
Understanding the Finite-Difference Time-Domain

Method

John B. Schneider

May 8, 2011

ii

Contents

1 Numeric Artifacts 7

1.1 Introduction . 7

1.2 Finite Precision . 8

1.3 Symbolic Manipulation . 11

2 Brief Review of Electromagnetics 13

2.1 Introduction . 13

2.2 Coulomb’s Law and Electric Field . 13

2.3 Electric Flux Density . 15

2.4 Static Electric Fields . 17

2.5 Gradient, Divergence, and Curl . 18

2.6 Laplacian . 21

2.7 Gauss’s and Stokes’ Theorems . 24

2.8 Electric Field Boundary Conditions . 25

2.9 Conductivity and Perfect Electric Conductors . 25

2.10 Magnetic Fields . 26

2.11 Magnetic Field Boundary Conditions . 27

2.12 Summary of Static Fields . 27

2.13 Time Varying Fields . 28

2.14 Summary of Time-Varying Fields . 29

2.15 Wave Equation in a Source-Free Region . 29

2.16 One-Dimensional Solutions to the Wave Equation 30

3 Introduction to the FDTD Method 33

3.1 Introduction . 33

3.2 The Yee Algorithm . 34

3.3 Update Equations in 1D . 35

3.4 Computer Implementation of a One-Dimensional

FDTD Simulation . 39

3.5 Bare-Bones Simulation . 41

3.6 PMC Boundary in One Dimension . 44

3.7 Snapshots of the Field . 45

3.8 Additive Source . 48

3.9 Terminating the Grid . 50

3.10 Total-Field/Scattered-Field Boundary . 54

iii

iv CONTENTS

3.11 Inhomogeneities . 60

3.12 Lossy Material . 65

4 Improving the FDTD Code 73

4.1 Introduction . 73

4.2 Arrays and Dynamic Memory Allocation . 73

4.3 Macros . 75

4.4 Structures . 78

4.5 Improvement Number One . 84

4.6 Modular Design and Initialization Functions . 88

4.7 Improvement Number Two . 93

4.8 Compiling Modular Code . 100

4.9 Improvement Number Three . 101

5 Scaling FDTD Simulations to Any Frequency 113

5.1 Introduction . 113

5.2 Sources . 113

5.2.1 Gaussian Pulse . 113

5.2.2 Harmonic Sources . 114

5.2.3 The Ricker Wavelet . 115

5.3 Mapping Frequencies to Discrete Fourier Transforms 118

5.4 Running Discrete Fourier Transform (DFT) . 119

5.5 Real Signals and DFT’s . 121

5.6 Amplitude and Phase from Two Time-Domain Samples 124

5.7 Conductivity . 126

5.8 Transmission Coefficient for a Planar Interface 130

5.8.1 Transmission through Planar Interface . 132

5.8.2 Measuring the Transmission Coefficient Using FDTD 133

6 Differential-Equation Based ABC’s 143

6.1 Introduction . 143

6.2 The Advection Equation . 143

6.3 Terminating the Grid . 144

6.4 Implementation of a First-Order ABC . 146

6.5 ABC Expressed Using Operator Notation . 151

6.6 Second-Order ABC . 154

6.7 Implementation of a Second-Order ABC . 156

7 Dispersion, Impedance, Reflection, and Transmission 159

7.1 Introduction . 159

7.2 Dispersion in the Continuous World . 159

7.3 Harmonic Representation of the FDTD Method 160

7.4 Dispersion in the FDTD Grid . 163

7.5 Numeric Impedance . 167

7.6 Analytic FDTD Reflection and Transmission Coefficients 167

CONTENTS v

7.7 Reflection from a PEC . 171

7.8 Interface Aligned with an Electric-Field Node . 173

8 Two-Dimensional FDTD Simulations 179

8.1 Introduction . 179

8.2 Multidimensional Arrays . 179

8.3 Two Dimensions: TMz Polarization . 183

8.4 TMz Example . 187

8.5 The TFSF Boundary for TMz Polarization . 200

8.6 TMz TFSF Boundary Example . 206

8.7 TEz Polarization . 218

8.8 PEC’s in TEz and TMz Simulations . 222

8.9 TEz Example . 225

9 Three-Dimensional FDTD 239

9.1 Introduction . 239

9.2 3D Arrays in C . 239

9.3 Governing Equations and the 3D Grid . 242

9.4 3D Example . 250

9.5 TFSF Boundary . 265

9.6 TFSF Demonstration . 270

9.7 Unequal Spatial Steps . 280

10 Dispersive Material 287

10.1 Introduction . 287

10.2 Constitutive Relations and Dispersive Media . 288

10.2.1 Drude Materials . 289

10.2.2 Lorentz Material . 290

10.2.3 Debye Material . 291

10.3 Debye Materials Using the ADE Method . 292

10.4 Drude Materials Using the ADE Method . 294

10.5 Magnetically Dispersive Material . 296

10.6 Piecewise Linear Recursive Convolution . 299

10.7 PLRC for Debye Material . 303

11 Perfectly Matched Layer 305

11.1 Introduction . 305

11.2 Lossy Layer, 1D . 306

11.3 Lossy Layer, 2D . 308

11.4 Split-Field Perfectly Matched Layer . 310

11.5 Un-Split PML . 313

11.6 FDTD Implementation of Un-Split PML . 316

vi CONTENTS

12 Acoustic FDTD Simulations 321

12.1 Introduction . 321

12.2 Governing FDTD Equations . 323

12.3 Two-Dimensional Implementation . 326

13 Parallel Processing 329

13.1 Threads . 329

13.2 Thread Examples . 331

13.3 Message Passing Interface . 338

13.4 Open MPI Basics . 339

13.5 Rank and Size . 341

13.6 Communicating Between Processes . 342

14 Near-to-Far-Field Transformation 349

14.1 Introduction . 349

14.2 The Equivalence Principle . 349

14.3 Vector Potentials . 350

14.4 Electric Field in the Far-Field . 357

14.5 Simpson’s Composite Integration . 360

14.6 Collocating the Electric and Magnetic Fields: The Geometric Mean 361

14.7 NTFF Transformations Using the Gemoetric Mean 364

14.7.1 Double-Slit Radiation . 364

14.7.2 Scattering from a Circular Cylinder . 366

14.7.3 Scattering from a Strongly Forward-Scattering Sphere 368

A Construction of Fourth-Order Central Differences A.375

B Generating a Waterfall Plot and Animation B.377

C Rendering and Animating Two-Dimensional Data C.381

D Notation D.385

E PostScript Primer E.387

E.1 Introduction . E.387

E.2 The PostScript File . E.388

E.3 PostScript Basic Commands . E.388

Index 401

Chapter 1

Numeric Artifacts

1.1 Introduction

Virtually all solutions to problems in electromagnetics require the use of a computer. Even when

an analytic or “closed form” solution is available which is nominally exact, one typically must use

a computer to translate that solution into numeric values for a given set of parameters. Because

of inherent limitations in the way numbers are stored in computers, some errors will invariably be

present in the resulting solution. These errors will typically be small but they are an artifact about

which one should be aware. Here we will discuss a few of the consequences of finite precision.

Later we will be discussing numeric solutions to electromagnetic problems which are based

on the finite-difference time-domain (FDTD) method. The FDTD method makes approximations

that force the solutions to be approximate, i.e., the method is inherently approximate. The results

obtained from the FDTD method would be approximate even if we used computers that offered

infinite numeric precision. The inherent approximations in the FDTD method will be discussed in

subsequent chapters.

With numerical methods there is one note of caution which one should always keep in mind.

Provided the implementation of a solution does not fail catastrophically, a computer is always

willing to give you a result. You will probably find there are times when, to get your program

simply to run, the debugging process is incredibly arduous. When your program does run, the

natural assumption is that all the bugs have been fixed. Unfortunately that often is not the case.

Getting the program to run is one thing, getting correct results is another. And, in fact, getting

accurate results is yet another thing—your solution may be correct for the given implementation,

but the implementation may not be one which is capable of producing sufficiently accurate results.

Therefore, the more ways you have to test your implementation and your solution, the better. For

example, a solution may be obtained at one level of discretization and then another solution using

a finer discretization. If the two solutions are not sufficiently close, one has not yet converged to

the “true” solution and a finer discretization must be used or, perhaps, there is some systemic error

in the implementation. The bottom line: just because a computer gives you an answer does not

mean that answer is correct.

Lecture notes by John Schneider. numerical-issues.tex

7

8 CHAPTER 1. NUMERIC ARTIFACTS

1.2 Finite Precision

We all know summing one-third three times yields one, i.e., 1/3 + 1/3 + 1/3 = 1. But is that true

on a computer? Consider the C program shown in Program 1.1.

Program 1.1 oneThird.c: Test if 1/3 + 1/3 + 1/3 equals 1.

1 /* Is 1./3. + 1./3. + 1./3. == 1.0? */

2 #include <stdio.h>
3

4 int main() {
5 float a;
6

7 a = 1.0 / 3.0;
8

9 if (a + a + a == 1.0)
10 printf("Equal.\n");
11 else
12 printf("Not equal.\n");
13

14 return 0;
15 }

In this program the float variable a is set to one-third. In line 9 the sum of three a’s is compared to

one. If they are equal, the program prints “Equal” but prints “Not equal” otherwise. The output of

this program is “Not equal.” Thus, to a computer (at least one running a language typically used in

the solution of electromagnetics problems), 1/3 + 1/3 + 1/3 is not equal to one. It is worth noting

that had line 9 been written a=1/3;, a would have been set to zero since integer math would

be used to evaluate the division. By using a = 1.0 / 3.0;, the computer uses floating-point

math.

The floating-point data types in C or FORTRAN can only store a finite number of digits. On

most machines four bytes (32 binary digits or bits) are used for single-precision numbers and eight

bytes (64 digits) are used for double precision. Returning to the sum of one-thirds, as an extreme

example, assumed that a computer can only store two decimal digits. Thus one-third would be

approximated by 0.33. Summing this three times yields

0.33 + 0.33 + 0.33 = 0.99

which is clearly not equal to one. If the number is stored with more digits, the result becomes

closer to one, but it never gets there. Both the decimal and binary floating-point representation of

one-third have an infinite number of digits. Thus, when attempting to store one-third in a computer

the number has to be truncated so that the computer stores an approximation of one-third. Because

of this truncation summing one-third three times does not yield one.

1.2. FINITE PRECISION 9

Instead of one-third, what if we summed one-tenth ten times? Since 1/10 is equal to 0.1, it

appears the number can be stored with a finite number of digits. Does the computer think the

following is true?

1

10
+

1

10
+

1

10
+

1

10
+

1

10
+

1

10
+

1

10
+

1

10
+

1

10
+

1

10
= 1?

This can be tested using the same approach as shown in Program 1.1. Somewhat surprisingly,

these are still not equal! Although one-tenth has a finite number of digits when written in base

ten (decimal representation), it has an infinite number of digits when written in base two (binary

representation).

In a floating-point decimal number each digit represents the number of a particular power of

ten. Letting a blank represent a digit, a decimal number can be thought of in the follow way:

.

103 102 101 100 10−1 10−2 10−3 10−4

Each digits tells how many of a particular power of 10 there is in a number. The decimal point

serves as the dividing line between negative and non-negative exponents. Binary numbers are

similar except each digit represents a power or two:

.

23 22 21 20 2−1 2−2 2−3 2−4

The base-ten number 0.110 is simply 1× 10−1. To obtain the same value using binary numbers we

have to take 2−4 + 2−5 + 2−8 + 2−9 + . . ., i.e., an infinite number of binary digits. Another way of

writing this is

0.110 = 0.0001100110011001100110011 . . .2 .

As before, when this is stored in a computer, the number has to be truncated. The stored value is

no longer precisely equal to one-tenth. Summing ten of these values does not yield one (although

the difference is very small).

The details of how floating-point values are stored in a computer are not a primary concern.

However, it is helpful to know how bits are allocated. Numbers are stored in exponential form and

the standard allocation of bits is:

total bits sign mantissa exponent

single precision 32 1 23 8

double precision 64 1 52 11

Essentially the exponent gives the magnitude of the number while the mantissa gives the digits of

the number—the mantissa determines the precision. The more digits available for the mantissa,

the more precisely a number can be represented. Although a double-precision number has twice

as many total bits as a single-precision number, it uses 52 bits for the mantissa whereas a single-

precision number uses 23. Therefore double-precision numbers actually offer more than twice the

precision of single-precision numbers. A mantissa of 23 binary digits corresponds to a little less

than seven decimal digits. This is because 223 is 8,388,608, thus 23 binary digits can represent

numbers between 0 and 8,388,607. On the other hand, a mantissa of 52 binary digits corresponds

to a value with between 15 and 16 decimal digits (252 = 4,503,599,627,370,496).

10 CHAPTER 1. NUMERIC ARTIFACTS

For the exponent, a double-precision number has three more bits than a single-precision num-

ber. It may seem as if the double-precision exponent has been short-changed as it does not have

twice as many bits as a single-precision number. However, keep in mind that the exponent repre-

sents the size of a number. Each additional bit essentially doubles the number of values that can be

represented. If the exponent had nine bits, it could represent numbers which were twice as large

as single-precision numbers. The three additional bits that a double-precision number possesses

allows it to represent exponents which are eight times larger than single-precision numbers. This

translates into numbers which are 256 times larger (or smaller) in magnitude than single-precision

numbers.

Consider the following equation

a+ b = a.

From mathematics we know this equation can only be satisfied if b is zero. However, using com-

puters this equation can be true, i.e., b makes no contribution to a, even when b is non-zero.

When numbers are added or subtracted, their mantissas are shifted until their exponents are

equal. At that point the mantissas can be directly added or subtracted. However, if the difference

in the exponents is greater than the length of the mantissa, then the smaller number will not have

any affect when added to or subtracted from the larger number. The code fragment shown in

Fragment 1.2 illustrates this phenomenon.

Fragment 1.2 Code fragment to test if a non-zero b can satisfy the equation a+ b = a.

1 float a = 1.0, b = 0.5, c;
2

3 c = a + b;
4

5 while(c != a) {
6 b = b / 2.0;
7 c = a + b;
8 }
9

10 printf("%12g %12g %12g\n",a,b,c);

Here a is initialized to one while b is set to one-half. The variable c holds the sum of a and b.
The while-loop starting on line 5 will continue as long as c is not equal to a. In the body of the

loop, b is divided by 2 and c is again set equal to a+ b. If the computer had infinite precision, this

would be an infinite loop. The value of b would become vanishingly small, but it would never be

zero and hence a+ b would never equal a. However, the loop does terminate and the output of the

printf() statement in line 10 is:

1 5.96046e-08 1

This shows that both a and c are unity while b has a value of 5.96046 × 10−8. Note that this value

of b corresponds to 1 × 2−24. When b has this value, the exponents of a and b differ by more than

23 (a is 1 × 20).

1.3. SYMBOLIC MANIPULATION 11

One more example serves to illustrate the less-than-obvious ways in which finite precision can

corrupt a calculation. Assume the variable a is set equal to 2. Taking the square root of a and then

squaring a should yield a result which is close to 2 (ideally it would be 2, but since
√

2 has an

infinite number of digits, some accuracy will be lost). However, what happens if the square root is

taken 23 times and then the number is squared 23 times? We would hope to get a result close to

two, but that is not the case. The program shown in Program 1.3 allows us to test this scenario.

Program 1.3 rootTest.c: Take the square root of a number repeatedly and then squaring the

number an equal number of times.

1 /* Square-root test. */

2 #include <math.h> // needed for sqrt()

3 #include <stdio.h>
4

5 #define COUNT 23
6

7 int main() {
8 float a = 2.0;
9 int i;

10

11 for (i = 0; i < COUNT; i++)
12 a = sqrt(a); // square root of a

13

14 for (i = 0; i < COUNT; i++)
15 a = a * a; // a squared

16

17 printf("%12g\n",a);
18

19 return 0;
20 }

The program output is one, i.e., the result is a = 1.0. Each time the square root is taken, the value

gets closer and closer to unity. Eventually, because of truncation error, the computer thinks the

number is unity. At that point no amount of squaring the number will change it.

1.3 Symbolic Manipulation

When using languages which are typically used in numerical analysis (such as C, C++, FOR-

TRAN, or even Matlab), truncation error is unavoidable. To store the number π = 3.141592 . . .,
one must use an approximation which uses a finite number of digits. However, there are soft-

ware packages, such a Mathematica, which allow one to manipulate symbols. In Mathematica

one can write Pi and Mathematica “knows” symbolically what that means. For example, the co-

sine of 10000000001*Pi is identically negative one. Similarly, one could write Sqrt[2].

12 CHAPTER 1. NUMERIC ARTIFACTS

Mathematica knows that the square of this is identically 2. Unfortunately, though, such symbolic

manipulations are incredibly expensive in terms of computational resources. Many cutting-edge

problems in electromagnetics can involve hundreds of thousand or even millions of unkowns. To

deal with these large amounts of data it is imperative to be as efficient—both in terms of memory

and computation time—as possible. Mathematica is wonderful for many things, but it is not the

right tool for solving large numeric problems.

In Matlab one can write pi as a shorthand representation of π. However, this representation of

π is different from that used in Mathematica. In Matlab, pi is essentially the same as the numeric

representation—it is just more convenient to write pi than all the numeric digits. In C, provided

you have included the header file math.h, you can use M PI as a shorthand for π. Looking in

math.h reveals the following statement:

define M_PI 3.14159265358979323846 /* pi */

This is similar to what is happening in Matlab. Matlab only knows what the numeric value of

pi is and that numeric value is a truncated version of the true value. Thus, taking the cosine of

10000000001*pi yields −0.99999999999954 instead of the exact value of −1 (but, of course,

the difference is trivial in this case).

Chapter 2

Brief Review of Electromagnetics

2.1 Introduction

The specific equations on which the finite-difference time-domain (FDTD) method is based will

be considered in some detail later. The goal here is to remind you of the physical significance of

the equations to which you have been exposed in previous courses on electromagnetics.

In some sense there are just a few simple premises which underlie all electromagnetics. One

could argue that electromagnetics is simply based on the following:

1. Charge exerts force on other charge.

2. Charge in motion exerts a force on other charge in motion.

3. All material is made up of charged particles.

Of course translating these premises into a corresponding mathematical framework is not trivial.

However one should not lose sight of the fact that the math is trying to describe principles that are

conceptually rather simple.

2.2 Coulomb’s Law and Electric Field

Coulomb studied the electric force on charged particles. As depicted in Fig. 2.1, given two discrete

particles carrying chargeQ1 andQ2, the force experienced byQ2 due toQ1 is along the line joining

Q1 and Q2. The force is proportional to the charges and inversely proportional to the square of the

distance between the charges. A proportionality constant is needed to obtain Coulomb’s law which

gives the equation of the force on Q2 due to Q1:

F12 = â12
1

4πǫ0

Q1Q2

R2
12

(2.1)

where â12 is a unit vector pointing from Q1 to Q2, R12 is the distance between the charges, and

1/4πǫ0 is the proportionality constant. The constant ǫ0 is known as the permittivity of free space

Lecture notes by John Schneider. em-review.tex

13

14 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

+
Q1

Q2

F12 = Q2 E

Figure 2.1: The force experienced by charge Q2 due to charge Q1 is along the line which pass

through both charges. The direction of the force is dictate by the signs of the charges. Electric field

is assumed to point radially away from positive charges as is indicated by the lines pointing away

from Q1 (which is assumed here to be positive).

and equals approximately 8.854 × 10−12 F/m. Charge is expressed in units of Coulombs (C) and

can be either negative or positive. When the two charges have like signs, the force will be repulsive:

F12 will be parallel to â12. When the charges are of opposite sign, the force will be attractive so

that F12 will be anti-parallel to â12.

There is a shortcoming with (2.1) in that it implies action at a distance. It appears from this

equation that the force F12 is established instantly. From this equation one could assume that a

change in the distance R12 results in an instantaneous change in the force F12, but this is not the

case. A finite amount of time is required to communicate the change in location of one charge to

the other charge (similarly, it takes a finite amount of time to communicate a change in the quantity

of one charge to the other charge). To overcome this shortcoming it is convenient to employ the

concept of fields. Instead of Q1 producing a force directly on Q2, Q1 is said to produce a field.

This field then produces a force on Q2. The field produced by Q1 is independent of Q2—it exists

whether or not Q2 is there to experience it.

In the static case, the field approach does not appear to have any advantage over the direct use

of Coulomb’s law. This is because for static charges Coulomb’s law is correct. Fields must be

time-varying for the distinction to arise. Nevertheless, to be consistent with the time-varying case,

fields are used in the static case as well. The electric field produced by the point charge Q1 is

E1 = âr
Q1

4πǫ0r2
(2.2)

where âr is a unit vector which points radially away from the charge and r is the distance from the

charge. The electric field has units of volts per meter (V/m).

To find the force on Q2, one merely takes the charge times the electric field: F12 = Q2E1. In

general, the force on any charge Q is the product of the charge and the electric field at which the

charge is present, i.e., F = QE.

2.3. ELECTRIC FLUX DENSITY 15

2.3 Electric Flux Density

All material is made up of charged particles. The material may be neutral overall because it has

as many positive charges as negative charges. Nevertheless, there are various ways in which the

positive and negative charges may shift slightly within the material, perhaps under the influence of

an electric field. The resulting charge separation will have an effect on the overall electric field.

Because of this it is often convenient to introduce a new field known as the electric flux density, D,

which has units of Coulombs per square meter (C/m2).∗ Essentially the D field ignores the local

effects of charge which is bound in a material.

In free space, the electric field and the electric flux density are related by

D = ǫ0E. (2.3)

Gauss’s law states that integrating D over a closed surface yields the enclosed free charge

∮

S

D · ds = Qenc (2.4)

where S is the closed surface, ds is an incremental surface element whose normal is direct radially

outward, and Qenc is the enclosed charge. As an example, consider the electric field given in (2.2).

Taking S to be a spherical surface with the charge at the center, it is simple to perform the integral

in (2.4):
∮

S

D · ds =

π∫

θ=0

2π∫

φ=0

ǫ0
Q1

4πǫ0r2
âr · ârr2 sin θ dφ dθ = Q1. (2.5)

The result is actually independent of the surface chosen (provided it encloses the charge), but the

integral is especially easy to perform for a spherical surface.

We want the integral in (2.4) always to equal the enclosed charge as it does in free space.

However, things are more complicated when material is present. Consider, as shown in Fig. 2.2,

two large parallel plates which carry uniformly distributed charge of equal magnitude but opposite

sign. The dashed line represents an integration surface S which is assumed to be sufficiently far

from the edges of the plate so that the field is uniform over the top of S. This field is identified as

E0. The fields are zero outside of the plates and are tangential to the sides of S within the plates.

Therefore the only contribution to the integral would be from the top of S. The result of the integral
∮

S
ǫ0E · ds is the negative charge enclosed by the surface (i.e., the negative charge on the bottom

plate which falls within S).

Now consider the same plates, carrying the same charge, but with a material present between

the plates. Assume this material is “polarizable” such that the positive and negative charges can

shift slightly. The charges are not completely free to move—they are bound charges. The positive

charges will be repelled by the top plate and attracted to the bottom plate. Conversely, the negative

charges will be repelled by the bottom plate and attracted to the top plate. This scenario is depicted

in Fig. 2.3.

∗Note that not everybody advocates using the D field. See for example Volume II of The Feynman Lectures on

Physics, R. P. Feynman, R. B. Leighton, and M. Sands, Addison-Wesley, 1964. Feynman only uses E and never resorts

to D.

16 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

+ + + + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − − − −

ε0

D = ε0 E0

E0

Figure 2.2: Charged parallel plates in free space. The dashed line represents the integration surface

S.

+ + + + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − − − −

E0

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−

−

+

+

+
−

−... ...

− − − − −

+ + + + +

bound
surface
charge

Em

Figure 2.3: Charged parallel plates with a polarizable material present between the plates. The

elongated objects represent molecules whose charge orientation serves to produce a net bound

negative charge layer at the top plate and a bound positive charge layer at the bottom plate. In

the interior, the positive and negative bound charges cancel each other. It is only at the surface

of the material where one must account for the bound charge. Thus, the molecules are not drawn

throughout the figure. Instead, as shown toward the right side of the figure, merely the bound

charge layer is shown. The free charge on the plates creates the electric field E0. The bound

charge creates the electric field Em which opposes E0 and hence diminishes the total electric field.

The dashed line again represents the integration surface S.

2.4. STATIC ELECTRIC FIELDS 17

With the material present the electric field due to the charge on the plates is still E0, i.e., the

same field as existed in Fig. (2.2). However, there is another field present due to the displacement of

the bound charge in the polarizable material between the plates. The polarized material effectively

acts to establish a layer of positive charge adjacent to the bottom plate and a layer of negative

charge adjacent to the top plate. The field due to these layers of charge is also uniform but it is in

the opposite direction of the field caused by the “free charge” on the plates. The field due to bound

charge is labeled Em in Fig. (2.3). The total field is the sum of the fields due to the bound and

free charges, i.e., E = E0 + Em. Because E0 and Em are anti-parallel, the magnitude of the total

electric field E will be less than E0.

Since the material is neutral, we would like the integral of the electric flux over the surface S
to yield just the enclosed charge on the bottom plate—not the bound charge due to the material. In

some sense this implies that the integration surface cannot separate the positive and negative bound

charge of any single molecule. Each molecule is either entirely inside or outside the integration

surface. Since each molecule is neutral, the only contribution to the integral will be from the free

charge on the plate.

With the material present, the integral of
∮

S
ǫ0E · ds yields too little charge. This is because,

as stated above, the total electric field E is less than it would be if only free space were present. To

correct for the reduced field and to obtain the desired result, the electric flux density is redefined so

that it accounts for the presence of the material. The more general expression for the electric flux

density is

D = ǫrǫ0E = ǫE (2.6)

where ǫr is the relative permittivity and ǫ is called simply the permittivity. By accounting for the

permittivity of a material, Gauss’s law is always satisfied.

In (2.6), D and E are related by a scalar constant. This implies that the D and E fields

are related by a simple proportionality constant for all frequencies, all orientations, and all field

strengths. Unfortunately the real world is not so simple. Clearly if the electric field is strong

enough, it would be possible to tear apart the bound positive and negative charges. Since charges

have some mass, they do not react the same way at all frequencies. Additionally, many materials

may have some structure, such as crystals, where the response in one direction is not the same in

other directions. Nevertheless, Gauss’s law is the law and thus always holds. When things get more

complicated one must abandon a simple scalar for the permittivity and use an appropriate form to

ensure Gauss’s law is satisfied. So, for example, it may be necessary to use a tensor for permittiv-

ity that is directionally dependent. However, with the exception of frequency-dependent behavior

(i.e., dispersive materials), we will not be pursuing those complications. A scalar permittivity will

suffice.

2.4 Static Electric Fields

Ignoring possible nonlinear behavior of material, superposition holds for electromagnetic fields.

Therefore we can think of any distribution of charges as a collection of point charges. We can get

the total field by summing the contributions from all the charges (and this summing will have to be

in the form of an integration if the charge is continuously distributed).

Note from (2.2) that the field associated with a point charge merely points radially away from

the charge. There is no “swirling” of the field. If we have more than a single charge, the total

18 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

field may bend, but it will not swirl. Imagine a tiny wheel with positive charge distributed around

its circumference. The wheel hub of the wheel is held at a fixed location but the wheel is free to

spin about its hub. For static electric fields, no matter where we put this wheel, there would be no

net force on the wheel to cause it to spin. There may be a net force pushing the entire wheel in a

particular direction (a translational force), but the forces which are pushing the wheel to spin in the

clockwise direction are balanced by the forces pushing the wheel to spin in the counterclockwise

direction.

Another property of electrostatic fields is that the electric flux density only begins or terminates

on free charge. If there is no charge present, the lines of flux continue.

The lack of swirl in the electric field and the source of electric flux density are fairly simple

concepts. However, to be able to analyze the fields properly, one needs a mathematical statement

of these concepts. The appropriate statements are

∇× E = 0 (2.7)

and

∇ · D = ρv (2.8)

where ∇ is the del or nabla operator and ρv is the electric charge density (with units of C/m3).

Equation (2.7) is the curl of the electric field and (2.8) is the divergence of the electric flux density.

These two equations are discussed further in the following section.

2.5 Gradient, Divergence, and Curl

The del operator is independent of the coordinate system used—naturally the behavior of the fields

should not depend on the coordinate system used to describe the field. Nevertheless, the del oper-

ator can be expressed in different coordinates systems. In Cartesian coordinates del is

∇ ≡ âx
∂

∂x
+ ây

∂

∂y
+ âz

∂

∂z
(2.9)

where the symbol ≡ means “defined as.”

Del acting on a scalar field produces the gradient of the field. Assuming f is a some scalar

field, ∇f produces the vector field given by

∇f = âx
∂f

∂x
+ ây

∂f

∂y
+ âz

∂f

∂z
. (2.10)

The gradient of f points in the direction of greatest change and is proportional to the rate of change.

Assume we wish to find the amount of change in f for a small movement dx in the x direction.

This can be obtained via ∇f · âxdx, to wit

∇f · âxdx =
∂f

∂x
dx = (rate of change in x direction) × (movement in x direction). (2.11)

This can be generalized for movement in an arbitrary direction. Letting an incremental small length

be given by

dℓ = âxdx+ âydy + âzdz, (2.12)

2.5. GRADIENT, DIVERGENCE, AND CURL 19

Dy(x,y+∆y/2)

Dx(x−∆x/2,y) Dx(x+∆x/2,y)

Dy(x,y−∆y/2)

x

y

Figure 2.4: Discrete approximation to the divergence taken in the xy-plane.

the change in the field realized by moving an amount dℓ is

∇f · dℓ =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz. (2.13)

Returning to (2.8), when the del operator is dotted with a vector field, one obtains the diver-

gence of that field. Divergence can be thought of as a measure of “source” or “sink” strength of

the field at a given point. The divergence of a vector field is a scalar field given by

∇ · D =
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
. (2.14)

Let us consider a finite-difference approximation of this divergence in the xy-plane as shown in

Fig. 2.4. Here the divergence is measured over a small box where the field is assumed to be constant

over each edge of the box. The derivatives can be approximated by central differences:

∂Dx

∂x
+
∂Dy

∂y
≈ Dx

(
x+ ∆x

2
, y
)
−Dx

(
x− ∆x

2
, y
)

∆x

+
Dy

(

x, y + ∆y

2

)

−Dy

(

x, y − ∆y

2

)

∆y

(2.15)

where this is exact as ∆x and ∆y go to zero. Letting ∆x = ∆y = δ, (2.15) can be written

∂Dx

∂x
+
∂Dy

∂y
≈ 1

δ

(

Dx

(

x+
δ

2
, y

)

−Dx

(

x− δ

2
, y

)

+Dy

(

x, y +
δ

2

)

−Dy

(

x, y − δ

2

))

.

(2.16)

Inspection of (2.16) reveals that the divergence is essentially a sum of the field over the faces with

the appropriate sign changes. Positive signs are used if the field is assumed to point out of the box

and negative signs are used when the field is assumed to point into the box. If the sum of these

values is positive, that implies there is more flux out of the box than into it. Conversely, if the sum

is negative, that means more flux is flowing into the box than out. If the sum is zero, there must

20 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

Ex(x,y+∆y/2)

Ey(x−∆x/2,y) Ey(x+∆x/2,y)

Ex(x,y−∆y/2)

x

y

(x,y)

Figure 2.5: Discrete approximation to the curl taken in the xy-plane.

be as much flux flowing into the box as out of it (that does not imply necessarily that, for instance,

Dx (x+ δ/2, y) is equal toDx (x− δ/2, y), but rather that the sum of all four fluxes must be zero).

Equation (2.8) tells us that the electric flux density has zero divergence except where there is

charge present (as specified by the charge-density term ρv). If the charge density is zero, the total

flux entering some small enclosure must also leave it. If the charge density is positive at some

point, more flux will leave a small enclosure surrounding that point than will enter it. On the other

hand, if the charge density is negative, more flux will enter the enclosure surrounding that point

than will leave it.

Finally, let us consider (2.7) which is the curl of the electric field. In Cartesian coordinates it is

possible to treat this operation as simply the cross product between the vector operator ∇ and the

vector field E:

∇× E =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

∂
∂y

∂
∂y

Ex Ey Ez

∣
∣
∣
∣
∣
∣

= âx

(
∂Ez
∂y

− ∂Ey
∂z

)

+ ây

(
∂Ex
∂z

− ∂Ez
∂y

)

+ âz

(
∂Ey
∂x

− ∂Ex
∂y

)

.

(2.17)

Let us consider the behavior of only the z component of this operator which is dictated by the field

in the xy-plane as shown in Fig. 2.5. The z-component of ∇× E can be written as

∂Ey
∂x

− ∂Ex
∂y

≈ Ey
(
x+ ∆x

2
, y
)
− Ey

(
x− ∆x

2
, y
)

∆x

+
Ex

(

x, y + ∆y

2

)

− Ex

(

x, y − ∆y

2

)

∆y

. (2.18)

The finite-difference approximations of the derivatives are again based on the fields on the edges

of a box surrounding the point of interest. However, in this case the relevant fields are tangential

to the edges rather than normal to them. Again letting ∆x = ∆y = δ, (2.18) can be written

∂Ey
∂x

− ∂Ex
∂y

≈ 1

δ

(

Ey

(

x+
δ

2
, y

)

− Ey

(

x− δ

2
, y

)

− Ex

(

x, y +
δ

2

)

+ Ex

(

x, y − δ

2

))

.

(2.19)

2.6. LAPLACIAN 21

In the sum on the right side the sign is positive if the vector component points in the counter-

clockwise direction (relative to rotations about the center of the box) and is negative if the vector

points in the clockwise direction. Thus, if the sum of these vector components is positive, that

implies that the net effect of these electric field vectors is to tend to push a positive charge in the

counterclockwise direction. If the sum were negative, the vectors would tend to push a positive

charge in the clockwise direction. If the sum is zero, there is no tendency to push a positive charge

around the center of the square (which is not to say there would not be a translation force on the

charge—indeed, if the electric field is non-zero, there has to be some force on the charge).

2.6 Laplacian

In addition to the gradient, divergence, and curl, there is one more vector operator to consider.

There is a vector identity that the curl of the gradient of any function is identically zero

∇×∇f = 0. (2.20)

This is simple to prove by merely performing the operations in Cartesian coordinates. One obtains

several second-order partial derivatives which cancel if the order of differentiation is switched.

Recall that for a static distribution of charges, ∇ × E = 0. Since the curl of the electric field is

zero, it should be possible to represent the electric field as the gradient of some scalar function

E = −∇V. (2.21)

The scalar function V is the electric potential and the negative sign is used to make the electric

field point from higher potential to lower potential (by historic convention the electric field points

away from positive charge and toward negative charge). By expressing the electric field this way,

the curl of the electric field is guaranteed to be zero.

Another way to express the relationship between the electric field and the potential is via in-

tegration. Consider movement from an arbitrary point a to an arbitrary point b. The change in

potential between these two points can be expressed as

Vb − Va =

b∫

a

∇V · dℓ. (2.22)

The integrand represent the change in the potential for a movement dℓ and the integral merely sums

the changes over the path from a to b. However, the change in potential must also be commensurate

with the movement in the direction of, or against, the electric field. If we move against the electric

field, potential should go up. If we move along the electric field, the potential should go down. In

other words, the incremental change in potential for a movement dℓ should be dV = −E · dℓ (if

the movement dℓ is orthogonal to the electric field, there should be no change in the potential).

Summing change in potential over the entire path yields

Vb − Va = −
b∫

a

E · dℓ. (2.23)

22 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

The integrals in (2.22) and (2.23) can be equated. Since the equality holds for any two arbitrary

points, the integrands must be equal and we are again left with E = −∇V .

The electric flux density can be related to the electric field via D = ǫE and the behavior of the

flux density D is dictated by ∇ · D = ρv. Combining these with (2.21) yields

E =
1

ǫ
D = −∇V. (2.24)

Taking the divergence of both sides yields

1

ǫ
∇ · D =

1

ǫ
ρv = −∇ · ∇V. (2.25)

Rearranging this yields Poisson’s equation given by

∇2V = −ρv
ǫ

(2.26)

where ∇2 is the Laplacian operator

∇2 ≡ ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.27)

Note that the Laplacian is a scalar operator. It can act on a scalar field (such as the potential V as

shown above) or it can act on a vector field as we will see later. When it acts on a vector field, the

Laplacian acts on each component of the field.

In the case of zero charge density, (2.26) reduces to Laplace’s equation

∇2V = 0. (2.28)

We have a physical intuition about what gradient, divergence, and curl are telling us, but what

about the Laplacian? To answer this, consider a function of a single variable.

Given the function V (x), we can ask if the function at some point is greater than, equal to, or

less than the average of its neighboring values. The answer can be expressed in terms of the value

of the function at the point of interest and the average of samples to either side of that central point:

V (x+ δ) + V (x− δ)

2
− V (x) =







positive if center point less than average of neighbors

zero if center point equals average of neighbors

negative if center point greater than average of neighbors
(2.29)

Here the left-most term represents the average of the neighboring values and δ is some displace-

ment from the central point. Equation (2.29) can be normalized by δ2/2 without changing the basic

tenants of this equation. Performing that normalization and rearranging yields

1

δ2/2

{
V (x+ δ) + V (x− δ)

2
− V (x)

}

=
1

δ2
{(V (x+ δ) − V (x)) − (V (x) − V (x− δ))}

=
V (x+δ)−V (x)

δ
− V (x)−V (x−δ)

δ

δ

≈
∂V (x+δ/2)

∂x
− V (x−δ/2)

∂x

δ

≈ ∂2V (x)

∂x2
. (2.30)

2.6. LAPLACIAN 23

-4 -2 2 4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

uniform
sphere of charge

potential

distance from center

Figure 2.6: Potential along a path which passes through a uniform sphere of positive charge (arbi-

trary units).

