by the nature of the generation stack and the non-

storability constraint (outside hydro). An implication of these specific features is

that electricity prices are much more likely to be driven by spot demand and supply

considerations than other commodities, with demand in the short-term market being

fairly inelastic. As a result, sizeable shocks in production or consumption may give

rise to the price jumps which have been observed since 1998 in various parts in the

United States. Leaving aside the California 2000 events which were possibly driven

by flaws in market design and wrongdoings on the part of some major players, spike

prices have been motivated by disruption in transmission, generation outages, extreme

weather or a conjunction of these circumstances.

Today, an important fraction of the literature on electricity belongs to the eco-

nomics and industrial economics arena, and analyzes deregulated electricity markets

from the regulatory and industrial organization viewpoints (see for instance Joskow

and Kahn (1999)). It is clear that in the understanding of the behavior of electricity

prices, economics, finance and physics all come into play; a proper mathematical rep-

resentation of spot prices is however a necessary exercise and the cornerstone for the

2



optimal scheduling of physical assets, the valuation of financial and real options and

more generally the risk management of utilities and energy companies. For instance,

volumetric options granted in traditional energy contracts or traded as individual

financial instruments crucially depend on the spot price of electricity at any date

during the lifetime of the option.

Some initial papers on the modeling of power price processes include Deng (1999),

Bhanot (2000), Barone-Adesi and Gigli (2002), Lucia and Schwartz (2000), Knittel

and Roberts (2001), Barlow (2002), Escribano et al. (2002). We extend this litera-

ture by proposing a family of stochastic processes meant to represent the trajectorial

and statistical features displayed by electricity spot prices in deregulated power mar-

kets. We also introduce an effective method to identify spikes in historical raw data.

In order to empirically investigate the information content of observed power price

dynamics, we design a procedure for best fitting our model to market data both in

terms of trajectories and moments. Since our focus is an analysis of electricity prices

in terms of the appropriate mathematical process representing them (as well as the

parameters attached to it), we shall solely work under the physical probability mea-

sure. Yet, our concern is to preserve the Markov property in the view of developments

on standard and exotic derivatives valuation.

The outline of the paper is as follows. Section II discusses the main features of

power prices and of the stack function. Section III introduces a class of processes that
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may encompass prices observed in a variety of regional markets. Section IV contains

the description of data for three major U.S. power markets which exhibit different

degrees of mean-reversion and spike behavior. Section V analyzes the appropriate

statistical methods to select a process within the proposed class in order to match ob-

served spot prices. Alternative model specifications are also discussed in that section.

Section VI presents empirical results for all models and markets under investigation.

Section VII concludes with a few comments and suggestions for future research.

II. The Key Features of Power Prices

Most of the important literature on commodities has focused on storable commodities

(see for instance Fama and French (1987)). The same property applies to the specific

case of energy commodities (oil being the fundamental example), since deregulated

power markets were established fairly recently. Moreover, whether it includes electric-

ity or not, most of the important research has focused on forward curves: Litzenberger

and Rabinovitz (1995) document that nine-month oil futures prices are below the one-

month prices 77% of the time, i.e., that oil forward curves are mostly ”backwardated”.

Routledge, Seppi and Spatt (2000) propose an equilibrium term structure of forward

prices for storable commodities and show that these forward curves differ from those

for stocks and bonds because of the timing option attached to the ownership of the

physical goods in inventory. Bessembinder and Lemmon (2002) build directly an equi-
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librium model for electricity forward markets derived from optimal hedging strategies

conducted by utilities (power marketers, speculators and other types of market par-

ticipants not being incorporated in the equilibrium analysis). They compare in this

setting forward prices to future spot prices and show that the former are downward-

biased estimators of the latter if expected demand is low and demand risk is moderate;

in contrast the forward premium increases when either expected demand or demand

risk is high, because of the positive skewness in the spot power price distribution.

These results are quite instructive since in power markets, like in any other com-

modity markets, the validity of the representation of forward prices as expectations

of future spot prices is a matter of interest for all participants. Geman and Vasicek

(2001) empirically confirm Bessembinder and Lemmon’s findings and demonstrate,

on a U.S. database, that short-term forward contracts are upward biased estimators

of future spot prices, in agreement with the high volatility and risk attached to U.S.

spot power markets.

Our perspective in this paper is complementary and distinct at several levels.

Firstly, we are interested in the modeling of the spot price of electricity, since we

believe that in the wake of deregulation of power markets, a proper representation

of the dynamics of spot prices becomes a necessary tool for trading purposes and

optimal design of supply contracts. As discussed in Eydeland and Geman (1998), the

non-storability of electricity implies the breakdown of the spot-forward relationship
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and, in turn, the possibility of deriving in an equilibrium approach the fundamental

properties of spot prices from the analysis of forward curves. Moreover, as may be

exhibited empirically in markets as different as the Nordpool, the U.K. or the U.S.,

electricity forward curve moves are much less dramatic than spot price changes, in

agreement with the less stringent constraints of future delivery.

If we turn to the wide literature dedicated to commodity prices in general, we

observe that the convenience yield plays an important role in many cases. The in-

teresting concept of convenience yield (possibly defined as net of storage costs) was

introduced for agricultural commodities in the seminal work by Kaldor (1939) and

Working (1949). It is meant to represent the benefit from holding the commodity,

either to meet unexpected demand and avoid production interruption or to unwind

a forward or a derivative contract. This benefit accrues for the holder of the com-

modity and not to the owner of a forward contract. More recently, Schwartz (1997)

has included in the modeling of oil prices a stochastic convenience yield and derived

option prices in this framework. Beyond the difficulties posed by the introduction

in a model of such a non-observable risk factor, our view is that a convenience yield

does not really make sense in the context of electricity: since there is no available

technique to store power (outside of hydro), there cannot be a benefit from holding

the commodity, nor a storage cost. Hence, the spot price process should contain by

itself most of the fundamental properties of power, as listed below.
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A first characteristic of electricity (and other commodity) prices is mean reversion

toward a level that represents marginal cost and may be constant, periodic or periodic

with a trend. In contrast, when looking at equity price modelling, the financial

literature has classically introduced an average growth of the stock price depicted

by the drift term of the geometric Brownian motion. This is fully consistent with

such models as the Capital Asset Pricing Model which express the fact that the stock

buyer expects to receive on her investment the risk-free rate as well as a risk premium.

Results of similar studies conducted for commodities are quite different, confirming

that commodities are not assets. Pyndick (1999) analyzes a 127-year period for crude

oil and bituminous coal and a 75-year period for natural gas. He concludes that

prices deflated (and represented by their natural logarithms), exhibit mean-reversion

to a stochastically fluctuating trend line. In the case of power and with a few years

horizon in mind, we propose to represent the diffusion part of the price process as

mean-reverting to a deterministic periodical trend driven by seasonal effects. This

periodicity in the trend reflects the average consumption levels of electricity across

the year and highly depends on climatological conditions in the specific region of

analysis (as we shall see, the mean reversion will be more or less pronounced in

different markets). Therefore, we will consider the periodic feature as a predictable

component of the random evolution of power prices.

A second feature of the price process, unsurprisingly, is the existence of small ran-

7



dom moves around the average trend, which represent the temporary supply/demand

imbalances in the network. This effect is locally unpredictable and may be represented

by a white noise term affecting daily price variations.

A third and intrinsic feature of power price processes is the presence of so-called

spikes, namely one (or several) upward jumps shortly followed by a steep downward

move, for instance when the heat wave is over or the generation outage resolved.