Thus the second partial derivative can be thought of as a way of measuring the field at a point

relative to its neighboring points. You should already have in mind that if the second derivative

is negative, a function is tending to curve downward. Second derivatives are usually discussed

in the context of curvature. However, you should also think in terms of the field at a point and

its neighbors. At points where the second derivative is negative those points are higher than the

average of their neighboring points (at least if the neighbors are taken to be an infinitesimally small

distance away).

In lieu of these arguments, Poisson’s equation (2.26) should have physical significance. Where

the charge density is zero, the potential cannot have a local minima or maxima. The potential is

always equal to the average of the neighboring points. If one neighbor is higher, the other must be

lower (and this concept easily generalizes to higher dimensions). Conversely, if the charge density

is positive over some region, the potential should increase as one moves deeper into that region

but the rate of increase must be such that at any point the average of the neighbors is less than

the center point. This behavior is illustrated in Fig. 2.6 which depicts the potential along a path

through the center of a uniform sphere of charge.

24 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

2.7 Gauss’s and Stokes’ Theorems

Equation (2.4) presented Gauss’s law which stated the flux of D through a closed surface S is equal

to the enclosed charge. There is an identity in vector calculus, known as Gauss’s theorem, which

states that the integral of the flux of any vector field through a closed surface equals the integral of

the divergence of the field over the volume enclosed by the surface. This holds for any vector field,

but using the D field, Gauss’s theorem states

∮

S

D · ds =

∫

V

∇ · Ddv (2.31)

where V is the enclosed volume and dv is a differential volume element. Note that the left-hand

side of (2.31) is the left-hand side of (2.4).

The right-hand side of (2.4) is the enclosed charge Qenc which could be determined either by

evaluating the left-hand side of (2.4) or by integration of the charge density ρv over the volume

enclosed by S. (This is similar to determining the mass of an object by integrating its mass density

over its volume.) Thus,

Qenc =

∫

V

ρvdv. (2.32)

Equating the right-hand sides of (2.31) and (2.32) yields

∫

V

∇ · Ddv =

∫

V

ρvdv. (2.33)

Since this must hold over an arbitrary volume, the integrands must be equal which yields (2.8).

Another useful identity from vector calculus is Stokes’ theorem which states that the integral

of a vector field over any closed path is equal to the integral of the curl of that field over a surface

which has that path as its border. Again, this holds for any vector field, but using the electric field

as an example one can write ∮

L

E · dℓ =

∫

S

∇× E · ds. (2.34)

The surface normal is assumed to follow the right-hand convention so that when the fingers of the

right hand are oriented along the path of the loop, the thumb points in the positive direction of the

surface normal.

Static electric fields are conservative which means that the net work required to move a charge

in a closed path is always zero. Along some portion of the path positive work would have to be

done to push the charge against the field, but this amount of work would be given back by the field

as the charge travels along the remaining portions of the path. The integrand on the left-hand side

in (2.34) is the field dotted with an incremental length. If the integrand were multiplied by a unit

positive charge, the integrand would represent work, since charge times field is force and force

times distance is work. Because the electric field is conservative, the integral on the left-hand side

of (2.34) must be zero. Naturally this implies that the integral on the right-hand side must also be

zero. Since this holds for any loop L (or, similarly, any surface S), the integrand itself must be

zero. Equating the integrand to zero yields (2.7).

2.8. ELECTRIC FIELD BOUNDARY CONDITIONS 25

2.8 Electric Field Boundary Conditions

Consider an interface between to homogeneous regions. Because electric flux density only begins

or ends on charge, the normal component of D can only change at the interface if there is charge

on the interface, i.e., surface charge is present. This can be stated mathematically as

n̂ · (D1 − D2) = ρs (2.35)

where ρs is a surface charge density (C/m2), n̂ is a unit vector normal to the surface, and D1 and

D2 are the field to either side of the interface. One should properly argue this boundary condition

by an application of Gauss’s law for a small volume surrounding the surface, but such details are

left to other classes (this is just a review!). If no charge is present, the normal components must be

equal

n̂ · D1 = n̂ · D2. (2.36)

The boundary conditions on the tangential component of the electric field can be determined

by integrating the electric field over a closed loop which is essentially a rectangle which encloses a

portion of the interface. By letting the sides shrink to zero and keeping the “top” and “bottom” of

the rectangle small but finite (so that they are tangential to the surface), one essentially has that the

field over the top must be the same as the field over the bottom (owing to the fact that total integral

must be zero since the field is conservative). Stated mathematical, the boundary condition is

n̂ × (E1 − E2) = 0. (2.37)

2.9 Conductivity and Perfect Electric Conductors

It is possible for the charge in materials to move under the influence of an electric field such that

currents flow. If the material has a non-zero conductivity σ, the current density is given by

J = σE. (2.38)

The current density has units of A/m2 and the conductivity has units of S/m.

If charge is building up or decaying in a particular region, the divergence of the current density

must be non-zero. If the divergence is zero, that implies as much current leaves a point as enters it

and there is no build-up or decay of charge. This can be stated as

∇ · J = −∂ρv
∂t

. (2.39)

If the divergence is positive, the charge density must be decreasing with time (so the negative sign

will bring the two into agreement). This equation is a statement of charge conservation.

Perfect electric conductors (PECs) are materials where it is assumed that the conductivity ap-

proaches infinity. If the fields were non-zero in a PEC, that would imply the current was infinite.

Since infinite currents are not allowed, the fields inside a PEC are required to be zero. This sub-

sequently requires that the tangential electric field at the surface of a PEC is zero (since tangential

fields are continuous across an interface and the fields inside the PEC are zero). Correspondingly,

the normal component of the electric flux density D at the surface of a PEC must equal the charge

density at the surface of the PEC. Since the fields inside a PEC are zero, all points of the PEC must

be at the same potential.

26 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

2.10 Magnetic Fields

Magnetic fields circulate around, but they do not terminate on anything—there is no (known)

magnetic charge. Nevertheless, it is often convenient to define magnetic charge and magnetic

current. These fictions allow one to simplify various problems such as integral formulations of

scattering problems. However for now we will stick to reality and say they do not exist.

The magnetic flux density B is somewhat akin to the electric field in that the force on a charge

in motion is related to B. If a charge Q is moving with velocity u in a field B, it experiences a

force

F = Qu × B. (2.40)

Because B determines the force on a charge, it must account for all sources of magnetic field.

When material is present, the charge in the material can have motion (or rotation) which influences

the magnetic flux density.

Alternatively, similar to the electric flux density, we define the magnetic field H which ignores

the local effects of material. These fields are related by

B = µrµ0H = µH (2.41)

where µr is the relatively permeability, µ0 is the permeability of free space equal to 4π×10−7 H/m,

and µ is simply the permeability. Typically the relative permeability is greater than unity (although

usually only by a small amount) which implies that when a material is present the magnetic flux

density is larger than when there is only free space.

Charge in motion is the source of magnetic fields. If a current I flows over an incremental

distance dℓ, it will produce a magnetic field given by:

H =
Idℓ× ar

4πr2
(2.42)

where ar points from the location of the filament of current to the observation point and r is the

distance between the filament and the observation point. Equation (2.42) is known as the Biot-

Savart equation. Of course, because of the conservation of charge, a current cannot flow over just

a filament and then disappear. It must flow along some path. Thus, the magnetic field due to a loop

of current would be given by

H =

∮

L

Idℓ× ar

4πr2
. (2.43)

If the current was flowing throughout a volume or over a surface, the integral would be correspond-

ingly changed to account for the current wherever it flowed.

From (2.43) one sees that currents (which are just another way of saying charge in motion) are

the source of magnetic fields. Because of the cross-product in (2.42) and (2.43), the magnetic field

essentially swirls around the current. If one integrates the magnetic field over a closed path, the

result is the current enclosed by that path

∮

L

H · dℓ = Ienc. (2.44)

2.11. MAGNETIC FIELD BOUNDARY CONDITIONS 27

The enclosed current Ienc is the current that passes through the surface S which is bound by the

loop L.

The left-hand side of (2.44) can be converted to a surface integral by employing Stokes’ theo-

rem while the right-hand side can be related to the current density by integrating over the surface

of the loop. Thus, ∮

L

H · dℓ =

∫

S

∇× H · dℓ = Ienc =

∫

S

J · dℓ. (2.45)

Since this must be true for every loop (and surface), the integrands of the second and fourth terms

can be equated. This yields

∇× H = J. (2.46)

The last equation needed to characterize static fields is

∇ · B = 0. (2.47)

This is the mathematical equivalent of saying there is no magnetic charge.

2.11 Magnetic Field Boundary Conditions

Note that the equation governing B is similar to the equation which governed D. In fact, since

the right-hand side is always zero, the equation for B is simpler. The arguments used to obtain the

boundary condition for the normal component of the D field can be applied directly to the B field.

Thus,

n̂ · (B1 − B2) = 0. (2.48)

For the magnetic field, an integration path is constructed along the same lines as the one used to

determine the boundary condition on the electric field. Note that the equations governing E and H

are similar except that the one for H has a non-zero right-hand side. If the current density is zero

over the region of interest, then there is really no distinction between the two and one can say that

the tangential magnetic fields must be equal across a boundary. However, if a surface current exists

on the interface, there may be a discontinuity in the tangential fields. The boundary condition is

given by

n̂ × (H1 − H2) = K (2.49)

where K is the surface current density (with units of A/m).

2.12 Summary of Static Fields

When a system is not changing with respect to time, the governing equations are

∇ · D = ρv, (2.50)

∇ · B = 0, (2.51)

∇× E = 0, (2.52)

∇× H = J. (2.53)

28 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

If a loop carries a current but is otherwise neutral, it will produce a magnetic field and only a

magnetic field. If a charge is stationary, it will produce an electric field and only an electric field.

The charge will not “feel” the loop current and the current loop will not feel the stationary charge

(at least approximately). The magnetic field and electric field are decoupled. If a charge Q moves

with velocity u in the presence of both an electric field and a magnetic field, the force on the charge

is the sum of the forces due to the electric and magnetic fields

F = Q(E + u × B). (2.54)

2.13 Time Varying Fields

What happens when a point charge moves? We know that charge in motion gives rise to a magnetic

field, but if the charge is moving, its associated electric field must also be changing. Thus, when a

system is time-varying the electric and magnetic fields must be coupled.

There is a vector identity that the divergence of the curl of any vector field is identically zero.

Taking the divergence of both sides of (2.53) yields

∇ · ∇ × H = ∇ · J = −∂ρv
∂t

(2.55)

where the conservation of charge equation was used to write the last equality. Since the first term

must be zero, this implies that ∂ρv/∂t must also be zero. However, that is overly restrictive. In

general, for a time-varying system, the charge density will change with respect to time. Therefore

something must be wrong with (2.53) as it pertains to time-varying fields. It was Maxwell who

recognized that by adding the temporal derivative of the electric flux density to the right-hand side

of (2.53) the equation would still be valid for the time-varying case. The correct equation is given

by

∇× H = J +
∂D

∂t
(2.56)

The term ∂D/∂t is known as the displacement current while J is typically called the conduction

current. Equation (2.56) is known as Ampere’s law.

Taking the divergence of the right-hand side of (2.56) yields

∇ · J +
∂∇ · D
∂t

= −∂ρv
∂t

+
∂∇ · D
∂t

= −∂ρv
∂t

+
∂ρv
∂t

= 0 (2.57)

where use was made of (2.8) and the conservation of charge equation (2.39).

The electromotive force (EMF) is the change in potential over some path. It has been observed

experimentally that when a magnetic field is time-varying there is a non-zero EMF over a closed

path which encloses the varying field (i.e., the electric field is no longer conservative).

The symbol λ is often use to represent total magnetic flux through a given surface, i.e.,

λ =

∫

S

B · ds. (2.58)

2.14. SUMMARY OF TIME-VARYING FIELDS 29

For time-varying fields, the EMF over a closed path L can be written

Vemf =
dλ

dt
, (2.59)

−
∮

L

E · dℓ =
d

dt

∫

S

B · ds, (2.60)

−
∫

S

∇× E · ds =

∫

S

∂B

∂t
· ds, (2.61)

where Stokes’ theorem was used to write the last equation. Since this equality holds over any

surface, the integrands must be equal. This yields

∇× E = −∂B
∂t

(2.62)

which is known as Faraday’s law.

2.14 Summary of Time-Varying Fields

When a system is changing with respect to time, the governing equations are

∇ · D = ρv, (2.63)

∇ · B = 0, (2.64)

∇× E = −∂B
∂t
, (2.65)

∇× H = J +
∂D

∂t
. (2.66)

Note that the divergence equations are unchanged from the static case. The two curl equations

have picked up terms which couple the electric and magnetic fields. Since the additional terms

both involve temporal derivatives, they go to zero in the static case and the equations reduce to

those which governed static fields.

For time-varying fields the same boundary conditions hold as in the static case.

2.15 Wave Equation in a Source-Free Region

Equations (2.63)–(2.66) provide a set of coupled differential equations. In the FDTD method we

will be dealing directly with the two curl equations. We will stick to the coupled equations and

solve them directly. However, it is also possible to decouple these equations. As an example,

taking the curl of both sides of (2.65) yields

∇×∇× E = −∇× ∂B

∂t
= −µ∇× ∂H

∂t
. (2.67)

There is a vector identity that the curl of the curl of any field is given by

∇×∇× E = ∇(∇ · E) −∇2
E. (2.68)

30 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

(This is true for any field, not just the electric field as shown here.) In a source-free region, there

is no free charge present, ρv = 0, and hence the divergence of the electric field is zero (∇ · D =
ǫ∇ · E = 0). Thus (2.67) can be written

∇2
E = µ

∂

∂t
(∇× H). (2.69)

Keeping in mind that we are considering a source-free region so that J would be zero, we now use

(2.66) to write

∇2
E = µ

∂

∂t

∂D

∂t
, (2.70)

= µǫ
∂2

E

∂t2
. (2.71)

Equation (2.71) is the wave equation for the electric field and is often written

∇2
E − 1

c2
∂2

E

∂t2
= 0 (2.72)

where c = 1/
√
µǫ. Had we decoupled the equations to solve H instead of E, we would still obtain

the same equation (except with H replacing E).

2.16 One-Dimensional Solutions to the Wave Equation

The wave equation which governs either the electric of magnetic field in one dimension in a source-

free region can be written
∂2f(x, t)

∂x2
− µǫ

∂2f(x, t)

∂t2
= 0. (2.73)

We make the claim that any function f(ξ) is a solution to this equation provided that f is twice

differentiable and ξ is replaced with t± x/c where c = 1/
√
µǫ. Thus, we have

f(ξ) = f(t± x/c) = f(x, t). (2.74)

The first derivatives of this function can be obtained via the chain rule. Keeping in mind that

∂ξ

∂t
= 1, (2.75)

∂ξ

∂x
= ±1

c
, (2.76)

the first derivatives can be written

∂f(ξ)

∂t
=

∂f(ξ)

∂ξ

∂ξ

∂t
=
∂f(ξ)

∂ξ
, (2.77)

∂f(ξ)

∂x
=

∂f(ξ)

∂ξ

∂ξ

∂x
= ±1

c

∂f(ξ)

∂ξ
. (2.78)

2.16. ONE-DIMENSIONAL SOLUTIONS TO THE WAVE EQUATION 31

Employing the chain rule in a similar fashion, the second derivatives can be written as

∂

∂t

(
∂f(ξ)

∂t

)

=
∂

∂t

(
∂f(ξ)

∂ξ

)

=
∂2f(ξ)

∂ξ2

∂ξ

∂t
=
∂2f(ξ)

∂ξ2
, (2.79)

∂

∂x

(
∂f(ξ)

∂x

)

=
∂

∂x

(

±1

c

∂f(ξ)

∂ξ

)

= ±1

c

∂2f(ξ)

∂ξ2

∂ξ

∂x
=

1

c2
∂2f(ξ)

∂ξ2
. (2.80)

Thus, (2.79) and (2.80) show that

∂2f

∂t2
=

∂2f

∂ξ2
(2.81)

∂2f

∂x2
=

1

c2
∂2f

∂ξ2
. (2.82)

Substituting these into (2.73) yields

1

c2
∂2f

∂ξ2
− 1

c2
∂2f

∂ξ2
= 0. (2.83)

The two terms on the left-hand side cancel, thus satisfying the equation.

Consider a constant argument of f , say t − x/c = 0. Assume this argument is obtain by

simultaneously having t = 0 and x = 0. Now, let time advance by one second, i.e., t = 1 s. How

must the position x change to maintain an argument of zero? Solving for x yields x = c(1 s).
In other words to move along with the field so as to maintain the value f(0) (whatever that value

happens to be), at time zero, we would be at position zero. At time one second, we would have to

have moved to the location x = c(1 s). Speed is change in position over change in time. Thus the

speed with which we are moving is x/t = c(1 s)/(1 s) = c.
In these notes c will typically be used to represent the speed of light in free space. Using the

permittivity and permeability of free space, we obtain c = 1/
√
ǫ0µ0 ≈ 3 × 108 m/s.

32 CHAPTER 2. BRIEF REVIEW OF ELECTROMAGNETICS

Chapter 3

Introduction to the Finite-Difference

Time-Domain Method: FDTD in 1D

3.1 Introduction

The finite-difference time-domain (FDTD) method is arguably the simplest, both conceptually and

in terms of implementation, of the full-wave techniques used to solve problems in electromagnet-

ics. It can accurately tackle a wide range of problems. However, as with all numerical methods, it

does have its share of artifacts and the accuracy is contingent upon the implementation. The FDTD

method can solve complicated problems, but it is generally computationally expensive. Solutions

may require a large amount of memory and computation time. The FDTD method loosely fits into

the category of “resonance region” techniques, i.e., ones in which the characteristic dimensions of

the domain of interest are somewhere on the order of a wavelength in size. If an object is very

small compared to a wavelength, quasi-static approximations generally provide more efficient so-

lutions. Alternatively, if the wavelength is exceedingly small compared to the physical features of

interest, ray-based methods or other techniques may provide a much more efficient way to solve

the problem.

The FDTD method employs finite differences as approximations to both the spatial and tem-

poral derivatives that appear in Maxwell’s equations (specifically Ampere’s and Faraday’s laws).

Consider the Taylor series expansions of the function f(x) expanded about the point x0 with an

offset of ±δ/2:

f

(

x0 +
δ

2

)

= f(x0) +
δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) +
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (3.1)

f

(

x0 −
δ

2

)

= f(x0) −
δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) −
1

3!

(
δ

2

)3

f ′′′(x0) + . . . (3.2)

where the primes indicate differentiation. Subtracting the second equation from the first yields

f

(

x0 +
δ

2

)

− f

(

x0 −
δ

2

)

= δf ′(x0) +
2

3!

(
δ

2

)3

f ′′′(x0) + . . . (3.3)

Lecture notes by John Schneider. fdtd-intro.tex

33

34 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

Dividing by δ produces

f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)

δ
= f ′(x0) +

1

3!

δ2

22
f ′′′(x0) + . . . (3.4)

Thus the term on the left is equal to the derivative of the function at the point x0 plus a term which

depends on δ2 plus an infinite number of other terms which are not shown. For the terms which are

not shown, the next would depend on δ4 and all subsequent terms would depend on even higher

powers of δ. Rearranging slightly, this relationship is often stated as

df(x)

dx

∣
∣
∣
∣
x=x0

=
f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)

δ
+O(δ2). (3.5)

The “big-Oh” term represents all the terms that are not explicitly shown and the value in paren-

theses, i.e., δ2, indicates the lowest order of δ in these hidden terms. If δ is sufficiently small,

a reasonable approximation to the derivative may be obtained by simply neglecting all the terms

represented by the “big-Oh” term. Thus, the central-difference approximation is given by

df(x)

dx

∣
∣
∣
∣
x=x0

≈ f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)

δ
. (3.6)

Note that the central difference provides an approximation of the derivative of the function at x0,

but the function is not actually sampled there. Instead, the function is sampled at the neighboring

points x0 + δ/2 and x0 − δ/2. Since the highest power of δ being ignored is second order, the

central difference is said to have second-order accuracy or second-order behavior. This implies

that if δ is reduced by a factor of 10, the error in the approximation should be reduced by a factor

of 100 (at least approximately). In the limit as δ goes to zero, the approximation becomes exact.

One can construct higher-order central differences. In order to get higher-order behavior, more

terms, i.e., more sample points, must be used. Appendix A presents the construction of a fourth-

order central difference. The use of higher-order central differences in FDTD schemes is certainly

possible, but there are some complications which arise because of the increased “stencil” of the

difference operator. For example, when a PEC is present, it is possible that the difference operator

will extend into the PEC prematurely or it may extend to the other side of a PEC sheet. Because

of these types of issues, we will only consider the use of second-order central difference.

3.2 The Yee Algorithm

The FDTD algorithm as first proposed by Kane Yee in 1966 employs second-order central differ-

ences. The algorithm can be summarized as follows:

1. Replace all the derivatives in Ampere’s and Faraday’s laws with finite differences. Discretize

space and time so that the electric and magnetic fields are staggered in both space and time.

2. Solve the resulting difference equations to obtain “update equations” that express the (un-

known) future fields in terms of (known) past fields.

3.3. UPDATE EQUATIONS IN 1D 35

3. Evaluate the magnetic fields one time-step into the future so they are now known (effectively

they become past fields).

4. Evaluate the electric fields one time-step into the future so they are now known (effectively

they become past fields).

5. Repeat the previous two steps until the fields have been obtained over the desired duration.

At this stage, the summary is probably a bit too abstract. One really needs an example to demon-

strate the simplicity of the method. However, developing the full set of three-dimensional equations

would be overkill and thus the algorithm will first be presented in one-dimension. As you will see,

the extension to higher dimensions is quite simple.

3.3 Update Equations in 1D

Consider a one-dimensional space where there are only variations in the x direction. Assume that

the electric field only has a z component. In this case Faraday’s law can be written

−µ∂H
∂t

= ∇× E =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

0 0
0 0 Ez

∣
∣
∣
∣
∣
∣

= −ây
∂Ez
∂x

. (3.7)

Thus Hy must be the only non-zero component of the magnetic field which is time varying. (Since

the right-hand side of this equation has only a y component, the magnetic field may have non-zero

components in the x and z directions, but they must be static. We will not be concerned with static

fields here.) Knowing this, Ampere’s law can be written

ǫ
∂E

∂t
= ∇× H =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

0 0
0 Hy 0

∣
∣
∣
∣
∣
∣

= âz
∂Hy

∂x
. (3.8)

The two scalar equations obtained from (3.7) and (3.8) are

µ
∂Hy

∂t
=

∂Ez
∂x

, (3.9)

ǫ
∂Ez
∂t

=
∂Hy

∂x
. (3.10)

The first equation gives the temporal derivative of the magnetic field in terms of the spatial deriva-

tive of the electric field. Conversely, the second equation gives the temporal derivative of the

electric field in terms of the spatial derivative of the magnetic field. As will be shown, the first

equation will be used to advance the magnetic field in time while the second will be used to ad-

vance the electric field. A method in which one field is advanced and then the other, and then the

process is repeated, is known as a leap-frog method.

The next step is to replace the derivatives in (3.9) and (3.10) with finite differences. To do this,

space and time need to be discretized. The following notation will be used to indicate the location

where the fields are sampled in space and time

Ez(x, t) = Ez(m∆x, q∆t) = Eq
z [m] , (3.11)

Hy(x, t) = Hy(m∆x, q∆t) = Hq
y [m] , (3.12)

36 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

position, x

time, t

Future

Past

write difference equation
about this point

Ez [m−1]q+1 Ez [m+1]q+1Ez [m]q+1

Hy [m−1/2]q−1/2 Hy [m+1/2]q−1/2Hy [m−3/2]q−1/2

Hy [m−1/2]q+1/2 Hy [m+1/2]q+1/2Hy [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q

Hy [m−1/2]q+3/2 Hy [m+1/2]q+3/2Hy [m−3/2]q+3/2

∆x

∆t

Figure 3.1: The arrangement of electric- and magnetic-field nodes in space and time. The electric-

field nodes are shown as circles and the magnetic-field nodes as triangles. The indicated point is

where the difference equation is expanded to obtain an update equation for Hy.

where ∆x is the spatial offset between sample points and ∆t is the temporal offset. The index m
corresponds to the spatial step, effectively the spatial location, while the index q corresponds to

the temporal step. When written as a superscript q still represents the temporal step—it is not an

exponent. When implementing FDTD algorithms we will see that the spatial indices are used as

array indices while the temporal index, which is essentially a global parameter, is not explicitly

specified for each field location. Hence, it is reasonable to keep the spatial indices as an explicit

argument while indicating the temporal index separately.

Although we only have one spatial dimension, time can be thought of as another dimension.

Thus this is effectively a form of two-dimensional problem. The question now is: How should the

electric and magnetic field sample points, also known as nodes, be arranged in space and time?

The answer is shown in Fig. 3.1. The electric-field nodes are shown as circles and the magnetic-

field nodes as triangles. Assume that all the fields below the dashed line are known—they are

considered to be in the past—while the fields above the dashed line are future fields and hence

unknown. The FDTD algorithm provides a way to obtain the future fields from the past fields.

As indicated in Fig. 3.1, consider Faraday’s law at the space-time point ((m+ 1/2)∆x, q∆t)

µ
∂Hy

∂t

∣
∣
∣
∣
(m+1/2)∆x,q∆t

=
∂Ez
∂x

∣
∣
∣
∣
(m+1/2)∆x,q∆t

. (3.13)

The temporal derivative is replaced by a finite difference involvingH
q+ 1

2
y

[
m+ 1

2

]
andH

q− 1
2

y

[
m+ 1

2

]

(i.e., the magnetic field at a fixed location but two different times) while the spatial derivative is re-

placed by a finite difference involving Eq
z [m+ 1] and Eq

z [m] (i.e., the electric field at two different

3.3. UPDATE EQUATIONS IN 1D 37

position, x

Future

Past

write difference equation
about this point

Ez [m−1]q+1 Ez [m+1]q+1Ez [m]q+1

Hy [m−1/2]q−1/2 Hy [m+1/2]q−1/2Hy [m−3/2]q−1/2

Hy [m−1/2]q+1/2 Hy [m+1/2]q+1/2Hy [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q

time, t

Hy [m−1/2]q+3/2 Hy [m+1/2]q+3/2Hy [m−3/2]q+3/2

∆x

∆t

Figure 3.2: Space-time after updating the magnetic field. The dividing line between future and

past values has moved forward a half temporal step. The indicated point is where the difference

equation is written to obtain an update equation for Ez.

locations but one time). This yields

µ
H
q+ 1

2
y

[
m+ 1

2

]
−H

q− 1
2

y

[
m+ 1

2

]

∆t

=
Eq
z [m+ 1] − Eq

z [m]

∆x

. (3.14)

Solving this for H
q+ 1

2
y

[
m+ 1

2

]
yields

H
q+ 1

2
y

[

m+
1

2

]

= H
q− 1

2
y

[

m+
1

2

]

+
∆t

µ∆x

(Eq
z [m+ 1] − Eq

z [m]) . (3.15)

This is known as an update equation, specifically the update equation for the Hy field. It is a

generic equation which can be applied to any magnetic-field node. It shows that the future value

of Hy depends on only its pervious value and the neighboring electric fields. After applying (3.15)

to all the magnetic-field nodes, the dividing line between future and past values has advanced a

half time-step. The space-time grid thus appears as shown in Fig. 3.2 which is identical to Fig. 3.1

except for the advancement of the past/future dividing line.

Now consider Ampere’s law (3.10) applied at the space-time point (m∆x, (q+ 1/2)∆t) which

is indicated in Fig. 3.2:

ǫ
∂Ez
∂t

∣
∣
∣
∣
m∆x,(q+1/2)∆t

=
∂Hy

∂x

∣
∣
∣
∣
m∆x,(q+1/2)∆t

. (3.16)

Replacing the temporal derivative on the left with a finite difference involving Eq+1
z [m] and Eq

z [m]

and replacing the spatial derivative on the right with a finite difference involvingH
q+ 1

2
y

[
m+ 1

2

]
and

38 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

H
q+ 1

2
y

[
m− 1

2

]
yields

ǫ
Eq+1
z [m] − Eq

z [m]

∆t

=
H
q+ 1

2
y

[
m+ 1

2

]
−H

q+ 1
2

y

[
m− 1

2

]

∆x

. (3.17)

Solving for Eq+1
z [m] yields

Eq+1
z [m] = Eq

z [m] +
∆t

ǫ∆x

(

H
q+ 1

2
y

[

m+
1

2

]

−H
q+ 1

2
y

[

m− 1

2

])

. (3.18)

Equation (3.18) is the update equation for the Ez field. The indices in this equation are generic so

that the same equation holds for every Ez node. Similar to the update equation for the magnetic

field, here we see that the future value of Ez depends on only its past value and the value of the

neighboring magnetic fields.

After applying (3.18) to every electric-field node in the grid, the dividing line between what

is known and what is unknown moves forward another one-half temporal step. One is essentially

back to the situation depicted in Fig. 3.2—the future fields closest to the dividing line between the

future and past are magnetics fields. They would be updated again, then the electric fields would

be updated, and so on.

It is often convenient to represent the update coefficients ∆t/ǫ∆x and ∆t/µ∆x in terms of the

ratio of how far energy can propagate in a single temporal step to the spatial step. The maximum

speed electromagnetic energy can travel is the speed of light in free space c = 1/
√
ǫ0µ0 and hence

the maximum distance energy can travel in one time step is c∆t (in all the remaining discussions

the symbol c will be reserved for the speed of light in free space). The ratio c∆t/∆x is often called

the Courant number which we label Sc. It plays an important role in determining the stability of a

simulation (hence the use of S) and will be considered further later. Letting µ = µrµ0 and ǫ = ǫrǫ0,

the coefficients in (3.18) and (3.15) can be written

1

ǫ

∆t

∆x

=
1

ǫrǫ0

√
ǫ0µ0√
ǫ0µ0

∆t

∆x

=

√
ǫ0µ0

ǫrǫ0

c∆t

∆x

=
1

ǫr

√
µ0

ǫ0

c∆t

∆x

=
η0

ǫr

c∆t

∆x

=
η0

ǫr
Sc (3.19)

1

µ

∆t

∆x

=
1

µrµ0

√
ǫ0µ0√
ǫ0µ0

∆t

∆x

=

√
ǫ0µ0

µrµ0

c∆t

∆x

=
1

µr

√
ǫ0
µ0

c∆t

∆x

=
1

µrη0

c∆t

∆x

=
1

µrη0

Sc (3.20)

where η0 =
√

µ0/ǫ0 is the characteristic impedance of free space.

In FDTD simulations there are restrictions on how large a temporal step can be. If it is too large,

the algorithm produces unstable results (i.e., the numbers obtained are completely meaningless

and generally tend quickly to infinity). At this stage we will not consider a rigorous analysis of

stability. However, thinking about the way fields propagate in an FDTD grid, it seems logical that

energy should not be able to propagate any further than one spatial step for each temporal step, i.e.,

c∆t ≤ ∆x. This is because in the FDTD algorithm each node only affects its nearest neighbors. In

one complete cycle of updating the fields, the furthest a disturbance could propagate is one spatial

step. It turns out that the optimum ratio for the Courant number (in terms of minimizing numeric

errors) is also the maximum ratio. Hence, for the one-dimensional simulations considered initially,

we will use

Sc =
c∆t

∆x

= 1. (3.21)

3.4. COMPUTER IMPLEMENTATION OF A ONE-DIMENSIONAL FDTD SIMULATION 39

position, x

Hy [m−1/2]q+1/2 Hy [m+1/2]q+1/2Hy [m−3/2]q+1/2

Ez [m−1]q Ez [m]q Ez [m+1]q

∆x

∆x

Figure 3.3: A one-dimensional FDTD space showing the spatial offset between the magnetic and

electric fields.

When first obtaining the update equations for the FDTD algorithm, it is helpful to think in

terms of space-time. However, treating time as an additional dimension can be awkward. Thus,

in most situations it is more convenient to think in terms of a single spatial dimension where the

electric and magnetic fields are offset a half spatial step from each other. This is depicted in Fig.

3.3. The temporal offset between the electric and magnetic field is always understood whether

explicitly shown or not.

3.4 Computer Implementation of a One-Dimensional

FDTD Simulation

Our goal now is to translate the update equations (3.15) and (3.18) into a usable computer program.

The first step is to discard, at least to a certain extent, the superscripts—time is a global parameter

and will be recorded in a single integer variable. Time is not something about which each node

needs to be concerned.

Next, keep in mind that in most computer languages the equal sign is used as “the assignment

operator.” In C, the following is a perfectly valid statement

a = a+b;

In the usual mathematical sense, this statement is only true if b were zero. However, to a computer

this statement means take the value of b, add it to the old value of a, and place the result back in

the variable a. Essentially we are updating the value of a. In C this statement can be written more

tersely as

a += b;

When writing a computer program to implement the FDTD algorithm, one does not bother

trying to construct a program that explicitly uses offsets of one-half. Nodes are stored in arrays

and, as is standard practice, individual array elements are specified with integer indices. Thus,

the computer program (or, perhaps more correctly, the author of the computer program) implicitly

incorporates the fact that electric and magnetic fields are offset while using only integer indices to

specify location. As you will see, spatial location and the array index will be virtually synonymous.

For example, assume two arrays, ez and hy, are declared which will contain the Ez and Hy

fields at 200 nodes

double ex[200], hy[200], imp0=377.0;

40 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

position, x

ez[0] hy[0] ez[2]ez[1] hy[2]hy[1]{ {{index 0 index 2index 1

Figure 3.4: A one-dimensional FDTD space showing the assumed spatial arrangement of the

electric- and magnetic-field nodes in the arrays ez and hy. Note that an electric-field node is

assumed to exist to the left of the magnetic-field node with the same index.

The variable imp0 is the characteristic impedance of free space and will be used in the following

discussion (it is initialized to a value of 377.0 in this declaration). One should think of the elements

in the ez and hy arrays as being offset from each other by a half spatial step even though the array

values will be accessed using an integer index.

It is arbitrary whether one initially wishes to think of an ez array element as existing to the

right or the left of an hy element with the same index (we assume “left” corresponds to descreasing

values of x while “right” corresponds to increasing values). Here we will assume ez nodes are to

the left of hy nodes with the same index. This is illustrated in Fig. 3.4 where ez[0] is to the left

of hy[0], ez[1] is to the left of hy[1], and so on. In general, when a Courier font is used,

e.g., hy[m], we are considering an array and any offsets of one-half associated with that array

are implicitly understood. When Times-Italic font is use, e.g., H
q+ 1

2
y

[
m+ 1

2

]
we are discussing the

field itself and offsets will be given explicitly.

Assuming a Courant number of unity (Sc = 1), the node hy[1] could be updated with a

statement such as

hy[1] = hy[1] + (ez[2] - ez[1]) / imp0;

In general, any magnetic-field node can be updated with

hy[m] = hy[m] + (ez[m + 1] - ez[m]) / imp0;

For the electric-field nodes, the update equation can be written

ez[m] = ez[m] + (hy[m] - hy[m - 1]) * imp0;

These two update equations, placed in appropriate loops, are the engines that drive an FDTD

simulation. However, there are a few obvious pieces missing from the puzzle before a useful

simulation can be performed. These missing pieces include

1. Nodes at the end of the physical space do not have neighboring nodes to one side. For exam-

ple, there is no hy[-1] node for the ez[0] node to use in its update equation. Similarly,

if the arrays are declared with 200 element, there is no ez[200] available for hy[199]
to use in its update equation (recall that the index of the last element in a C array is one

less than the total number of elements—the array index represents the offset from the first

element of the array). Therefore a standard update equation cannot be used at these nodes.

3.5. BARE-BONES SIMULATION 41

2. Only a constant impedance is used so only a homogeneous medium can be modeled (in this

case free space).

3. As of yet there is no energy present in the field. If the fields are initially zero, they will

remain zero forever.

The first issue can be addressed using absorbing boundary conditions (ABC’s). There are

numerous implementations one can use. In later material we will be consider only a few of the

more popular techniques.

The second restriction can be removed by allowing the permittivity and permeability to change

from node to node. However, in the interest of simplicity, we will continue to use a constant

impedance for a little while longer.

The third problem can be overcome by initializing the fields to a non-zero state. However, this

is cumbersome and typically not a good approach. Better solutions are to introduce energy via

either a hardwired source, an additive source, or a total-field/scattered-field (TFSF) boundary. We

will consider implementation of each of these approaches.

3.5 Bare-Bones Simulation

Let us consider a simulation of a wave propagating in free space where there are 200 electric- and

magnetic-field nodes. The code is shown in Program 3.1.

Program 3.1 1DbareBones.c: Bare-bones one-dimensional simulation with a hard source.