Since shocks in power supply and demand cannot be smoothed away by inventories,

our view is that these spikes are not necessarily due to poor market design and will

persist beyond the transition phase of power deregulation. The California situation

has been widely discussed over the last two years by economists as well as in daily

newspapers, but many studies neglect to mention that the first event of this nature

was totally unrelated to the possible exercise of market power by some key providers:

in the ECAR region (covering several Midwestern states of the U.S.A.), prices in

June 1998 went to several thousand dollars up from 25 dollars per megawatthour.

This spectacular rise was due to the conjunction of a long heat wave, congestion

in transmission of hydroelectricity coming from Canada and production outage of a

nuclear plant hit by a tornado. Within two days, prices fell back to a 50 dollars range

as the weather cooled down and transmission capacity was restored. It is interesting

to observe that, despite the magnitude of the spike (the highest observed so far), the

system in ECAR as well as neighboring regions did not collapse; only some companies
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which had sold electricity options without fully envisioning the risks involved went

bankrupt.

It is clear that the continuous balance between supply and demand by the operator

of a bulk power network may fail more than momentarily under extreme contingen-

cies. For instance in Europe, where weather events are usually less dramatic than in

the U.S. (and capacity reserves probably higher), prices went from 25 to 500 Euros

on the Leipzig Exchange (now European Energy Exchange) for a few days after a

long cold spell in December 2001. From an economic standpoint, this phenomenon

is illuminated by the graph of the marginal cost of electricity supply, called power

stack function (see Eydeland and Geman (1998)). Knowing the characteristics of the

different plants in a given region, we can calculate the marginal cost of generation

for all units. By stacking the units in ”merit order”, i.e., from the lowest to the

highest cost, we can build what is called a supply stack or a stack function. The

marginal cost of a given generator depends in fact not only on current fuel costs but

also on the previous states of the unit in terms of outages or scheduled maintenance.

Leaving the fine details aside (such as unplanned outages), the stack function can be

built by considering only the marginal fuel costs and variable operation and main-

tenance (O&M) costs. The baseload part which is taken care of by low cost plants

(coal-fired or hydro-activated) starts being flat or with a small upward slope; then the

curve reaches a point where there is an exponential increase corresponding to very
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expensive units such as ”peakers” being activated.

Figure 1 represents the merit order stack for the ECAR region. As in all com-

petitive markets, electricity prices are determined by the intersection point of the

aggregate demand and supply functions. A forced outage of a major power plant or

a sudden surge in demand due to extreme weather conditions would either shift the

supply curve to the left or lift up the demand curve, causing in both cases a price

jump. When climate returns to normal and/or other generation units come into play,

the price quickly falls down to the normal range, generating the characteristic spike in

the trajectory. These spikes are obviously a major subject of concern for practitioners

who need to honor their supply contracts at all times. Consequently, they are the

subject of a careful analysis; as for the construction of the stack function, it repre-

sents an important component of the so-called ”fundamental” approach to electricity

prices.

Figure 1 about here

Following the jump-diffusion model proposed in 1976 by Merton to account for dis-

continuities in stock price trajectories, a number of authors have introduced a Poisson

component to represent the large upward moves of electricity prices; then, the ques-

tion of bringing prices down needs to be solved. Deng (1999) introduces a sequential

regime-switching representation which may be a good way of addressing the dramatic

changes in spot prices; the trajectories produced by the model are however fairly

10



different from the ones observed in the market.

Lucia and Schwartz (2000) examine the Nordpool market and choose not to in-

troduce any jump component in the price process. Data from this market shows that

despite the significant part of hydroelectricity in the northern part of Europe, power

prices do not have continuous trajectories; for instance, there is a quasi-yearly violent

downward jump early April at the end of the snow season when uncertainty about

reservoir levels is resolved. This tends to support our view that jump components are

hard to avoid when modelling power prices, since they are structurally related to the

physical features of this commodity. The class of models presented below is meant to

translate the fact that there are several regimes for electricity prices, corresponding

respectively to the quasi-flat and sharply convex parts of the merit order stack. Under

the normal regime, the aggregate capacity of generation in the region under analysis

is sufficient to meet consumer demand. In this regime, price fluctuations are driven by

shifts in consumer demand and shifts in the marginal costs (e.g., fuel) of the marginal

power provider. However, when shocks are extreme, a turbulent regime emerges since

some utilities or other power distributors may default on their deliveries. Because

the demand of each utility for electricity to service consumers’ needs is inelastic until

all financial reserves have been exhausted, spot prices will rise high enough to absorb

these reserves, which may lead to large spikes. Once the demand shock is passed,

prices fall back to the normal fluctuation pattern. We can observe that in the case of

11



storable commodities (such as oil or wheat), prices are determined not only by supply

from existing production and demand for current consumption, but also by the level

of inventories. The buffering effect of these inventories does not exist in the case of

electricity (except to some extent for hydro).

This paper aims to provide a reliable and flexible representation for the random

behavior of power prices. We argue that the classical setting of continuous-path

diffusion processes does not deliver a viable solution to this problem for reasons linked

to trajectories as well as statistical features of daily power price returns. A jump

component may account for the occurrence of spikes through an appropriate jump-

intensity function and also explain the significant deviations from normality in terms

of high order moments observed in logarithmic prices. Figure 2 compares as an

example the empirical distribution in the ECAR market to a normal density with the

same mean and variance.

Figure 2 about here

We now turn to the construction of a family of processes capable of reproducing the

fundamental features of trajectorial and statistical features of power prices.
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III. The Model

We model the behavior of the price process of one megawatthour of electricity traded

in a given pool market.1 In order to ensure strict positivity of prices and enhance the

robustness of the calibration procedure, we represent the electricity spot price in nat-

ural logarithmic scale.2 Throughout the paper, except for the pictures representing

trajectories, the term price will refer to ”log-price”.

The spot price process is represented by the (unique) solution of a stochastic

differential equation of the form:

dE (t) = Dµ (t) dt+ θ1
£
µ (t)−E ¡t−¢¤ dt+ σdW (t) + h

¡
t−
¢
dJ (t) , (1)

where D denotes the standard first order derivative and f (t−) stands for the left limit

of f at time t.

The deterministic function µ (t) represents the predictable seasonal trend of the

price dynamics around which spot prices fluctuate. The second term ensures that any

shift away from the trend generates a smooth reversion to the average level µ (t). The

positive parameter θ1 represents the average variation of the price per unit of shift

away from the trend µ (t) per unit of time. Note that the speed of mean-reversion

depends on the current electricity price level since the constant θ1 is multiplied by

µ (t)−E (t−), a difference that may be quite large in electricity markets (in contrast

to interest rates or stochastic volatility models for which mean-reversion is classically
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present). The process W is a (possibly n-dimensional) standard Brownian motion

representing unpredictable price fluctuations and is the first source of randomness in

our model. The constant σ defines the volatility attached to the Brownian shocks.

Note that the instantaneous squared volatility of prices is represented by the condi-

tional second order moment of absolute price variations over an infinitesimal period

of time: in the present context, it is the sum of the squared Brownian volatility and

a term generated by the jump component (see for instance Gihman and Skorohod

(1972)).

The discontinuous part of the process reproduces the effect of periodically recur-

rent spikes. A spike is a cluster of upward shocks of relatively large size with respect

to normal fluctuations, followed by a sharp return to normal price levels. We repre-

sent this behavior by assigning a level-dependent sign for the jump component. If the

current price is below some threshold, prices are in the normal regime and any forth-

coming jump is upward directed. If instead, the current price is above the threshold,

the market is experiencing a period of temporary imbalance between demand and

supply reflected by abnormally high prices and upcoming jumps are expected to be

downward directed.

Jumps are characterized by their time of occurrence, size and direction. The

jump times are described by a counting process N (t) specifying the number of jumps

experienced up to time t. There exists a corresponding intensity process ι defining the
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instantaneous average number of jumps per time unit. We choose for ι a deterministic

function that we write as:

ι (t) = θ2 × s (t) , (2)

where s (t) represents the normalized (and possibly periodic) jump intensity shape

and the constant θ2 can be interpreted as the maximum expected number of jumps

per time unit.

The jump sizes are modeled as increments of a compound jump process J (t) =PN(t)
i=1 Ji. Here the Ji’s are independent and identically distributed random variables

with common density:

p (x; θ3,ψ) = c (θ3)× exp (θ3f (x)) , 0 ≤ x ≤ ψ, (3)

where c (θ3) is a constant ensuring that p is a probability distribution density and ψ

is the maximum jump size. The choice of a truncated density within the exponential

family is meant to properly reproduce the observed high order moments.

The jump direction determines the algebraic effect of a jump size Ji on the power

price level. It is represented by a function h, taking values +1 and −1 according to

whether the spot price E (t) is smaller or greater than a threshold T :

h (E (t)) =


+1 if E (t) < T (t)

−1 if E (t) ≥ T (t)
. (4)
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This function plays an important role in our model for two sets of reasons related

to the trajectorial properties of the process and the descriptive statistics of daily

price returns (see Roncoroni (2002)). Some authors have proposed to model spikes

by introducing large positive jumps together with a high speed of mean reversion; in

particular Deng (1999) who was among the first ones to address the specific features

of electricity prices. However, models with upward jumps only are deemed to display

a highly positive skewness in the price return distribution, in contrast to the one

observed in the markets. Other authors model spikes by allowing signed jumps (for

instance Escribano et al. (2002)), but if these jumps randomly follow each other, the

spike shape has obviously a very low probability to be generated. Lastly, another type

of solution proposed in particular by Huisman and Mahieu (2001) and Baroni-Adesi

and Gigli (2002), is the introduction of a regime-switching model. This representation

does not allow the existence of successive upward jumps; moreover, a return to normal

levels through a sharp downward jump would require in this case a non Markovian

specification. As a consequence, calibrating a regime-switching model is often quite

problematic.

In our setting a proper choice of the barrier T coupled with a high jump intensity

can generate a sequence of upward jumps leading to high price levels, after which a

discontinuous downward move together with the smooth mean reversion brings prices

down to a normal range. Moreover, our representation has the merit of preserving
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the Markov property in a single state variable.

Let us observe that general results about stochastic differential equations of the

proposed type ensure that equation (1) admits a unique solution (see Gihman and

Skorohod (1972)). Hence, the level dependent signed-jump model with time-varying

intensity is fully described.

IV. Electricity Data Set

We calibrate the model on a data set consisting of a series of 750 daily average prices

compiled from the publication Megawatt Daily for three major U.S. power markets:

COB (California Oregon Border), PJM (Pennsylvania-New Jersey-Maryland) and

ECAR (East Center Area Reliability coordination agreement). These markets may

be viewed as representative of most U.S. power markets both because of their various

locations (California, East Coast and Midwestern), because of the different mix of

generation (for instance, an important share of hydroelectricity in California) and

lastly because of the type of transmission network servicing the region. Moreover,

the market design in ECAR and PJM has proved to have functioned properly so far;

the choice of the period of analysis (ending in 1999) was meant to leave aside the

California crisis and its effects on the COB pool. In terms of price behavior, the COB

market is typical of ”low-pressure” markets (such as Palo Verde, Mid Columbia, and

Four Corners), with high prices ranging between $90 and $115 per megawatthour in
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the examined period. The PJM market represents a ”medium-pressure” market (such

as West New York, East New York, and Ercott) with highs between $263 and $412

per megawatthour during that period. Lastly, the ECAR market portrays ”high-

pressure” markets (such as MAAP, Georgia-Florida Border, North SPP, South SPP

and MAIN), experiencing spikes between 1, 750 and 2, 950 dollars per megawatthour.

Figures 3 to 5 depict absolute historical price paths in these markets for the period

between January 6, 1997 and December 30, 1999.

Figures 3, 4, and 5 about here

As stated earlier, our goal is to adjust our class of processes to both trajectorial

features (i.e., average trend, Brownian volatility, periodical component and spikes)

and statistical features (i.e., mean, variance, skewness and kurtosis of daily price

returns) of historical prices.

In order to start the calibration procedure, we need to detect jumps in the raw

market data. The estimation of a mixed jump-diffusion over a discrete sequence

E = (E1, ..., En) of observations may result in an ill-posed problem: standard methods

in statistical inference require samples to represent whole paths over a time interval.

In the case of discretely sampled observations, there are infinitely many ways a given

price variation over a discrete time interval can be split into an element stemming from

the continuous part of the process and another from the discontinuous one. Hence,

the problem of disentangling these two components on a discrete sample cannot be
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resolved in a theoretically conclusive way; yet, the situation is better in a continuous

time representation, which is our case. All examined data exhibit excess of kurtosis

in the empirical distribution of daily price variations. These changes tend to cluster

close to either their average mean or to the largest observed values (see Figure 2). In

other words, data suggests that either there is a jump, in which case the variation

due to the continuous part of the process is negligible, or there is no jump and

the price variation is totally generated by the continuous part of the process. This

observation leads us to identify a price change threshold Γ allowing one to discriminate

between the two situations. In this order, we extract from the observed data set two

important elements of the calibration procedure: the set ∆Ed of sampled jumps

and the ”Γ-filtered” continuous sample path Ec obtained by juxtaposition of the

continuous variations starting at the initial price.3 A discussion of possible selection

schemes in a general mathematical setting may be found in Yin (1988). We include

Γ as a parameter to be estimated within the calibration procedure: for each market

under investigation, we perform our calibration procedure over different ”Γ-filtered”

data sets for values of Γ chosen in the set of observed daily price variations. Then,

we select the value of Γ leading to the best calibrated model in view of its ability

to match descriptive statistics of observed daily price variations. From now on, we

suppose a value for Γ has been identified for the market under analysis and input

data is described by the corresponding ”Γ-filtered” pair
¡
Ec,∆Ed

¢
.
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V. Calibration

We propose a two-step calibration procedure. A first step is the assignment of a

specific form for the ”structural” elements in the dynamics described in equation (1)

and defined as:

• the mean trend µ (t),

• the jump intensity shape s (t),

• the threshold T defining the sign of the jump

• the jump size distribution p (x).

These quantities translate into path properties of the price process.

A second step consists in statistically estimating the four parameters of the se-

lected model, namely:

• the mean reversion force θ1,

• the jump intensity magnitude θ2,

• the jump size distribution parameter θ3,

• the Brownian volatility σ.

20



The resulting parametric model is fit to the filtered prices by a new statistical method

described further on and based on likelihood estimation for continuous-time processes

with discontinuous sample paths.

We now illustrate the implementation of this calibration procedure for the ECAR

market, propose possible alternatives to the resulting model and defer results and

comments to the next section.