1 /* Bare-bones 1D FDTD simulation with a hard source. */

2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7

8 int main()
9 {

10 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
11 int qTime, maxTime = 250, mm;
12

13 /* do time stepping */

14 for (qTime = 0; qTime < maxTime; qTime++) {
15

16 /* update magnetic field */

17 for (mm = 0; mm < SIZE - 1; mm++)
18 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
19

20 /* update electric field */

21 for (mm = 1; mm < SIZE; mm++)

42 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

22 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
23

24 /* hardwire a source node */

25 ez[0] = exp(-(qTime - 30.) * (qTime - 30.) / 100.);
26

27 printf("%g\n", ez[50]);
28 } /* end of time-stepping */

29

30 return 0;
31 }

In the declaration of the field arrays in line 10, “={0.}” has been added to ensure that these arrays

are initialized to zero. (For larger arrays this is not an efficient approach for initializing the arrays

and we will address this fact later.) The variable qTime is an integer counter that serves as the

temporal index or time step. The total number of time steps in the simulation is dictated by the

variable maxTime which is set to 250 in line 11 (250 was chosen arbitrarily—it can be any value

desired).

Time-stepping is accomplished with the for-loop that begins on line 14. Embedded within this

time-stepping loop are two additional (spatial) loops—one to update the magnetic field and the

other to update the electric field. The magnetic-field update loop starting on line 17 excludes the

last magnetic-field node in the array, hy[199], since this node lacks one neighboring electric

field. For now we will leave this node zero. The electric-field update loop in line 21 starts with a

spatial index m of 1, i.e., it does not include ez[0]which is the firstEz node in the grid. The value

of ez[0] is dictated by line 25 which is a Gaussian function that will have a maximum value of

unity when the time counter qTime is 30. The first time through the loop, when qTime is zero,

ez[0] will be set to exp(−9) ≈ 1.2341 × 10−4 which is small relative to the maximum value of

the source. Line 27 prints the value of ez[50] to the screen, once for each time step. A plot of

the output generated by this program is shown in Fig. 3.5.

Note that the output is a Gaussian. The excitation is introduced at ez[0] but the field is

recorded at ez[50]. Because c∆t = ∆x in this simulation (i.e., the Courant number is unity), the

field moves one spatial step for every time step. The separation between the source point and the

observation point results in the observed signal being delayed by 50 time steps from what it was at

the source. The source function has a peak at 30 time steps but, as can be seen from Fig. 3.5, the

field at the observation point is maximum at time step 80.

Consider a slight modification to Program 3.1 where the simulation is run for 1000 time steps

instead of 250 (i.e., maxTime is set to 1000 in line 11 instead of 250). The output obtained in this

case is shown in Fig. 3.6. Why are there multiple peaks here and why are they both positive and

negative?

The last magnetic-field node in the grid is initially zero and remains zero throughout the simu-

lation. When the field encounters this node it essentially see a perfect magnetic conductor (PMC).

To satisfy the boundary condition at this node, i.e., that the total magnetic field go to zero, a re-

flected wave is created which reverses the sign of the magnetic field but preserves the sign of the

electric field. This phenomenon is considered in more detail in the next section. The second peak

in Fig. 3.6 is this reflected wave. The reflected wave continues to travel in the negative direction

3.5. BARE-BONES SIMULATION 43

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z[

50
] (

V
/m

)

Time Step

Figure 3.5: Output generated by Program 3.1.

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000

E
z[

50
] (

V
/m

)

Time Step

Figure 3.6: Output generated by Program 3.1 but with maxTime set to 1000.

44 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

until it encounters the first electric-field node ez[0]. This node has its value set by the source

function and is oblivious to what is happening in the interior of the grid. In this particular case, by

the time the reflected field reaches the left end of the grid, the source function has essentially gone

to zero and nothing is going to change that. Thus the node ez[0] behaves like a perfect electric

conductor (PEC). To satisfy the boundary conditions at this node, the wave is again reflected, but

this time the electric field changes sign while the sign of the magnetic field is preserved. In this

way the field which was introduced into the grid continues to bounce back and forth until the simu-

lation is terminated. The simulation is of a resonator with one PMC wall and one PEC wall. (Note

that the boundary condition at ez[0] is the same whether or not the source function has gone to

zero. Any incoming field cannot change the value at ez[0] and hence a reflected wave must be

generated which has equal magnitude but opposite sign from the incoming field.)

3.6 PMC Boundary in One Dimension

In Program 3.1 one side of the grid (the “right side”) is terminated by a magnetic field which is

always zero. It was observed that this node acts as a perfect magnetic conductor (PMC) which pro-

duces a reflected wave where the electric field is not inverted while the magnetic field is inverted.

To understand fully why this is the case, let us consider the right side of a one-dimensional domain

where 200 electric- and magnetic-field nodes are used to model free space. Assume the Courant

number is unity and the impedance of free space is 377. The last node in the grid is hy[199] and

it will always remain zero. The other nodes in the grid are updated using, in C notation:

ez[m] = ez[m] + (hy[m] - hy[m - 1]) * 377; (3.22)

hy[m] = hy[m] + (ez[m + 1] - ez[m]) / 377; (3.23)

Assume that a Dirac delta pulse, i.e., a unit amplitude pulse existing at a single electric-field node

in space-time, is nearing the end of the grid. Table 3.1 shows the fields at progressive time-steps

starting at a time q when the pulse has reached node ez[198].

At time q node ez[198] is unity while hy[197] was set to −1/377 at the previous update of

the magnetic fields. When the magnetic fields are updated at time q+1/2 the update equation (3.23)

dictates that hy[197] be set to zero (the “old” value of the magnetic field cancels the contribution

from the electric field). Meanwhile, hy[198] becomes −1/377. All other magnetic-field nodes

will be zero.

Updating the electric field at time-step q + 1 results in ez[198] being set to zero while

ez[199] is set to one—the pulse advances one spatial step to the right. If the normal update

equation could be used at node hy[199], at time q + 3/2 it would be set to −1/377. However,

because there is no neighboring electric field to the right of hy[199], the update equation cannot

be used and, lacking an alternative way of calculating its value, hy[199] is left as zero. Thus at

time q + 3/2 all the magnetic-field nodes in the grid are zero.

When the electric field is updated at time q+ 2 essentially nothing happens. The electric fields

are updated from their old values and the difference of surrounding magnetic fields. However all

magnetic fields are zero. Thus the new electric field is the same as the old electric field.

At time q + 5/2 the unit pulse which exists at ez[199] causes hy[198] to become 1/377
which is the negative of what it was two times steps ago. From this time forward, the pulse

propagates back to the left with the electric field maintaining unit amplitude.

3.7. SNAPSHOTS OF THE FIELD 45

time

step

node

ez[197] hy[197] ez[198] hy[198] ez[199] hy[199]
q − 1/2 −1/377 0 0
q 0 1 0
q + 1/2 0 −1/377 0
q + 1 0 0 1
q + 3/2 0 0 0
q + 2 0 0 1
q + 5/2 0 1/377 0
q + 3 0 1 0
q + 5/2 1/377 0 0
q + 4 1 0 0

Table 3.1: Electric- and magnetic-field nodes at the “end” of arrays which have 200 elements, i.e.,

the last node is hy[199] which is always set to zero. A pulse of unit amplitude is propagating

to the right and has arrived at ez[198] at time-step q. Time is advancing as one reads down the

columns.

This discussion is for a single pulse, but any incident field could be treated as a string of pulses

and then one would merely have to superimpose their values. This dicussion further supposes the

Courant number is unity. When the Courant number is not unity the termination of the grid still

behaves as a PMC wall, but the pulse will not propagate without distortion (it suffers dispersion

because of the properties of the grid itself as will be discussed in more detail in Sec. 7.4).

If the grid were terminated on an electric-field node which was always set to zero, that node

would behave as a perfect electric conductor. In that case the reflected electric field would have

the opposite sign from the incident field while the magnetic field would preserve its sign. This is

what happens to any field incident on the left side of the grid in Program 3.1.

3.7 Snapshots of the Field

In Program 3.1 the field at a single point is recorded to a file. Alternatively, it is often useful to view

the fields over the entire computational domain at a single instant of time, i.e., take a “snapshot”

that shows the field throughout space. Here we describe one way in which this can be conveniently

implemented in C.

The approach adopted here will open a separate file for each snapshot. Each file will have a

common base name, then a dot, and then a sequence number which will be called the frame number.

So, for example, the files might be called sim.0, sim.1, sim.2, and so on. To accomplish this,

the fragments shown in Fragments 3.2 and 3.3 would be added to a program (such as Program

3.1).

Fragment 3.2 Declaration of variables associated with taking snapshots. The base name is stored

in the character array basename and the complete file name for each frame is stored in filename.

Here the base name is initialized to sim but, if desired, the user could be prompted for the base

46 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

name. The integer frame is the frame number for each snapshot and is initialized to zero.

1 char basename[80] = "sim", filename[100];
2 int frame = 0;
3 FILE *snapshot;

Fragment 3.3 Code to generate the snapshots. This would be placed inside the time-stepping

loop. The initial if statement ensures the electric field is recorded every tenth time-step.

1 /* write snapshot if time-step is a multiple of 10 */

2 if (qTime % 10 == 0) {
3 /* construct complete file name and increment frame counter */

4 sprintf(filename, "%s.%d", basename, frame++);
5

6 /* open file */

7 snapshot = fopen(filename, "w");
8

9 /* write data to file */

10 for (mm = 0; mm < SIZE; mm++)
11 fprintf(snapshot, "%g\n", ez[mm]);
12

13 /* close file */

14 fclose(snapshot);
15 }

In Fragment 3.2 the base name is initialized to sim but the user could be prompted for this.

The integer variable frame is the frame (or snapshot) counter that will be incremented each time

a snapshot is taken. It is initialized to zero. The file pointer snapshot is used for the output files.

The code shown in Fragment 3.3 would be placed inside the time-stepping loop of Program

3.1. Line 2 checks, using the modulo operator (%) if the time step is a multiple of 10. (10 was

chosen somewhat arbitrarily. If snapshots were desired more frequently, a smaller value would be

used. If snapshots were desired less frequently, a larger value would be used.) If the time step is

a multiple of 10, the complete output-file name is constructed in line 4 by writing the file name

to the string variable filename. (Since zero is a multiple of 10, the first snapshot that is taken

corresponds to the fields at time zero. This data would be written to the file sim.0. Note that in

Line 4 the frame number is incremented each time a file name is created. The file is opened in line

7 and the data is written using the loop starting in line 10. Finally, the file is closed in line 14.

Fig. 3.7 shows the snapshots of the field at time steps 10, 20, and 30 using essentially the same

code as Program 3.1—the only difference being the addition of the code to take the snapshots.

Here the field can be seen entering the computational domain from the left and propagating to the

right.

3.7. SNAPSHOTS OF THE FIELD 47

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

Figure 3.7: Snapshots taken at time-steps 10, 20, and 30 of the Ez field generated by Program 3.1.

The field is seen to be propagating away from the hardwired source at the left end of the grid.

48 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

3.8 Additive Source

Hardwiring the source, as was done in Program 3.1, has the severe shortcoming that no energy can

pass through the source node. This problem can be rectified by using an additive source. Consider

Ampere’s law with the current density term:

∇× H = J + ǫ
∂E

∂t
. (3.24)

The current density J can represent both the conduction current due to flow of charge in a material

under the influence of the electric field, i.e., current given by σE, as well as the current associated

with any source, i.e., an “impressed current.” At this point we are just interested in the source

aspect of J and will return to the issue of finite conductivity in Sec. 3.12 and Sec. 5.7. Rearranging

(3.24) slightly yields
∂E

∂t
=

1

ǫ
∇× H − 1

ǫ
J. (3.25)

This equation gives the temporal derivative of the electric field in terms of the spatial derivative

of the magnetic field—which is as before—and an additional term which can be thought of as the

forcing function for the system. This current can be specified to be whatever is desired.

To translate (3.25) into a form suitable for the FDTD algorithm, the spatial derivatives are again

expressed in terms of finite differences and then one solves for the future fields in terms of past

fields. Recall that for Ampere’s law, the update equation for Eq
z [m] was obtained by apply finite

differences at the space-time point (m∆x, (q + 1/2)∆t). Going through the exact same procedure

but adding the source term yields

Eq+1
z [m] = Eq

z [m] +
∆t

ǫ∆x

(

H
q+ 1

2
y

[

m+
1

2

]

−H
q+ 1

2
y

[

m− 1

2

])

− ∆t

ǫ
J
q+ 1

2
z [m] . (3.26)

The source current could potentially be distributed over a number of nodes, but for the sake of

introducing energy to the grid, it suffices to apply it to a single node.

In order to preserve the original update equation (which is sometimes handy when writing

loops), (3.26) can be separated into two steps: first the usual update is applied and then the source

term is added. For example:

Eq+1
z [m] = Eq

z [m] +
∆t

ǫ∆x

(

H
q+ 1

2
y

[

m+
1

2

]

−H
q+ 1

2
y

[

m− 1

2

])

(3.27)

Eq+1
z [m] = Eq+1

z [m] − ∆t

ǫ
J
q+ 1

2
z [m] . (3.28)

In practice the source current might only exist at a single node in the 1D grid (as will be the case

in the examples to come). Thus, (3.28) would be applied only at the node where the source current

is non-zero.

Generally the amplitude and the sign of the source function are not a concern. When calculating

things such as the scattering cross-section or the reflection coefficient, one always normalizes by

the incident field. Therefore we do not need to specify explicitly the value of ∆t/ǫ in (3.28)—it

suffices to merely treat this coefficient as being contained in the source function itself.

A program that implements an additive source and takes snapshots of the electric field is shown

in Program 3.4. The changes from Program 3.1 are shown in bold. The source function is exactly

3.8. ADDITIVE SOURCE 49

the same as before except now, instead of setting the value of ez[0] to the value of this function,

the source function is added to ez[50]. The source is introduced in line 29 and the update

equations are unchanged from before. (Note that in this chapter the programs will be somewhat

verbose, simplistic, and repetitive. Once we are comfortable with the FDTD algorithm we will pay

more attention to better coding practices.)

Program 3.4 1Dadditive.c: One-dimensional FDTD program with an additive source.

1 /* 1D FDTD simulation with an additive source. */

2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7

8 int main()
9 {

10 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
11 int qTime, maxTime = 200, mm;
12

13 char basename[80] = "sim", filename[100];
14 int frame = 0;
15 FILE *snapshot;
16

17 /* do time stepping */

18 for (qTime = 0; qTime < maxTime; qTime++) {
19

20 /* update magnetic field */

21 for (mm = 0; mm < SIZE - 1; mm++)
22 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
23

24 /* update electric field */

25 for (mm = 1; mm < SIZE; mm++)
26 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
27

28 /* use additive source at node 50 */
29 ez[50] += exp(-(qTime - 30.) * (qTime - 30.) / 100.);
30

31 /* write snapshot if time a multiple of 10 */
32 if (qTime % 10 == 0) {
33 sprintf(filename, "%s.%d", basename, frame++);
34 snapshot=fopen(filename, "w");
35 for (mm = 0; mm < SIZE; mm++)
36 fprintf(snapshot, "%g\n", ez[mm]);
37 fclose(snapshot);
38 }

50 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

39 } /* end of time-stepping */

40

41 return 0;
42 }

Snapshots of Ez taken at time-steps 10, 20, and 30 are shown in Fig. 3.8. Note that the field

originates from node 50 and that it propagates to either side of this node. Also notice that the peak

amplitude is half of what it was when the source function was implement as a hardwired source.

As something of an aside, in Program 3.4 note that the code that takes a snapshot of the electric

field was placed in the time-stepping but after the update equation. Thus one might ask: do the

contents of snapshot file sim.0 contain the fields at time zero or at time one? And, do the other

snapshots correspond to times that multiples of 10 or do the correspond to one plus a multiple of

10? In nearly all practical cases it won’t matter. The precise location of t = 0 is rather aribtrary. So,

when looking at the snapshots it is usually sufficient to know that the sequence of snapshots start

“at the beginning of the simulation” and then are taken every 10 time steps. However, if one wants

to be more precise about this, absolute time is usually dictated by the source function. Now, think

in terms of the hard-source implementation rather than the additive source. We have implemented

a Gaussian source that has a peak amplitude at time-step 30. The way the code is written here,

with the source being applied after the update equation and then the snapshot being taken last, we

would see the peak at the source node in frame sim.1. In other words the snapshots do indeed

correspond to times that are multiples of 10. So, in some sense the electric fields start at a time

step of −1. The very first update update loop takes them up to time step 0, and then the source

function is applied to set the field at the source node at time-step 0. However, this is truly a minor

point and we will worry about it in subsequent discussions. Whether the code that introduces the

source appears before or after the update loop and whether the code that generates output appears

before or after the update loop, often doesn’t matter—the important thing is generally just that

these things are included in the time-stepping loop.

3.9 Terminating the Grid

In most instances one is interested in modeling a problem which exists in an open domain, i.e.,

an infinite space. This is true even when the specific region of interest, say the region where a

scatterer is present, may be small. That scatterer is in an unbounded space. Thus far the code we

have written is only suitable for modeling a resonator since the nodes at the ends of the grid reflect

any field incident upon them. We now wish to rectify this shortcoming. Absorbing boundary

conditions (ABC’s) will be used so that the grid, which will contain only a finite number of nodes,

can behave as if it were infinite. In one dimension, when operating at the Courant limit of one, an

exact ABC can be realized. Unfortunately in higher dimensions, or even in one dimension when

not operating at the Courant limit, ABC’s are only approximate. The better the ABC, the less

energy it reflects back into the interior of the grid.

Before implementing an ABC, let us again consider the code shown in Program 3.4 but with

the maximum number of time steps set to 450. With the FDTD method, the more ways in which

the field can be visualized, the better. Watching the field propagate in the time-domain can provide

3.9. TERMINATING THE GRID 51

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

Figure 3.8: Snapshots taken at time-steps 10, 20, and 30 of the Ez field generated by Program 3.4.

An additive source is applied to node 50 and the field is seen to propagate away from it to either

side.

52 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.9: Waterfall plot of the electric field produced by Program 3.4. The computational domain

has 200 nodes with a PEC boundary on the left and a PMC boundary on the right. The vertical axis

gives the frame number. Snapshots, i.e., frames, were recorded every 10 time steps.

insights into the behavior of a system. Additionally, visualization of the propagation of the fields

can be an invaluable aid when debugging FDTD code. Animations of the field are especially useful

and different display strategies will be discussed later.

Since we cannot include an animation here, we will use a “waterfall plot” of the electric field

in the one-dimensional domain. A waterfall plot is a collection of standard “x vs. y” plots where

each plot is offset slightly from the next (a direct vertical offset will be used here). This can be

thought of as stacking all the frames of an animation, one above the next.

Figure 3.9 shows the waterfall plot corresponding to the output from Program 3.4 (with a

maxTime of 450). Each line represents a snapshot of the field throughout the computational

domain. One can see that electric field starts to propagate away from the source which is at node

50. The curve/line corresponding to 5 on the vertical axis is the data from the sixth frame (i.e.,

sim.5). Since the frames are recorded every ten time-steps, since sim.0 corresponds to the field

at time zero, this line shows the field at the fiftieth time-step. This line has two peaks. One is

traveling to the left and the other to the right. Once the left-going field encounters the end of the

grid at node zero, it is both reflected and inverted. It then travels to the right as time progresses.

The peak which originally travels to the right from the source encounters the right end of the grid

around frame (or curve) 17. In this case, with the PMC boundary that exists there, the electric

field is not inverted—instead, the magnetic field, which is not plotted, is inverted. A reflected wave

then propagates back to the left. The field propagates back and forth, inverting its sign at the left

boundary and preserving its sign at the right boundary, until the simulation is halted. The Matlab

3.9. TERMINATING THE GRID 53

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.10: Waterfall plot of the electric field using the same computational domain as Fig. 3.9

except a simple ABC has been used to terminate the grid. Note that the field propagates from the

additive source at node 50 and merely disappears when it reaches either end of the grid.

code that was used to generate this waterfall plot is given in Appendix B. Additionally, Appendix

B provides Matlab code that can be used to animate snapshots of a one-dimensional domain.

Returning to the issue of grid termination, when the Courant number is unity, the distance the

wave travels in one temporal step is equal to one spatial step, i.e., c∆t = ∆x. We are interested in

modeling an open domain where there is no energy entering the grid “from the outside.” Therefore,

for node ez[0], its updated value should just be the previous value that existed at ez[1]. Since

no energy is entering the grid from the left, the field at ez[1] must be propagating solely to

the left. At the next time step the value that was at ez[1] should now appear at ez[0]. Similar

arguments hold at the other end of the grid. The updated value of hy[199] should be the previous

value of hy[198].

Thus, a simple ABC can be realized by adding the following line to Program 3.4 between lines

23 and 24

ez[0] = ez[1];

Similarly, the following line would be added between lines 19 and 20

hy[SIZE-1] = hy[SIZE-2];

The waterfall plot which is obtained for the electric field after making these changes is shown in

Fig. 3.10. Note that the reflected fields are no longer present. The left- and right-going pulses reach

54 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

the end of the grid and then disappear as if they have continued to propagate off to infinity. (How-

ever, there is still some persistent field that lingers throughout the grid. This field is small—about

five orders of magnitude smaller than the peak when using single precision—and is a consequence

of finite precision. These small fields are not visible on the scale of the plot and are not of much

practical concern since typically other sources of error will be far larger.)

As mentioned previously, this simple ABC only works in limited situations. However, the basic

premise is employed in many of the more complicated ABC’s: the future value of the field at the

end of the grid depends on some combination of the past and interior fields. We will return to this

topic in Chap. 6.

3.10 Total-Field/Scattered-Field Boundary

Note that any function f(ξ) which is twice differentiable is a solution to the wave equation. In

one dimension all that is required is that the argument ξ be replaced by t ± x/c. A proof was

given in Sec. 2.16. Thus far the excitation of the FDTD grids has occurred at a point—either the

hardwired source at the left end of the grid, as shown in Program 3.1, or the additive source at

node 50, as shown in Program 3.4. Now our goal is to construct a source such that the excitation

only propagates in one direction, i.e., the source introduces an incident field that is propagating

to the right (the positive x direction). We will accomplish this using what is know as a total-

field/scattered-field (TFSF) boundary.

We start by specifying the incident field as a function of space and time. A Gaussian pulse has

been used for the excitation in the previous examples. A Gaussian can still be used to specify the

excitation, but to obtain a wave propagating to the right, the argument should be t− x/c instead of

merely t. Previously the source was given by

f(t) = f(q∆t) = e
−

“

q∆t−30∆t
10∆t

”2

= e−(q−30
10)

2

= f [q] (3.29)

where 30∆t is a delay and the term in the denominator of the exponent (10∆t) controls the width of

the pulse. Note that the time-step width ∆t can be canceled from the numerator and denominator

of the exponent.

For the propagating incident field, t in (3.29) is replaced with t−x/c. In discretized space-time

this argument is given by

t− x

c
= q∆t −

m∆x

c
=

(

q − m∆x

c∆t

)

∆t = (q −m) ∆t (3.30)

where the assumption that the Courant number c∆t/∆x is unity has been used to write the last

equality. This expression can now be used for the argument in the previous source function to

obtain a propagating wave which we will identify as E inc
z

E inc
z [m, q] = e

−
“

(q−m)∆t−30∆t
10∆t

”2

= e−((q−m)−30
10)

2

(3.31)

This equation essentially assumes that the origin, i.e., the point x = 0, corresponds to the index

m = 0. However, the origin can be shifted to a different point and this fact will be exploited

3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 55

position, xez[48]

hy[48]

ez[50]ez[49]

hy[50]hy[49]

total fieldscattered field

Figure 3.11: Portion of the one-dimensional arrays in the vicinity of a total-field/scattered-field

boundary. Scattered field exists to the left of the boundary and total field exists to the right. Note

that node hy[49] has an index of 49 in a computer program but corresponds logically to the

location (49 + 1
2
)∆x or, equivalently, (50 − 1

2
)∆x.

later. Keep in mind that there is nothing that dictates that we must always think of the origin as

corresponding to the left-most point in the grid.

The corresponding magnetic field is obtained by dividing the electric field by the characteristic

impedance. Additionally, to ensure that E
inc
z × H

inc
y points in the desired direction of travel, the

magnetic field must be negative, i.e.,

H inc
y [m, q] = −

√
ǫ

µ
E inc
z [m, q] = −1

η
e−((q−m)−30

10)
2

(3.32)

where η =
√

µ/ǫ is the characteristic impedance of the medium. Note that the arguments do not

need to be integers. If one needs to calculate the magnetic field at the position m − 1/2 and time

q − 1/2, these are perfectly legitimate arguments.

In the total-field/scattered-field (TFSF) formulation, the computational domain is divided into

two regions: (1) the total-field region which contains the incident field plus any scattered field and

(2) the scattered-field region which contains only scattered field. The incident field is introduced

on an fictitious seam, or boundary, between the total-field and the scattered-field regions. The

location of this boundary is somewhat arbitrary, but it is typically placed so that any scatterers are

contained in the total-field region.

When updating the fields, the update equations must be consistent. This is to say only scattered

fields should be used to update a node in the scattered-field region and only total fields should be

used to update a node in the total-field region. Figure 3.11 shows a one-dimensional grid where the

TFSF boundary is assumed to exist between nodes Hy

[
49 + 1

2

]
and Ez[50] (in Fig. 3.11 the nodes

are shown in the computer-array form with integer indices). The node Hy

[
49 + 1

2

]
is equivalent

to Hy

[
50 − 1

2

]
and will be written using the latter form in the following discussion. Note that

no matter where the boundary is placed, there will only be two nodes adjacent to the boundary—

one electric-field node and one magnetic-field node. Furthermore, although the location of this

boundary is arbitrary, once its location is selected, it is fixed throughout the simulation. Defining

the scattered-field region to be to the left of the boundary and the total-field region to be to the

right, we see that hy[49] is the last node in the scattered-field region while ez[50] is the first

node in the total-field region.

56 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

When updating the nodes adjacent to the boundary, there is a problem, i.e., an inconsistency,

in that a neighbor to one side is not the same type of field as the field being updated. This is to say

that a total-field node will depend on a scattered-field node and, conversely, a scattered-field node

will depend on a total-field node. The solution to this problem actually provides the way in which

fields are introduced into the grid using the TFSF boundary.

Consider the usual update equation of the electric field at location m = 50 which was given in

(3.18) and is repeated below

tot
︷ ︸︸ ︷

Eq+1
z [50] =

tot
︷ ︸︸ ︷

Eq
z [50] +

∆t

ǫ∆x







tot
︷ ︸︸ ︷

H
q+ 1

2
y

[

50 +
1

2

]

−

scat
︷ ︸︸ ︷

H
q+ 1

2
y

[

50 − 1

2

]






. (3.33)

We have assumed the TFSF boundary is between Eq+1
z [50] and H

q+ 1
2

y

[
50 − 1

2

]
and the labels

above the individual components indicate if the field is in the total-field region or the scattered-

field region. We see that Eq+1
z [50] and H

q+ 1
2

y

[
50 + 1

2

]
are total-field nodes but H

q+ 1
2

y

[
50 − 1

2

]
is a

scattered-field node—it lacks the incident field. This can be fixed by adding the incident field to

H
q+ 1

2
y

[
50 − 1

2

]
in (3.33). This added field must correspond to the magnetic field which exists at

location 50 − 1/2 and time step q + 1/2. Thus, a consistent update equation for Eq+1
z [50] which

only involves total fields is

tot
︷ ︸︸ ︷

Eq+1
z [50] =

tot
︷ ︸︸ ︷

Eq
z [50] + (3.34)

∆t

ǫ∆x












tot
︷ ︸︸ ︷

H
q+ 1

2
y

[

50 +
1

2

]

−

tot
︷ ︸︸ ︷






scat
︷ ︸︸ ︷

H
q+ 1

2
y

[

50 − 1

2

]

+

inc
︷ ︸︸ ︷(

−1

η
E inc
z

[

50 − 1

2
, q +

1

2

])


















.

The sum of the terms in braces gives the total magnetic field for H
q+ 1

2
y

[
50 − 1

2

]
. Note that here

the incident field is assumed to be given. (It might be calculated analytically or, as we will see in

higher dimensions where the TFSF boundary involves several points, it might be calculated with

an auxilliary FDTD simulation of its own. But, either way, it is known.)

Instead of modifying the update equation, it is usually best to preserve the standard update

equation (so that it can be put in a loop that pertains to all nodes), and then apply a correction in a

separate step. In this way, Eq+1
z [50] is updated in a two-step process:

Eq+1
z [50] = Eq

z [50] +
∆t

ǫ∆x

(

H
q+ 1

2
y

[

50 +
1

2

]

−H
q+ 1

2
y

[

50 − 1

2

])

, (3.35)

Eq+1
z [50] = Eq+1

z [50] +
∆t

ǫ∆x

1

η
E inc
z

[

50 − 1

2
, q +

1

2

]

. (3.36)

The characteristic impedance η can be written as
√

µrµ0/ǫrǫ0 = η0

√

µr/ǫr. Recall from (3.19)

3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 57

that the coefficient ∆t/ǫ∆x can be expressed as η0Sc/ǫr where Sc is the Courant number. Com-

bining these terms, the correction equation (3.36) can be written

Eq+1
z [50] = Eq+1

z [50] +
Sc√
ǫrµr

E inc
z

[

50 − 1

2
, q +

1

2

]

. (3.37)

With a Courant number of unity and free space (where ǫr = µr = 1), this reduces to

Eq+1
z [50] = Eq+1

z [50] + E inc
z

[

50 − 1

2
, q +

1

2

]

. (3.38)

This equation simply says that the incident field that existed one-half a temporal step in the past

and one-half a spatial step to the left of Eq+1
z [50] is added to this node. This is logical since a field

traveling to the right requires one-half of a temporal step to travel half a spatial step.

Now consider the update equation for H
q+ 1

2
y

[
50 − 1

2

]
which is given by (3.15) (with one sub-

tracted from the spatial offset):

scat
︷ ︸︸ ︷

H
q+ 1

2
y

[

50 − 1

2

]

=

scat
︷ ︸︸ ︷

H
q− 1

2
y

[

50 − 1

2

]

+
∆t

µ∆x





tot
︷ ︸︸ ︷

Eq
z [50]−

scat
︷ ︸︸ ︷

Eq
z [49]



 . (3.39)

As was true for the update of the electric field adjacent to the TFSF boundary, this is not a consistent

equation since the terms are scattered-field quantities except for Eq
z [50] which is in the total-field

region. To correct this, the incident field could be subtracted from Eq
z [50]. Rather than modifying

(3.39), we choose to give the necessary correction as a separate equation. The correction would be

H
q+ 1

2
y

[

50 − 1

2

]

= H
q+ 1

2
y

[

50 − 1

2

]

− ∆t

µ∆x

E inc
z [50, q]. (3.40)

With a Courant number of unity and free space, this equation becomes

H
q+ 1

2
y

[

50 − 1

2

]

= H
q+ 1

2
y

[

50 − 1

2

]

− 1

η0

E inc
z [50, q]. (3.41)

As mentioned previously, there is nothing that requires the origin to be assigned to one par-

ticular node in the grid. There is no reason that one has to associate the location x = 0 with the

left end of the grid. In the TFSF formulation it is usually most convenient to fix the origin relative

to the TFSF boundary itself. Let the origin x = 0 correspond to the node Ez[50]. Such a shift

requires that 50 be subtracted from the spatial indices given previously for the incident field. The

correction equations thus become

H
q+ 1

2
y

[

50 − 1

2

]

= H
q+ 1

2
y

[

50 − 1

2

]

− 1

η0

E inc
z [0, q], (3.42)

Eq+1
z [50] = Eq+1

z [50] + E inc
z

[

−1

2
, q +

1

2

]

. (3.43)

To implement a TFSF boundary, one merely has to translate (3.42) and (3.43) into the necessary

statements. A program that implements a TFSF boundary between hy[49] and ez[50] is shown

in Program 3.5.

58 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

Program 3.5 1Dtfsf.c: One-dimensional simulation with a TFSF boundary between hy[49]
and ez[50].

1 /* 1D FDTD simulation with a simple absorbing boundary condition

2 * and a TFSF boundary between hy[49] and ez[50]. */

3

4 #include <stdio.h>
5 #include <math.h>
6

7 #define SIZE 200
8

9 int main()
10 {
11 double ez[SIZE] = {0.}, hy[SIZE] = {0.}, imp0 = 377.0;
12 int qTime, maxTime = 450, mm;
13

14 char basename[80]="sim", filename[100];
15 int frame = 0;
16 FILE *snapshot;
17

18 /* do time stepping */

19 for (qTime = 0; qTime < maxTime; qTime++) {
20

21 /* simple ABC for hy[size - 1] */
22 hy[SIZE - 1] = hy[SIZE - 2];
23

24 /* update magnetic field */

25 for (mm = 0; mm < SIZE - 1; mm++)
26 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
27

28 /* correction for Hy adjacent to TFSF boundary */
29 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
30

31 /* simple ABC for ez[0] */
32 ez[0] = ez[1];
33

34 /* update electric field */

35 for (mm = 1; mm<SIZE; mm++)
36 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0;
37

38 /* correction for Ez adjacent to TFSF boundary */
39 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.) *
40 (qTime + 0.5 - (-0.5) - 30.) / 100.);
41

42 /* write snapshot if time a multiple of 10 */

43 if (qTime % 10 == 0) {
44 sprintf(filename, "%s.%d", basename, frame++);

3.10. TOTAL-FIELD/SCATTERED-FIELD BOUNDARY 59

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.12: Waterfall plot of the electric fields produced by Program 3.5 which has a TFSF

boundary between nodes hy[49] and ez[50].

45 snapshot = fopen(filename, "w");
46 for (mm = 0; mm < SIZE; mm++)
47 fprintf(snapshot, "%g\n", ez[mm]);
48 fclose(snapshot);
49 }
50 } /* end of time-stepping */

51

52 return 0;
53 }

Note that this is similar to Program 3.4. Other than the incorporation of the ABC’s in line 22 and

32, the only differences are the removal of the additive source (line 29 of Program 3.4) and the

addition of the two correction equations in lines 29 and 39. The added code is shown in bold. In

line 39, the half-step forward in time is obtained with qTime+0.5. The half-step back in space is

obtained with the -0.5 which is enclosed in parentheses.

The waterfall plot of the fields generated by Program 3.5 is shown in Fig. 3.12. Note that the

field appears at node 50 and travels exclusively to the right—no field propagates to the left from

the TFSF boundary. Since there is nothing to scatter the incident field in this simulation, Fig. 3.12

shows only the incident field. The next step is, thus, the inclusion of some inhomogeneity in the

grid to generate scattered fields.

60 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

3.11 Inhomogeneities

The FDTD update equations were obtained from approximations of Faraday’s and Ampere’s laws

which were themselves differential equations. Differential equations pertain at a point. Thus, the ǫ
and µ which appear in these equations are the ones which exist at the location of the corresponding

node. It is certainly permissible that these values change from point to point. In fact, it is required

that they change when modeling inhomogeneous material.

Recall, from (3.19), that the electric-field update equation had a coefficient of η0Sc/ǫr. Assum-

ing that the Courant number Sc is still unity, but allowing the relative permittivity to be a function

of position, the update equation could be implemented with a statement such as

ez[m] = ez[m] + (hy[m] - hy[m-1])*imp0/epsR[m];

where the array element epsR[m] contains the relative permittivity at the point m∆x, i.e., at a

point collocated with the node ez[m]. The size of the epsR array would be the same size as the

electric-field array and the elements have to be initialized to appropriate values.

The same concept applies to the relative permeability in the updating of the magnetic fields

where the update coefficient is given by Sc/µrη0 (ref. (3.20)). The relative permeability that exists

at the point in space corresponding to the location of a particular magnetic-field node is the one

that should be used in the update equation for that node. Assuming an array muR has been created

and initialized with the values of the relative permeability, the magnetic-fields would be updated

with an equation such as

hy[m] = hy[m] + (ez[m + 1] - ez[m]) / imp0 / muR[m];

A program that models a region of space near the interface between free space and a dielectric

with a relative permittivity of nine is shown in Program 3.6 (the permeability is that of free space).

The incident field is still introduced via a TFSF boundary, which is in the free-space side of the

computational domain, and the ABC on the left hand side is the same as before. However, there

are some other minor changes between this program and the program in Program 3.5. The electric

and magnetic fields are no longer initialized when they are declared. Instead, two loops are used

to set the initial fields to zero. The magnetic field is now declared to have one fewer node than the

electric field. This was done so that the computational domain begins and ends on an electric-field

node. (There are no truly compelling reasons to have the computational domain begin and end with

the same field type, but such symmetry can simplify coding and some aspects of certain problems.)

Because the grid now terminates on an electric field, the ABC at the right end of the grid must be

applied to this terminal electric-field node. This is accomplished with the statement in line 45.

Program 3.6 1Ddielectric.c: One-dimensional FDTD program to model an interface be-

tween free-space and a dielectric that has a relative permittivity ǫr of 9.

1 /* 1D FDTD simulation with a simple absorbing boundary

2 * condition, a TFSF boundary between hy[49] and ez[50], and

3 * a dielectric material starting at ez[100] */

4

5 #include <stdio.h>

3.11. INHOMOGENEITIES 61

6 #include <math.h>
7

8 #define SIZE 200
9

10 int main()
11 {
12 double ez[SIZE], hy[SIZE - 1], epsR[SIZE], imp0 = 377.0;
13 int qTime, maxTime = 450, mm;
14 char basename[80] = "sim", filename[100];
15 int frame = 0;
16 FILE *snapshot;
17

18 /* initialize electric field */
19 for (mm = 0; mm < SIZE; mm++)
20 ez[mm] = 0.0;
21

22 /* initialize magnetic field */
23 for (mm = 0; mm < SIZE - 1; mm++)
24 hy[mm] = 0.0;
25

26 /* set relative permittivity */
27 for (mm = 0; mm < SIZE; mm++)
28 if (mm < 100)
29 epsR[mm] = 1.0;
30 else
31 epsR[mm] = 9.0;
32

33 /* do time stepping */

34 for (qTime = 0; qTime < maxTime; qTime++) {
35

36 /* update magnetic field */

37 for (mm = 0; mm<SIZE - 1; mm++)
38 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
39

40 /* correction for Hy adjacent to TFSF boundary */

41 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
42

43 /* simple ABC for ez[0] and ez[SIZE - 1] */

44 ez[0] = ez[1];
45 ez[SIZE-1] = ez[SIZE-2];
46

47 /* update electric field */

48 for (mm = 1; mm < SIZE - 1; mm++)
49 ez[mm] = ez[mm] + (hy[mm] - hy[mm - 1]) * imp0 / epsR[mm];
50

51 /* correction for Ez adjacent to TFSF boundary */

52 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.)*

62 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

53 (qTime + 0.5 - (-0.5) - 30.) / 100.);
54

55 /* write snapshot if time a multiple of 10 */

56 if (qTime % 10 == 0) {
57 sprintf(filename, "%s.%d", basename, frame++);
58 snapshot = fopen(filename, "w");
59 for (mm = 0; mm < SIZE; mm++)
60 fprintf(snapshot, "%g\n", ez[mm]);
61 fclose(snapshot);
62 }
63 } /* end of time-stepping */

64

65 return 0;
66 }

The relative-permittivity array epsR is initialize in the loop starting at line 27. If the spatial

index mm is less than 100, the relative permittivity is set to unity (i.e., free space), otherwise it is set

to 9. The characteristic impedance of free space is η0 while the impedance for the dielectric is η0/3.

Note that the update equations do not directly incorporate the dielectric impedance. Rather, the co-

efficient that appears in the equation uses the impedance of free space and the relative permittivity

that pertains at that point.

When a wave is normally incident from a medium with a characteristic impedance η1 to a

medium with a characteristic impedance η2, the reflection coefficient Γ and the transmission coef-

ficient T are given by

Γ =
η2 − η1

η2 + η1

, (3.44)

T =
2η2

η2 + η1

. (3.45)

Therefore the reflection and transmission coefficients that pertain to this example are

Γ =
η0/3 − η0

η0/3 + η0

= −1

2
, (3.46)

T =
2η0/3

η0/3 + η0

=
1

2
. (3.47)

The waterfall plot of the data produced by Program 3.6 is shown in Fig. 3.13. Once the field

encounters the interface at node 100, a reflected field (i.e., a scattered field) is created. Although

one cannot easily judge scales from the waterfall plot, it can be seen that the reflected field is

negative and appears to have about half the magnitude of the incident pulse (the peak of the incident

field spans a vertical space corresponding to nearly two frames while the peak of the reflected field

spans about one frame). Similarly, the transmitted pulse is positive and appears to have half the

magnitude of the incident field. One can see this more clearly in Fig. 3.14 which shows the field at

time-steps 100 and 140. The incident pulse had unit amplitude. At the time-steps shown here, the

3.11. INHOMOGENEITIES 63

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.13: Waterfall plot of the electric fields produced by Program 3.6 which has a dielectric

with a relative permittivity of 9 starting at node 100. Free space is to the left of that.

-0.5

-0.25

0

0.25

0.5

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial Step

Time-step 100
Time-step 140

Figure 3.14: Two of the snapshots produced by Program 3.6. The vertical line at node 100 corre-

sponds to the interface between free space and the dielectric. The incident pulse had unit amplitude.

Shown in this figure are the transmitted field (to the right of the interface) and the reflected field

(to the left).

64 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

field has split into the transmitted and reflected pulses, each of which has an magnitude of one-half.

Returning to the waterfall plot of Fig. 3.13, one can also see that the pulse in the dielectric

travels more slowly than the pulse in free space. With a relative permittivity of 9, the speed of light

should be one-third of that in free space. Thus, from frame to frame the peak in the dielectric has

moved one-third of the distance that the peak moves in free space.

There are two numerical artifacts present in Fig. 3.13, one which we need to fix and the other

we need to understand. Note that when the reflected field encounters the left boundary it disap-

pears. The ABC does its job and the field is absorbed. On the other hand, when the transmitted

wave encounters the right boundary, at approximately frame 37, it is not completely absorbed. A

reflected wave is produced which is visible in the upper right-hand corner of Fig. 3.13. Why is

the ABC no longer working? The problem is that the simple ABC used so far is based on the as-

sumption that the wave travels one spatial step for every time step. In this dielectric, with a relative

permittivity of 9, the speed of light is one-third that of free space and hence the wave does not

travel one spatial step per time step—it travels a third of a spatial step. A possible fix might be to

update the electric field on the boundary with the value of the neighboring electric-field node from

three time steps in the past. However, what if the relative permittivity of the dielectric were 2? In

that case the speed of light would be 1/
√

2 times that of free space. There would be no past value

of an interior node that could be used directly to update the boundary node. So, it is necessary to

rethink the implementation of the ABC so that it can handle these sorts of situations. This will be

addressed in another chapter.

The other artifact present in Fig. 3.13 is slightly less obvious. If you look at the trailing edge

of the transmitted pulse around frame 33, or so, you will see a slight wiggle. The incident field

is a Gaussian pulse which asymptotically goes to zero to either side of the peak value. However,

the transmitted pulse does not behave this way—at least not after propagating in the dielectric for

a while (initially there are no wiggles visible at the trailing edge of the transmitted pulse). These

wiggles are caused by dispersion in the FDTD grid. When the Courant number is anything other

than unity, the FDTD grid is dispersive, meaning that different frequencies propagate at different

speeds. Note that we have defined the Courant number as the c∆t/∆x where c is the speed of light

in free space. We will generally maintain the convention that c represents the speed of light in

free space. However, one can think of the Courant number as a local quantity that equals the local

speed of light multiplied by the ratio ∆t/∆x. Because the speed of light is one-third of that of free

space, the local Courant number in the dielectric is not unity. Since the Gaussian pulse consists of

a range of frequencies, and these frequencies are propagating at different speeds, the pulse “breaks

apart” as it propagates. In practice, one tries to ensure that the amount of dispersion is small, but it

is unavoidable in multi-dimensional FDTD analysis. Dispersion will be considered further later.

Because of the discretized nature of the FDTD grid, the location of a material boundary can

be somewhat ambiguous. The relatively permittivity that pertains to a particular electric-field node

can be assumed to exist over the space that extends from one of its neighboring magnetic-field

nodes to the other neighboring magnetic-field node. This idea is illustrated in Fig. 3.15 which

shows a portion of the FDTD grid together with the permittivity associated with each node. The

permittivities are indicated with the bar along the bottom of the figure.

If there is only a change in permittivity, the location of the interface between the different media

seems rather clear. It coincides with the magnetic-field node that has ǫ1 to one side and ǫ2 to the

other. However, what if there is a change in permeability too? The permeabilities are indicated

3.12. LOSSY MATERIAL 65

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ1 µ2µ1 µ2µ1

ε2

Hy

Ez

position, x

Figure 3.15: One-dimensional grid depicting an abrupt change in both the permittivity and perme-

ability. The actual location of the interface between the two media is ambiguous.

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ1 µ2µ1 µ2µ1

εavg

Hy

Ez

position, x

Figure 3.16: One-dimensional grid depicting a change from one medium to another. An electric-

field node is assumed to be collocated with the interface, hence the permittivity used there is the

average of the permittivities to either side.

with a bar along the top of the figure. It is seen that the interface associated with the change in

permeabilities is not aligned with the interface associated with the change in permittivities. One

way to address this problem is to assume the true interface is aligned with an electric-field node.

This node would then use the average of the permittivities of the media to either side. This scenario

is depicted in Fig. 3.16. Alternatively, if one wants to have the boundary aligned with a magnetic-

field node, then the node located on the boundary would use the average of the permeabilities to

either side while the electric-field nodes would use the permittivity of the first medium if they were

to the left of the boundary and use the permittivity of the second medium if they were to the right.

3.12 Lossy Material

When a material has a finite conductivity σ, a conduction-current term is added to Ampere’s law

(which is distinct from the source-current term mentioned in Sec. 3.8). Thus,

σE + ǫ
∂E

∂t
= ∇× H. (3.48)

The discretized form of Ampere’s law provided the update equation for the electric field. As before,

assuming only a z component of the field and variation only in the x direction, this equation reduces

to

σEz + ǫ
∂Ez
∂t

=
∂Hy

∂x
. (3.49)

As discussed in Sec. 3.3 and detailed in Fig. 3.2, this equation was expanded about the point

(m∆x, (q + 1/2)∆t) to obtain the electric-field update equation. However, when loss is present,

66 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

the undifferentiated electric field appears on the left side of the equation. With the assumed

arrangement of the nodes shown in Fig. 3.2, there is no electric field at the space-time point

(m∆x, (q + 1/2)∆t). This problem can be circumvented by using the averaging (in time) of the

electric field to either side of the desired point, i.e.,

E
q+ 1

2
z [m] ≈ Eq+1

z [m] + Eq
z [m]

2
. (3.50)

Thus a suitable discretization of Ampere’s law when loss is present is

σ
Eq+1
z [m] + Eq

z [m]

2
+ ǫ

Eq+1
z [m] − Eq

z [m]

∆t

=
H
q+ 1

2
y

[
m+ 1

2

]
−H

q+ 1
2

y

[
m− 1

2

]

∆x

. (3.51)

As before, this can be solved forEq+1
z [m], which is the “future” field, in terms of purely past fields.

The result is

Eq+1
z [m] =

1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
z [m] +

∆t

ǫ∆x

1 + σ∆t

2ǫ

(

H
q+ 1

2
y

[

m+
1

2

]

−H
q+ 1

2
y

[

m− 1

2

])

. (3.52)

When σ is zero this reduces to the previous update equation (3.18).

In previous update equations it was possible to express the coefficients in terms of the Courant

number, i.e., the ratio of the temporal step to the spatial step. In (3.52) it appears the term σ∆t/2ǫ
requires that the temporal step be specified (together with the conductivity and permittivity). How-

ever, there is a way to express this such that the temporal step does not need to be stated explicitly.

This will be considered in detail in Sec. 5.7.

As we will see, it is occasionally helpful to incorporate a magnetic conduction current in Fara-

day’s law. Similar to the electric conduction current, the magnetic conduction current is assumed

to be the product of the magnetic conductivity σm and the magnetic field. Faraday’s law becomes

−σmH − µ
∂H

∂t
= ∇× E. (3.53)

We again restrict consideration to an Hy component which varies only in the x direction. This

reduces to

σmHy + µ
∂Hy

∂t
=
∂Ez
∂x

. (3.54)

As before, this is expanded/discretized at the space-time point ((m + 1/2)∆x, q∆t). Since there

is no magnetic field available at integer time steps, the magnetic field is averaged in time to get an

approximation of the field at time q∆t. This yields

σm
H
q+ 1

2
y

[
m+ 1

2

]
+H

q− 1
2

y

[
m+ 1

2

]

2
+ µ

H
q+ 1

2
y

[
m+ 1

2

]
−H

q− 1
2

y

[
m+ 1

2

]

∆t

=

Eq
z [m+ 1] − Eq

z [m]

∆x

. (3.55)

Solving for H
q+ 1

2
y

[
m+ 1

2

]
yields the update equation

H
q+ 1

2
y

[

m+
1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[

m+
1

2

]

+

∆t

µ∆x

1 + σm∆t

2µ

(Eq
z [m+ 1] − Eq

z [m]) . (3.56)

3.12. LOSSY MATERIAL 67

When σm is zero this reduces to (3.15).

Program 3.7 models a lossy dielectric half-space that starts at node 100. As before, the relative

permittivity is 9. However there is also an electric loss present such that σ∆t/2ǫ is 0.01. The

program uses two coefficient arrays, ceze and cezh. The terms in the ceze array multiply

the previous (or “self”) term while the cezh array contains the terms that multiply the spatial

difference of the magnetic fields. Think of these arrays as consisting of coefficients (or constants),

hence the “c” at the start of their name, that appear in the Ez update equation, hence the ez part

of the name, and multiplying either the electric field (ceze) or the magnetic field (cezh). The

values of these arrays are set in the loop that starts at line 27. Since the simple ABC previously

employed at the right edge of the grid does not work, it has been removed but the left side of the

grid is terminated as before. The magnetic field update is unchanged from before. A waterfall plot

of the data produced by Program 3.7 is shown in Fig. 3.17. The pulse decays as it propagates in

the lossy region and eventually decays to a rather negligible value. Thus the lack of an ABC at the

right side of the grid is not really a concern in this particular instance.

Program 3.7 1Dlossy.c: One-dimensional simulation with a lossy dielectric region.

1 /* 1D FDTD simulation of a lossy dielectric region. */

2

3 #include <stdio.h>
4 #include <math.h>
5

6 #define SIZE 200
7 #define LOSS 0.01
8

9 int main()
10 {
11 double ez[SIZE], hy[SIZE - 1], ceze[SIZE], cezh[SIZE],
12 imp0 = 377.0;
13 int qTime, maxTime = 450, mm;
14 char basename[80] = "sim", filename[100];
15 int frame = 0;
16 FILE *snapshot;
17

18 /* initialize electric field */

19 for (mm = 0; mm < SIZE; mm++)
20 ez[mm] = 0.0;
21

22 /* initialize magnetic field */

23 for (mm = 0; mm < SIZE - 1; mm++)
24 hy[mm] = 0.0;
25

26 /* set electric-field update coefficients */

27 for (mm = 0; mm < SIZE; mm++)
28 if (mm < 100) { /* free space */

29 ceze[mm] = 1.0;

68 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

30 cezh[mm] = imp0;
31 } else { /* lossy dielectric */

32 ceze[mm] = (1.0 - LOSS) / (1.0 + LOSS);
33 cezh[mm] = imp0 / 9.0 / (1.0 + LOSS);
34 }
35

36 /* do time stepping */

37 for (qTime = 0; qTime < maxTime; qTime++) {
38

39 /* update magnetic field */

40 for (mm = 0; mm < SIZE - 1; mm++)
41 hy[mm] = hy[mm] + (ez[mm + 1] - ez[mm]) / imp0;
42

43 /* correction for Hy adjacent to TFSF boundary */

44 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
45

46 /* simple ABC for ez[0] */

47 ez[0] = ez[1];
48

49 /* update electric field */

50 for (mm = 1; mm < SIZE - 1; mm++)
51 ez[mm] = ceze[mm] * ez[mm] + cezh[mm] * (hy[mm] - hy[mm - 1]);
52

53 /* correction for Ez adjacent to TFSF boundary */

54 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.) *
55 (qTime + 0.5 - (-0.5) - 30.) / 100.);
56

57 /* write snapshot if time a multiple of 10 */

58 if (qTime % 10 == 0) {
59 sprintf(filename, "%s.%d", basename, frame++);
60 snapshot=fopen(filename, "w");
61 for (mm = 0; mm < SIZE; mm++)
62 fprintf(snapshot, "%g\n", ez[mm]);
63 fclose(snapshot);
64 }
65 } /* end of time-stepping */

66

67 return 0;
68 }

When loss is present the characteristic impedance of the medium becomes

η =

√
√
√
√
µ
(

1 − j σm

ωµ

)

ǫ
(
1 − j σ

ωǫ

) = η0

√
√
√
√
µr

(

1 − j σm

ωµ

)

ǫr
(
1 − j σ

ωǫ

) (3.57)

When σm/µ = σ/ǫ the terms in parentheses are equal and hence cancel. With those terms canceled,

3.12. LOSSY MATERIAL 69

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.17: Waterfall plot of the electric fields produced by Program 3.7 which has a lossy dielec-

tric region with a relative permittivity of 9 starting at node 100.

the characteristic impedance is indistinguishable from the lossless case. Therefore

η|σm
µ

=σ
ǫ

= η|σm=σ=0 = η0

√
µr
ǫr
. (3.58)

As shown in (3.44), the reflection coefficient for a wave normally incident on a planar boundary

is proportional to the difference of the impedances to either side of the interface. If the material

on one side is lossless while the material on the other side is lossy with σm/µ = σ/ǫ, then the

impedances are matched provided the ratios of ǫr and µr are also matched across the boundary.

With the impedances matched, there will be no reflection from the interface. Therefore a lossy

layer could be used to terminate the grid. The fields will dissipate in this lossy region and, if the

region is large enough, may be small by the time they encounter the end of the grid. Upon reflection

from the end of the grid, the fields would have to propagate back through the lossy layer where they

would decay even further. With proper design the reflected fields can be made inconsequentially

small when they eventually get back to the lossless portion of the grid.

A lossy layer with the impedance matched to the previous region can be implemented easily in

one dimension. Program 3.8 shows a program where a lossless dielectric layer with ǫr = 9 starts

at node 100. The lossless region extends to node 180. At node 180, and beyond, the material has

both a nonzero electric and a magnetic conductivity. The conductivities are matched in the sense

that σm/µ = σ/ǫ. Thus the terms σm∆t/2µ and σ∆t/2ǫ in the update-equations are also matched.

In this program these terms are set to 0.02. The coefficients used in the magnetic-field update

equations are stored in the arrays chyh and chye.

70 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

The waterfall plot of the data generated by Program 3.8 is shown in Fig. 3.18. The fields

that enter the lossless region propagate to the right and eventually encounter the lossy region.

Because the impedances of the lossless and lossy media are matched, the fields enter the lossy

region without reflection (actually, that is true in the continuous world, but only approximately true

in the discretized FDTD world—there is some small reflection present). As the fields propagate in

the lossy region they dissipate to the point where they are almost negligible when they reenter the

lossless region. There is no reflected field evident in the upper right corner of the plot.

Program 3.8 1Dmatched.c: Program with a lossless dielectric region followed by a lossy layer

that has its impedance matched to the lossless dielectric.

1 /* 1D FDTD simulation of a lossless dielectric region

2 * followed by a lossy layer which matches the impedance

3 * of the dielectric. */

4

5 #include <stdio.h>
6 #include <math.h>
7

8 #define SIZE 200
9 #define LOSS 0.02

10 #define LOSS_LAYER 180
11

12 int main()
13 {
14 double ez[SIZE], hy[SIZE - 1], ceze[SIZE], cezh[SIZE],
15 chyh[SIZE - 1], chye[SIZE - 1], imp0 = 377.0;
16 int qTime, maxTime = 450, mm;
17 char basename[80] = "sim", filename[100];
18 int frame = 0;
19 FILE *snapshot;
20

21 /* initialize electric field */

22 for (mm = 0; mm < SIZE; mm++)
23 ez[mm] = 0.0;
24

25 /* initialize magnetic field */

26 for (mm = 0; mm < SIZE - 1; mm++)
27 hy[mm] = 0.0;
28

29 /* set electric-field update coefficients */

30 for (mm = 0; mm < SIZE; mm++)
31 if (mm < 100) {
32 ceze[mm] = 1.0;
33 cezh[mm] = imp0;
34 } else if (mm < LOSS_LAYER) {
35 ceze[mm] = 1.0;

3.12. LOSSY MATERIAL 71

36 cezh[mm] = imp0 / 9.0;
37 } else {
38 ceze[mm] = (1.0 - LOSS) / (1.0 + LOSS);
39 cezh[mm] = imp0 / 9.0 / (1.0 + LOSS);
40 }
41

42 /* set magnetic-field update coefficients */

43 for (mm = 0; mm < SIZE - 1; mm++)
44 if (mm < LOSS_LAYER) {
45 chyh[mm] = 1.0;
46 chye[mm] = 1.0 / imp0;
47 } else {
48 chyh[mm] = (1.0 - LOSS) / (1.0 + LOSS);
49 chye[mm] = 1.0 / imp0 / (1.0 + LOSS);
50 }
51

52 /* do time stepping */

53 for (qTime = 0; qTime < maxTime; qTime++) {
54

55 /* update magnetic field */

56 for (mm = 0; mm < SIZE - 1; mm++)
57 hy[mm] = chyh[mm] * hy[mm] +
58 chye[mm] * (ez[mm + 1] - ez[mm]);
59

60 /* correction for Hy adjacent to TFSF boundary */

61 hy[49] -= exp(-(qTime - 30.) * (qTime - 30.) / 100.) / imp0;
62

63 /* simple ABC for ez[0] */

64 ez[0] = ez[1];
65

66 /* update electric field */

67 for (mm = 1; mm < SIZE - 1; mm++)
68 ez[mm] = ceze[mm] * ez[mm] +
69 cezh[mm] * (hy[mm] - hy[mm - 1]);
70

71 /* correction for Ez adjacent to TFSF boundary */

72 ez[50] += exp(-(qTime + 0.5 - (-0.5) - 30.)*
73 (qTime + 0.5 - (-0.5) - 30.) / 100.);
74

75 /* write snapshot if time a multiple of 10 */

76 if (qTime % 10 == 0) {
77 sprintf(filename, "%s.%d", basename, frame++);
78 snapshot=fopen(filename, "w");
79 for (mm = 0; mm < SIZE; mm++)
80 fprintf(snapshot, "%g\n", ez[mm]);
81 fclose(snapshot);
82 }

72 CHAPTER 3. INTRODUCTION TO THE FDTD METHOD

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 3.18: Waterfall plot of the electric fields produced by Program 3.8 which has a dielectric

region starting at node 100 with a relative permittivity of 9. This lossless region is followed by a

lossy layer with matched impedance. The lossy region starts at node 180.

83 } /* end of time-stepping */

84

85 return 0;
86 }

Chapter 4

Improving the FDTD Code

4.1 Introduction

The C code presented in the previous chapter adequately served its purpose—it implemented the

desired FDTD functionality in a relatively straightforward way. However, as the algorithms get

more involved, for instance, when implementing simulations of two- or three-dimensional prob-

lems, the readability, portability, and maintainability will be improved if our implementation is

slightly more sophisticated. In this chapter we will implement the algorithms of the previous chap-

ter in a way which may seem, at first, to be overly complicated. However, as the complexity of

the algorithms increases in coming chapters, we will see that the effort required to understand this

more sophisticated approach will have been worth it.

4.2 Arrays and Dynamic Memory Allocation

In C an array is stored in a block of contiguous memory. Memory itself is fundamentally a one-

dimensional quantity since memory is ultimately accessed with a single memory address. Let us

consider a one-dimensional array of doubles ez where the size is specified at run-time rather than

at compile-time. The compiler needs to know about the existence of this array, but at compile-time

it does not need to know the amount or the location of memory where the array will be stored. We

can specify the size of the array when the program is run and we can allow the computer to decide

the location of the necessary amount of memory. The compiler is told about the potential existence

of the array with a pointer. Once the pointer is associated with the appropriate block of memory, it

is virtually indistinguishable from a one-dimensional array.

The code shown in Fragment 4.1 demonstrates how the array ez can be created at run-time.

In line 1 ez is declared as a pointer—it can store an address but when the program initially starts

it does not point to anything meaningful. Line 2 declares two integer variables: num elements
which will contain the number of elements in the array, and mm which will be used as a loop

counter. Lines 4 and 5 determine the number of elements the user desires.

Lecture notes by John Schneider. fdtd-improved-code.tex

73

74 CHAPTER 4. IMPROVING THE FDTD CODE

Fragment 4.1 Fragment of code demonstrating how the size of the array ez can be set at run-

time. The header file stdlib.h would typically have to be included to provide the prototype for

the calloc() function.

1 double *ez;
2 int num_elements, mm;
3

4 printf("Enter the size of the array: ");
5 scanf("%d", &num_elements);
6

7 ez = calloc(num_elements, sizeof(double));
8

9 for (mm=0; mm < num_elements; mm++)
10 ez[mm] = 3.0 * mm;

Line 7 is the key to getting ez to behave as an array. In this line the pointer ez is set equal to the

memory address that is returned by the function calloc().∗ calloc() takes two arguments.

The first specifies the number of elements in the array while the second specifies the amount of

memory needed for a single element. Here the sizeof() operator is used to obtain the size of

a double variable. (Although not shown in this fragment, when using the calloc() function

one typically has to include the header file stdlib.h to provide the function prototype.) If

calloc() is unable to provide the requested memory it will return NULL. †

After the call of calloc() in line 7, ez points to the start of a contiguous block of memory

where the array elements can be stored. To demonstrate this, lines 9 and 10 write the value of three

times the array index to each element of the array (so that ez[0] would be 0.0, ez[1] would be

3.0, ez[2] would be 6.0, and so on).

Some compilers will actually complain about the code as it is written in Fragment 4.1. The

“problem” is that technically calloc() returns a void pointer—it is simply the address of the

start of a block of memory, but we have not said what is stored at that memory. We want a pointer

to doubles since we will be storing double precision variables in this memory. The compiler

really already knows this since we are storing the address in ez which is a pointer to doubles.

Nevertheless, some compilers will give a warning because of line 7. Therefore, to ensure that

compilers do not complain, it would be best to replace line 7 with

ez = (double *)calloc(num_elements, sizeof(double));

In this way the void pointer returned by calloc() is converted (or cast) to a pointer to doubles.

∗calloc() is closely related to the function malloc() which also allocates a block of memory and returns

the address of the start of that block. However calloc() returns memory which has been cleared, i.e., set to zero,

while malloc() returns memory which may contain anything. Since we want the field arrays initially to be zero, it

is better to use calloc() than malloc().
†Robust code would check the return value and take appropriate measures if NULL were returned. For now we will

assume that calloc() succeeded.

4.3. MACROS 75

4.3 Macros

C provides a preprocessor which “processes” your code prior to the compiler itself. Preprocessor

directives start with the pound sign (#) and instruct the preprocessor to do things such as include

a header file (with an #include statement) or substitute one string for another. Program 3.1 had

three preprocessor directives. Two were used to include the files stdio.h and math.h and one

used a #define statement to tell the preprocessor to substitute 200 for all occurrences of the

string SIZE.

Compilers allow you to see what the source code is after passing through the preprocessor.

Using the GNU C compiler, one adds the -E flag to the compiler command to obtain the output

from the preprocessor. So, for example, one can see the source code as it appears after passing

through the preprocessor with the command

gcc -E 1DbareBones.c

In this case you will observe that there are many, many more lines of output than there are in your

original program. This is because of the inclusion of the header files. Your original program will

appear at the end of the output except now SIZE does not appear anywhere. Instead, any place it

had appeared you will now see 200.

The #define statement can also be used to create a macro. Unlike the simple string substi-

tution used before, a macro can take one or more arguments. These arguments dictate how strings

given as arguments should re-appear in the output. For example, consider the following macro

#define SQR(X) ((X) * (X))

This tells the preprocessor that every time SQR appears in the source code, the preprocessor should

take whatever appeared as an argument and replace that with the argument multiplied by itself.

Here the argument X is just serving as a place holder. Consider the following code

a = 6.0 * SQR(3.0 + 4.0);

After passing through the preprocessor, this code would appear as

a = 6.0 * ((3.0 + 4.0) * (3.0 + 4.0));

The result would be that a would be set equal to 6 × 72 = 294.

It may seem that there are an excess number of parentheses in this macro, but one must be

careful with macros to ensure the desired results are obtained. Consider this macro

#define BAD_SQR(X) X * X

If a program then contained this statement

a = 6.0 * BAD_SQR(3.0 + 4.0);

the preprocessor translates this to

a = 6.0 * 3.0 + 4.0 * 3.0 + 4.0;

76 CHAPTER 4. IMPROVING THE FDTD CODE

Since multiplication has a higher precedence than addition, in this case a would be set equal to

18 + 12 + 4 = 34. There is no harm in using extra parentheses, so do not hesitate to use them to

ensure you are getting precisely what you want.

It is also worth noting that the macro definition itself will typically not be terminated by a

semicolon. If one includes a semicolon, it could easily produce unintended results. As an example,

consider

#define BAD_SQR1(X) ((X) * (X));

If a program then contained this statement

a = BAD_SQR1(4.0) + 10.0;

the preprocessor would translate this to

a = ((4.0) * (4.0)); + 10;

Note that the “+ 10” is consider a separate statement since there is a semicolon between it and

the squared term.‡ Thus, a will be set to 16.0.

Macros may have any number of arguments. As an example, consider

#define FOO(X, Y) (Y) * cos((X) * (Y))

Given this macro, the following code

a = FOO(cos(2.15), 7.0 * sqrt(4.0));

would be translated by the preprocessor to

a = (7.0 * sqrt(4.0)) * cos((cos(2.15)) * (7.0 * sqrt(4.0)))

Macros can span multiple lines provided the newline character at the end of each line is

“quoted” with a backslash. Said another way, a backslash must be the last character on a line

if the statement is to continue on the next line.

There is another “trick” that one can do with macros. One can say they want the string version

of an argument in the preprocessor output, essentially the argument will appear enclosed in quotes

in the output. To understand why this is useful, it first helps to recall that in C, if one puts two

string next to each other, the compiler treats the two separate strings as a single string. Thus, the

following commands are all equivalent

printf("Hello world.\n");
printf("Hello " "world.\n");
printf("Hello "

"world.\n");

Each of these produce the output

Hello world.

‡When using the GNU C compiler, this “bad” code will compile without error. If one adds the -Wall flag when

compiling, the GNU compiler will provide a warning that gives the line number and a statement such as “warning:
statement with no effect.” Nevertheless, the code will compile.

4.3. MACROS 77

Note that there is no comma between the separated strings in the printf() statements and the

amount of whitespace between the strings is irrelevant.

If we want the preprocessor to produce the string version of an argument in the output, we affix

to the argument name in the place where it should appear in the output. For example, we could

use a macro to print what is being calculated and show the result of the calculation as well:

#define SHOW_CALC(X) \
printf(#X " = %g\n", X)

The first line of this macro is terminated with a backslash telling the preprocessor that the definition

is continued on the next line. Now, if the code contained

SHOW_CALC(6.0 + 24.0 / 8.0);

the preprocessor would convert this to

printf("6.0 + 24.0 / 8.0" " = %g\n", 6.0 + 24.0 / 8.0);

When the program is run, the following would be written to the screen

6.0 + 24.0 / 8.0 = 9

We are now at a point where we can construct a fairly sophisticated macro to do memory

allocation. The macro will check if the allocation of memory was successful. If not, the macro will

report the problem and terminate the program. The following fragment shows the desired code.

Fragment 4.2 Macro for allocating memory for a one-dimensional array. The trailing backslashes

must appear directly before the end of the line. (By “quoting” the newline character at the end of

the line we are telling the preprocessor the definition is continued on the next line.)

1 #define ALLOC_1D(PNTR, NUM, TYPE) \
2 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_1D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n");\
7 exit(-1); \
8 }

The macro ALLOC 1D() takes three arguments: a pointer (called PNTR), an integer specifying

the number of elements (NUM), and a data type (TYPE). The macro uses calloc() to obtain the

desired amount of memory. It then checks if the allocation was successful. Recall that calloc()
will return NULL if it failed to allocate the requested memory. In C, the exclamation mark is

also the “not operator.” So, if the value of PNTR is NULL (or, thought of another way, “false”),

then !PNTR would be true. If the memory allocation failed, two error messages are printed (one

message is generated using the system function perror(), the other uses fprintf() and

78 CHAPTER 4. IMPROVING THE FDTD CODE

writes the output to stderr, which is typically the screen). The program is then terminated with

the exit() command.

With this macro in our code we could create an array ez with 200 elements with statements

such as

double *ez;

ALLOC_1D(ez, 200, double);

Technically the semicolon in the second statement is not necessary (since this macro translates to

a block of code that ends with a close-brace), but there is no harm in having it.

4.4 Structures

In C one can group data together, essentially create a compound data type, using what is known

as a structure. A program can have different types of structures, i.e., ones that bundle together

different kinds of data. For example, a program might use structures that bundle together a person’s

age, weight, and name as well as structures that bundle together a person’s name, social security

number, and income. Just as we can have multiple variables of a given type and each variable

is a unique instance of that data type, we can have multiple variables that corresponds to a given

structure, each of which is a unique instance of that structure.

Initially, when declaring a structure, we first tell the compiler the composition of the structure.

As an example, the following command defines a person structure that contains three elements:

a character pointer called name that will be used to store the name of a person, an integer called

age that will correspond to the person’s age, and an integer called weight that will correspond

to the the person’s weight.

struct person {
char *name;
int age;
int weight;

};

This statement is merely a definition—no structure has been created yet. To create a person
structure called bob and another one called sue, a command such as the following could be used:

struct person bob, sue;

Actually, one could combine these two statements and create bob and sue with the following:

struct person {
char *name;
int age;
int weight;

} bob, sue;

However, in the code to come, we will use a variant of the two-statement version of creating

structures. It should also be pointed out that elements do not need to be declared with individual

statements of their own. For example, we could write

4.4. STRUCTURES 79

int age, weight;

instead of the two separate lines shown above.

To access the elements of a structure we write the name of the structure, a dot, and then the

name of the element. For example, bob.age would be the age element of the structure bob,

and sue.age would be the age element of the structure sue (despite the fact that these are both

age elements, they are completely independent variables).

Now, let’s write a program that creates two person structures. The program has a func-

tion called showPerson1() to show the elements of a person and another function called

changePerson1() that reduces the person’s age by two and decreases their weight by five.

Each of these functions takes a single argument, a person structure. The program is shown in

Program 4.3.

Program 4.3 struct-demo1.c: Program to demonstrate the basic use of structures.

1 /* Program to demonstrate the use of structures. Here structures are

2 passed as arguments to functions.*/

3

4 #include <stdio.h>
5

6 struct person {
7 char *name;
8 int age;
9 int weight;

10 };
11

12 void changePerson1(struct person p);
13 void showPerson1(struct person p);
14

15 int main() {
16 struct person bob, sue;
17

18 sue.name = "Sue";
19 sue.age = 21;
20 sue.weight = 120;
21

22 bob.name = "Bob";
23 bob.age = 62;
24 bob.weight = 180;
25

26 showPerson1(sue);
27

28 printf("*** Before changePerson1() ***\n");
29 showPerson1(bob);
30 changePerson1(bob);
31 printf("*** After changePerson1() ***\n");

80 CHAPTER 4. IMPROVING THE FDTD CODE

32 showPerson1(bob);
33

34 return 0;
35 }
36

37 /* Function to display the elements in a person. */

38 void showPerson1(struct person p) {
39 printf("name: %s\n", p.name);
40 printf("age: %d\n", p.age);
41 printf("weight: %d\n", p.weight);
42 return;
43 }
44

45 /* Function to modify the elements in a person. */

46 void changePerson1(struct person p) {
47 p.age = p.age - 2;
48 p.weight = p.weight - 5;
49 printf("*** In changePerson1() ***\n");
50 showPerson1(p);
51 return;
52 }

In line 16 of the main() function we declare the two person structures bob and sue. This

allocates the space for these structures, but as yet their elements do not have meaningful values.

In 18 we set the name of element of sue. The following two lines set the age and weight.

The elements for bob are set starting at line 22. In line 26 the showPerson1() function is

called with an argument of sue. This function, which starts on line 38, shows the name, age, and

weight of a person.

After showing the elements of sue, in line 29 of main(), showPerson1() is used to show

the elements of bob. In line 30 the function changePerson1() is called with an argument of

bob. This function, which is given starting on line 46, subtracts two from the age and five from

the weight. After making this modifications, in line 50, showPerson1() is called to display

the modified person.

Finally, returning to line 32 of the main() function, the showPerson1() function is called

once again with an argument of bob. Note that this is after bob has supposedly been modified by

the changePerson1() function. The output produced by Program 4.3 is

name: Sue
age: 21
weight: 120

*** Before changePerson1() ***
name: Bob
age: 62
weight: 180

*** In changePerson1() ***
name: Bob

4.4. STRUCTURES 81

age: 60
weight: 175

*** After changePerson1() ***
name: Bob
age: 62
weight: 180

Here we see that the initial values of sue and bob are as we would anticipate. Also, when

showPerson1() is called from within changePerson1(), we see the modified values for

bob, i.e., his age has been reduced by two and his weight has been reduced by five. However,

the last three lines of output show that, insofar as the bob structure in the main() function is

concerned, nothing has changed! bob has not been modified by changePerson1().

Although this behavior may not have been what we would have anticipated, it is correct. When

a structure is given as an argument, the function that is called is given a complete copy of the

original structure. Thus, when that function modifies the elements of the structure, it is modifying

a copy of the original—it is not affecting the original itself.

If we want a function that we call to be able to modify a structure, we must pass a pointer to that

structure. We will modify the code to permit this but let use first introduce the typedef statement

that allows to write slightly cleaner code. Having to write struct person everywhere we want

to specify a person structure is slightly awkward. C allows us to use the typedef statement to

define an equivalent. The following statement tells the compiler that Person is the equivalent of

struct person

typedef struct person Person;

Note that there is no requirement that we use the same word for the structure and the typedef-

equivalent. Additionally, even when using the same word, there is no need to use different capital-

ization (since the structure and its equivalent are maintained in different name spaces).

Now, let us assume we want to create two pointers to structures, one named susan and one

robert. These can be created with

struct person *susan, *robert;

Assuming the typedef statement given above has already appeared in the program, we could

instead write:

Person *susan, *robert;

susan and robert are pointers to structures but, initially, they do not actually point to any

structures. We cannot set their elements because there is is no memory allocated for the storage of

these elements. Thus, we must allocate memory for these structures and ensure the pointers point

to the memory.