A. Selection of the Structural Elements

The mean trend µ (t) can be determined by fitting an appropriate parametric family

of functions to the data set. As mentioned earlier, power prices exhibit a weak sea-

sonality in the mean trend and a sharper periodicity in the occurrence of turbulences

across the year. The latter periodicity may be an effective estimate for the one dis-

played by mean trend: for instance, ECAR market data shows price pressure once

a year, during warm season. Some markets display price pressure twice a year, with

winter average prices lower than summer average prices (which requires a lower local

maximum in the former case). In general, we find that a combination of an affine

function and two sine functions with respectively a 12-month and a 6-month period-

icity, is appropriate for the U.S. historical data under investigation. We accordingly

define the mean trend by a parametric function:

µ (t;α,β, γ, δ, ε, ζ) = α+ βt+ γ cos [ε+ 2πt] + δ cos [ζ + 4πt] . (5)
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The first term may be viewed as a fixed cost linked to the production of power. The

second one drives the long run linear trend in the total production cost. The overall

effect of the third and fourth terms is a periodic path displaying two maxima per

year, of possibly different magnitudes. Observed prices over the three-year period are

averaged into a one-year period and bounded from above by a suitable quantile ν of

their empirical distribution. The trend function µ is fitted to the resulting average

data by a sequential OLS method providing parameters α, β, γ, δ, ε, and ζ.

We now turn to the identification of the jump intensity shape s. Since spikes

occur over short time periods, we select an intensity function exhibiting pronounced

convex peaks with annual periodicity. This is meant to reflect the shape of the power

stack function which, as shown in Figure 1, becomes very convex (and quasi vertical)

at some demand level. Sharp convexity also ensures that the price jump occurrence

tends to cluster around the peak dates and rapidly fades away. In this order we

choose:

s (t) =

·
2

1 + |sin [π (t− τ) /k]| − 1
¸d
. (6)

Here the jump occurrence exhibits peaking levels at multiples of k years, beginning at

time τ .4 For instance, price shocks concentrating twice a year at evenly spaced dates,

with a maximum on August 1, are recovered by the choice τ = 7/12 and k = 1/2.

The exponent d allows to adjust the dispersion of jumps around peaking times and is
4
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included among parameters to be estimated within the calibration procedure. Figure

6 shows intensity functions across different coefficients d and Figure 7 reports a sample

of jump times.

Figure 6 about here

Figure 7 about here

We found that in all three examined market the best value for d is 2. We have

discussed earlier the introduction of a barrier T above which all occurring jumps are

downward directed. This threshold may reasonably be defined by a constant spread

∆ over the selected average trend:

T (t) = µ (t) +∆. (7)

The choice of ∆ results from a balance between two competing effects: the greater the

value of ∆, the higher the level power prices may reach during pressure periods; the

smaller this value, the sooner the downward jump effect toward normal levels. Equally

importantly, this choice has an impact on the moments of daily price variations;

indeed, a large value of ∆ induces a noticeably positive skewness.

The last structural element to be determined is a probability distribution for the

jump size. We select a truncated version of an exponential density with parameter
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θ3:

p (x; θ3,ψ) =
θ3 exp (−θ3x)
1− exp (−θ3ψ) , 0 ≤ x ≤ ψ, (8)

where ψ represents an upper bound for the absolute value of price changes. This distri-

bution belongs to the family described in equation (3), where c (θ3) = θ3/ (1− exp (−θ3ψ))

and f (x) = −x. The resulting price process is a ”special semimartingale”, a prop-

erty required to obtain the statistical estimator proposed in the next section. This

completes the first calibration step.

B. Model Parameter Estimation

The issue of estimating discontinuous processes has been the subject of particular

attention in the financial econometric literature. The proposed methods mainly draw

on the extension of statistical techniques well-established in the case of continuous

processes. Beckers (1981), Ball and Torous (1983, 1985), and Lo (1988) develop es-

timators based on moment matching; Johannes (1999) and Bandi (2000) propose

non-parametric methods based on higher order conditional moments of instantaneous

returns. We choose to focus on maximum likelihood methods. The transition den-

sities they typically require can rarely be computed in analytical terms; in our case,

the mixed effect of continuous and jump terms makes the task even more arduous

since one has to deal with mixtures of probability distributions. Several numerical

devices have been recently proposed in order to overcome these difficulties. Broadly
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speaking, these methods start by discretizing the process and then computing approx-

imated versions of the targeted transition densities. Pedersen (1995) and Brandt and

Santa Clara (2002) explore simulation-based schemes, while Andersen et al. (2002)

make use of auxiliary model approximations. Unfortunately, all these methods suffer

from computational complexity because of the necessary double approximation of the

process and of the transition densities.

We propose an estimator based on the exact likelihood of the unknown process

with respect to a prior process chosen as a reference within the same class. By

plugging a piecewise constant sample path agreeing with actual data at the sample

dates into this likelihood delivers an approximated likelihood function process. The

estimator is provided by the parameter vector maximizing this process over a suitable

domain. This method has two major advantages: first, the analytical form of the

exact likelihood function under continuous time observations can be computed for

nearly all semimartingales through a generalized version of the Girsanov theorem.

Second, the discrete sample estimator converges to the continuous sample one and

a well-established estimation theory exists in this latter case. We now explain the

details of the procedure.

We compute the log-likelihood function L for the law of the diffusion process

corresponding to an arbitrary parameter vector θ with respect to the law of the

process under a prior reference parameter θ0. Its exact analytical expression is derived
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in Appendix A. We decide to choose as starting parameter values θ1 = 0, θ2 = 1,

θ3 = 1 which correspond to an absence of drift, a normalized jump intensity and a

jump amplitude drawn from a truncated exponential distribution with parameter 1.

The approximate logarithmic likelihood function reads as:

LD
¡
θ
¯̄
θ0,E

¢
=

n−1X
i=0

(µ (ti)−Ei) θ1
σ2

[∆Eci −Dµ (ti)∆t]−
∆t

2

n−1X
i=0

µ
(µ (ti)−Ei) θ1

σ

¶2
− (θ2 − 1)

n−1X
i=0

s (ti)∆t+ lg θ2N (t)

+
n−1X
i=0

·
− (θ3 − 1) ∆E

d
i

h (Ei)

¸
+N (t) lg

µ
1− e−θ3ψ
θ3 (1− e−ψ)

¶
,

where Dµ (ti) denotes the first order derivative of µ at time ti. The first part is a

discretized version of the Doléan-Dade exponential for continuous processes. The re-

maining terms come from the jump part of the process. The log-likelihood function

explicitly depends on θ1, θ2, θ3, and on the filtered data set
¡
∆Ed,Ec

¢
, which in turn

is derived from the original market data set E and the choice of parameter Γ. We

maximize this function with respect to θ over a bounded parameter set Θ identified

through economic interpretation of the model parameters. One may alternatively use

Monte Carlo simulated samples to infer a reasonable parameter domain and starting

values for the numerical optimization algorithm. We finally obtain a non-linear maxi-

mization program of a continuous function over a compact set and classical theorems

ensure the existence of a local maximum, which will be our estimate for θ∗.

The constant Brownian volatility over observation dates 0 = t0 < t1 < ... < tn = t
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can be obtained as:

σ =

vuutn−1X
i=0

∆E (ti)
2, (9)

where each summand∆E (ti)
2 represents the square of the continuous part∆Ec (ti) of

observed price variations (in a logarithmic scale) between consecutive days ti and ti+1,

net of the mean reversion effect |θ1 × (µ (ti)−E (ti))|.5 This estimator converges to

the exact local covariance estimator for diffusion processes under continuous time ob-

servations (Genon-Catalot and Jacod (1993)). We note that numerical experiments

not reported here suggest that a time-dependent volatility does not produce a sig-

nificant improvement in the estimated process (given the other specifications of our

model); moreover in this case a joint estimation of volatility and mean reversion

parameters would become necessary.

C. Alternative model specifications

We now consider two models displaying in their discontinuous component features

either proposed in existing papers on electricity or that may be envisioned as im-

provements of some kind.

First, by setting to +1 the jump direction function h defined in formula (4), we

obtain a restricted model where upcoming jumps are all upward directed and reversion

to normal levels is exclusively carried over by the smooth drift component. This

upward-jump model represents the classical jump-diffusion extension of the continuous
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diffusion models proposed over the years by Pilipovich (1997), Barlow (2002), Lucia

and Schwartz (2002). All the remaining model specifications are the same as those

of our signed-jump model. As a consequence, calibration to market data follows the

steps described above, with one major exception: price variations of negative size all

enter the estimation of the continuous part of the process (i.e., ∆Ed only contains

positive jumps).

Alternatively, we may allow the jump intensity function ι defined in formula (2) to

be stochastic. In order to account for the dependence of the likelihood of jump occur-

rence on the price level following upward shocks, we consider the following function

of the spot price and time:

ι
¡
t, E

¡
t−
¢¢
= θ2 × s (t)×

£
1 +max

¡
0, E

¡
t−
¢−E (t)¢¤ .

As in the case of the threshold T (t) defining the sign of the jump, we define E (t) as

a constant c over the mean trend µ. If the spot price is below the mean trend µ plus

this spread c, then intensity is purely time dependent. Each price-unit beyond this

boundary amplifies accordingly the time dependent intensity. We identified that the

best intensity function was provided by a choice of c equal to ∆/2 (i.e., an increasing

jump occurrence when prices are above the median line between the mean trend µ (t)

and the threshold T (t)). The ”max” function ensures that the jump intensity never

goes below the ”standard level” θ2×s (t) (that may be viewed as the effect of random

outages that strike power plants). This effect is depicted in Figure 8 where stochastic
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intensity is displayed as a function of time and log-price.

Figure 8 about here

In this signed-jump model, jump occurrence is both time and level dependent. Be-

cause all the other model specifications are the same as those in the signed-jump

model with deterministic intensity, calibration to market data follows the same steps

as described above. The log-likelihood estimator denoted in this case as LR, becomes

slightly more complex:

LS
¡
θ
¯̄
θ0,E

¢
=

n−1X
i=0

(µ (ti)−Ei) θ1
σ2

[∆Eci −Dµ (ti)∆t]−
∆t

2

n−1X
i=0

µ
(µ (ti)−Ei) θ1

σ

¶2
− (θ2 − 1)

n−1X
i=0

s (ti)max (1, Ei − µ (ti)− c)∆t+ lg θ2N (t)

+
n−1X
i=0

·
− (θ3 − 1) ∆E

d
i

h (Ei)

¸
+N (t) lg

µ
1− e−θ3ψ
θ3 (1− e−ψ)

¶
.

This expression shows that parameters θ1 and θ3 are unaffected by a change in the

jump intensity function as the corresponding term can be factored out of the likelihood

estimator in absolute scale exp (LS).
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VI. Empirical Results

The calibration procedure has been implemented on the U.S. data set described in

section IV. We first present results for the signed-jump model, then discuss the quality

of our assessments on the data set under analysis and finally conclude on a comparison

with the alternative models introduced at the end of Section V.

As mentioned before, the first step is the functional estimation of the structural

elements µ, s,T , and p. The values α, β, γ, δ, ε, and ζ characterizing the average

trend function µ (t) defined in formula (5) are reported in Table I.

Table I about here

The jump intensity shape s (t) is of the form defined in equation (6), with k = 1,

τ = 0.5, and d = 2; this corresponds to a jump occurrence displaying an annual peak

strongly clustered around the middle of the year, as observed in all examined markets.

The threshold T (t) is defined by a spread ∆ over the deterministic trend µ(t), where

∆ in chosen in the order of 50 percent of the range spanned by the observed log-

prices. We observe that both ECAR and PJM reveal no significant linear trend over

the three-year sample period, while COB shows a small positive linear trend expressed

by the coefficient β.

In all cases, the annual periodicity expressed by the coefficient γ prevails over the

semiannual component described by the coefficient δ. Figure 9 represents the average
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paths for the three regional markets in a joint graph; clearly, the annual component

is predominant in the COB market, whereas an additional semiannual component is

significant in the ECAR and PJM markets.

Figure 9 about here

A clear difference between the three markets is represented by the maximum size

ψ of daily price variations: for instance, ECAR displays jumps which may be more

than three times greater than the maximum value observed in the COB market. In

this market, the high percentage of hydrogeneration and the reservoir capacity allow

to go through the year - the cold season in particular - with no or mild spikes. In

contrast, the PJM and ECAR markets experience both very warm summers and cold

winters; this leads to the semiannual periodicity of observed power prices in these

regions. However, PJM benefits from a fuel mix in power generation and also from a

rich transmission network which has been very efficient since the start of deregulation;

hence the less dramatic price spikes observed.

The second step of the calibration procedure is the statistical estimation of pa-

rameters θ1, θ2, θ3,σ,Γ, and d. The approximated likelihood estimation detailed in

the previous section has been implemented by the Levenberg-Marquardt non-linear

maximum search algorithm. Final results are reported in Table II.

Table II about here
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All markets exhibit some amount of smooth mean reversion. Note that the value of

the reversion force in PJM is significantly greater than ECAR. It is worth emphasizing

again that the overall reversion displayed by our model is created by the joint effect of

the classical mean reversion and an effect due to the downward jumps. Since ECAR

displays more jumps than PJM, the overall reversion effect is higher than the one

observed in the PJM market. This is statistically consistent with the fact that, in

PJM, both skewness and kurtosis of daily price increments are lower since the smooth

reversion suffices most of the time to ensure return to the average trend. We remark

that the expected number of jumps per year is represented by the integral of the

calibrated intensity function over one year.

We now turn to the assessment of the quality of the estimated processes. This is

performed according to four criteria:

• First, we analyze simulated sample paths together with empirically observed

trajectories and make a judgement about the fitting quality of the trajectorial

properties.

• Second, we compare simulated moments of the daily increments distribution

with the empirical values displayed by each market under investigation.

• Third, we check for the robustness of the procedure by re-estimating simulated

sample paths generated by the calibrated model.
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• Fourth, we test our model against the most popular representation of electricity

spot prices so far, namely a jump-diffusion process with positive jumps only and

smooth mean-reversion.

• Fifth, we examine the effect of introducing a price-dependent jump intensity

on both trajectorial and statistical properties displayed by the most irregular

market in our data set (ECAR).

Figures 10 to 12 show trajectories of the estimated model for the three markets.

Figures 10 to 12 about here

For the purpose of comparison, both historical and sample paths are reported at var-

ious scales. The dashed line represents the average mean trend µ (t). These pictures

show that the proposed family of processes is capable to reproduce quite consistently

the qualitative features exhibited by power paths in all three examined markets.

Table III reports the mean, standard deviation, skewness and excess of kurtosis

of observed and simulated daily price variations.