To accomplish this, we can include in our program a statement such as

ALLOC_1D(susan, 1, Person);

Recalling the ALLOC 1D() macro presented in Sec. 4.3, this statement will allocate the memory

for one Person and associate that memory with the pointer susan. We can now set the element

associated with susan. However, accessing the elements of a pointer to a Person is different

than directly accessing the elements of a Person. To set the age element of susan we would

have to write either

82 CHAPTER 4. IMPROVING THE FDTD CODE

(*susan).age = 21;

or

susan->age = 21;

Program 4.4 is similar to Program 4.3 in many respects except here, rather than using structures

directly, the program primarily deals with pointers to structures. As will be shown, this allows other

functions to change the elements within any given structure—the function merely has to be passed

a pointer to the structure rather than (a copy of) the structure.

Program 4.4 struct-demo2.c: Program to demonstrate the basic use of pointers to struc-

tures.

1 /* Program to demonstrate the use of pointers to structures. */

2

3 #include <stdlib.h>
4 #include <stdio.h>
5

6 #define ALLOC_1D(PNTR, NUM, TYPE) \
7 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
8 if (!PNTR) { \
9 perror("ALLOC_1D"); \

10 fprintf(stderr, \
11 "Allocation failed for " #PNTR ". Terminating...\n");\
12 exit(-1); \
13 }
14

15 struct person {
16 char *name;
17 int age;
18 int weight;
19 };
20

21 typedef struct person Person;
22

23 void changePerson2(Person *p);
24 void showPerson2(Person *p);
25

26 int main() {
27 Person *robert, *susan;
28

29 ALLOC_1D(susan, 1, Person);
30 ALLOC_1D(robert, 1, Person);
31

32 susan->name = "Susan";
33 susan->age = 21;

4.4. STRUCTURES 83

34 susan->weight = 120;
35

36 robert->name = "Robert";
37 robert->age = 62;
38 robert->weight = 180;
39

40 showPerson2(susan);
41

42 printf("*** Before changePerson2() ***\n");
43 showPerson2(robert);
44 changePerson2(robert);
45 printf("*** After changePerson2() ***\n");
46 showPerson2(robert);
47

48 return 0;
49 }
50

51 /* Function to display the elements in a person. */

52 void showPerson2(Person *p) {
53 printf("name: %s\n", p->name);
54 printf("age: %d\n", p->age);
55 printf("weight: %d\n", p->weight);
56 return;
57 }
58

59 /* Function to modify the elements in a person. */

60 void changePerson2(Person *p) {
61 p->age = p->age - 2;
62 p->weight = p->weight - 5;
63 printf("*** In changePerson2() ***\n");
64 showPerson2(p);
65 return;
66 }

The typedef statement in line 21 allows us to write simply Person instead of struct person.

This is followed by the prototypes for functions showPerson2() and changePerson2().

These functions are similar to the corresponding functions in the previous program except now the

arguments are pointers to structures instead of structures. Thus, the syntactic changes are necessary

in the functions themselves (e.g., we have to write p->age instead of p.age). Starting on line

29 the ALLOC 1D() macro is used to allocate the memory for the susan and robert pointers

that were declared in line 27. The values of the elements are then set, the contents of the structures

displayed, robert is modified, and the contents or robert are shown again.

The output produced by Program 4.4 is

name: Susan
age: 21

84 CHAPTER 4. IMPROVING THE FDTD CODE

weight: 120

*** Before changePerson2() ***
name: Robert
age: 62
weight: 180

*** In changePerson2() ***
name: Robert
age: 60
weight: 175

*** After changePerson2() ***
name: Robert
age: 60
weight: 175

Note that in this case, the changes made by changePerson2() are persistent—when the main()
function shows the elements of robert we see the modified values (unlike with the previous pro-

gram).

4.5 Improvement Number One

Now let us use some of the features discussed in the previous sections in a revised version of the

“bare-bones” program that appeared in Sec. 3.5. Here we will bundle much of the data associated

with an FDTD simulation into a structure that we will call a Grid structure. (We will often refer

to this structure as simply the Grid or a Grid.) Here will define the Grid as follows:

struct Grid {
double *ez; // electric field array
double *hy; // magnetic field array
int sizeX; // size of computational domain
int time, maxTime; // current and max time step
double cdtds; // Courant number

};

In the “improved” program that we will soon see, there will not appear to be much reason for

creating this structure. Why bother? The motivation will be more clear when we start to modularize

the code so that different functions handle different aspects of the FDTD simulation. By bundling

all the relevant information about the simulation into a structure, we can simply pass as an argument

to each function a pointer to this Grid.

First, let us create a header file fdtd1.h in which we will put the definition of a Grid
structure. In this file we will also include the (1D) macro for allocating memory. Finally, in a quest

to keep the code as clean as possible, we will also define a few additional preprocessor directives: a

macro for accessing the ez array elements, a macro for accessing the hy array elements, and some

simple #define statements to facilitate references to sizeX, time, maxTime, and cdtds.

The complete header file is shown in Program 4.5.

4.5. IMPROVEMENT NUMBER ONE 85

Program 4.5 fdtd1.h: Header file for the first “improved” version of a simple 1D FDTD pro-

gram.

1 #ifndef _FDTD1_H
2 #define _FDTD1_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez;
9 double *hy;

10 int sizeX;
11 int time, maxTime;
12 double cdtds;
13 };
14

15 typedef struct Grid Grid;
16

17 /* memory allocation macro */

18 #define ALLOC_1D(PNTR, NUM, TYPE) \
19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
20 if (!PNTR) { \
21 perror("ALLOC_1D"); \
22 fprintf(stderr, \
23 "Allocation failed for " #PNTR ". Terminating...\n");\
24 exit(-1); \
25 }
26

27 /* macros for accessing arrays and such */

28 /* NOTE!!!! Here we assume the Grid structure is g. */

29 #define Hy(MM) g->hy[MM]
30 #define Ez(MM) g->ez[MM]
31 #define SizeX g->sizeX
32 #define Time g->time
33 #define MaxTime g->maxTime
34 #define Cdtds g->cdtds
35

36 #endif /* matches #ifndef _FDTD1_H */

Line 1 checks if this header file, i.e., fdtd1.h, has previously been included. Including mul-

tiple copies of a header file can cause errors or warnings (such as when a term that was previously

defined in a #define statement is again mentioned in a different #define statement). In the

simple code with which we are working with now, multiple inclusions are not a significant concern,

but we want to develop the techniques to ensure multiple inclusions do not cause problems in the

future. Line 1 checks for a previous inclusion by testing if the identifier (technically a compiler

86 CHAPTER 4. IMPROVING THE FDTD CODE

directive) FDTD1 H is not defined. If it is not defined, the next statement on 2 defines it. Thus,

FDTD1 H serves as something of flag. It will be defined if this file has been previously included

and will not be defined otherwise. Therefore, owing to the #ifndef statement at the start of the

file, if this header file has previously been included the preprocessor will essentially ignore the rest

of the file. The #ifndef statement on line 1 is paired with the #endif statement on line 36 at

the end of the file.

Assuming this file has not previously been included, next, the header files stdio.h and

stdlib.h are included. Since the macro ALLOC 1D() uses both calloc() and some printing

functions, both these headers have to be included anywhere ALLOC 1D() is used.

The commands for defining the Grid structure start on line 7. Following that, the ALLOC 1D()
macro begins on line 18. The macros given on lines 29 and 30 allow us to access the field arrays in

a way that is easier to read. (Importantly, note that these statements assume that the Grid in the

program has been given the name g! We will, in fact, make a habit of using the variable name g for

a Grid in the code to follow.) So, for example, the macro on line 30 allows us to write Ez(50)
instead of writing the more cumbersome g->ez[50]. Note that the index for the array element

is now enclosed in parentheses and not square brackets. The definitions in lines 31 through 34

allow us to write SizeX instead of g->sizeX, Time instead of g->time, MaxTime instead

of g->maxTime, and Cdtds instead of g->cdtds.

An improved version of Program 3.1 is shown in Program 4.6.

Program 4.6 improved1.c: Source code for an improved version of the bare-bones 1D FDTD

program.

1 /* Improved bare-bones 1D FDTD simulation. */

2

3 #include "fdtd1.h"
4 #include <math.h>
5

6 int main()
7 {
8 Grid *g;
9 double imp0 = 377.0;

10 int mm;
11

12 ALLOC_1D(g, 1, Grid);
13

14 SizeX = 200; // size of grid

15 MaxTime = 250; // duration of simulation

16 Cdtds = 1.0; // Courant number (unused)

17

18 ALLOC_1D(g->ez, SizeX, double);
19 ALLOC_1D(g->hy, SizeX, double);
20

21 /* do time stepping */

22 for (Time = 0; Time < MaxTime; Time++) {

4.5. IMPROVEMENT NUMBER ONE 87

23

24 /* update magnetic field */

25 for (mm = 0; mm < SizeX - 1; mm++)
26 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;
27

28 /* update electric field */

29 for (mm = 1; mm < SizeX; mm++)
30 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;
31

32 /* hardwire a source node */

33 Ez(0) = exp(-(Time - 30.0) * (Time - 30.0) / 100.0);
34

35 printf("%g\n", Ez(50));
36 } /* end of time-stepping */

37

38 return 0;
39 }

In line 8 the pointer to the Grid structure g is declared. Because we have just declared a pointer

to a Grid, we next need to obtain the memory to store the elements of the structure itself. This

allocation is done in line 12.

Because the Grid contains pointers ez and hy, we do not need to declare those field arrays

separately. The size of the computational domain is set in line 14 while the duration of the simula-

tion is set in 15. After the preprocessor has processed the code, these lines will actually be

g->sizeX = 200;
g->maxTime = 250;

At this point in the program the pointers ez and hy do not have any memory associated with

them—we cannot store anything yet in the field arrays. Therefore the next step is the allocation of

memory for the field arrays which is accomplished in lines 18 and 19.

The rest of the code is largely the same as given in Program 3.1. The only difference being a

slight change in notation/syntax. Program 3.1 and Program 4.6 produce identical results.

This new version of the bare-bones simulation is split into two files: the header file fdtd1.h
and the source file improved1.c. This is depicted in Fig. 4.1. The main() function in file

improved1.c handles all the calculations associated with the FDTD simulation. Since there is

only a single source file, there is no obvious advantage to creating a header file. However, as we

further modularize the code, the header file will provide a convenient way to ensure that different

source files share common definitions of various things. For example, many source files may need

to know about the details of a Grid structure. These details can be written once in the header file

and then the header file can be included into different source files as appropriate. Examples of this

will be provided in the following sections.

88 CHAPTER 4. IMPROVING THE FDTD CODE

improved1.c

main()

fdtd1.h

Figure 4.1: The files associated with the first improved version of the FDTD code. The header

file fdtd1.h is included in the source file improved1.c as indicated by the dashed line. The

source file improved1.c contains the main() function which performs all the executable state-

ments associated with the simulation.

4.6 Modular Design and Initialization Functions

Thus far all the programs have been written using a single source file that contains a single function

(the main() function), or in the case of the previous section, one source file and one header file.

As the complexity of the FDTD simulation increases this approach becomes increasingly unwieldy

and error prone. A better approach is to modularize the program so that different functions perform

specific tasks—not everything is done within main(). For example, we may want to use one

function to update the magnetic field, another to update the electric field, another to introduce

energy into the grid, and another to handle the termination of the grid.

Additionally, with C it is possible to put different functions in different source files and compile

the source files separately. By putting different functions in different source files, it is possible to

have different functions that are within one source file share variables which are “hidden” from all

functions that do not appear in that file. You can think of these variables as being private, known

only to the functions contained in the file. As will be shown, such sharing of variables can be

useful when one wants to initialize the behavior of a function that will be called multiple times

(but the initialization only needs to be done once).

To illustrate how functions within a file can share variables that are otherwise hidden from

other parts of a program, assume there is a function that we want to call several times. Further

assume this function performs a calculation based on some parameters but these parameters only

need to be set once—they will not vary from the value to which they are initially set. For this type

of scenario, it is often convenient to split the function into two functions: one function handles

the initialization of the parameters (the “initialization function”) and the other function handles

4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 89

the calculation based on those parameters (the “calculation function”). Now, the question is: How

can the initialization function make the parameters visible to the calculation function and how can

the values of these parameters persist between one invocation of the function and the next? The

answer lies in global variables.

Generally the use of global variables is discouraged as they can make programs hard to under-

stand and difficult to debug. However, global variables can be quite useful when used properly.

To help minimize the problems associated with global variables, we will further modularizing the

program so that the initialization function and calculation function mentioned above are stored in

a separate file from the rest of the program. In this way the global variables that these functions

share are not visible to any other function.

As a somewhat contrived example of this approach to setting parameters, assume we want to

write a program that will calculate the values of a harmonic function where the user can specify the

amplitude and the phase, i.e., we want to calculate f(x) = a cos(x + φ) where a is the amplitude

and φ is the phase. Note that we often just write f(x) for a function like this even though the

function depends on a and φ as well as x. We usually do not write f(x, a, φ) because we think of

a and φ as fixed values (even though they have to be specified at some point) while x is the value

we are interested in varying. Assume we want to write our program so that there is a function

harmonic1() that is the equivalent of f(x) = a cos(x+φ). harmonic1() should take a single

argument that corresponds to the value of x. We will use a separate function, harmonicInit1()
that will set the amplitude and phase.

A file that contains a suitable the main() function and the associated statements to real-

ize the parameter setting discussed above is shown in Program 4.7. The function prototypes for

harmonicInit1() and harmonic1() are given in lines 12 and 13, respectively. Note, how-

ever, that these functions do not appear in this file. Between lines 19 and 23 the user is prompted

for the amplitude and phase (and the phase is converted from degrees to radians). These values

are passed as arguments to the harmonicInit1() function. As we will see a little later, this

function sets persistent global parameters to these values so that they are visible to the function

harmonic1() whenever it is called. The for-loop that starts on line 28 generates the desired

output values. Here we set the variable x to values between 0 and 2π. In line 30 the value of x is

printed together with the value of harmonic1(x). Note that the harmonic1() function is not

passed the amplitude or phase as an argument.

Program 4.7 param-demo1.c: File containing the main() function and appropriate header

material that is used to demonstrate the setting of persistent parameters in an auxilliary function.

Here harmonicInit1() and harmonic1() are serving this auxilliary role. The code associ-

ated with those functions is in a separate file (see Program 4.8).

1 /* param-demo1.c: Program that demonstrates the setting of

2 * "persistent" parameters via the arguments of an initialization

3 * function. Here the parameters control the amplitude and phase of a

4 * harmonic function f(x) = a cos(x + phi). This program generates

5 * num_points of the harmonic function with the "x" value of the

6 * varying between zero and 2*pi.

7 */

90 CHAPTER 4. IMPROVING THE FDTD CODE

8

9 #include <stdio.h>
10 #include <math.h> // To obtain M_PI, i.e., 3.14159...

11

12 void harmonicInit1(double amp, double phase);
13 double harmonic1(double x);
14

15 int main() {
16 double amp, phase, x;
17 int mm, num_points = 100;
18

19 printf("Enter the amplitude: ");
20 scanf(" %lf", &);
21 printf("Enter the phase [in degrees]: ");
22 scanf(" %lf", &phase);
23 phase *= M_PI / 180.0;
24

25 /* Set the amplitude and phase. */

26 harmonicInit1(amp, phase);
27

28 for (mm = 0; mm < num_points; mm++) {
29 x = 2.0 * M_PI * mm / (float)(num_points - 1);
30 printf("%f %f\n", x, harmonic1(x));
31 }
32

33 return 0;
34 }

The file containing the functions harmonicInit1() and harmonic1() is shown in Pro-

gram 4.8. In line 12 two static double variables are declared: amp is the amplitude and phase is

the phase. These variables are visible to all the functions in this file but are not visible to any other

functions (despite the common name, these variables are distinct from those with the same name in

the main() function). Furthermore, the value of these variables will “persist.” They will remain

unchanged (unless we explicitly change them) and available for our use through the duration of

the running of the program. (Note that, it may perhaps be somewhat confusing, but the “static”

qualifier in line 12 does not mean constant. The value of these variables can be changed. Rather, it

means these global variables are local to this file.)

The harmonicInit1() function starts on line 17. It takes two arguments. Here those

arguments are labeled the amp and the phase. We must distinguish these variable names

from the corresponding global variables. We accomplish this by putting the prefix the on the

corresponding global variable name. The global variables are set to the desired values in lines 18

and 19. The harmonic1() function that begins on line 25 then uses these global values in the

calculation of a cos(x+ φ).

Program 4.8 harmonic-demo1.c: File containing the functions harmonicInit1() and

4.6. MODULAR DESIGN AND INITIALIZATION FUNCTIONS 91

harmonic1().

1 /*

2 * harmonic-demo1.c: Functions to calculate a harmonic function of a

3 * given amplitude and phase. The desired amplitude and phase are

4 * passed as arguments to harmonicInit1(). harmonicInit1() sets the

5 * corresponding static global variables so that these values will be

6 * available for the harmonic1() function to use whenever it is

7 * called.

8 */

9

10 #include <math.h> // for cos() function

11

12 /* Global static variables that are visible only to functions inside

13 this file. */

14 static double amp, phase;
15

16 // initialization function

17 void harmonicInit1(double the_amp, double the_phase) {
18 amp = the_amp;
19 phase = the_phase;
20

21 return;
22 }
23

24 // calculation function

25 double harmonic1(double x) {
26 return amp * cos(x + phase);
27 }

Now, let us change these programs in order to further separate the main() function from the

harmonic function. There is no reason that the main() function should have to prompt the user

for the amplitude or phase. These values are simply passed along to the harmonic initialization

function and never actually used in main(). Thus, a better approach would be to let the harmonic

initialization function prompt the user for whatever input it needs. The main() function would

merely call the initialization function and leave all the details up to it. So in the future, if one wanted

to change the harmonic function so the user could specify a frequency as well as the amplitude and

phase, that code could be added to the harmonic functions but the main() function would not

have to be changed in any way.

The new version of the main() function is shown in Program 4.9. Note that there is now no

mention of amplitude or phase in main(). That information has all been relegated to the harmonic

functions themselves.

Program 4.9 param-demo2.c: Modified file containing the main() function which demon-

strates the use of an initialization function to set parameters. In this version of the code the ini-

92 CHAPTER 4. IMPROVING THE FDTD CODE

tilization function harmonicInit2() takes no arguments. The code for harmonicInit2()
and harmonic2() is given in Program 4.10.

1 /* param-demo2.c: Program that demonstrates the setting of

2 * "persistent" parameters via an initialization function. Here the

3 * initialization function handles all the details of obtaining the

4 * parameters associated with the harmonic function.

5 */

6

7 #include <stdio.h>
8 #include <math.h> // To obtain M_PI, i.e., 3.14159...

9

10 void harmonicInit2();
11 double harmonic2(double x);
12

13 int main() {
14 double x;
15 int mm, num_points = 100;
16

17 /* Initialize the harmonic function. */

18 harmonicInit();
19

20 for (mm = 0; mm < num_points; mm++) {
21 x = 2.0 * M_PI * mm / (float)(num_points - 1);
22 printf("%f %f\n", x, harmonic2(x));
23 }
24

25 return 0;
26 }

The file containing harmonicInit2() and harmonic2() is shown in Program 4.10. As

before, the amplitude and phase are global static variables that are declared in line 13. Note

that harmonicInit2() takes no arguments. Instead, this function prompts the user for the

amplitude and phase and sets the global variables appropriately. Having done this, these values are

visible to the function harmonic2() (which is unchanged from the function harmonic1()
given previously).

Program 4.10 harmonic-demo2.c: File containing the functions harmonicInit2() and

harmonic2().

1 /*

2 * harmonic-demo2.c: Functions to calculate a harmonic function of a

3 * given amplitude and phase. harmonicInit2() prompts the user for

4 * the amplitude and phase and sets the global variables so these

4.7. IMPROVEMENT NUMBER TWO 93

5 * values will be available for the harmonic2() function to use

6 * whenever it is called.

7 */

8

9 #include <math.h> // for cos() function

10

11 /* Global static variables that are visible only to functions inside

12 this file. */

13 static double amp, phase;
14

15 // initialization function

16 void harmonicInit2() {
17

18 printf("Enter the amplitude: ");
19 scanf(" %lf", &);
20 printf("Enter the phase [in degrees]: ");
21 scanf(" %lf", &phase);
22 phase *= M_PI / 180.0;
23

24 return;
25 }
26

27 // calculation function

28 double harmonic2(double x) {
29 return amp * cos(x + phase);
30 }

In Sec. 4.8 we will discuss the compilation of multi-file programs such as these.

4.7 Improvement Number Two

Let us consider a further refinement to the simple bare-bones FDTD simulation. In this version of

the code the updating of the electric and magnetic fields will be handled by separate functions. The

grid arrays will be initialized with a separate function and the source function will be calculated

using a separate function. The arrangement of the functions among the various files is depicted in

Fig. 4.2.

Program 4.11 shows the contents of the file improved2.c. As indicated in Fig. 4.2, main()
calls gridInit2(). This function initializes the Grid structure g. The function gridInit2()
is contained in the separate file gridinit2.c. The magnetic fields are updated using the func-

tion updateH2() while the electric fields are updated using updateE2(). Both these func-

tions are contained in the file update2.c. The source function is calculated using the function

ezInc() that is contained in the file ezinc2.c.

Program 4.11 improved2.c: Further code improvement of the bare-bones 1D FDTD simula-

tion. Here the initialization of the grid as well as the updating of the fields are handled by separate

94 CHAPTER 4. IMPROVING THE FDTD CODE

improved2.c

main()

fdtd2.hezinc2.h

ezinc2.c

ezIncInit()
ezInc()

update2.c

updateE2()
updateH2()

gridinit2.c

gridInit2()

Figure 4.2: The files associated with the second improved version of the FDTD code. The header

files fdtd2.h and ezinc2.h are included in the source files to which they are joined by a

dashed line. The file improved2.c contains the main() function but the initialization of the

grid, the calculation of the source function, and the updating of the fields are no longer done in

main(). Instead, other functions are called to accomplish these tasks. The heavy black lines

indicates which functions call which other functions. In this case, main() originates calls to all

the other functions.

4.7. IMPROVEMENT NUMBER TWO 95

functions. The argument for these functions is merely the Grid pointer g. Additionally, the source

function is initialized and calculated by separate functions.

1 /* Version 2 of the improved bare-bones 1D FDTD simulation. */

2

3 #include "fdtd2.h"
4 #include "ezinc2.h"
5

6 int main()
7 {
8 Grid *g;
9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

11 gridInit2(g); // initialize the grid

12

13 ezIncInit(g); // initialize source function

14

15 /* do time stepping */

16 for (Time = 0; Time < MaxTime; Time++) {
17 updateH2(g); // update magnetic field

18 updateE2(g); // update electric field

19 Ez(0) = ezInc(Time, 0.0); // apply source function

20 printf("%g\n", Ez(50)); // print output

21 } // end of time-stepping

22

23 return 0;
24 }

Line 8 declares g to be a pointer to a Grid. Since a Grid structure has as elements the field

arrays, the time step, the duration of the simulations, and the maximum number of time steps,

none of these variables need to be declared explicitly. Note, however, that line 8 merely creates a

pointer but as yet this pointer does not point to anything meaningful. Line 10 uses ALLOC 1D()
to allocated memory for the Grid and ensures g points to that memory. Assuming there were no

errors in the allocation, this line is effectively the equivalent of

g = calloc(1, sizeof(Grid));

As shown in lines 11, 17, and 18, gridInit2(), updateH2(), and updateE2() each

have a single argument: g (a pointer to the Grid). The parameters of the source function are

initialized by calling ezIncInit() in line 13.

The header file fdtd2.h is shown in Program 4.12. This file is largely the same as fdtd1.h.

The only significant difference is the function prototypes that are provided in lines 36–38 for three

of the functions called by main() (note that the prototypes for the functions related to the source

are provided in ezinc2.h).

96 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.12 fdtd2.h: Header file to accompany the second version of the improved code

showin in Program 4.11. The differences between this file and fdtd1.h are shown in bold.

1 #ifndef _FDTD2_H
2 #define _FDTD2_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez;
9 double *hy;

10 int sizeX;
11 int time, maxTime;
12 double cdtds;
13 };
14

15 typedef struct Grid Grid;
16

17 /* memory allocation macro */

18 #define ALLOC_1D(PNTR, NUM, TYPE) \
19 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
20 if (!PNTR) { \
21 perror("ALLOC_1D"); \
22 fprintf(stderr, \
23 "Allocation failed for " #PNTR ". Terminating...\n");\
24 exit(-1); \
25 }
26

27 /* macros for accessing arrays and such */

28 #define Hy(MM) g->hy[MM]
29 #define Ez(MM) g->ez[MM]
30 #define SizeX g->sizeX
31 #define Time g->time
32 #define MaxTime g->maxTime
33 #define Cdtds g->cdtds
34

35 /* function prototypes */
36 void gridInit2(Grid *g);
37 void updateH2(Grid *g);
38 void updateE2(Grid *g);
39

40 #endif /* matches #ifndef _FDTD2_H */

Program 4.13 shows the contents of the file update2.c. The static global variable imp0 rep-

resents the characteristic impedance of free space and is set to 377.0 in line 6. This variable is never

4.7. IMPROVEMENT NUMBER TWO 97

changed throughout the program. The magnetic field is updated with the function updateH2()
which is given between lines 9 and 16. Note that the update equation uses Hy() and Ez() to refer

to the elements of the field arrays. The macros in fdtd2.h translate these to the necessary syntax

(which is essentially g->hy[] and g->ez[]). The electric field is updated using updateE2()
which is given between lines 19 and 26.

Program 4.13 update2.c: Source code for the functions updateH2() and updateE2().

1 /* Functions to update the electric and magnetic fields. */

2

3 #include "fdtd2.h"
4

5 /* characteristic impedance of free space */

6 static double imp0 = 377.0;
7

8 /* update magnetic field */

9 void updateH2(Grid *g) {
10 int mm;
11

12 for (mm = 0; mm < SizeX - 1; mm++)
13 Hy(mm) = Hy(mm) + (Ez(mm + 1) - Ez(mm)) / imp0;
14

15 return;
16 }
17

18 /* update electric field */

19 void updateE2(Grid *g) {
20 int mm;
21

22 for (mm = 1; mm < SizeX - 1; mm++)
23 Ez(mm) = Ez(mm) + (Hy(mm) - Hy(mm - 1)) * imp0;
24

25 return;
26 }

Program 4.14 shows the source code for the function gridInit2(). This function is used to

set the value of various elements of the Grid. (For this rather simple simulation, this program is

itself quite simple.) Line 6 sets the size of the Grid, SizeX, to 200. Actually, after the preprocessor

has processed the code, this line will be

g->sizeX = 200;

Line 7 sets the duration of the simulation to 250 time-steps. Line 8 sets the Courant number to

unity. Lines 10 and 11 use the ALLOC 1D() macro to allocate the necessary memory for the

electric and magnetic field arrays.

98 CHAPTER 4. IMPROVING THE FDTD CODE

Program 4.14 gridinit2.c: Source code for the function gridInit2().

1 /* Function to initialize the Grid structure. */

2

3 #include "fdtd2.h"
4

5 void gridInit2(Grid *g) {
6 SizeX = 200; // set the size of the grid

7 MaxTime = 250; // set duration of simulation

8 Cdtds = 1.0; // set Courant number

9

10 ALLOC_1D(g->ez, SizeX, double); // allocate memory for Ez

11 ALLOC_1D(g->hy, SizeX, double); // allocate memory for Hy

12

13 return;
14 }

Finally, Program 4.15 shows the contents of the file ezinc2.c which contains the code to

implement the functions ezIncInit() and ezInc(). The function ezinc() is Gaussian

pulse whose width and delay are parameters that are set by ezIncInit(). The implementation

of this source function is slightly different than in the original bare-bones code in that here the

user is prompted for the width and delay. Additionally, the source function ezInc() takes two

arguments, the time and the location, so that this function can be used in a TFSF formulation.

When ezInc() is called from main(), the location is simply hardwired to zero (ref. line 19 of

Program 4.11).

Program 4.15 ezinc2.c: File for the functions ezIncInit() and ezInc(). ezInc() is a

traveling-wave implementation of a Gaussian pulse. There are three private static global variables

in this code. These variables, representing the width and delay of the pulse as well as the Courant

number, are determined and set by the initialization function ezIncInit(). The Courant num-

ber is taken from the Grid pointer that is passed as an argument while the user is prompted to

provide the width and delay.

1 /* Functions to calculate the source function (i.e., the incident

2 * field). */

3

4 #include "ezinc2.h"
5

6 /* global variables -- but private to this file */

7 static double delay, width = 0, cdtds;
8

9 /* prompt user for source-function width and delay. */

10 void ezIncInit(Grid *g){
11

4.7. IMPROVEMENT NUMBER TWO 99

12 cdtds = Cdtds;
13 printf("Enter delay: ");
14 scanf(" %lf", &delay);
15 printf("Enter width: ");
16 scanf(" %lf", &width);
17

18 return;
19 }
20

21 /* calculate source function at given time and location */

22 double ezInc(double time, double location) {
23 if (width <= 0) {
24 fprintf(stderr,
25 "ezInc: must call ezIncInit before ezInc.\n"
26 " Width must be positive.\n");
27 exit(-1);
28 }
29 return exp(-pow((time - delay - location / cdtds) / width, 2));
30 }

In Program 4.15 the variable width is used to determine if initialization has been done.

width is initialized to zero when it is declared in line 7. If it is not positive when ezInc()
is called, an error message is printed and the program terminates. In practice one should check that

all the parameters have been set to reasonable values, but here we only check the width.

The private variable cdtds declared in line 7 is distinct from Cdtds which the preprocessor

expands to g->cdtds. That is to say the Courant number cdtds that is an element within the

Grid is different from the private variable cdtds in this file. But, of course, we want these values

to be the same and line 12 assures this.

The header file to accompany ezinc2.c is shown in Program ezinc2.h. As well as provid-

ing the necessary function prototypes, this file ensures the inclusion of fdtd2.h (which provides

the description a Grid structure).

Program 4.16 ezinc2.h: Header file that accompanies ezinc2.c and is also included in the

file that specifies main() (i.e., the file improved2.c.

1 /* Header file to accompany ezinc2.c. */

2

3 #ifndef _EZINC2_H
4 #define _EZINC2_H
5

6 #include <math.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include "fdtd2.h"

10

100 CHAPTER 4. IMPROVING THE FDTD CODE

11 void ezIncInit(Grid *g);
12 double ezInc(double time, double location);
13

14 #endif /* matches #ifndef _EZINC2_H */

4.8 Compiling Modular Code

When a program is divided between multiple files it is typically not necessary to recompile every

file if there was a change in only some of them. Each source file can be compiled individually to an

“object file” or object code. An object file, by itself, is not executable. (To create executable code,

all the object code must be linked together.) To create an object file with the GNU C compiler, one

uses the -c flag. Thus, for example, to obtain the object file for ezinc2.c, one would issue a

command such as

gcc -Wall -O -c ezinc2.c

The flag -Wall means to show all warnings, while -O tells the compiler to optimize the code

(greater optimization can be obtained by instead using -O2 or -O3—the greater optimization

usually comes at the cost of slower compilation and larger object and executable files). When this

command is issued the compiler will create the object file ezinc2.o.

The object files for all the components of the program can be created separately by reissuing

commands similar to the one shown above, e.g.,

gcc -Wall -O -c ezinc2.c
gcc -Wall -O -c improved2.c
gcc -Wall -O -c update2.c
gcc -Wall -O -c gridinit2.c

These commands would create the object files ezinc2.o, improved2.o, update2.o, and

gridinit2.o. Alternatively, one can create all the object files at once using a command such as

gcc -Wall -O -c ezinc2.c improved2.c update2.c gridinit2.c

No matter how the object files are created, they need to be linked together to obtain an exe-

cutable. The command to accomplish this is

gcc ezinc2.o improved2.o update2.o gridinit2.o -lm -o improved2

The flag -lm tells the compiler to link to the math library (which is necessary because of the math

functions used in ezinc2.c). The -o flag allows one to specify the name of the output/executable

file, in this case improved2.

For small programs there is not much advantage to incremental compilation. However, as the

software increases in size and complexity, there may be a significant savings in time realized by

recompiling only the code that has changed. For example, assume a change was made in the file

gridinit2.c but in no other. Also assume that the object code for each file has previously been

created. To obtain an executable that reflects this change one merely needs to recompile this one

file and then link the resulting object file to the others, i.e.,

4.9. IMPROVEMENT NUMBER THREE 101

gcc -Wall -O -c gridinit2.c
gcc ezinc2.o improved2.o update2.o gridinit2.o -lm -o improved2

The details of incremental compilations can actually be handled by utilities that detect the files

that need to be recompiled and react accordingly. Those who are interested in an example of such

a utility may be interested in the make utility which is available on most Unix-based machines.

Another helpful utility, which goes hand-in-hand with make is makedepend which sorts out

the dependence of all the source files on the header files. make is a rather old utility—going

back to the early days of Unix—and there are alternatives available such as SCons available from

www.scons.org.

4.9 Improvement Number Three

Now let us modularize the program that contained the matched lossy layer (Program 3.8). As

shown in Fig. 4.3, we will use separate functions for initializing the grid, taking snapshots, applying

the TFSF boundary, updating the grid, and applying the ABC. Additionally, the calculation of the

incident source function will be handled by a separate function. This source function will be called

by the function that implements the TFSF boundary, but no other. Each box in Fig. 4.3 represents a

separate file that contains one or more functions. The dashed lines indicate the inclusion of header

files and the heavy lines indicate function calls from one file to another.

The source code improved3.c which contains the main() function is shown in Program

4.17. Note that nearly all activities associated with the FDTD simulation are now done by separate

functions. main() merely serves to ensure that proper initialization is done and then implements

the time-stepping loop in which the various functions are called.

Program 4.17 improved3.c: Source code containing the main() function. Nearly all the

FDTD related activities have been relegated to separate functions which are called from main().

1 /* FDTD simulation where main() is primarily used to call other

2 * functions that perform the necessary operations. */

3

4 #include "fdtd3.h"
5

6 int main()
7 {
8 Grid *g;
9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

11

12 gridInit3(g); // initialize the grid

13 abcInit(g); // initialize ABC

14 tfsfInit(g); // initialize TFSF boundary

15 snapshotInit(g); // initialize snapshots

102 CHAPTER 4. IMPROVING THE FDTD CODE

improved3.c

main()
fdtd3.h

ezinc3.h

ezinc3.c

ezIncInit()
ezInc()

update3.c

updateE3()
updateH3()

gridinit3.c

gridInit3()

tfsf.c

tfsfInit()
tfsfUpdate()

abc.c

abcInit()
abc()

snapshot.c

snapshotInit()
snapshot()

Figure 4.3: The files associated with the third improvement of the FDTD code. The header file

fdtd3.h is explicitly included in the source files to which it is joined by a dashed line. (Wherever

ezinc3.h appears it also ensures fdtd3.h is included.) The file improved3.c contains

the main() function but the initialization of the grid, the application of the absorbing boundary

condition, the calculation of the source function, the updating of the fields, and the taking of the

snapshots is no longer done in main(). Instead, other functions are called to accomplish these

tasks.

4.9. IMPROVEMENT NUMBER THREE 103

16

17 /* do time stepping */

18 for (Time = 0; Time < MaxTime; Time++) {
19 updateH3(g); // update magnetic field

20 tfsfUpdate(g); // correct field on TFSF boundary

21 abc(g); // apply ABC

22 updateE3(g); // update electric field

23 snapshot(g); // take a snapshot (if appropriate)

24 } // end of time-stepping

25

26 return 0;
27 }

We have any number of options in terms of how functions should be initialized or what argu-

ments they should be passed. Thus, one should not consider this code to be optimum in any way.

Rather this code is being used to illustrate implementation options.

As in the previous program, main() starts by defining a Grid pointer and allocating space for

the actual structure. Then, in lines 12–15, four initialization functions are called. gridInit3()
initializes the Grid (this will be discussed in more detail shortly). abcInit() handles any ini-

tialization associated with the ABC (as we will see, in this particular case there is nothing for this

initialization function to do). tfsfInit() initializes the TFSF boundary while snapshotInit()
does the necessary snapshot initialization. Following these initialization steps is the time-stepping

loop where the various functions are called that do the actual calculations.

The header fdtd3.h is shown in Program 4.18. Looking just at improved3.c you would

be unaware that the Grid structure has changed. However, four pointers have been added that

will contain the update-equation coefficients. As can be seen in lines 8 and 9 of Program 4.18,

these pointers are named ceze, cezh, chyh, and chye. Besides this and besides providing the

function prototypes for the new functions, this header file is largely the same as fdtd2.h.

Program 4.18 fdtd3.h: Header file to accompany improved3.c. Differences from fdtd2.h
are shown in bold.