Table III about here

We see that all statistics of the simulated trajectories are quite satisfactory; there is

however a small positive skewness which has no counterpart in the empirical data,

suggesting that the reverting component ought to be more pronounced. The most
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important effect of the signed-jump model is the excellent fit of the leptokurtosicity of

the distribution. The relevance of the incorporation of jumps in equity return mod-

elling has been analyzed and exhibited in a number of recent papers of the financial

economics literature (see for instance Carr, Geman, Madan, and Yor (2002)). In the

case of electricity prices, the non-normality of distributions is widely recognized and

kurtosis naturally becomes a key parameter: in these markets where extreme events

provide the rational for building small and flexible power plants called peakers, a

proper representation of the spikes and their probability of occurrence (i.e., of the tail

of the distribution) is the first requirement a model must satisfy.

We further test the robustness of the estimators by simulating one thousand paths

from the estimated process and then using the corresponding increments to reassess

the values of the parameters θ1, θ2, θ3 and σ. The simulation method is detailed in

Appendix B and results are described in Table IV.

Table IV about here

For all estimated models the procedure is satisfactorily stable. We do not report

the values for Γ because they are all identical to the original ones. The only slight

mismatch occurs for the jump size parameter θ3 in the case of COB market; this

may be due to the very low number of jumps, which makes the estimator sensitive to

outliers in the simulated paths. This result is of minor importance, to the extent that

the jump component is almost irrelevant for the modelling of COB prices. In general,
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we conclude that the procedure is not only statistically but also numerically robust.

Returning to the alternative specifications discussed in Section IV.C, we also cal-

ibrated the upward-jump model with deterministic intensity and the signed-jump

model with stochastic intensity to the ECAR market data. For the purpose of com-

parison, Table V shows the quality assessment of these two models with respect to

the benchmark defined by the signed-jump model with a deterministic intensity.

Table V about here

It is clear that all three models account quite well for the first two moments of daily

average prices, with an excess in volatility and positive skewness, however, for the

upward-jump model. The signed-jump model with stochastic intensity compared to

the one with deterministic intensity slightly improves the value of the skewness, and

our view is that this extra-complexity does not bring any decisive improvement. As for

the upward-jump model (with deterministic intensity) which is quite popular in the

literature on electricity spot price modelling, it generates a kurtosis four times smaller

than the real one; this mispecification may translate into a wrong estimation of Value

at Risk numbers and have severe consequences in markets where some inefficient

plants continue to exist only because of these rare events. In all industries a wrong

estimation of reserves leads to harmful consequences.
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VII. Conclusion

We have proposed in this paper a family of discontinuous processes featuring up-

ward and downward jumps to model electricity spot prices. Our approach is rooted

in the physical properties of electricity, in particular its non-storability, and their

consequences on the short-term supply and demand equilibrium in the pool market.

Given the number of state variables that explain power prices in a pool (i.e.,

temperature, fuel mix, type of transmission network) and their distributional com-

plexity (e.g., plant outages occurrence), we chose a reduced-form representation in

order to get a tractable and efficient tool allowing to handle the random evolution of

spot prices and the related management decisions. The calibrated processes exhibit

the expected mean reversion property, however in an unevenly pronounced manner

depending on the market. All analyzed trajectories show price spikes resulting from

momentary imbalance between offered generation and volume of demand. The fitting

performed on three major U.S. markets allows to conclude positively on the quality

of the model, both in terms of its statistical and trajectorial properties.
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Footnotes

1. In most markets, this price for date t is defined the day before by the clearing of

buy and sell orders placed in the pool.

2. Up to now, negative electricity prices have rarely been observed.

3. If t is a jump date, the continuous part of the path is assumed to be constant

between t and the next sample date. Since spikes are rare and typical price variations

are much smaller than those occurring during a spike, this simplification does not

introduce any significant bias in the estimation procedure.

4. τ is called ”the phase” in the language of sinusoidal phenomena.

5. Note that in contrast to classical settings where the mean reversion feature was

introduced (e.g., interest rates, stochastic volatility) the difference µ (t)− E (t) may

be quite large in the case of electricity prices. This observation was made in Section

III of the paper.
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List of Figures

Figure 1. The power stack function for the ECAR Market.

The generation cost is mildly increasing until a load threshold is reached; then the

supply curve exhibits strong convexity.

Figure 2. Empirical Price Returns Distributions vs. Normal Distributions

with Equal Means and Variances.

For each market, the empirical density of price returns is reported together with a

normal density matching the first two moments. All markets display strong deviations

from normality due to the presence of upward and downward jumps.

Figure 3. ECAR Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices may rise as high as 2000 U.S. dollars per

kilowatt-hour.

Figure 4. PJM Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices move up to a level of 400 U.S. dollars per

kilowatt-hour.

Figure 5. COB Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices rise to values around 100 U.S. dollars per

kilowatt-hour.
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Figure 6. Time-Dependent Jump Intensity Function.

The time-dependent jump intensity function is designed to concentrated jump occur-

rence during the warm season. Parameter d drives the degree of cluster.

Figure 7. Sample Jumps of a Time-Dependent Jump Intensity Function.

The time-dependent jump intensity function is designed to concentrated jump occur-

rence during the warm season. Dotted tags signal the sample jump times of a Poisson

process corresponding to the displayed time-dependent intensity function.

Figure 8. Stochastic Jump Intensity Function.

Jump intensity depends on time and electricity price level. If the spot price is below

the mean trend µ plus the spread ∆/2, then intensity is only time dependent. Each

price-unit beyond this boundary amplifies accordingly the time dependent intensity.

Figure 9. Estimated Average Trends in the Observed Log-Price Paths

(January 6, 1997 - December 30, 1999).

PJM and ECAR markets exhibit overlapping periodicities with periods equal to 6

and 12 months. COB essentially displays an annual periodicity.

Figure 10. ECAR Simulated Price Path vs. Empirical Path. Panel (a):

absolute scale 0-2500. Panel (b): absolute scale 0-500. Panel (c): absolute

scale 0-100.
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Figure 11. PJM Simulated Price Path vs. Empirical Path. Panel (a):

absolute scale 0-600. Panel (b): absolute scale 0-300. Panel (c): absolute

scale 0-100

Figure 12. COB Simulated Price Path vs. Empirical Path. Panel (a):

absolute scale 0-175. Panel (b): absolute scale 0-90. Panel (c): absolute

scale 0-50.
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Appendix A. Likelihood Estimator

The following proposition is an important result for the estimation of jump processes,

both from a theoretical and operational standpoints, and an original contribution of

the paper (to our knowledge, at least).

Proposition. Let µ, s, f, c and σ be sufficiently regular functions for the stochastic

differential equation (1)-(4) to admit a unique weak solution Eθ for all θ = (θ1, θ2, θ3)

in a compact subset of R3+. Let E = {E (t) , t0 ≤ t ≤ t} be an observed path over the

continuous time interval [t0, t] and θ0 =
¡
θ01, θ

0
2, θ

0
3

¢
a starting parameter set. Then

the log-likelihood of observing a realization of the process Eθ with respect to the process

Eθ
0
is given by:

L ¡θ ¯̄θ0,E¢ =

Z t
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σ (u)2
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¶Z t

t0
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u≤t,∆E 6=0
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θ3 − θ03

¢
f

µ
∆E (u)

h (E (u−))

¶
− lg c (θ3) + lg c

¡
θ03
¢¸
,

where Ec is the path process devoid of its jump component:

Ec
¡
u−
¢
= E

¡
u−
¢−E0 − X

s≤u,∆E(s)6=0
∆E (s) , (11)

E0 is the starting point E (t0), ∆E (s) is the observed jump size at time s (if any),

and N (t) is the number of jumps occurred up to time t.
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Proof.

For notational simplicity, we write equation (1) as:

dE = (α+ θ1β)dt+ σdW + hdJ (12)

with α = Dµ (t), β = µ (t) − E (t−), h = h (E (t−)) and set t0 = 0. We also denote

E (t−) by E−.

We divide the proof in two steps. First, we compute the semimartingale charac-

teristic triplet (Bθ , C, νθ) of the jump-diffusion process E corresponding to a given

choice of the parameter θ. Second, we calculate the likelihood by applying a general

semimartingale version of the Girsanov theorem (see Jacod and Shiryaev (1987)).

Step I - Since N is independent of Ji for all i, Eθ (N (t)) = ι (t), Ji
i.i.d.∼ p (x; θ3), and

the additive compensator of the purely discontinuous part of the semimartingale E is

given by:

νθ (dt×A, t) = νθ (A, t)dt

=

Eθ
h ¡E−¢ dt

N(t)X
i=1

Ji

dt
=

"
θ2s (t)

Z
[0,ψ]

dx
¡
1A\{0}

¡
h
¡
E−
¢
x
¢
p (x; θ3)

¢#
dt

=

·
θ2s (t)

Z
X

x

h (E−)
p

µ
x

h (E−)
; θ3

¶¸
dxdt.

where X =
³h
0, ψ
h(E−)

i
∩A

´
\ {0}. Since all coefficients are bounded functions, the

process E is a special semimartingale. Consequently, the canonical representation
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of equation (12) follows by adding and subtracting the compensator νθ to the jump

measure dµθ = h(t) dJ(t) and gathering the absolutely continuous terms:

dE =

Ã
α+ βθ1 +

Z
[0,ψ]

dνθ (x, t)

!
dt+ σdW + dµθ,

where µθ is a martingale measure under Pθ . From this expression we immediately

identify the term of the semimartingale triplet corresponding to θ:

Bθ (t) =

Z t

0

"
α (u) + β (u) θ1 +

Z
[0,ψ]

h
¡
E−
¢
xdνθ (x, u)

#
du, (13)

Step II - The semimartingale process under the prior probability Pθ0 is determined

by the characteristic triplet (Bθ0, C, νθ0). Since:

νθ (dt×A) = dt

Z
X
dx

½
θ2

θ02
exp

·¡
θ3 − θ03

¢
f

µ
x

h (E−)

¶
− ¡lg c (θ3)− lg c ¡θ03¢¢¸

×θ02s (t)
x

h (E−)
exp

·
θ03f

µ
x

h (E−)

¶
− lg c ¡θ03¢¸¾

=

Z
X
θ2

θ02
exp

·¡
θ3 − θ03

¢
f

µ
x

h (E−)

¶
− lg c (θ3) + lg c

¡
θ03
¢¸
νθ0 (dt× dx) ,

the density of dνθ with respect to dνθ0 is given by:

dθ (t, x) =
θ2

θ02
exp

½¡
θ3 − θ03

¢
f

µ
x

h (E−)

¶
− lg c (θ3) + lg c

¡
θ03
¢¾
.

By substituting this expression into (13), we see that the drift term under Pθ can be

represented as the sum of the drift term under Pθ0 and a term denoted as cθ (t)σ (t),

where:

cθ (t) = β (t)
£
θ1 − θ01

¤
σ (t)−1 .
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Let Pθ |Ft be the probability measure induced by Eθ over the path space and re-

stricted to events up to time t. Given the set E of continuous time observations, the

corresponding density of Pθ |Ft with respect to the prior probability Pθ0 |Ft is given

by the Radon-Nikodym derivative:

dPθ
dPθ0

¯̄̄̄
Ft
= exp

½Z t

0

·
cθdW − 1

2
c2θdu−

Z
X
((dθ − 1)dνθ0 + lg dθdµ)

¸¾
.

This is a consequence of the Girsanov theorem on measure changes for general semi-

martingales (see Jacod and Shiryaev (1988)). The first two factors can be written

as:

exp

½Z t

0

·
cθdW − 1

2
c2θdu

¸¾
= exp

(Z t

0

β
¡
θ1 − θ01

¢
σ2

d

·
E (u)−

Z u

0
α (v) dv

−
X

s≤u,∆E(s)6=0
∆E (s)

− 1
2

Z t

0

β2
¡
θ1 − θ01

¢2
σ2

du

 .
The third factor is:

exp

½
−
ZZ

(dθ − 1)dνθ0
¾

= exp

½
−
Z t

0
s (u)

·
θ2

θ02

Z
X
p

µ
x

h (E−)
; θ3

¶
dx

−
Z
X
p

µ
x

h (E−)
; θ03

¶
dx

¸
du

¾
= exp

½
−
µ
θ2

θ02
− 1
¶Z t

0
s (u)du

¾
,

where use the property
R
X p

³
x

h(E−) ; θ
´
dx = 1.
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The fourth factor is:

exp

½Z t

0

Z
X
lg dθdµ

¾
= exp

½Z t

0

Z
X

·¡
θ3 − θ03

¢
f

µ
x

h (E−)

¶
− lg c (θ3) + lg c

¡
θ03
¢¸
dµ

+
¡
lg θ2 − lg θ02

¢ Z t

0

Z
X
dµ

¾
= exp

X
u≤t,∆E(u) 6=0

·¡
θ3 − θ03

¢
f

µ
∆E (u)

h (E−)

¶
− lg c (θ3) + lg c

¡
θ03
¢¸

+
¡
lg θ2 − lg θ02

¢
N (t) ,

where the last equality stems from the relation between the process and the measure

representation of any marked point process. Substituting the expressions of α and β

leads to the log-likelihood function (10). Q.E.D.
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Appendix B. Simulation Algorithm

Monte Carlo simulations of trajectories described in equation (1) serve three purposes.

First, they provide a starting value θ0 for the maximum likelihood search algorithm.

This is accomplished by sampling trajectories for several parameter sets until we find

one whose corresponding simulated paths show qualitative features comparable with

those displayed in the empirical observations. Second, sample trajectories allow one

to judge upon the qualitative performance of the calibrated model and to compute

simulated moments of various orders for the daily price variations. This is used for

moment matching in the last step of the calibration procedure. Third, simulations

provide a robustness analysis of the estimation procedure: parameters of a calibrated

model can be re-estimated over simulated paths. The closer to the original values

are the re-estimated ones, the more robust the likelihood estimation procedure is.

We detail a simulation algorithm for sampling a path defined by equation (1). The

Euler approximation of the stochastic differential equation (1) over a discrete set of

evenly-spaced sample times t1, ..., tN is:

Ek+1 = Ek +Dµ (tk)×∆+ θ1 [µ (tk)−Ek]×∆+ σ
√
∆N + h (tk)× 1i × J ,

where N is a sample from a standard normal distribution and J is a sample from

p (·, θ3). The function 1i is either 1 or 0 according to whether ti is, or is not, a jump

time of the process. In order to sample jump times of a point process with non con-
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stant deterministic intensity, we may first simulate jump times of a constant intensity

Poisson process and then use a variation of the ”acceptance-rejection” method to

make sure that these are statistically identical to the required sample set of times.