1 #ifndef _FDTD3_H
2 #define _FDTD3_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 struct Grid {
8 double *ez, *ceze, *cezh;
9 double *hy, *chyh, *chye;

10 int sizeX;
11 int time, maxTime;
12 double cdtds;

104 CHAPTER 4. IMPROVING THE FDTD CODE

13 };
14

15 typedef struct Grid Grid;
16

17 /* macros for accessing arrays and such */

18 #define Hy(MM) g->hy[MM]
19 #define Chyh(MM) g->chyh[MM]
20 #define Chye(MM) g->chye[MM]
21

22 #define Ez(MM) g->ez[MM]
23 #define Ceze(MM) g->ceze[MM]
24 #define Cezh(MM) g->cezh[MM]
25

26 #define SizeX g->sizeX
27 #define Time g->time
28 #define MaxTime g->maxTime
29 #define Cdtds g->cdtds
30

31 /* memory allocation macro */

32 #define ALLOC_1D(PNTR, NUM, TYPE) \
33 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \
34 if (!PNTR) { \
35 perror("ALLOC_1D"); \
36 fprintf(stderr, \
37 "Allocation failed for " #PNTR ". Terminating...\n");\
38 exit(-1); \
39 }
40

41 /* Function prototypes */

42 void abcInit(Grid *g);
43 void abc(Grid *g);
44

45 void gridInit3(Grid *g);
46

47 void snapshotInit(Grid *g);
48 void snapshot(Grid *g);
49

50 void tfsfInit(Grid *g);
51 void tfsfUpdate(Grid *g);
52

53 void updateE3(Grid *g);
54 void updateH3(Grid *g);
55

56 #endif /* matches #ifndef _FDTD3_H */

The function gridInit3() is contained in the file gridinit3.c shown in Program 4.19.

Keep in mind that it does not matter what file names are—file names do not have to match the

4.9. IMPROVEMENT NUMBER THREE 105

contents of the file in any way, but, of course, it is best to use names that are descriptive of the

contents.

The preprocessor directives in lines 5–7 are simply to provide convenient names to the amount

of loss, the starting location of the lossy layer, and the relatively permittivity of the half space.

These parameters are the same as they were in Program 3.8.

Program 4.19 gridinit3.c: The gridInit3() function to initialize the Grid.

1 /* Function initialize Grid structure. */

2

3 #include "fdtd3.h"
4

5 #define LOSS 0.02
6 #define LOSS_LAYER 180 // node at which lossy layer starts

7 #define EPSR 9.0
8

9 void gridInit3(Grid *g) {
10 double imp0 = 377.0;
11 int mm;
12

13 SizeX = 200; // size of domain

14 MaxTime = 450; // duration of simulation

15 Cdtds = 1.0; // Courant number

16

17 ALLOC_1D(g->ez, SizeX, double);
18 ALLOC_1D(g->ceze, SizeX, double);
19 ALLOC_1D(g->cezh, SizeX, double);
20 ALLOC_1D(g->hy, SizeX - 1, double);
21 ALLOC_1D(g->chyh, SizeX - 1, double);
22 ALLOC_1D(g->chye, SizeX - 1, double);
23

24 /* set electric-field update coefficients */

25 for (mm = 0; mm < SizeX; mm++)
26 if (mm < 100) {
27 Ceze(mm) = 1.0;
28 Cezh(mm) = imp0;
29 } else if (mm < LOSS_LAYER) {
30 Ceze(mm) = 1.0;
31 Cezh(mm) = imp0 / EPSR;
32 } else {
33 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);
34 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);
35 }
36

37 /* set magnetic-field update coefficients */

38 for (mm = 0; mm < SizeX - 1; mm++)

106 CHAPTER 4. IMPROVING THE FDTD CODE

39 if (mm < LOSS_LAYER) {
40 Chyh(mm) = 1.0;
41 Chye(mm) = 1.0 / imp0;
42 } else {
43 Chyh(mm) = (1.0 - LOSS) / (1.0 + LOSS);
44 Chye(mm) = 1.0 / imp0 / (1.0 + LOSS);
45 }
46

47 return;
48 }

Lines 13–15 set the size of the Grid, the duration of the simulation, and the Courant number.

Lines 17–22 allocate the necessary memory for the various arrays. The coefficient arrays are then

set as they were in Program 3.8.

The functions to update the electric and magnetic fields, i.e., updateE3() and updateH3()
are contained in the file update3.c. The contents of this file are shown in Program 4.20. The

functions are largely unchanged from those that appeared in Program 4.13. The only significant

differences are the appearance of the coefficient arrays in the update equations that start on lines

10 and 21.

Program 4.20 update3.c: Functions to update the electric and magnetic fields.

1 /* Functions to update the electric and magnetic fields. */

2

3 #include "fdtd3.h"
4

5 /* update magnetic field */

6 void updateH3(Grid *g) {
7 int mm;
8

9 for (mm = 0; mm < SizeX - 1; mm++)
10 Hy(mm) = Chyh(mm) * Hy(mm) +
11 Chye(mm) * (Ez(mm + 1) - Ez(mm));
12

13 return;
14 }
15

16 /* update electric field */

17 void updateE3(Grid *g) {
18 int mm;
19

20 for (mm = 1; mm < SizeX - 1; mm++)
21 Ez(mm) = Ceze(mm) * Ez(mm) +
22 Cezh(mm) * (Hy(mm) - Hy(mm - 1));
23

4.9. IMPROVEMENT NUMBER THREE 107

24 return;
25 }

The function to apply the absorbing boundary conditions is rather trivial and is shown in Pro-

gram 4.21. Also shown in Program 4.21 is the initiliztaion function abcInit(). In this particular

case the ABC is so simple that there is no initializataion that needs to be done and hence this func-

tion simply returns. In Chap. 6 we will begin to consider more sophisticated ABC’s that do indeed

require some initialization. Thus, this call the initialization function is done in anticipation of that.

As was the case in Program 3.8, the ABC is only applied to the left side of the grid. The right side

of the grid is terminated with a lossy layer.

Program 4.21 abc.c: Absorbing boundary condition used by improved3.c. For this partic-

ular simple ABC there is nothing for the initialization function to do and hence it simply returns.

1 /* Functions to terminate left side of grid. */

2

3 #include "fdtd3.h"
4

5 // Initialize the ABC -- in this case, there is nothing to do.

6 void abcInit(Grid *g) {
7

8 return;
9 }

10

11 // Apply the ABC -- in this case, only to the left side of grid.

12 void abc(Grid *g) {
13

14 /* simple ABC for left side of grid */

15 Ez(0) = Ez(1);
16

17 return;
18 }

The code associated with the TFSF boundary is shown in Program 4.22. Line 7 declares a

static global variable tfsfBoundary which specifies the location of the TFSF boundary. This

variable is initialized to zero with the understanding that when the code is initialized it will be set

to some meaningful (positive) value.

Program 4.22 tfsf.c: Code to implement the TFSF boundary.

1 /* Function to implement a 1D FDTD boundary. */

2

108 CHAPTER 4. IMPROVING THE FDTD CODE

3 #include <math.h>
4 #include "fdtd3.h"
5 #include "ezinc3.h"
6

7 static int tfsfBoundary = 0;
8

9 void tfsfInit(Grid *g) {
10

11 printf("Enter location of TFSF boundary: ");
12 scanf(" %d", &tfsfBoundary);
13

14 ezIncInit(g); // initialize source function

15

16 return;
17 }
18

19 void tfsfUpdate(Grid *g) {
20 /* check if tfsfInit() has been called */

21 if (tfsfBoundary <= 0) {
22 fprintf(stderr,
23 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
24 " Boundary location must be set to positive value.\n");
25 exit(-1);
26 }
27

28 /* correct Hy adjacent to TFSF boundary */

29 Hy(tfsfBoundary) -= ezInc(Time, 0.0) * Chye(tfsfBoundary);
30

31 /* correct Ez adjacent to TFSF boundary */

32 Ez(tfsfBoundary + 1) += ezInc(Time + 0.5, -0.5);
33

34 return;
35 }

The initialization function tfsfInit() begins on line 9. The user is prompted to enter the

location of the TFSF boundary. Then the initialization function for the source ezIncInit() is

called to set the parameters that control the shape of the pulse.

The code to calculate the source function, i.e., the functions ezIncInit() and ezInc()
is identical to that shown in Program 4.15. However, there would be one slight change to the file:

instead of including ezinc2.h, line 4 of Program 4.15 would be changed to include ezinc3.h.

We assume this modified program is in the file ezinc3.c which is not shown. The header file

ezinc3.h would be nearly identical to the code shown in Program 4.16 except the “2” in lines 3,

4, and 9, would be changed to “3” (thus ensuring the proper inclusion of the header file fdtd3.h
instead of fdtd2.h). Again, since this is such a minor change, the contents of ezinc3.h are

not shown.

The function tfsfUpdate() which begins on line 19 is called once every time-step. This

4.9. IMPROVEMENT NUMBER THREE 109

function applies the necessary correction to the nodes adjacent to the TFSF boundary. Because of

the implicit timing within this file, this function needs to be called after the magnetic-field update,

but before the electric-field update. The function first checks that the boundary location is positive.

If it is not, an error message is printed and the program terminates, otherwise the fields adjacent to

the boundary are corrected.

Finally, the code associated with taking snapshots of the field is shown in Program 4.23.

snapshotInit() allows the user to specify the time at which snapshots should start, the tem-

poral stride between snapshots, the node at which a snapshot should start, the node at which it

should end, the spatial stride between nodes, and the base name of the output files. Assuming the

user entered a base name of sim, then, as before, the output files would be named sim.0, sim.1,

sim.2, and so on. If the user said the startTime is 105 and the temporalStride is 10, then

snapshots would be taken at time-steps 105, 115, 125, and so on. Similarly, if the user specified

that the startNode and endNode are 0 and 180, respectively, and the spatialStride is 1,

then the value of every node between 0 and 180, inclusive, would be recorded to the snapshot file.

If the spatialStride were 2, every other node would be recorded. If it were 3, every third

node would be recorded. (Because of this, the endNode only corresponds to the actual last node

in the snapshot file if its offset from the startNode is an even multiple of the spatial stride.)

Program 4.23 snapshot.c: Code for taking snapshots of the electric field.

1 /* Function to take a snapshot of a 1D grid. */

2

3 #include "fdtd3.h"
4

5 static int temporalStride = 0, spatialStride, startTime,
6 startNode, endNode, frame = 0;
7 static char basename[80];
8

9 void snapshotInit(Grid *g) {
10

11 printf("For the snapshots:\n");
12 printf(" Duration of simulation is %d steps.\n", MaxTime);
13 printf(" Enter start time and temporal stride: ");
14 scanf(" %d %d", &startTime, &temporalStride);
15 printf(" Grid has %d total nodes (ranging from 0 to %d).\n",
16 SizeX, SizeX-1);
17 printf(" Enter first node, last node, and spatial stride: ");
18 scanf(" %d %d %d", &startNode, &endNode, &spatialStride);
19 printf(" Enter the base name: ");
20 scanf(" %s", basename);
21

22 return;
23 }
24

25 void snapshot(Grid *g) {

110 CHAPTER 4. IMPROVING THE FDTD CODE

26 int mm;
27 char filename[100];
28 FILE *snapshot;
29

30 /* ensure temporal stride set to a reasonable value */

31 if (temporalStride <= 0) {
32 fprintf(stderr,
33 "snapshot: snapshotInit must be called before snapshot.\n"
34 " Temporal stride must be set to positive value.\n");
35 exit(-1);
36 }
37

38 /* get snapshot if temporal conditions met */

39 if (Time >= startTime &&
40 (Time - startTime) % temporalStride == 0) {
41 sprintf(filename, "%s.%d", basename, frame++);
42 snapshot = fopen(filename, "w");
43 for (mm = startNode; mm <= endNode; mm += spatialStride)
44 fprintf(snapshot, "%g\n", Ez(mm));
45 fclose(snapshot);
46 }
47

48 return;
49 }

As shown in line 9, snapshotInit() takes a single argument, a pointer to a Grid structure.

This function prompts the user to set the appropriate snapshot control values. The snapshot files

themselves are created by the function snapshot() which starts on line 25. This function starts

by checking that the temporal stride has been set to a reasonable value. If not, an error message

is printed and the program terminates. The program then checks if time is greater than or equal

to startTime and the difference between the current time and the startTime is a multiple of

temporalStride. If not, the function returns. If those conditions are met, then, as we have

seen before, a snapshot file is written and the frame counter is advanced. However, now there

is some control over which nodes are actually written. Note that the function snapshot() is

called every time-step. We could easily have checked in the main() function if the time-step

was such that a snapshot should be generated and only then called snapshot(). Reasons for

adopting either approach could be made but be aware that the overhead for calling a function is

typically small. Thus, the savings realized by calling snapshot() less often (but still ultimately

generating the same number of snapshots) is likely to be trivial. The approach used here keeps all

the snapshot-related data in the snapshot code itself.

After compiling all this code (and linking it), the executable will produce the same results as

were obtained from Program 3.8 (assuming, of course, the user enters the same parameters as

were used in Program 3.8). With the new version of the code there are several improvements we

could potentially use to our advantage. Assume, for instance, we wanted to do simulations of two

different scenarios. We could create two Grid structures, one for scenario. Each grid would have

4.9. IMPROVEMENT NUMBER THREE 111

its own gridInit() function, but other than that all the code could be used by either grid. The

update functions could be applied, without any modification, to any grid. The snapshot function

could be applied to any grid, and so on.

112 CHAPTER 4. IMPROVING THE FDTD CODE

Chapter 5

Scaling FDTD Simulations to Any

Frequency

5.1 Introduction

The FDTD method requires the discretization of time and space. Samples in time are ∆t apart

whereas, in simulations with one spatial dimension, samples in space are ∆x apart. It thus appears

that one must specify ∆t and ∆x in order to perform a simulation. However, as shown in Sec. 3.3,

it is possible to write the coefficients ∆t/ǫ∆x and ∆t/µ∆x in terms of the material parameters

and the Courant number (ref. (3.19) and (3.20)). Since the Courant number contains the ratio of

the temporal step to the spatial step, it allows one to avoid explicitly stating a definite temporal

or spatial step—all that matters is their ratio. This chapter continues to examine ways in which

FDTD simulations can be treated as generic simulations that can be scaled to any size/frequency.

As will be shown, the important factors which dictate the behavior of the fields in a simulation

are the Courant number and the points per wavelength for any given frequency. We conclude the

chapter by considering how one can obtain the transmission coefficient for a planar interface from

a FDTD simulation.

5.2 Sources

5.2.1 Gaussian Pulse

In the previous chapter the source function, whether hardwired, additive, or incorporated in a TFSF

formulation, was always a Gaussian. In the continuous world this function can be expressed as

fg(t) = e
−

“

t−dg
wg

”2

(5.1)

where dg is the temporal delay and wg is a pulse-width parameter. The Gaussian has its peak value

at t = dg (when the exponent is zero) and has a value of e−1 when t = dg ± wg. Since (5.1) is

only a function of time, i.e., a function of q∆t in the discretized world, it again appears as if the

temporal step ∆t must be given explicitly. However, if one specifies the delay and pulse width in

Lecture notes by John Schneider. fdtd-dimensionless.tex

113

114 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

terms of temporal steps, the term ∆t appears in both the numerator and the denominator of the

exponent. For example, in the last chapter dg was 30∆t and wg was 10∆t so the source function

could be written

fg(q∆t) = fg[q] = e−(q−30
10)

2

. (5.2)

Note that ∆t does not appear on the right-hand side.

The discretized version of a function f(q∆t) will be written f [q], i.e., the temporal step will

be dropped from the argument since it does not appear explicitly in the expression for the function

itself. The key to being able to discard ∆t from the source function was the fact that the source

parameters were expressed in terms of the number of temporal steps.

5.2.2 Harmonic Sources

For a harmonic source, such as

fh(t) = cos(ωt), (5.3)

there is no explicit numerator and denominator in the argument. Replacing t with q∆t it again

appears as if the temporal step must be given explicitly. However, keep in mind that with electro-

magnetic fields there is an explicit relationship between frequency and wavelength. For a plane

wave propagating in free space, the wavelength λ and frequency f are related by

fλ = c ⇒ f =
c

λ
. (5.4)

Thus the argument ωt (i.e., 2πft) can also be written as

ωt =
2πc

λ
t. (5.5)

For a given frequency, the wavelength is a fixed length. Being a length, it can be expressed in terms

of the spatial step, i.e.,

λ = Nλ∆x (5.6)

where Nλ is the number of points per wavelength. This does not need to be an integer.

By relating frequency to wavelength and the wavelength to Nλ, the discretized version of the

harmonic function can be written

fh(q∆t) = cos

(
2πc

Nλ∆x

q∆t

)

= cos

(
2π

Nλ

c∆t

∆x

q

)

, (5.7)

or, simply,

fh[q] = cos

(
2πSc
Nλ

q

)

. (5.8)

The expression on the right now contains the Courant number and the parameter Nλ. In this form

one does not need to state an explicit value for the temporal step. Rather, one specifies the Courant

number Sc and the number of spatial steps per wavelength Nλ. Note that Nλ we will always be

defined in terms of the number of spatial steps per the wavelength in free space. Furthermore, the

wavelength is the one in the continuous world—we will see later that the wavelength in the FDTD

grid is not always the same.

5.2. SOURCES 115

The period for a harmonic function is the inverse of the frequency

T =
1

f
=
λ

c
=
Nλ∆x

c
. (5.9)

The number of time steps in a period is thus given by

T

∆t

=
Nλ∆x

c∆t

=
Nλ

Sc
. (5.10)

A harmonic wave traveling in the positive x direction is given by

fh(x, t) = cos(ωt− kx) = cos

(

ω

(

t− k

ω
x

))

. (5.11)

Since k = ω
√
µ0µrǫ0ǫr = ω

√
µrǫr/c, the argument can be written

ω

(

t− k

ω
x

)

= ω

(

t−
√
µrǫr

c
x

)

. (5.12)

Expressing all quantities in terms of the discrete values which pertain in the FDTD grid yields

ω

(

t−
√
µrǫr

c
x

)

=
2πc

Nλ∆x

(

q∆t −
√
µrǫr

c
m∆x

)

=
2π

Nλ

(Scq −
√
µrǫrm). (5.13)

Therefore the discretized form of (5.11) is given by

fh[m, q] = cos

(
2π

Nλ

(Scq −
√
µrǫrm)

)

. (5.14)

This equation could now be used as the source in a total-field/scattered-field implementation.

(However, note that when the temporal and spatial indices are zero this source has a value of

unity. If that is the initial “turn-on” value of the source, that may cause artifacts which are unde-

sirable. This will be considered further when dispersion is discussed. It is generally better to ramp

the source up gradually. A simple improvement is offered by using a sine function instead of a

cosine since sine is initially zero.)

5.2.3 The Ricker Wavelet

One of the features of the FDTD technique is that it allows the modeling of a broad range of fre-

quencies using a single simulation. Therefore it is generally advantageous to use pulsed sources—

which can introduce a wide spectrum of frequencies—rather than a harmonic source. The Gaussian

pulse is potentially an acceptable source except that it contains a dc component. In fact, for a Gaus-

sian pulse dc is the frequency with the greatest energy. Generally one would not use the FDTD

technique to model dc fields. Sources with dc components also have the possibility of introducing

artifacts which are not physical (e.g., charges which sit in the grid). Therefore we consider a dif-

ferent pulsed source which has no dc component and which can have its most energetic frequency

set to whatever frequency (or discretization) is desired.

116 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

The Ricker wavelet is equivalent to the second derivative of a Gaussian; it is simple to imple-

ment; it has no dc component; and, its spectral content is fixed by a single parameter. The Ricker

wavelet is often written

fr(t) =
(

1 − 2
{
πfP [t− dr]

}2
)

exp
(

−
{
πfP [t− dr]

}2
)

(5.15)

where fP is the “peak frequency” and dr is the temporal delay. As will be more clear when the

spectral representation of the function is shown below, the peak frequency is the frequency with

the greatest spectral content.

The delay dr can be set to any desired amount, but it is convenient to express it as a multiple of

1/fP , i.e.,

dr = Md
1

fP
(5.16)

where Md is the delay multiple (which need not be an integer). An FDTD simulation is typically

assumed to start at t = 0, but fr(t) is not zero for t < 0—rather fr(t) asymptotically approaches

zero for large and small values of the argument, but never actually reaches zero (other than at

two discrete zero-crossings). However, with a delay of dr = 1/fP (i.e., Md = 1), |fr(t < 0)| is

bound by 0.001, which is small compared to the peak value of unity. Thus, the transient caused by

“switching on” fr(t) at t = 0 is relatively small with this amount of delay. Said another way, since

the magnitude of fr(t) is small for t < 0, these values can be approximated by assuming they are

zero. For situations that may demand a smoother transition (i.e., a smaller initial turn-on value),

the bound on |fr(t < 0)| can be made arbitrarily small by increasing dr. For example, with a delay

multiple Md of 2, |fr(t < 0)| is bound by 10−15.

The Fourier transform of (5.15) is

Fr(ω) = − 2

fP
√
π

(
ω

2πfP

)2

exp

(

−jdrω −
[

ω

2πfP

]2
)

. (5.17)

Note that the delay dr only appears as the imaginary part of the exponent. Thus it affects only the

phase of Fr(ω), not the magnitude.

The functions fr(t) and |Fr(ω)| are shown in Fig. 5.1. For the sake of illustration, fP is arbi-

trarily chosen to be 1 Hz and the delay is 1 s. Different values of fP change the horizontal scale but

they do not change the general shape of the curve. To obtain unit amplitude at the peak frequency,

Fr(ω) has been scaled by fP e
√
π/2.

The peak frequency fP has a corresponding wavelength λP . This wavelength can be expressed

in terms of the spatial step such that λP = NP∆x, where NP does not need to be an integer. Thus

fP =
c

λP
=

c

NP∆x

(5.18)

The Courant number Sc is c∆t/∆x so the spatial step can be expressed as ∆x = c∆t/Sc. Using

this in (5.18) yields

fP =
Sc

NP∆t

. (5.19)

The delay can thus be expressed as

dr = Md
1

fP
= Md

NP∆t

Sc
. (5.20)

5.2. SOURCES 117

0 0.5 1 1.5 2 2.5 3

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 s
pe

ct
ru

m
, |

F
r(
ω

)|
 f P

e √
π

/2

0 1 2

Time [s]

-0.5

0

0.5

1

f r(
t)

Figure 5.1: Normalized spectrum of the Ricker wavelet with fP = 1 Hz. The corresponding

temporal form fr(t) is shown in the inset box where a delay of 1 s has been assumed. For other

values of fP , the horizontal axis in the time domain is scaled by 1/fP . For example, if fP were 1
MHz, the peak would occur at 1 µs rather than at 1 s. In the spectral domain, the horizontal axis is

directly scaled by fP so that if fP were 1 MHz, the peak would occur at 1 MHz.

Letting time t be q∆t and expressing fP and dr as in (5.19) and (5.20), the discrete form of (5.15)

can be written as

fr[q] =

(

1 − 2π2

[
Scq

NP

−Md

]2
)

exp

(

−π2

[
Scq

NP

−Md

]2
)

. (5.21)

Note that the parameters that specify fr[q] are the Courant number Sc, the points per wavelength

at the peak frequency NP , and the delay multiple Md—there is no ∆t in (5.21). This function

appears to be independent of the temporal and spatial steps, but it does depend on their ratio via

the Courant number Sc.
Equation (5.15) gives the Ricker wavelet as a function of only time. However, as was discussed

in Sec. 3.10, when implementing a total-field/scattered-field boundary, it is necessary to parame-

terize an incident field in both time and space. As shown in Sec. 2.16, one can always obtain a

traveling plane-wave solution to the wave equation simply by tweaking the argument of any func-

tion that is twice differentiable. Given the Ricker wavelet fr(t), fr(t ± x/c) is a solution to the

wave equation where c is the speed of propagation. The plus sign corresponds to a wave traveling

in the negative x direction and the negative sign corresponds to a wave traveling in the positive

x direction. (Although only 1D propagation will be considered here, this type of tweaking can

also be done in 2D and 3D.) Therefore, a traveling Ricker wavelet can be constructed by replacing

the argument t in (5.15) with t ± x/c. The value of the function now depends on both time and

118 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

location, i.e., it is a function of two variables:

fr(t± x/c) = fr(x, t),

=

(

1 − 2π2f 2
P

[

t± x

c
− dr

]2
)

exp

(

−π2f 2
P

[

t± x

c
− dr

]2
)

. (5.22)

As before, (5.20) and (5.19) can be used to rewrite dr and fP in terms of the Courant number, the

points per wavelength at the peak frequency, the temporal step, and the delay multiple. Replacing

t with q∆t, x with m∆x, and employing the identity x/c = m∆x/c = m∆t/Sc, yields

fr[m, q] =

(

1 − 2π2

[
Scq ±m

NP

−Md

]2
)

exp

(

−π2

[
Scq ±m

NP

−Md

]2
)

. (5.23)

This gives the value of the Ricker wavelet at temporal index q and spatial index m. Note that when

m is zero (5.23) reduces to (5.21).

5.3 Mapping Frequencies to Discrete Fourier Transforms

Assume the field was recorded during an FDTD simulation and then the recorded field was trans-

formed to the frequency domain via a discrete Fourier transform. The discrete transform will yield

a set of complex numbers that represents the amplitude of discrete spectral components. The ques-

tion naturally arises: what is the correspondence between the indices of the transformed set and

the actual frequency?

In any simulation, the highest frequency fmax that can exist is the inverse of the shortest period

that can exist. In a discrete simulation one must have at least two samples per period. Since the

time samples are ∆t apart, the shortest possible period is 2∆t. Therefore

fmax =
1

2∆t

. (5.24)

The change in frequency from one discrete frequency to the next is the spectral resolution ∆f . The

spectral resolution is dictated by the total number of samples which we will call NT (an integer

value). In general NT would correspond to the number of time steps in an FDTD simulation. The

spectral resolution is given by

∆f =
fmax

NT/2
. (5.25)

The factor of two is a consequence of the fact that there are both positive and negative frequencies.

Thus one can think of the entire spectrum as ranging from −fmax to fmax, i.e., an interval of

2fmax which is then divided by NT . Alternatively, to find ∆f we can divide the maximum positive

frequency by NT/2 as done in (5.25). Plugging (5.24) into (5.25) yields

∆f =
1

NT∆t

. (5.26)

In Sec. 5.2.2 it was shown that a given frequency f could be written c/λ = c/Nλ∆x where Nλ

is the number of points per wavelength (for the free-space wavelength). After transforming to the

5.4. RUNNING DISCRETE FOURIER TRANSFORM (DFT) 119

spectral domain, this frequency would have a corresponding index given by

Nfreq =
f

∆f

=
NT c∆t

Nλ∆x

=
NT

Nλ

c∆t

∆x

=
NT

Nλ

Sc. (5.27)

Thus, the spectral index is dictated by the duration of the simulation NT , the Courant number Sc,
and the points per wavelength Nλ.

Note that in practice different software packages may index things differently. The most typical

practice is to have the first element in the spectral array correspond to dc, the next NT/2 elements

correspond to the positive frequencies, and then the next (NT/2) − 1 elements correspond to the

negative frequencies (which will always be the complex conjugates of the positive frequencies in

any real FDTD simulation). The negative frequencies typically are stored from highest frequency

to lowest (i.e., fastest varying to slowest) so that the last value in the array corresponds to the

negative frequency closest to dc (−∆f). Additionally, note that in (5.27) dc corresponds to an

Nfreq of zero (since Nλ is infinity for dc). However when using Matlab the dc term in the array

obtained using the fft() command has an index of one. The first element in the array has an

index of one—there is no “zero” element in Matlab arrays. So, one must understand and keep in

mind the implementation details for a given software package.

From (5.19), the most energetic frequency in a Ricker wavelet can be written

fP =
Sc

NP∆t

. (5.28)

The spectral index corresponding to this is given by

Nfreq =
fP
∆f

=
NT

NP

Sc. (5.29)

This is identical to (5.27) except the generic value Nλ has been replaced by NP which is the points

per wavelength at the peak frequency.

A discrete Fourier transform yields an array of numbers which inherently has integer indices.

The array elements correspond to discrete frequencies at multiples of ∆f . However, Nfreq given

in (5.27) need not be thought of as an integer value. As an example, assume there were 65536

times steps in a simulation in which the Courant number was 1/
√

2. Further assume that we are

interested in the frequency which corresponds to 30 points per wavelength (Nλ = 30). In this case

Nfreq equals 65536/(30
√

2) = 1544.6983 · · · . There is no reason why one cannot think in terms of

this particular frequency. However, this frequency is not directly available from a discrete Fourier

transform of the temporal data since the transform will only have integer values of Nfreq. For this

simulation an Nfreq of 1544 corresponds 30.0136 · · · points per wavelength while an Nfreq of 1545
corresponds 29.9941 · · · points per wavelength. One can interpolate between these values if the

need is to measure the spectral output right at 30 points per wavelength.

5.4 Running Discrete Fourier Transform (DFT)

If one calculates the complete Fourier transform of the temporal data of length NT points, one

obtains information about the signal at NT distinct frequencies (if one counts both positive and

120 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

negative frequencies). However, much of that spectral information is of little practical use. Be-

cause of the dispersion error inherent in the FDTD method and other numerical artifacts, one does

not trust results which correspond to frequencies with too coarse a discretization. When taking

the complete Fourier transform one often relies upon a separate software package such as Mathe-

matica, Matlab, or perhaps the FFTw routines (a suite of very good C routines to perform discrete

Fourier transforms). However, if one is only interested in obtaining spectral information at a few

frequencies, it is quite simple to implement a discrete Fourier transform (DFT) which can be in-

corporated directly into the FDTD code. The DFT can be performed as the simulation progresses

and hence the temporal data does not have to be recorded. This section outlines the steps involved

in computing such a “running DFT.”

Let us consider a discrete signal g[q] which is, at least in theory, periodic with a period of NT

so that g[q] = g[q+NT] (in practice only one period of the signal is of interest and this corresponds

to the data obtained from an FDTD simulation). The discrete Fourier series representation of this

signal is

g[q] =
∑

k=〈NT 〉
ake

jk(2π/NT)q (5.30)

where k is an integer index and

ak =
1

NT

∑

q=〈NT 〉
g[q]e−jk(2π/NT)q (5.31)

The summations are taken over NT consecutive points—we do not care which ones, but in practice

for our FDTD simulations ak would be calculated with q ranging from 0 to NT − 1 (the term

below the summation symbols in (5.30) and (5.31) indicates the summations are done over NT

consecutive integers, but the actual start and stop points do not matter). The term ak gives the

spectral content at the frequency f = k∆f = k/(NT∆t). Note that ak is obtained simply by

taking the sum of the sequence g[q] weighted by an exponential.

The exponential in (5.31) can be written in terms of real and imaginary parts, i.e.,

ℜ[ak] =
1

NT

NT−1∑

q=0

g[q] cos

(
2πk

NT

q

)

, (5.32)

ℑ[ak] = − 1

NT − 1

NT∑

q=0

g[q] sin

(
2πk

NT

q

)

, (5.33)

where ℜ[] indicates the real part and ℑ[] indicates the imaginary part. In practice, g[q] would be a

particular field component and these calculations would be performed concurrently with the time-

stepping. The value of ℜ[ak] would be initialized to zero. Then, at each time step ℜ[ak] would be

set equal to its previous value plus the current value of g[q] cos(2πkq/NT), i.e., we would perform

a running sum. Once the time-stepping has completed, the stored value of ℜ[ak] would be divided

byNT . A similar procedure is followed for ℑ[ak] where the only difference is that the value used in

the running sum is −g[q] sin(2πkq/NT). Note that the factor 2πk/NT is a constant for a particular

frequency, i.e., for a particular k.

Similar to the example at the end of the previous section, let us consider how we would extract

information at a few specific discretizations. Assume that NT = 8192 and Sc = 1/
√

2. Further

5.5. REAL SIGNALS AND DFT’S 121

assume we want to find the spectral content of a particular field for discretizations of Nλ = 20, 30,

40, and 50 points per wavelength. Plugging these values into (5.27) yields corresponding spectral

indices (i.e., Nfreq or index k in (5.31)) of

Nλ = 20 ⇒ k = 289.631,

Nλ = 30 ⇒ k = 193.087,

Nλ = 40 ⇒ k = 144.815,

Nλ = 50 ⇒ k = 115.852.

The spectral index must be an integer. Therefore, rounding k to the nearest integer and solving for

the corresponding Nλ we find

k = 290 ⇒ Nλ = 19.9745,

k = 193 ⇒ Nλ = 30.0136,

k = 145 ⇒ Nλ = 39.9491,

k = 116 ⇒ Nλ = 49.9364.

Note that these values ofNλ differ slightly from the “desired” values. Assume that we are modeling

an object with some characteristic dimension of twenty cells, i.e., a = 20∆x. Given the initial list

of integer Nλ values, we could say that we were interested in finding the field at frequencies with

corresponding wavelengths of a, 3
2
a, 2a, and 5

2
a. However, using the non-integer Nλ’s that are

listed above, the values we obtain correspond to 0.99877a, 1.500678a, 1.997455a, and 2.496818a.

As long as one is aware of what is actually being calculated, this should not be a problem. Of

course, as mentioned previously, if we want to get closer to the desired values, we can interpolate

between the two spectral indices which bracket the desired value.

5.5 Real Signals and DFT’s

In nearly all FDTD simulations we are concerned with real signals, i.e., g[q] in (5.30) and (5.31) are

real. For a given spectral index k (which can be thought of as a frequency), the spectral coefficient

ak is as given in (5.31). Now, consider an index of NT − k. In this case the value of aNT−k is given

by

aNT−k = =
1

NT

∑

q=〈NT 〉
g[q]e−j(NT−k)(2π/NT)q,

=
1

NT

∑

q=〈NT 〉
g[q]e−j2πejk(2π/NT)q,

=
1

NT

∑

q=〈NT 〉
g[q]ejk(2π/NT)q,

aNT−k = a∗k, (5.34)

where a∗k is the complex conjugate of ak. Thus, for real signals, the calculation of one value of ak
actually provides the value of two coefficients: the one for index k and the one for index NT − k.

122 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Another important thing to note is that, similar to the continuous Fourier transform where there

are positive and negative frequencies, with the discrete Fourier transform there are also pairs of

frequencies that should typically be considered together. Let us assume that index k goes from

0 to NT − 1. The k = 0 frequency is dc. Assuming NT is even, k = NT/2 is the Nyquist

frequency where the spectral basis function exp(jπq) alternates between positive and negative one

at each successive time-step. Both a0 and aNT /2 will be real. All other spectral components can be

complex, but for real signals it will always be true that aNT−k = a∗k.

If we are interested in the amplitude of a spectral component at a frequency of k, we really

need to consider the contribution from both k and NT −k since the oscillation at both these indices

is at the same frequency. Let us assume we are interested in reconstructing just the k′th frequency

of a signal. The spectral components would be given in the time domain by

f [q] = ak′e
jk′(2π/NT)q + aNT−k′e

j(NT−k′)(2π/NT)q

= ak′e
jk′(2π/NT)q + a∗k′e

j2πe−jk
′(2π/NT)q

= 2ℜ[ak′] cos

(
2k′π

NT

q

)

− 2ℑ[ak′] sin

(
2k′π

NT

q

)

= 2|ak′| cos

(
2k′π

NT

q + tan−1

(ℑ[ak′]

ℜ[ak′]

))

(5.35)

Thus, importantly, the amplitude of this harmonic function is given by 2|ak′| (and not merely |ak′|).
Let us explore this further by considering the x component of an electric field at some arbitrary

point that is given by

E[q] = Ex0 cos[ωk′q + θe]âx,

= ℜ[Ex0e
jθeejωk′q]âx,

=
1

2
[Êx0e

jωk′q + Ê∗
x0e

−jωk′q]âx, (5.36)

where

ωk′ = k′
2π

NT

, (5.37)

Êx0 = Ex0e
jθe , (5.38)

and k′ is some arbitrary integer constant. Plugging (5.36) into (5.31) and dropping the unit vector

yields

ak =
1

2NT

∑

q=〈NT 〉
[Êx0e

jωk′q + Ê∗
x0e

−jωk′q]e−jωkq,

=
1

2NT

∑

q=〈NT 〉
[Êx0e

j(ωk′−ωk)q + Ê∗
x0e

−j(ωk′+ωk)q],

=
1

2NT

∑

q=〈NT 〉
[Êx0e

j(k′−k)(2π/NT)q + Ê∗
x0e

−j(k′+k)(2π/NT)q]. (5.39)

5.5. REAL SIGNALS AND DFT’S 123

Without loss of generality, let us now assume q varies between 0 and NT −1 while k and k′ are

restricted to be between 0 and NT − 1. Noting the following relationship for geometric series

N−1∑

q=0

xq = 1 + x+ x2 + · · · + xN−1 =
1 − xN

1 − x
(5.40)

we can express the sum of the first exponential expression in (5.39) as

NT−1∑

q=0

ej(k
′−k)(2π/NT)q =

1 − ej(k
′−k)2π

1 − ej(k′−k)(2π/NT)
. (5.41)

Since k and k′ are integers, the second term in the numerator on the right side, exp(j(k′ − k)2π),
equals 1 for all values of k and k′ and thus this numerator is always zero. Provided k 6= k′,
the denominator is non-zero and we conclude that for k 6= k′ the sum is zero. For k = k′, the

denominator is also zero and hence the expression on the right does not provide a convenient way

to determine the value of the sum. However, when k = k′ the terms being summed are simply

1 for all values of q. Since there are NT terms, the sum is NT . Given this, we can write the

“orthogonality relationship” for the exponentials

NT−1∑

q=0

ej(k
′−k)(2π/NT)q =

{
0 k′ 6= k
NT k′ = k

(5.42)

Using this orthogonality relationship in (5.39), we find that for the harmonic signal given in (5.36),

one of the non-zero spectral coefficients is

ak′ =
1

2
Êx0. (5.43)

Conversely, expressing the (complex) amplitude in terms of the spectral coefficient from the DFT,

we have

Êx0 = 2ak′ . (5.44)

For the sake of completeness, now consider the sum of the other complex exponential term in

(5.39). Here the orthogonality relationship is

NT−1∑

q=0

e−j(k
′+k)(2π/NT)q =

{
0 k 6= NT − k′

NT k = NT − k′
(5.45)

Using this in (5.39) tells us

aNT−k′ =
1

2
Ê∗
x0. (5.46)

Or, expressing the (complex) amplitude in terms of this spectral coefficient from the DFT, we have

Ex0 = 2a∗NT−k′ . (5.47)

Now, let us consider the calculation of the time-averaged Poynting vector Pavg which is given

by

Pavg =
1

2
ℜ
[

Ê × Ĥ
∗
]

(5.48)

124 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

where the carat indicates the phasor representation of the field, i.e.,

Ê = Êx0âx + Êy0ây + Êz0âz,

= 2ae,x,kâx + 2ae,y,kây + 2ae,z,kâz (5.49)

where ae,w,k is the kth spectral coefficient for the w component of the electric field with w ∈
{x, y, z}. Defining things similarly for the magnetic field yields

Ĥ = Ĥx0âx + Ĥy0ây + Ĥz0âz,

= 2ah,x,kâx + 2ah,y,kây + 2ah,z,kâz. (5.50)

The time-averaged Poynting vector can now be written in terms of the spectral coefficients as

Pavg = 2ℜ
[
[
ae,y,ka

∗
h,z,k − ae,z,ka

∗
h,y,k

]
âx +

[
ae,z,ka

∗
h,x,k − ae,x,ka

∗
h,z,k

]
ây +

[
ae,x,ka

∗
h,y,k − ae,y,ka

∗
h,x,k

]
âz

]

. (5.51)

Thus, importantly, when directly using these DFT coefficients in the calculation of the Poynting

vector, instead of the usual “one-half the real part of E cross H,” the correct expression is “two

times the real part of E cross H.”

5.6 Amplitude and Phase from Two Time-Domain Samples

In some applications the FDTD method is used in a quasi-harmonic way, meaning the source is

turned on, or ramped up, and then run continuously in a harmonic way until the simulation is ter-

minated. Although this prevents one from obtaining broad spectrum output, for applications that

have highly inhomogeneous media and where only a single frequency is of interest, the FDTD

method used in a quasi-harmonic way may still be the best numerical tool to analyze the problem.

The FDTD method is often used in this when in the study of the interaction of electromagnetic

fields with the human body. (Tissues in the human body are typically quite dispersive. Imple-

menting dispersive models that accurately describe this dispersion over a broad spectrum can be

quite challenging. When using a quasi-harmonic approach one can simply use constant coefficients

for the material constants, i.e., use the values that pertain at the frequency of interest which also

corresponds to the frequency of the excitation.)

When doing a quasi-harmonic simulation, the simulation terminates when the fields have

reached steady state. Steady state can be defined as the time beyond which temporal changes in

the amplitude and phase of the fields are negligibly small. Thus, one needs to know the amplitude

and phase of the fields at various points. Fortunately the amplitude and phase can be calculated

from only two sample points of the time-domain field.

Let us assume the field at some point (x, y, z) is varying harmonically as

f(x, y, z, t) = A(x, y, z) cos(ωt+ φ(x, y, z)). (5.52)

where A is the amplitude and φ is the phase, both of which are initially unknown. We will drop

the explicit argument of space in the following with the understanding that we are talking about

the field at a fixed point.

5.6. AMPLITUDE AND PHASE FROM TWO TIME-DOMAIN SAMPLES 125

Consider two different samples of the field in time

f(t1) = f1 = A cos(ωt1 + φ), (5.53)

f(t2) = f2 = A cos(ωt2 + φ). (5.54)

We will assume that the samples are taken roughly a quarter of a cycle apart to ensure the samples

are never simultaneously zero. A quarter of a cycle is given by T/4 where T is the period. We can

express this in terms of time steps as

T

4
=

1

4f
=

λ

4c
=
Nλ∆x

4c

∆t

∆t

=
Nλ

4Sc
∆t. (5.55)

Since we only allow an integer number of time-steps between t1 and t2, the temporal separation

between t1 and t2 would be int(Nλ/4Sc) time-steps.

Given these two samples, f1 and f2, we wish to determine A and φ. Using the trig identity for

the cosine of the sum of two values, we can express these fields as

f1 = A(cos(ωt1) cos(φ) − sin(ωt1) sin(φ)), (5.56)

f2 = A(cos(ωt2) cos(φ) − sin(ωt2) sin(φ)). (5.57)

We are assuming that f1 and f2 are known and we know the times at which the samples were taken.

Using (5.56) to solve for A we obtain

A =
f1

cos(ωt1) cos(φ) − sin(ωt1) sin(φ)
. (5.58)

Plugging (5.58) into (5.57) and rearranging terms ultimately leads to

sin(φ)

cos(φ)
= tan(φ) =

f2 cos(ωt1) − f1 cos(ωt2)

f2 sin(ωt1) − f1 sin(ωt2)
. (5.59)

The time at which we take the first sample, t1, is almost always arbitrary. We are free to call that

“time zero,” i.e., t1 = 0. By doing this we have cos(ωt1) = 1 and sin(ωt1) = 0. Using these values

in (5.59) and (5.58) yields

φ = tan−1

(

cos(ωt2) − f2
f1

sin(ωt2)

)

, (5.60)

and

A =
f1

cos(φ)
. (5.61)

Note that these equations assume that f1 6= 0 and, similarly, that φ 6= ±π/2 radians (which is the

same as requiring that cos(φ) 6= 0).

If f1 is identically zero, we can say that φ is ±π/2 (where the sign can be determined by the

other sample point: φ = −π/2 if f2 > 0 and φ = +π/2 if f2 < 0). If f1 is not identically zero, we

can use (5.60) to calculate the phase since the inverse tangent function has no problem with large

arguments. However, if the phase is close to ±π/2, the amplitude as calculated by (5.61) would

126 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

involve the division of two small numbers which is generally not a good way to determine a value.

Rather than doing this, we can use (5.57) to express the amplitude as

A =
f2

cos(ωt2) cos(φ) − sin(ωt2) sin(φ)
. (5.62)

This equation should perform well when the phase is close to ±π/2.

At this point we have the following expressions for the phase and magnitude (the reason for

adding a prime to the phase and magnitude will become evident shortly):

φ′ =







−π/2 if f1 = 0 and f2 > 0
π/2 if f1 = 0 and f2 < 0

tan−1

(
cos(ωt2)− f2

f1

sin(ωt2)

)

otherwise

(5.63)

and

A′ =

{
f1

cos(φ′)
if |f1| ≥ |f2|

f2
cos(ωt2) cos(φ′)−sin(ωt2) sin(φ′)

otherwise
(5.64)

There is one final step in calculating the magnitude and phase. The inverse-tangent function returns

values between −π/2 and π/2. As given by (5.64), the amplitude A′ can be either positive or

negative. Generally we think of phase as varying between −π and π and assume the amplitude is

non-negative. To obtained such values we can obtain the final values for the amplitude and phase

as follows

(A, φ) =







(A′, φ′) if A′ > 0
(−A′, φ′ − π) if A′ < 0 and φ′ ≥ 0
(−A′, φ′ + π) if A′ < 0 and φ′ < 0

(5.65)

Finally, we have assumed that t1 = 0. Correspondingly, that means that t2 can be expressed as

t2 = N2∆t where N2 is the (integer) number of time steps between the samples f1 and f2. Thus

the argument of the trig functions above can be written as

ωt2 = 2πSc
N2

Nλ

(5.66)

where Nλ is the number of points per wavelength of the excitation (and frequency of interest).

5.7 Conductivity

When a material is lossless, the phase constant β for a harmonic plane wave is given by ω
√
µǫ

and the spatial dependence is given by exp(±jβx). When the material has a non-zero electri-

cal conductivity (σ 6= 0), the material is lossy and the wave experiences exponential decay as it

propagates. The spatial dependence is given by exp(±γx) where

γ = jω

√

µǫ
(

1 − j
σ

ωǫ

)

= α+ jβ (5.67)

5.7. CONDUCTIVITY 127

where α (the real part of γ) is the attenuation constant and β (the imaginary part of γ) is the phase

constant. The attenuation and phase constants can be expressed directly in terms of the material

parameters and the frequency:

α =
ω
√
µǫ√
2

([

1 +
(σ

ωǫ

)2
]1/2

− 1

)1/2

, (5.68)

β =
ω
√
µǫ√
2

([

1 +
(σ

ωǫ

)2
]1/2

+ 1

)1/2

. (5.69)

When the conductivity is zero, the attenuation constant is zero and the phase constant reduces to

that of the lossless case, i.e., γ = jβ = jω
√
µǫ.

Assume a wave is propagating in the positive x direction in a material with non-zero electrical

conductivity. The wave amplitude will decay as exp(−αx). The skin depth δskin is the distance

over which the wave decays an amount 1/e. Starting with a reference point of x = 0, the fields

would have decayed an amount 1/e when x is 1/α (so that the exponent is simply −1). Thus, δskin

is given by

δskin =
1

α
. (5.70)

Since the skin depth is merely a distance, it can be expressed in terms of the spatial step, i.e.,

δskin =
1

α
= NL∆x (5.71)

where NL is the number of spatial steps in the skin depth (think of the subscript L as standing for

loss). NL does not need to be an integer.

It is possible to use (5.68) to solve for the conductivity in terms of the attenuation constant.

The resulting expression is

σ = ωǫ

([

1 +
2α2

ω2µǫ

]2

− 1

)1/2

. (5.72)

As shown in Sec. 3.12, when the electrical conductivity is non-zero the electric-field update equa-

tion contains the term σ∆t/2ǫ. Multiplying both side of (5.72) by ∆t/2ǫ yields

σ∆t

2ǫ
=
ω∆t

2

([

1 +
2α2

ω2µǫ

]2

− 1

)1/2

. (5.73)

Assume that one wants to obtain a certain skin depth (or decay rate) at a particular frequency which

is discretized with Nλ points per wavelength, i.e., ω = 2πf = 2πc/Nλ∆x. Thus the term ω∆t/2
can be rewritten

ω∆t

2
=

π

Nλ

c∆t

∆x

=
π

Nλ

Sc. (5.74)

Similarly, using the same expression for ω and using α = 1/NL∆x, one can write

2α2

ω2µǫ
=

2
(

1
NL∆x

)2

(
2πc
Nλ∆x

)2

µ0µrǫ0ǫr

=
N2
λ

2π2N2
Lǫrµr

. (5.75)

128 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Using (5.74) and (5.75) in (5.73) yields

σ∆t

2ǫ
=

π

Nλ

Sc

([

1 +
N2
λ

2π2N2
Lǫrµr

]2

− 1

)1/2

. (5.76)

Note that neither the temporal nor the spatial steps appear in the right-hand side.

As an example how (5.76) can be used, assume that one wants a skin depth of 20∆x for a

wavelength of 40∆x. Thus NL = 20 and Nλ = 40 and the skin depth is one half of the free-space

wavelength. Further assume the Courant number Sc is unity, ǫr = 4, and µr = 1. Plugging these

values into (5.76) yields σ∆t/2ǫ = 0.0253146.

Let us write a program where a TFSF boundary introduces a sine wave with a frequency that

is discretized at 40 points per wavelength. We will only implement electrical loss (the magnetic

conductivity is zero). Snapshots will be taken every time step after the temporal index is within 40
steps from the final time step. The lossy layer starts at node 100. To implement this program, we

can re-use nearly all the code that was described in Sec. 4.9. To implement this, we merely have

to change the gridInit3() function and the functions associated with the source function. The

new gridInit3() function is shown in Program 5.1. The harmonic source function is given by

the code presented in Program 5.2.

Program 5.1 gridinitlossy.c A Grid initialization function for modeling a lossy half

space. Here the conductivity results in a skin depth of 20 cells for an excitation that is discretized

using 40 cells per wavelength.

1 #include "fdtd3.h"
2

3 #define LOSS 0.0253146
4 #define LOSS_LAYER 100
5 #define EPSR 4.0
6

7 void gridInit3(Grid *g) {
8 double imp0 = 377.0;
9 int mm;

10

11 SizeX = 200; // size of domain

12 MaxTime = 450; // duration of simulation

13 Cdtds = 1.0; // Courant number

14

15 /* Allocate memory for arrays. */

16 ALLOC_1D(g->ez, SizeX, double);
17 ALLOC_1D(g->ceze, SizeX, double);
18 ALLOC_1D(g->cezh, SizeX, double);
19 ALLOC_1D(g->hy, SizeX - 1, double);
20 ALLOC_1D(g->chyh, SizeX - 1, double);
21 ALLOC_1D(g->chye, SizeX - 1, double);
22

5.7. CONDUCTIVITY 129

23 /* set electric-field update coefficients */

24 for (mm=0; mm < SizeX; mm++)
25 if (mm < 100) {
26 Ceze(mm) = 1.0;
27 Cezh(mm) = imp0;
28 } else {
29 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);
30 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);
31 }
32

33 /* set magnetic-field update coefficients */

34 for (mm=0; mm < SizeX - 1; mm++) {
35 Chyh(mm) = 1.0;
36 Chye(mm) = 1.0 / imp0;
37 }
38

39 return;
40 }

Program 5.2 ezincharm.c Functions to implement a harmonic source. When initialized, the

user is prompted to enter the number of points per wavelength (in the results to follow it is assumed

the user enter 40).

1 #include "ezinc.h"
2

3 /* global variables -- but private to this file */

4 static double ppw = 0, cdtds;
5

6 /* prompt user for source-function points per wavelength */

7 void ezIncInit(Grid *g){
8

9 cdtds = Cdtds;
10 printf("Enter points per wavelength: ");
11 scanf(" %lf", &ppw);
12

13 return;
14 }
15

16 /* calculate source function at given time and location */

17 double ezInc(double time, double location) {
18 if (ppw <= 0) {
19 fprintf(stderr,
20 "ezInc: must call ezIncInit before ezInc.\n"
21 " Points per wavelength must be positive.\n");

130 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

22 exit(-1);
23 }
24

25 return sin(2.0 * M_PI / ppw * (cdtds * time - location));
26 }

Assuming the user specified that the TFSF boundary should be at node 50 and there should be

40 points per wavelength for the harmonic source, Fig. 5.2(a) shows the resulting maximum of

the magnitude of the electric field as a function of position. For each position, all the snapshots

were inspected and the maximum recorded. Figure 5.2(b) shows a superposition of 41 snapshots

taken one time-step apart. One can see the exponential decay starting at node 100. Between node

50 and node 100 there is a standing-wave pattern caused by the interference of the incident and

reflected waves. From the start of the grid to node 50 the magnitude is flat. This is caused by the

fact that there is only scattered field here—there is nothing to interfere with the reflected wave and

we see the constant amplitude associated with a pure traveling wave. The ratio of the amplitude at

nodes 120 and 100 was found to be 0.3644 whereas the ideal value of 1/e is 0.3679 (thus there is

approximately a one percent error in this simulation).

If one were interested in non-zero magnetic conductivity σm, the loss term which appears in

the magnetic-field update equations is σm∆t/2µ. This term can be handled in exactly the same

way as the term resulting from electric conductivity.

5.8 Example: Obtaining the Transmission Coefficient for a Pla-

nar Interface

In this last section, we demonstrate how the transmission coefficient for a planar dielectric bound-

ary can be obtained from the FDTD method. This serves to highlight many of the points that were

considered in the previous section. We will compare the results to the exact solution. The disparity

between the two provides motivation to determine the dispersion relation in the FDTD (which is

covered in Chap. 7).

The majority of instructional material concerning electromagnetics is expressed in terms of

harmonic, or frequency-domain, signals. A temporal dependence of exp(jωt) is understood and

therefore one only has to consider the spatial variation. In the frequency domain, the fields and

quantities such as the propagation constant and the characteristic impedance are represented by

complex numbers. These complex numbers give the magnitude and phase of the value and will

be functions of frequency. In the following discussion a caret (hat) will be used to indicate a

complex quantity and one should keep in mind that complex numbers are inherently tied to the

frequency domain. Given the frequency-domain representation of the field at a point, the temporal

signal is recovered by multiplying by exp(jωt) and taking the real part. Thus a 1D harmonic field

propagating in the +x direction could be written in any of these equivalent forms

Ez(x, t) = ℜ
[

Ê+
z (x, t)

]

= ℜ
[

Ê+
z (x)ejωt

]

= ℜ
[

Ê+
0 e

−γ̂xejωt
]

= ℜ
[

Ê+
0 e

−(α+jβ)xejωt
]

, (5.77)

where ℜ[] indicates the real part. Ê+
z (x) is the frequency-domain representation of the field (i.e.,

a phasor that is a function of position), γ̂ is the propagation constant which has a real part α and

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 131

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

M
ax

im
u

m
 E

le
ct

ri
c

F
ie

ld
 [

V
/m

]

Space [spatial index]

(a)

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180 200

E
le

ct
ri

c
F

ie
ld

 [
V

/m
]

Space [spatial index]

(b)

Figure 5.2: (a) Maximum electric field magnitude that exists at each point (obtained by obtaining

the maximum value in all the snapshots). The flat line over the first 50 nodes corresponds to the

scattered-field region. The reflected field travels without decay and hence produces the flat line.

The total-field region between nodes 50 and 100 contains a standing-wave pattern caused by the

interference of the incident and scattered fields. There is exponential decay of the fields beyond

node 100 which is where the lossy layer starts. (b) Superposition of 41 individual snapshots of the

field which illustrates the envelope of the field.

132 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

incident
field

reflected
field

transmitted
field

Ez

Ez

Ez

Hy

Hy

Hy

i

i

r

t

r

t

x = 0

m m

Figure 5.3: Planar interface between two media. The interface is at x = 0 and a wave is incident

on the interface from the left. When the impedances of the two media are not matched, a reflected

wave must exist in order to satisfy the boundary conditions.

an imaginary part β, and Ê+
0 is a complex constant that gives the amplitude of the wave (it is

independent of position; the superscript “+” is merely used to emphasize that we are discussing a

wave propagating in the +x direction). Note that if more than a single frequency is present, Ê+
0

does not need to be the same for each frequency.

More generally, Ê+
0 will be a function of frequency (we could write this expressly as Ê+

0 (ω) but

the caret implicitly indicates dependence on frequency). To construct a temporal that consists of a

multiple frequencies, or even a continuous spectrum of frequencies, one must sum the contributions

from each frequency such as is done with a Fourier integral.

In FDTD simulations the time-domain form of the signal is obtained directly. However, one

often is interested in the behavior of the fields as a function of frequency. As has been discussed

in Sec. 5.3, one merely has to take the Fourier transform of a signal to obtain its spectral content.

This transform, by itself, is typically of little use. One has to normalize the signal in some way.

Knowing what came out of a system is rather meaningless unless one knows what went into the

system. Here we will work through a couple of simple examples to illustrate how a broad range of

spectral information can be obtained from FDTD simulations.

5.8.1 Transmission through a Planar Interface (Continuous World)

Consider the planar interface at x = 0 between two media as depicted in Fig. 5.3. We restrict

consideration to electric polarization in the z direction and assume the incident field originates in

the first medium. In the frequency domain, the incident, reflected, and transmitted fields are given

by

Êi
z(x) = Ê+

a1e
−γ̂1x incident, (5.78)

Êr
z(x) = Ê−

a1e
+γ̂1x = Γ̂Ê+

a1e
+γ̂1x reflected, (5.79)

Êt
z(x) = Ê+

a2e
−γ̂2x = T̂ Ê+

a1e
−γ̂2x transmitted, (5.80)

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 133

where Γ̂ is the reflection coefficient, T̂ is the transmission coefficient, and γ̂n is the propagation

constant given by jω
√

µn(1 − jσmn /ωµn)ǫn(1 − jσn/ωǫn) where the n indicates the medium and

σm is the magnetic conductivity. The amplitude of the incident field Ê+
a1 is, in general, complex

and a function of frequency. By definition Γ̂ and T̂ are

Γ̂ =
Êr
z(x)

Êi
z(x)

∣
∣
∣
∣
∣
x=0

=
Ê−
a1

Ê+
a1

, (5.81)

T̂ =
Êt
z(x)

Êi
z(x)

∣
∣
∣
∣
∣
x=0

=
Ê+
a2

Ê+
a1

. (5.82)

The fact that these are defined at x = 0 is important.

The magnetic field is related to the electric field by

Ĥ i
y(x) = − 1

η̂1

Êi
z(x), (5.83)

Ĥr
y(x) =

1

η̂1

Êr
z(x), (5.84)

Ĥ t
y(x) = − 1

η̂2

Êt
z(x), (5.85)

where the characteristic impedance η̂n is given by
√

µn(1 − jσmn /ωµn)/ǫn(1 − jσn/ωǫn). Since

the magnetic and electric fields are purely tangential to the planar interface, the sum of the incident

and reflected field at x = 0 must equal the transmitted field at the same point. Matching the

boundary condition on the electric field yields

1 + Γ̂ = T̂ , (5.86)

while matching the boundary conditions on the magnetic field produces

1

η̂1

(1 − Γ̂) =
1

η̂2

T̂ . (5.87)

Solving these for T̂ yields

T̂ =
2η̂2

η̂1 + η̂2

. (5.88)

Using this in (5.86) the reflection coefficient is found to be

Γ̂ =
η̂2 − η̂1

η̂2 + η̂1

. (5.89)

5.8.2 Measuring the Transmission Coefficient Using FDTD

Now consider two FDTD simulations. The first simulation will be used to record the incident

field. In this simulation the computational domain is homogeneous and the material properties

correspond to that of the first medium. The field is recorded at some observation point x1. Since

nothing is present to interfere with the incident field, the recorded field will be simply the incident

134 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

field at this location, i.e, Ei
z(x1, t). In the second simulation the second medium. We record the

fields at the same observation point but we ensure the point was chosen such that it is located

in the second medium (i.e., the interface is to the left of the observation point). Performing an

FDTD simulation in this case yields the transmitted field Et
z(x1, t). The goal now is to obtain

the transmission coefficient using the temporal recordings of the field obtained from these two

simulations.

Note that in this section we will not distinguish between the way in which field propagate in

the continuous world and the way in which they propagate in the FDTD grid. In Chap. 7 we will

discuss in some detail how these differ.

One cannot use Et
z(x1, t)/E

i
z(x1, t) to obtain the transmission coefficient. The transmission

coefficient is inherently a frequency-domain concept and currently we have time-domain signals.

The division of these temporal signals is essentially meaningless (e.g., the result is undefined when

the incident signal is zero).

The incident and transmitted fields must be converted to the frequency domain using a Fourier

transform. Thus one obtains

Êi
z(x1) = F

(
Ei
z(x1, t)

)
, (5.90)

Êt
z(x1) = F

(
Et
z(x1, t)

)
, (5.91)

where F indicates the Fourier transform. The division of these two functions is meaningful—at

least at all frequencies where Êi
z(x1) is non-zero. (At frequencies where Êi

z(x1) is zero, there is

no incident spectral energy and hence one cannot obtain the transmitted field at those particular

frequencies. In practice it is relatively easy to introduce energy into an FDTD grid that spans a

broad range of frequencies.)

Since the observation point was not specified to be on the boundary, the ratio of these field

fields is
Êt
z(x1)

Êi
z(x1)

=
Ê+
a2e

−γ̂2x1

Ê+
a1e

−γ̂1x1

=
Ê+
a2

Ê+
a1

e(γ̂1−γ̂2)x1 = T̂ e(γ̂1−γ̂2)x1 . (5.92)

Solving this for T̂ yields

T̂ (ω) = e(γ̂2−γ̂1)x1
Êt
z(x1)

Êi
z(x1)

. (5.93)

To demonstrate how the transmission coefficient can be reconstructed from FDTD simulations,

let us consider an example where the first medium is free space and the second one has a relative

permittivity ǫr of 9. In this case γ̂1 = jω
√
µ0ǫ0 = jβ0 and γ̂2 = jω

√
µ09ǫ0 = j3β0. Therefore

(5.93) becomes

T̂ (ω) = ej(3β0−β0)x1
Êt
z(x1)

Êi
z(x1)

= ej2β0x1
Êt
z(x1)

Êi
z(x1)

. (5.94)

The terms in the exponent can be written

2β0x1 = 2
2π

λ
x1 =

4π

Nλ∆x

N1∆x =
4π

Nλ

N1 (5.95)

where N1 is the number of spatial steps between the interface and the observation point at x1 and,

as was discussed in Chap. 5, Nλ is the number of spatial steps per a free-space wavelength of λ.

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 135

The continuous-world transmission coefficient can be calculated quite easily from (5.88) and

this provides a reference solution. Ideally the FDTD simulation would yield this same value for

all frequencies. For this particular example the characteristic impedance of the first medium is

η̂1 = η0 while for the second medium it is η̂2 = η0/3. Thus the transmission coefficients is

T̂exact =
2η0/3

η0 + η0/3
= 1/2. (5.96)

Note that this is a real number and independent of frequency (so the tilde on T is somewhat mis-

leading).

For the FDTD simulations, let us record the field 80 spatial steps away from the interface, i.e.,

N1 = 80, and run the simulation for 8192 time steps, i.e., NT = 8192. The simulation is run at the

Courant limit Sc = 1. The source is a Ricker wavelet discretized so that the peak spectral content

exists at 50 points per wavelength (NP = 50). From Sec. 5.3, recall the relationship between the

points per wavelength Nλ and frequency index Nfreq which is repeated below:

Nfreq =
NT

Nλ

Sc. (5.97)

With a Courant number of unity and 8192 time steps, the points per wavelength for any given

frequency (or spectral index) is given by

Nλ =
8192

Nfreq

. (5.98)

Combining this with (5.93) and (5.95) yields

T̂FDTD = e
j
“

4πN1Nfreq
8192

”

Êt
z(x1)

Êi
z(x1)

. (5.99)

Ideally (5.96) and (5.99) will agree at all frequencies. To see if that is the case, Fig. 5.4 shows

three plots related to the incident and transmitted fields. Figure 5.4(a) shows the first 500 time

steps of the temporal signals recorded at the observation point both with and without the interface

present (i.e., the transmitted and incident fields, respectively). Figure 5.4(b) shows the magnitude

of the Fourier transforms of the incident and transmitted fields for the first 500 frequencies. Since

a Ricker wavelet was used, the spectra are essentially in accordance with the discussion of Sec.

5.2.3. There is no spectral energy at dc and the spectral content exponentially approaches zero at

high frequencies.

Figure 5.4(c) plots the magnitude of the ratio of the transmitted and incident field as a function

of frequency. Ideally this would be 1/2 for all frequencies. Note the rather small vertical scale of

the plot. Near dc the normalized transmitted field differs rather significantly from the ideal value,

but this is in a region where the results should not be trusted because there is not enough incident

energy at these frequencies. At the higher frequencies some oscillations are present. The normal-

ized field generally remains within two percent of the ideal value over this range of frequencies.

Figure 5.5(a) provides the same information as Fig. 5.4(c) except now the result is plotted

versus the discretization Nλ. In this figure dc is off the scale to the right (since in theory dc has an

infinite number of points per wavelength). As the frequency goes up, the wavelength gets shorter

136 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

Temporal Index

 E
z[x

1, t
]V

/m

(a) Temporal Fields

Incident field
Transmitted field

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Frequency Index

| E
z[x

1,ω
]|

(b) Transform vs. Frequency Index

Incident field
Transmitted field

0 50 100 150 200 250 300 350 400 450 500
0.44

0.46

0.48

0.5

0.52

0.54

Frequency Index

| E
t z[x

1,ω
]/

E
i z[x

1,ω
]|

(c) Normalized Transmitted Field vs. Frequency Index

Figure 5.4: (a) Time-domain fields at the observation point both with and the without the interface

present. The field without the interface is the incident field and the one with the interface is the

transmitted field. (b) Magnitude of the Fourier transforms of the incident and transmitted fields.

The transforms are plotted versus the frequency index Nfreq. It can be seen that the fields do not

have much spectral content near dc nor at high frequencies. (c) Magnitude of the transmitted field

normalized by the incident field versus the frequency index. Ideally this would be 1/2 for all

frequencies. Errors are clearly evident when the spectral content of the incident field is small.

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 137

and hence the number of points per wavelength decreases. Thus high frequencies are to the left

and low frequencies are to the right. The highest frequency in this plot corresponds to an Nfreq of

500. In terms of the discretization, this is Nλ = NT/Nfreq = 16.384. This may not seem like a

particularly coarse discretization, but one needs to keep in mind that this is the discretization in

frees pace. Within the dielectric, which here has ǫr = 9, the wavelength is three times smaller

and hence within the dielectric the fields are only discretized at approximately five points per

wavelength (which is considered a very coarse discretization). From this figure it is clear that

the FDTD simulations provide results which are close to the ideal over a fairly broad range of

frequencies.

Figure 5.5(b) shows the real and imaginary part of the reflection coefficient, i.e., T̂FDTD defined

in (5.99), as a function of the discretization. Ideally the imaginary part would be zero and the real

part would be 1/2. As can be seen, although the magnitude of the transmission coefficient is nearly

1/2 over the entire spectrum, the phase differs rather significantly as the discretization decreases

(i.e., the frequency increases).

The Matlab code used to generate Fig. 5.4 is shown in Program 5.3 while the code which gen-

erated Fig. 5.5 is given in Program 5.4. It is assumed the incident field from the FDTD simulation

is recorded to a file named inc-8192 while the transmitted field, i.e., the field when the dielectric

is present, is recorded in die-8192. The code in Program 5.3 has to be run prior to that of 5.4 in

order to load and initialize the data.

Let us now consider the same scenario but let the observation point be four steps away from

the boundary instead of 80, i.e., N1 = 4. Following the previous steps, the incident and transmitted

fields are recorded, their transforms and taken, then divided, and finally the phase is adjusted to

obtain the transmission coefficient. The result for this observation point is shown in Fig. 5.6. The

real and imaginary parts stay closer to the ideal values over a larger range of frequencies than

when the observation point was 80 cells from the boundary. The fact that the quality of the results

are frequency sensitive as well as sensitive to the observation point is a consequence of numeric

dispersion in the FDTD grid, i.e., different frequencies propagate at different speeds. (This is the

subject of Chap. 7.)

Program 5.3 Matlab session used to generate Fig. 5.4.

1 incTime = dlmread(’inc-8192’); % incident field file

2 dieTime = dlmread(’die-8192’); % transmitted field file

3

4 inc = fft(incTime); % take Fourier transforms

5 die = fft(dieTime);
6

7 nSteps = length(incTime); % number of time steps

8 freqMin = 1; % minimun frequency index of interest

9 freqMax = 500; % maximum frequency of interest

10 freqIndex = freqMin:freqMax; % range of frequencies of interest

11 % correct for offset of 1 in matlab’s indexing

12 freqSlice = freqIndex + 1;
13 courantNumber = 1;
14 % points per wavelength for freqencies of interest

138 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Points per Wavelength

| E
t z[x

1,ω
]/

E
i z[x

1,ω
]|

(a) Normalized Transmitted Field vs. Discretization

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Points per Wavelength

T
ra

ns
m

is
si

on
 C

oe
ffi

ci
en

t,
 T

(ω
)

(a) Real and Imaginary Part of Transmission Coefficient

Real part
Imaginary part

Figure 5.5: (a) The magnitude of the normalized transmitted field as a function of the (free space)

discretization Nλ. Ideally this would be 1/2 for all discretizations. (b) Real and imaginary part of

the transmission coefficient transformed back to the interface x = 0 versus discretization. Ideally

the real part would be 1/2 and the imaginary part would be zero for all discretization. For these

plots the observation point was 80 cells from the interface (N1 = 80).

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 139

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Points per Wavelength

T
ra

ns
m

is
si

on
 C

oe
ffi

ci
en

t,
 T

(ω
)

Real part
Imaginary part

Figure 5.6: Real and imaginary part of the transmission coefficient transformed back to the inter-

face x = 0 versus discretization. Ideally the real part would be 1/2 and the imaginary part would

be zero for all discretization. The observation point was four cells from the interface (N1 = 4).

140 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

15 nLambda = nSteps ./ freqIndex * courantNumber;
16 clf
17 subplot(3, 1, 1)
18 hold on
19 plot(incTime(freqSlice), ’-.’);
20 plot(dieTime(freqSlice));
21 legend(’Incident field’, ’Transmitted field’);
22 xlabel(’Temporal Index’);
23 ylabel(’{\it E_z}[{\it x}_1,{\it t}] V/m’);
24 title(’(a) Temporal Fields’);
25

26 subplot(3,1,2)
27 hold on
28 plot(freqIndex, abs(inc(freqSlice)), ’-.’);
29 plot(freqIndex, abs(die(freqSlice)));
30 legend(’Incident field’, ’Transmitted field’);
31 xlabel(’Frequency Index’);
32 ylabel(’|{\it E_z}[{\it x}_1,\omega]|’);
33 title(’(b) Transform vs. Frequency Index’);
34 hold off
35

36 subplot(3, 1, 3)
37 hold on
38 plot(freqIndex, abs(die(freqSlice) ./ inc(freqSlice)));
39 xlabel(’Frequency Index’);
40 ylabel(’|{\it Eˆt_z}[{\it x}_1,\omega]/...
41 {\it Eˆi_z}[{\it x}_1,\omega]|’);
42 title(’(c) Normalized Transmitted Field vs. Frequency Index’);
43 hold off

Program 5.4 Matlab session used to generate Fig. 5.5. The commands shown in Program 5.3

would have to be run prior to these commands in order to read the data, generate the Fourier

transforms, etc.

1 clf
2

3 subplot(2, 1, 1)
4 hold on
5 plot(nLambda, abs(die(freqSlice) ./ inc(freqSlice)));
6 xlabel(’Points per Wavelength’);
7 ylabel(’|{\it Eˆt_z}[{\it x}_1,\omega]/...
8 {\it Eˆi_z}[{\it x}_1,\omega]|’);
9 title(’(a) Normalized Transmitted Field vs. Discretization’);

10 axis([0 300 0 1])

5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 141

11 hold off
12

13 % Array obtained from exp() must be transposed to make arrays

14 % conformal. Simply using ’ (a prime) for trasposition will yield

15 % the conjugate transpose. Instead, use .’ (dot-prime) to get

16 % transposition without conjugation.

17 subplot(2, 1, 2)
18 hold on
19 plot(nLambda, real(exp(j*pi*freqIndex/25.6).’ .* ...
20 die(freqSlice) ./ inc(freqSlice)));
21 plot(nLambda, imag(exp(j*pi*freqIndex/25.6).’ .* ...
22 die(freqSlice) ./ inc(freqSlice)), ’-.’);
23 xlabel(’Points per Wavelength’);
24 ylabel(’Transmission Coefficient, {\it T}(\omega)’);
25 title(’(b) Real and Imaginary Part of Transmission Coefficient’);
26 legend(’Real part’, ’Imaginary part’);
27 axis([0 300 -1 1])
28 grid on
29 hold off

Although we have only considered the transmission coefficient in this example, the reflection

coefficient could be obtained in a similar fashion. We have intentionally considered a very simple

problem in order to be able to compare easily the FDTD solution to the exact solution. How-

ever one should keep in mind that the FDTD method could be used to analyze the reflection or

transmission coefficient for a much more complicated scenario, e.g., one in which the material

properties varied continuously, and perhaps quite erratically (with some discontinuities present),

over the transition from one half-space to the next. Provided a sufficiently small spatial step-size

was used, the FDTD method can solve this problem with essentially no more effort than was used

to model the abrupt interface. However, to obtain the exact solution, one may have to work much

harder.

142 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

Chapter 6

Differential-Equation Based Absorbing

Boundary Conditions

6.1 Introduction

A simple absorbing boundary condition (ABC) was used in Chap. 3 to terminate the grid. It re-

lied upon the fact that the fields were propagating in one dimension and the speed of propagation

was such that the fields moved one spatial step for every time step, i.e., the Courant number was

unity. The node on the boundary was updated using the value of the adjacent interior node from

the previous time step. However, when a dielectric was introduced, and the local speed of propa-

gation was no longer equal to c, this ABC ceased to work properly. One would also find in higher

dimensions that this simple ABC would not work even in free space. This is because the Courant

number cannot be unity in higher dimensions and this ABC does not account for fields which may

be obliquely incident on the edge of the grid. The goal now is to find a more general technique to

terminate the grid.

Although the ABC we will discuss here is not considered state-of-the-art, it provides a rela-

tively simple way to terminate the grid that is more than adequate in many circumstances. Addi-

tionally, some of the mathematical tools we will develop in this chapter can be used in the analysis

of a wide range of FDTD-related topics.