More precisely, on a given horizon [0, T ], we generate inter-arrival times εi until their

sum exceeds T . Each εi is a sample from an exponential distribution with parameter

ι∗ = maxt∈[0,T ] ι (t). Candidate jump times τ 0k are defined by approximating eachPk
i=1 εi to the closest element in the set of sample times {t1, ..., tN}. For each k,

we draw a uniform random variable Uk on [0, ι∗] and accept τ 0k if Uk ≤ ι (τ 0k), oth-

erwise reject it. The set of selected times is hence a sample sequence (τ1, ..., τn) of

the jump times for a compound jump process with intensity function ι (t). Conse-

quently, 1i = 1 if ti = τk, for some k = 1, ..., n. This completes the description of the

simulating algorithm for any calibrated solution of equation (1).
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Table I

Estimated ”Structural” Elements

The electricity log-price model:

dE (t) = Dµ (t) dt+ θ1
£
µ (t)−E ¡t−¢¤ dt+ σdW (t) + h

¡
t−
¢
dJ (t) ,

with average trend function:

µ (t;α,β, γ, δ, ε, ζ) = α+ βt+ γ cos [ε+ 2πt] + δ cos [ζ + 4πt] ,

and jump component:

h
¡
t−
¢
= 1, if E

¡
t−
¢
< µ (t) +∆; − 1 otherwise, (Direction)

J (t) =
XN(t)

i=1
Ji, with Ji

i.i.d.∼ p (x; θ3,ψ) ∝ eθ3f(x), 0 ≤ x ≤ ψ, (Size)

ι (t) = θ2 × (2/ (1 + |sin [π (t− τ) /k]|)− 1)2 , (Intensity)

is calibrated to a data set including daily observations between January 6, 1997 and December

30, 1999. Observed log-prices over the three-year period are averaged into a one-year period

and bounded from above by the 0.7-quantile ν of their empirical distribution. The trend

function µ is fitted to the average data by a sequential OLS providing parameters α, β, γ,

δ, ε, and ζ. The regime-switching threshold T is set as a spread ∆ over the average trend

µ. The jump-size distribution takes values in the interval [0,ψ], where ψ is chosen as the

observed maximal daily absolute variation in log-prices. The shape of the jump intensity is

described through the parameters k and τ .



Interpretation ECAR PJM COB

α average log-price level 3.0923 3.2002 2.8928

β average log-price slope 0.0049 0.0036 0.1382

γ yearly trend -0.1300 0.0952 0.1979

δ 6-month trend 0.0292 0.0217 0.0618

ε yearly shift 0.3325 2.4383 1.7303

ζ 6-month shift 0.7417 0.2907 1.7926

ν 0.7 avg distr. quantile 3.2762 3.3232 3.3586

∆ jump regime level 2.5000 1.5000 1.0000

ψ maximum jump size 3.3835 1.6864 1.0169

k jump periodicity 1.0000 1.0000 1.0000

τ intensity phase 0.5000 0.5000 0.5000



Table II

Estimated Model Parameters

The model parameters θ1 (smooth mean-reversion force), θ2 (maximum expected number of

jumps), and θ3 (reciprocal expected jump size) are selected by an approximated maximum

likelihood estimator. The Brownian volatility σ is calculated as a discrete time observation

approximation of the standard cumulated covariance estimator on the continuous path ob-

tained by deleting observations of size larger than Γ. The jump threshold Γ is chosen in

such a way that the resulting model matches the fourth moment of the daily log-price return

distribution. An estimate of the expected number of jumps over one year N (1) is provided

by the integral of the intensity function over a one-year period. The quantity nj denotes the

number of observed daily price variations attributed to the jump component of the process

according to the selected jump size threshold Γ.

Interpretation ECAR PJM COB

θ1 Smooth mean-reversion force 38.8938 42.8844 13.3815

θ2 Maximum expected number of jumps 59.5210 4.1578 2.5822

θ3 Reciprocal average jumpsize 0.3129 0.5016 1.0038

σ Brownian local volatility 1.8355 1.4453 1.3631

Γ Jump threshold 0.9200 0.6000 0.6200

N (1) Average number of jumps 9.0000 9.6667 2.0000

nj Number of filtered jumps 27 29 6



Table III

Moment Matching

For each model estimated by maximum likelihood, descriptive statistics are computed for

the empirical versus simulated (after calibration) logarithmic price variations. Statistics in-

clude the mean, standard deviation, skewness and excess of kurtosis. Simulations have been

performed one thousand times.

ECAR PJM COB

EMP SIMUL

Average -0.0002 -0.0001

Std. Dev. 0.3531 0.3382

Skewness -0.5575 2.1686

Kurtosis 21.6833 22.5825

EMP SIMUL

-0.0006 0.0000

0.2364 0.2305

0.3949 1.6536

13.1507 14.8429

EMP SIMUL

0.0009 0.0006

0.1586 0.1121

0.1587 0.9610

6.7706 6.5402



Table IV

Parameter Estimation Stability

The parameters θ1, θ2, θ3, and σ have been re-estimated by approximated maximum likelihood

over 300 simulated paths. Results have been averaged over all samples.

ECAR PJM COB

Original Re-estim

θ1 38.8938 37.7559

θ2 59.5210 57.9367

θ3 0.3129 0.2957

σ 1.8355 2.1355

Original Re-estim

42.8844 40.0285

4.1578 4.0188

0.5016 0.4800

1.4453 1.7822

Original Re-estim

13.3815 11.7956

2.5822 2.4001

1.0038 1.1897

1.3631 1.3882



Table V

Moment Matching of Alternative Models in the ECAR Market

A comparison between descriptive statistics of empirical data and corresponding statistics

is produced for the three models. The first model is a smooth mean reverting diffusion

with an upward jump component. The second model is our benchmark model: a jump

reverting diffusion with a deterministic jump intensity. The third model is a jump reverting

diffusion with a stochastic jump intensity. Descriptive statistics include the mean, standard

deviation, skewness and excess of kurtosis. Empirical data includes daily observations in the

ECAR market between January 6, 1997 and December 30, 1999. Each model is estimated by

maximum likelihood. Model-generated descriptive statistics are computed over a sample of

one thousand simulated paths. The simulation algorithm for both deterministic and stochastic

jump intensities is detailed in Appendix B.

ECAR Upward-jump

(det. intensity)

Signed-jump

(det. intensity)

Signed-jump

(random intensity)

Average

Std. Dev.

Skewness

Kurtosis

-0.0002

0.3531

-0.5575

21.6833

0.0000

1.3238

3.5688

8.3542

-0.0001

0.3382

2.1686

22.5825

-0.0000

0.37821

-0.0119

28.0288
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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Figure 8

0
0.25

0.5
0.75

1
Time eYearsi

2
4

6
8 10

Electricity Price eLog Scalei

0

50

100

150

Jump Intensity

0
0.25

0.5
0.75

1
Time eYearsi

2
4

6
8 10

Electricity Price eLog Scalei



Figure 9
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Figure 10(a)
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Figure 10(b)
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Figure 10(c)
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Figure 11(a)
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Figure 11(b)
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Figure 11(c)
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Figure 12(a)
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Figure 12(b)

0.5 1 1.5 2 2.5 3
Years

20

40

60

80

e
c
ir

P
e
$
≠

h
W
M

i

ECAR ϑ Market Price Path

0.5 1 1.5 2 2.5 3
Years

20

40

60

80

e
c
ir

P
e
$
≠

h
W
M

i
ECAR ϑ Simulated Price PathCOB ϑ Simulated Price Path

COB ϑ Market Price Path



Figure 12(c)
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