6.2 The Advection Equation

The wave equation that governs the propagation of the electric field in one dimension is

∂2Ez
∂x2

− µǫ
∂2Ez
∂t2

= 0, (6.1)
(
∂2

∂x2
− µǫ

∂2

∂t2

)

Ez = 0. (6.2)

The second form represents the equation in terms of an operator operating onEz where the operator

is enclosed in parentheses. This operator can be factored into the product of two operators and is

Lecture notes by John Schneider. fdtd-abc.tex

143

144 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

equivalent to
(
∂

∂x
−√

µǫ
∂

∂t

)(
∂

∂x
+
√
µǫ
∂

∂t

)

Ez = 0. (6.3)

Note that it does not matter which operator in (6.3) is written first. They commute and will always

ultimately yield (6.1). If either of these operators acting individually on the field yields zero, the

wave equation is automatically satisfied. Thus an Ez that satisfies either of the following equations

will also be a solution to the wave equation:

∂Ez
∂x

−√
µǫ
∂Ez
∂t

= 0, (6.4)

∂Ez
∂x

+
√
µǫ
∂Ez
∂t

= 0. (6.5)

These equations are sometimes called advection equations. Note that a solution to the wave equa-

tion will not simultaneously satisfy both these advection equations (except in trivial cases). It may

satisfy one or the other but not both. In fact, fields may be a solution to the wave equation and yet

satisfy neither of the advection equations.∗

A solution to (6.4) is Ez(t+
√
µǫx), i.e., a wave traveling in the negative x direction. The proof

proceeds along the same lines as the proof given in Sec. 2.16. Equate the argument with ξ so that

ξ = t+
√
µǫx. (6.6)

Derivatives of the argument with respect to time or space are given by

∂ξ

∂t
= 1 and

∂ξ

∂x
=

√
µǫ. (6.7)

Thus,

∂Ez
∂x

=
∂Ez
∂ξ

∂ξ

∂x
=

√
µǫ
∂Ez
∂ξ

, (6.8)

∂Ez
∂t

=
∂Ez
∂ξ

∂ξ

∂t
=
∂Ez
∂ξ

. (6.9)

Plugging the right-hand sides of (6.8) and (6.9) into (6.4) yields zero and the equation is satisfied.

It is worth mentioning that although Ez(t+
√
µǫx) is a solution to (6.4), it is not a solution to (6.5).

6.3 Terminating the Grid

Let us now consider how an advection equation can be used to provide an update equation for a

node at the end of the computational domain. Let the node Eq+1
z [0] be the node on the boundary

for which an update equation is sought. Since interior nodes can be updated before the boundary

node, assume that all the adjacent nodes in space-time are known, i.e., Eq+1
z [1], Eq

z [0], and Eq
z [1]

are known. At the left end of the grid, the fields should only be traveling to the left. Thus the fields

satisfy the advection equation (6.4). The finite-difference approximation of this equation provides

the necessary update equation, but the way to discretize the equation is not entirely obvious. A

6.3. TERMINATING THE GRID 145

position, x

write difference equation
about this point

Ez [0]q+1 Ez [1]q+1

Ez [0]q Ez [1]q

time, t

avg. in
time

avg. in
space

avg. in
time

avg. in
space

Figure 6.1: Space-time in the neighborhood of the left end of the grid. Only the electric fields are

shown. The open circles indicated where an electric field is needed for the advection equation.

Since there are none there, averaging is used to approximate the field at those points.

stable ABC will result if the equation is expanded about the space-time point (∆x/2, (q+1/2)∆t).
This point is shown in Fig. 6.1.

At first it seems like this in an unacceptable point about which to expand the advection equation

since moving forward or backward in time or space a half step does not correspond to the location

of an electric field point. To fix this, the electric field will be averaged in either time or space

to obtain an estimate of the value at the desired location in space-time. For example, to obtain

an approximation of Eq+1
z [1/2], the average (Eq+1

z [0] + Eq+1
z [1])/2, would be used. Similarly, an

approximation of Eq
z [1/2] would be (Eq

z [0] + Eq
z [1])/2. Therefore the temporal derivative would

be approximated with the following finite difference:

√
µǫ
∂Ez
∂t

∣
∣
∣
∣
∆x/2,(q+1/2)∆t

≈ √
µǫ

Eq+1
z [0]+Eq+1

z [1]
2

− Eq
z[0]+E

q
z[1]

2

∆t

(6.10)

Averaging in time is used to obtain the fields at the proper locations for the spatial finite differ-

ence. The resulting finite difference is

∂Ez
∂x

∣
∣
∣
∣
∆x/2,(q+1/2)∆t

≈
Eq+1

z [1]+Eq
z[1]

2
− Eq+1

z [0]+Eq
z[0]

2

∆x

(6.11)

Combining (6.10) and (6.11) yields the finite-difference form of the advection equation

Eq+1
z [1]+Eq

z[1]
2

− Eq+1
z [0]+Eq

z[0]
2

∆x

−√
µǫ

Eq+1
z [0]+Eq+1

z [1]
2

− Eq
z[0]+E

q
z[1]

2

∆t

= 0. (6.12)

∗As an example, consider Ez(x, t) = cos(ωt) sin(βx) where β = ω
√

µǫ.

146 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

Letting
√
µǫ =

√
µrǫr/c and solving for Eq+1

z [0] yields

Eq+1
z [0] = Eq

z [1] +

Sc√
µrǫr

− 1

Sc√
µrǫr

+ 1

(
Eq+1
z [1] − Eq

z [0]
)

(6.13)

where Sc is the Courant number c∆t/∆x. Equation (6.13) provides a first-order absorbing bound-

ary condition that updates the field on the boundary using the values of past and interior fields. This

is known as a first-order ABC because it was constructed from a first-order differential equation.

Note that when Sc/
√
µrǫr is unity, which would be the case of free space and a unit Courant num-

ber, (6.13) reduces to Eq+1
z [0] = Eq

z [1] which is the simple grid-termination technique presented

in Sec. 3.9.

At the other end of the grid, i.e., at the right end of the grid, an equation that is nearly identical

to (6.13) pertains. Equation (6.5) would be expanded in the neighborhood of the last node of the

grid. Although (6.4) and (6.5) differ in the sign of one term, when (6.5) is applied it is “looking”

in the negative x direction. That effectively cancels the sign change. Hence the update equation

for the last node in the grid, which is identified here as Eq+1
z [M], would be

Eq+1
z [M] = Eq

z [M − 1] +

Sc√
µrǫr

− 1

Sc√
µrǫr

+ 1

(
Eq+1
z [M − 1] − Eq

z [M]
)
. (6.14)

Recall that for a lossless medium, the coefficient in the electric-field update equation that mul-

tiplied the magnetic fields was ∆t/ǫ∆x and this could be expressed as Scη0/ǫr. On the other hand,

the coefficient in the magnetic-field update equation that multiplied the electric fields was ∆t/µ∆x

and this could be expressed as Sc/η0µr. Therefore, taking the product of these two coefficients and

taking the square root yields
(

∆t

ǫ∆x

∆t

µ∆x

)1/2

=
Sc√
µrǫr

. (6.15)

Note that this is the term that appears in (6.13) and (6.14). Thus by knowing the update coefficients

that pertain at the ends of the grid, one can calculate the coefficients that appear in the ABC.

6.4 Implementation of a First-Order ABC

Program 3.6 modeled two half spaces: free space and a dielectric. That program was written as

a “monolithic” program with a main() function in which all the calculations were performed.

For that program we did not have a suitable way to terminate the grid within the dielectric. Let us

re-implement that program but use the modular design that was discussed in Chap. 4 and use the

ABC presented in the previous section.

Recalling the modular design used to model a lossy layer that was discussed in Sec. 4.9, we saw

that the ABC was so simple there was no need to do any initialization of the ABC. Nevertheless,

recalling the code shown in Program 4.17, an ABC initialization function was called, but it merely

returned without doing anything. Now that we wish to implement a first-order ABC, the ABC

initialization function actually needs to perform some calculations: it will calculate any of the

constants associated with the ABC.

6.4. IMPLEMENTATION OF A FIRST-ORDER ABC 147

Naturally, the code associated with the various “blocks” in our modular design will need to

change from what was presented in Sec. 4.9. However, the overall framework remains essentially

the same! The arrangement of files associated with our model of halfspace that uses a first-order

ABC is shown in Fig. 6.2. Note that this figure and Fig. 4.3 are nearly the same. They both have

the same layout. All the functions have the same name, but the implementation of some of those

functions have changed. Note that the file names have changed for the files containing the main()
function, the gridInit() function, and the abc() and abcInit() function.

The code associated with the TFSF boundary, the snapshots, the source function, and the update

equations are all unchanged from that which was described in Chap. 4. The grid initialization

function gridInit() constructs a half-space dielectric consistent with Program 3.6. The code

is shown in Program 6.1.

Program 6.1 gridhalfspace.c: Function to initialize the Grid such that there are two half-

spaces: free space to the left and a dielectric with ǫr = 9 to the right.

1 /* Function to initialize the Grid structure. */

2

3 #include "fdtd3.h"
4

5 #define EPSR 9.0
6

7 void gridInit(Grid *g) {
8 double imp0 = 377.0;
9 int mm;

10

11 SizeX = 200; // size of domain

12 MaxTime = 450; // duration of simulation

13 Cdtds = 1.0; // Courant number

14

15 ALLOC_1D(g->ez, SizeX, double);
16 ALLOC_1D(g->ceze, SizeX, double);
17 ALLOC_1D(g->cezh, SizeX, double);
18 ALLOC_1D(g->hy, SizeX - 1, double);
19 ALLOC_1D(g->chyh, SizeX - 1, double);
20 ALLOC_1D(g->chye, SizeX - 1, double);
21

22 /* set electric-field update coefficients */

23 for (mm = 0; mm < SizeX; mm++)
24 if (mm < 100) {
25 Ceze(mm) = 1.0;
26 Cezh(mm) = imp0;
27 } else {
28 Ceze(mm) = 1.0;
29 Cezh(mm) = imp0 / EPSR;
30 }
31

148 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

abcdemo1.c

main()
fdtd3.h

ezinc3.h

ezinc3.c

ezIncInit()
ezInc()

update3.c

updateE3()
updateH3()

gridhalfspace.c

gridInit()

tfsf.c

tfsfInit()
tfsfUpdate()

abcfirst.c

abcInit()
abc()

snapshot.c

snapshotInit()
snapshot()

Figure 6.2: Files associated with the modular implementation of a simulation of a dielectric half

space. Since a first-order ABC is now being used, some of these files differ from those of Fig. 4.3.

Nevertheless, the overall structure of the program is unchanged and all the function names are the

same as before.

6.4. IMPLEMENTATION OF A FIRST-ORDER ABC 149

32 /* set magnetic-field update coefficients */

33 for (mm = 0; mm < SizeX - 1; mm++) {
34 Chyh(mm) = 1.0;
35 Chye(mm) = 1.0 / imp0;
36 }
37

38 return;
39 }

The contents of the file abcdemo1.c are shown in Program 6.2. The difference between

abcdemo1.c and improved3.c, which is given in Program 4.17, is shown in bold. In fact, the

only change in the code is the location of the call of the ABC function abc(). Function abc() is

now called in line 23 which is after the updating of the electric fields. Since the ABC relies on the

“future” value of a neighboring interior electric field, this field must be updated before the node on

the grid boundary can be updated. (The ABC function presented in Program 4.17 could, in fact,

have been written in such a way that it would be called after the electric-field update. After all,

the first-order ABC reduces to the simple ABC when the Courant number is one and the medium

is free space. Nevertheless, the code in Program 4.17 was written to be consistent with the way in

which the simple ABC was originally presented in Chap. 3.)

Program 6.2 abcdemo1.c: One-dimensional FDTD simulation employing a first-order ABC

(although the actual ABC code is contained in the file abcfirst.c which is shown in Program

6.3). The difference between this program and Program 4.17 is shown in bold.

1 /* FDTD simulation where main() is primarily used to call other

2 * functions that perform the necessary operations. */

3

4 #include "fdtd3.h"
5

6 int main()
7 {
8 Grid *g;
9

10 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

11

12 gridInit(g); // initialize the grid

13 abcInit(g); // initialize ABC

14 tfsfInit(g); // initialize TFSF boundary

15 snapshotInit(g); // initialize snapshots

16

17 /* do time stepping */

18 for (Time = 0; Time < MaxTime; Time++) {
19

20 updateH3(g); // update magnetic field

21 tfsfUpdate(g); // correct field on TFSF boundary

150 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

22 updateE3(g); // update electric field

23 abc(g); // apply ABC -- after E-field update

24 snapshot(g); // take a snapshot (if appropriate)

25

26 } /* end of time-stepping */

27

28 return 0;
29 }

The code for abcInit() and abc() is contained in the file abcfirst.c which is shown

in Program 6.3. The initialization function calculates the coefficients that appeared in (6.13) and

(6.14). Recall from (6.15) that these coefficients can be obtained as a function of the electric- and

magnetic-field update-equation coefficients. Since the material at the left and right side of the grid

may be different, there are separate coefficients for the two sides.

Program 6.3 abcfirst.c: Implementation of a first-order absorbing boundary condition.

1 /* Function to implement a first-order ABC. */

2

3 #include "fdtd3.h"
4 #include <math.h>
5

6 static int initDone = 0;
7 static double ezOldLeft = 0.0, ezOldRight = 0.0;
8 static double abcCoefLeft, abcCoefRight;
9

10 /* Initizalization function for first-order ABC. */

11 void abcInit(Grid *g) {
12 double temp;
13

14 initDone = 1;
15

16 /* calculate coefficient on left end of grid */

17 temp = sqrt(Cezh(0) * Chye(0));
18 abcCoefLeft = (temp - 1.0) / (temp + 1.0);
19

20 /* calculate coefficient on right end of grid */

21 temp = sqrt(Cezh(SizeX - 1) * Chye(SizeX - 2));
22 abcCoefRight = (temp - 1.0) / (temp + 1.0);
23

24 return;
25 }
26

27 /* First-order ABC. */

28 void abc(Grid *g) {

6.5. ABC EXPRESSED USING OPERATOR NOTATION 151

29 /* check if abcInit() has been called */

30 if (!initDone) {
31 fprintf(stderr,
32 "abc: abcInit must be called before abc.\n");
33 exit(-1);
34 }
35

36 /* ABC for left side of grid */

37 Ez(0) = ezOldLeft + abcCoefLeft * (Ez(1) - Ez(0));
38 ezOldLeft = Ez(1);
39

40 /* ABC for right side of grid */

41 Ez(SizeX - 1) = ezOldRight +
42 abcCoefRight * (Ez(SizeX - 2) - Ez(SizeX - 1));
43 ezOldRight = Ez(SizeX - 2);
44

45 return;
46 }

As shown in (6.13) and (6.14), for the first-order ABC both the “past” and the future value

of the interior neighbor nearest to the boundary are needed. However, once we update the fields,

past values are overwritten. Thus, the function abc(), which applies the ABC to the two ends

of the grid, locally stores the “past” values of the nodes that are adjacent to the ends of the grid.

For the left side of the grid the past neighbor is stored as ezOldLeft and on the right it is

stored as ezOldRight. These are static global variables that are retained from one invocation of

abc() to the next. Thus, even though the interior fields have been updated, these past values will

still be available. (Once the nodes at the ends of the grid have been updated, ezOldLeft and

ezOldRight are set to the current value of the neighboring nodes as shown in lines 38 and 43.

When abc() is called next, these are indeed the “old” values of these neighbors.)

Figure 6.3 shows the waterfall plot of the snapshots generated by Program 6.2. One can see

that this is the same as Fig. 3.13 prior to the transmitted field encountering the right end of the grid.

After that time there is a reflected field evident in Fig. 3.13 but none is visible here. The ABC has

absorbed the incident field and hence the grid behaves as if it were infinite. In reality this ABC

is only approximate and there is some reflected field at the right boundary. We will return to this

point in Sec. 6.6

6.5 ABC Expressed Using Operator Notation

Let us define an identity operator I , a forward spatial shift operator s1
x, and a backward temporal

shift operator s−1
t . When they act on a node in the grid their affect is given by

IEq+1
z [m] = Eq+1

z [m] , (6.16)

s1
xE

q+1
z [m] = Eq+1

z [m+ 1] , (6.17)

s−1
t Eq+1

z [m] = Eq
z [m] . (6.18)

152 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

Space [spatial index]

T
im

e
[fr

am
e

nu
m

be
r]

Figure 6.3: Waterfall plot of the snapshots generated by Program 6.2. Comparing this to Fig. 3.13

one sees they are the same until the transmitted field encounters the right end of the grid. At that

point 3.13 shows there is a reflected field. However, because of the ABC used here, no reflected

field is visible.

6.5. ABC EXPRESSED USING OPERATOR NOTATION 153

Note that these operators all commute, e.g., s1
xs

−1
t = s−1

t s1
x. Furthermore, the identity operator

time another operator is merely that operator, e.g., Is1
x = s1

x and II = I . Using these operators a

spatial average of a node can be represented by

Eq+1
z [m] + Eq+1

z [m+ 1]

2
=

(
I + s1

x

2

)

Eq+1
z [m] , (6.19)

while a temporal average can be written

Eq+1
z [m] + Eq

z [m]

2
=

(
I + s−1

t

2

)

Eq+1
z [m] . (6.20)

When applying the advection equation, the finite differences, as originally formulated, needed

electric-field nodes where none were present in space-time. Therefore, averaging had to be used

to obtain approximations to the fields at the desired locations. This required averaging in time

followed by a spatial finite difference or averaging in space followed by a temporal finite difference.

Consider the finite difference approximation to the temporal derivative at the point (∆x/2, (q +
1/2)∆t). Starting from the node Eq+1

z [0], this requires adding the node one spatial step to the right

and then dividing by two. Then, going back one step in time, these same two nodes are again

averaged and then subtracted from the previous average. The result is divided by the temporal step

to obtain the temporal finite difference. Expressed in operator notation this is

∂Ez
∂t

∣
∣
∣
∣
∆x/2,(q+1/2)∆t

=

(
I − s−1

t

∆t

)(
I + s1

x

2

)

Eq+1
z [0] (6.21)

=
1

2∆t

(
I − s−1

t + s1
x − s−1

t s1
x

)
Eq+1
z [0] (6.22)

=
1

2∆t

(
Eq+1
z [0] − Eq

z [0] + Eq+1
z [1] − Eq

z [1]
)
. (6.23)

The second term in parentheses in (6.21) accomplishes the averaging while the first term in paren-

theses yields the temporal finite difference. The result, shown in (6.23), is the same as (6.10) (other

than the factor of
√
µǫ).

A similar approach can be used for the spatial finite difference about the same point except now

the averaging is done in time

∂Ez
∂x

∣
∣
∣
∣
∆x/2,(q+1/2)∆t

=

(
s1
x − I

∆x

)(
I + s−1

t

2

)

Eq+1
z [0] (6.24)

=
1

2∆x

(
−I + s1

x − s−1
t + s−1

t s1
x

)
Eq+1
z [0] (6.25)

=
1

2∆x

(
−Eq+1

z [0] + Eq+1
z [1] − Eq

z [0] + Eq
z [1]
)
. (6.26)

This is exactly the same as (6.11).

From (6.21) and (6.24) we see the finite-difference form of the advection equation can be

expressed as

{(
s1
x − I

∆x

)(
I + s−1

t

2

)

−√
µǫ

(
I − s−1

t

∆t

)(
I + s1

x

2

)}

Eq+1
z [0] = 0. (6.27)

154 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

Solving this equation for Eq+1
z [0] yields the update equation (6.13). The term in braces is the

finite-difference equivalent of the first advection operator that appeared on the left-hand side of

(6.3).

6.6 Second-Order ABC

Equation (6.27) provides an update equation which is, in general, approximate. In many circum-

stance the field reflected by a first-order ABC is unacceptably large. A more accurate update

equation can be obtained by applying the advection operator twice. Consider

(
∂

∂x
−√

µǫ
∂

∂t

)(
∂

∂x
−√

µǫ
∂

∂t

)

Ez = 0. (6.28)

Without employing too many mathematical details, assume the field Ez is not a proper solution to

the advection equation. For example, the speed at which it is propagating is not precisely 1/
√
µǫ.

If the field is close to a proper solution, the advection operator operating on the field should yield

a number which is close to zero. However, if the advection operator acts on it again, the result

should be something smaller still—the equation is closer to the truth.

To demonstrate this, consider a wave Ez(t+x/c′) which is traveling in the negative x direction

with a speed c′ 6= c. Following the notation used in Sec. 6.2, the advection operator operating on

this fields yields
(

1

c′
− 1

c

)
∂Ez
∂ξ

. (6.29)

If the advection operator again operates on this, the result is

(
1

c′
− 1

c

)2
∂2Ez
∂ξ2

. (6.30)

If c and c′ are close, (6.30) will be smaller than (6.29) for a broad class of signals. Hence the

repeated application of the advection operator may still only be approximately satisfied, but one

anticipates that it will perform better than the first-order operator alone.

The finite-difference form of the second-order advection operator operating on the nodeEq+1
z [0]

is

[{(
s1
x − I

∆x

)(
I + s−1

t

2

)

−√
µǫ

(
I − s−1

t

∆t

)(
I + s1

x

2

)}

{(
s1
x − I

∆x

)(
I + s−1

t

2

)

−√
µǫ

(
I − s−1

t

∆t

)(
I + s1

x

2

)}]

Eq+1
z [0] = 0. (6.31)

One expands this equation and solves for Eq+1
z [0] to obtain the second-order ABC. The result is

Eq+1
z [0] =

−1

1/S′
c + 2 + S ′

c

{
(1/S′

c − 2 + S ′
c)
[
Eq+1
z [2] + Eq−1

z [0]
]

+ 2(S ′
c − 1/S′

c)
[
Eq
z [0] + Eq

z [2] − Eq+1
z [1] − Eq−1

z [1]
]

− 4(1/S′
c + S ′

c)E
q
z [1]} − Eq−1

z [2] (6.32)

6.6. SECOND-ORDER ABC 155

where S ′
c = ∆t/(

√
µǫ∆x) = Sc/

√
µrǫr. This update equation requires two interior points at time

step q + 1 as well as the boundary node and these same interior points at time steps q and q − 1.

Typically these past values would not be available to use in the update equation and must therefore

be stored in some auxiliary manner such as had to be done in Program 6.3 (there just a single

point on either end of the grid needed to be stored). Two 3 × 2 arrays (one used at either end of

the computational domain) could be used to store the values at the three spatial locations and two

previous time steps required by (6.32). Alternatively, four 1D arrays (two used at either end) of

three points each could also be used to stored the old values. (It may be noted that Eq
z [0] would not

need to be stored since it would be available when updating the boundary node. However, for the

sake of symmetry when writing the loops which store the boundary values, it is simplest to store

this value explicitly.)

When S ′
c is unity, as would be the case for propagation in free space with a Courant number of

unity, (6.32) reduces to

Eq+1
z [0] = 2Eq

z [1] − Eq−1
z [2] . (6.33)

This may appear odd at first but keep in mind that the field is only traveling to the left and it moves

one spatial step per time step, thus Eq
z [1] and Eq−1

z [2] are equal. Therefore this effectively reduces

to Eq+1
z [0] = Eq

z [1] which is again the original grid termination approach used in Sec. 3.9.

As was the case for first-order, for the right side of the grid, the second-order termination is

essentially the same as the one on the left side. One merely uses interior nodes to the left of the

boundary instead of to the right.

To demonstrate the improvement realized by using a second-order ABC instead of a first-order

one, consider the same computational domain as was used in Program 6.2, i.e., a pulse is incident

from free space to a dielectric half-space with a relative permittivity of 9 which begins at node 100.

Figure 6.4 shows the electric field in the computational domain at time-step 550 (MaxTime was

increased from the 450 shown in Program 6.1). Ideally the transmitted pulse would be perfectly

absorbed and the reflected fields should be zero. However, for both the first- and second-order

ABC’s there is a reflected field, but it is significantly smaller in the case of the second-order ABC.

156 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 25 50 75 100 125 150 175 200

E
z

(V
/m

)

Spatial index

First-Order ABC
Second-Order ABC

Figure 6.4: Plot of the fields at time step 550 when the grid is terminated with either a first- or

second-order ABC. This snapshot is taken after the transmitted pulse has encountered the right

edge of the grid. Hence this shows the field reflected by the ABC. Ideally the reflected fields

should be zero.

6.7 Implementation of a Second-Order ABC

In order to implement a second-order ABC, one merely has to modify the functions abcInit()
and abc(). Thus, none of the code depicted in Fig. 6.2 needs to change except for that which

is directly related to the ABC itself. If instead of using the file abcfirst.c, one uses the code

shown in Program 6.4, which we assume is stored in a file called abcsecond.c, then a second-

order ABC will be realized.

Program 6.4 abcsecond.c The abcInit() and abc() functions for implementation of a

second-orde ABC.

1 /* Functions to implement a second-order ABC. */

2

3 #include "fdtd3.h"
4 #include <math.h>
5

6 static int initDone = 0;
7 static double *ezOldLeft1, *ezOldLeft2,
8 *ezOldRight1, *ezOldRight2;
9 static double *abcCoefLeft, *abcCoefRight;

10

11 /* Initizalization function for second-order ABC. */

6.7. IMPLEMENTATION OF A SECOND-ORDER ABC 157

12 void abcInit(Grid *g) {
13 double temp1, temp2;
14

15 initDone = 1;
16

17 ALLOC_1D(ezOldLeft1, 3, double);
18 ALLOC_1D(ezOldLeft2, 3, double);
19 ALLOC_1D(ezOldRight1, 3, double);
20 ALLOC_1D(ezOldRight2, 3, double);
21

22 ALLOC_1D(abcCoefLeft, 3, double);
23 ALLOC_1D(abcCoefRight, 3, double);
24

25 /* calculate coefficients on left end of grid */

26 temp1 = sqrt(Cezh(0) * Chye(0));
27 temp2 = 1.0 / temp1 + 2.0 + temp1;
28 abcCoefLeft[0] = -(1.0 / temp1 - 2.0 + temp1) / temp2;
29 abcCoefLeft[1] = -2.0 * (temp1 - 1.0 / temp1) / temp2;
30 abcCoefLeft[2] = 4.0 * (temp1 + 1.0 / temp1) / temp2;
31

32 /* calculate coefficients on right end of grid */

33 temp1 = sqrt(Cezh(SizeX - 1) * Chye(SizeX - 2));
34 temp2 = 1.0 / temp1 + 2.0 + temp1;
35 abcCoefRight[0] = -(1.0 / temp1 - 2.0 + temp1) / temp2;
36 abcCoefRight[1] = -2.0 * (temp1 - 1.0 / temp1) / temp2;
37 abcCoefRight[2] = 4.0 * (temp1 + 1.0 / temp1) / temp2;
38

39 return;
40 }
41

42 /* Second-order ABC. */

43 void abc(Grid *g) {
44 int mm;
45

46 /* check if abcInit() has been called */

47 if (!initDone) {
48 fprintf(stderr,
49 "abc: abcInit must be called before abc.\n");
50 exit(-1);
51 }
52

53 /* ABC for left side of grid */

54 Ez(0) = abcCoefLeft[0] * (Ez(2) + ezOldLeft2[0])
55 + abcCoefLeft[1] * (ezOldLeft1[0] + ezOldLeft1[2] -
56 Ez(1) - ezOldLeft2[1])
57 + abcCoefLeft[2] * ezOldLeft1[1] - ezOldLeft2[2];
58

158 CHAPTER 6. DIFFERENTIAL-EQUATION BASED ABC’S

59 /* ABC for right side of grid */

60 Ez(SizeX-1) =
61 abcCoefRight[0] * (Ez(SizeX - 3) + ezOldRight2[0])
62 + abcCoefRight[1] * (ezOldRight1[0] + ezOldRight1[2] -
63 Ez(SizeX - 2) - ezOldRight2[1])
64 + abcCoefRight[2] * ezOldRight1[1] - ezOldRight2[2];
65

66 /* update stored fields */

67 for (mm = 0; mm < 3; mm++) {
68 ezOldLeft2[mm] = ezOldLeft1[mm];
69 ezOldLeft1[mm] = Ez(mm);
70

71 ezOldRight2[mm] = ezOldRight1[mm];
72 ezOldRight1[mm] = Ez(SizeX - 1 - mm);
73 }
74

75 return;
76 }

Lines 7–9 declare six static, global pointers, each of which will ultimately serve as an array of

three points. Four of the arrays will store previous values of the electric field (two arrays dedicated

to the left side and two to the right). The remaining two arrays store the coefficients used in the

ABC (one array for the left, one for the right). The memory for these arrays is allocated in the

abcInit() function in lines 17–23. That is followed by calculation of the coefficients on the

two side of the grid.

Within the function abc(), which is called once per time-step, the values of the nodes on the

edge of the grid are updated by the statements starting on lines 54 and 60. Finally, starting on line

67, the stored values are updated. The array exOldLeft1 represents the field one time-step in

the past while exOldLeft2 represents the field two time-steps in the past. Similar naming is

employed on the right.

Chapter 7

Dispersion, Impedance, Reflection, and

Transmission

7.1 Introduction

A dispersion relation gives the relationship between frequency and the speed of propagation. This

relationship is rather simple in the continuous world and is reviewed in the next section. Unfor-

tunately dispersion in the FDTD is not as simple. Nevertheless, it provides a great deal of insight

into the inherent limitations of the FDTD method and hence it is important that one have at least a

basic understanding of it.

The tools developed in the analysis of FDTD dispersion can also be used to determine the

characteristic impedance of the grid. Furthermore, as will be shown, knowing the dispersion rela-

tionship one can obtain exact analytic expressions for the reflection and transmission coefficients

in the FDTD grid.

7.2 Dispersion in the Continuous World

Consider a plane wave propagating in the +x direction in a lossless medium. In time-harmonic

form the temporal and spatial dependence of the wave are given by exp(j[ωt − βx]) where ω is

the frequency and β is the phase constant (wave number). The speed of the wave can be found by

determining how fast a given point on the wave travels. In this context “point” is taken to mean

a point of constant phase. The phase is dictated by ωt − βx. Setting this equal to a constant and

differentiating with respect to time gives

d

dt
(ωt− βx) =

d

dt
(constant), (7.1)

ω − β
dx

dt
= 0. (7.2)

In this expression x is taken to be the position which provides a particular phase. In that sense

it is not an independent variable. The location x which yields the desired phase will change as a

†Lecture notes by John Schneider. fdtd-dispersion.tex

159

160 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

function of time. Therefore, dx/dt is the speed of the wave, or, more properly, the phase speed cp.
Solving (7.2) for the phase speed yields

cp =
dx

dt
=
ω

β
. (7.3)

This is apparently a function of frequency, but for a plane wave the phase constant β is given by

ω
√
µǫ. Thus the phase speed is

cp =
ω

ω
√
µǫ

=
1√

µrµ0ǫrǫ0
=

c√
µrǫr

(7.4)

where c is the speed of light in free space. Note that, in the continuous world for a lossless medium,

the phase speed is independent of frequency and the dispersion relationship is

cp =
ω

β
=

c√
µrǫr

. (7.5)

Since c is a constant, and we are assuming µr and ǫr contact for the given material, all frequencies

propagate at the same speed. Unfortunately this is not the case in the discretized FDTD world—

different frequencies have different phase speeds.∗

7.3 Harmonic Representation of the FDTD Method

The spatial shift-operator sx and the temporal shift-operator st were introduced in Sec. 6.5. Gen-

eralizing these slightly, let a fractional superscript represent a corresponding fractional step. For

example,

s1/2
x Hq

y [m] = Hq
y

[

m+
1

2

]

, (7.6)

s
1/2
t E

q+ 1
2

z [m] = Eq+1
z [m] , (7.7)

s
−1/2
t E

q+ 1
2

z [m] = Eq
z [m] . (7.8)

Using these shift operators the finite-difference version of Ampere’s law (ref. (3.17)) can be written

ǫ

(

s
1/2
t − s

−1/2
t

∆t

)

E
q+ 1

2
z [m] =

(

s
1/2
x − s

−1/2
x

∆x

)

H
q+ 1

2
y [m] . (7.9)

Note that both fields have a temporal index of q+ 1/2. The index can be changed to q if the 1/2 is

accounted for by a temporal shift. Thus Ampere’s law can also be written

s
1/2
t ǫ

(

s
1/2
t − s

−1/2
t

∆t

)

Eq
z [m] = s

1/2
t

(

s
1/2
x − s

−1/2
x

∆x

)

Hq
y [m] . (7.10)

∗Later we will consider FDTD models of materials that are dispersive in the continuous world, i.e., materials for

which ǫ or µ are functions of frequency. In fact, we have already considered dispersive behaviour to some degreee

since lossy materials have phase speeds that are a function of frequency.

7.3. HARMONIC REPRESENTATION OF THE FDTD METHOD 161

Let us define the finite-difference operator ∂̃i as

∂̃i =

(

s
1/2
i − s

−1/2
i

∆i

)

(7.11)

where i is either x or t. Using this notation the Yee version of Ampere’s law can be written

ǫs
1/2
t ∂̃tE

q
z [m] = s

1/2
t ∂̃xH

q
y [m] . (7.12)

Rather than obtaining an update equation from this, the goal is to determine the phase speed

for a given frequency. To that end, we assume there is a single harmonic wave propagating such

that

Êq
z [m] = Ê0e

j(ωq∆t−β̃m∆x), (7.13)

Ĥq
y [m] = Ĥ0e

j(ωq∆t−β̃m∆x), (7.14)

where β̃ is the phase constant which exists in the FDTD grid and Ê0 and Ĥ0 are constant ampli-

tudes. A tilde will be used to indicate quantities in the FDTD grid which will typically (but not

always!) differ from the corresponding value in the continuous world. Thus, the phase constant β̃
in the FDTD grid will differ, in general, from the phase constant β in the continuous world. As

was done in Sec. 5.8 a caret (hat) will be used to indicate a harmonic quantity.

We will assume the frequency ω is the same in both the FDTD grid and the continuous world.

Note that one has complete control over the frequency of the excitation—one merely has to ensure

that the phase of the source changes a particular number of radians every time step. However, one

does not have control over the phase constant, i.e., the spatial frequency. The grid dictates what β̃
will be for a given temporal frequency.

The plane-wave space-time dependence which appears in (7.13) and (7.14) essentially serves

as an eigenfunction for the FDTD governing equations. If the governing equations operate on a

function with this dependence, they will yield another function which has the same space-time

dependence, albeit scaled by some value. To illustrate this, consider the temporal shift-operator

acting on the electric field

s
±1/2
t Êq

z [m] = Ê0e
j[ω(q±1/2)∆t−β̃m∆x]

= e±jω∆t/2Ê0e
j[ωq∆t−β̃m∆x]

= e±jω∆t/2Êq
z [m] . (7.15)

Similarly, the spatial shift-operator acting on the electric field yields

s±1/2
x Êq

z [m] = Ê0e
j[ωq∆t−β̃(m±1/2)∆x]

= e∓jβ̃∆x/2Ê0e
j[ωq∆t−β̃m∆x]

= e∓jβ̃∆x/2Êq
z [m] . (7.16)

Thus, for a plane wave, one can equate the shift operators with multiplication by an appropriate

term:

s
±1/2
t ⇔ e±jω∆t/2, (7.17)

s±1/2
x ⇔ e∓jβ̃∆x/2. (7.18)

162 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Carrying this a step further, for plane-wave propagation the finite-difference operators ∂̃t and ∂̃x
are equivalent to

∂̃t =
e+jω∆t/2 − e−jω∆t/2

∆t

= j
2

∆t

sin

(
ω∆t

2

)

, (7.19)

∂̃x =
e−jβ̃∆x/2 − e+jβ̃∆x/2

∆x

= −j 2

∆x

sin

(

β̃∆x

2

)

. (7.20)

We define Ω and Kx as

Ω =
2

∆t

sin

(
ω∆t

2

)

, (7.21)

Kx =
2

∆x

sin

(

β̃∆x

2

)

. (7.22)

Note that as the discretization goes to zero, Ω approaches ω and Kx approaches β̃ (and, in fact,

β̃ would approach β, the phase constant in the continuous world). Using this notation, taking a

finite-difference with respect to time is equivalent to multiplication by jΩ while a finite difference

with respect to space is equivalent to multiplication by −jKx, i.e.,

∂̃t ⇔ jΩ (7.23)

∂̃x ⇔ −jKx. (7.24)

Using (7.17), (7.23), and (7.24) in Ampere’s law (7.12) yields

jǫΩejω∆t/2Êq
z [m] = −jKxe

jω∆t/2Ĥq
y [m] . (7.25)

The temporal shift exp(jω∆t/2) is common to both side and hence can be canceled. Using the

assumed form of the electric and magnetic fields from (7.13) and (7.14) in (7.25) yields

ǫΩÊ0e
j(ωq∆t−β̃m∆x) = −KxĤ0e

j(ωq∆t−β̃m∆x). (7.26)

Canceling the exponential space-time dependence which is common to both sides produces

ǫΩÊ0 = −KxĤ0. (7.27)

Solving for the ratio of the electric and magnetic field amplitudes yields

Ê0

Ĥ0

= −Kx

ǫΩ
= − ∆t

ǫ∆x

sin
(
β̃∆x

2

)

sin
(
ω∆t

2

) . (7.28)

It appears that (7.28) is the “numeric impedance” since it is the ratio of the electric field to the

magnetic field. In fact it is the numeric impedance, but it is only part of the story. As will be shown,

the impedance in the FDTD method is exact. This fact is far from obvious if one only considers

(7.28). It is also worth considering the corresponding continuous-world quantity β/(ǫω):

β

ǫω
=
ω/cp
ǫω

=
1

ǫcp
=

√
µǫ

ǫ
=

√
µ

ǫ
= η (7.29)

Thus the fact that the grid numeric impedance is given by Kx/(ǫΩ) is consistent with continuous-

world behavior. (The negative sign in (7.28) merely accounts for the orientation of the fields.)

7.4. DISPERSION IN THE FDTD GRID 163

7.4 Dispersion in the FDTD Grid

Another equation relating Ê0 and Ĥ0 can be obtained from Faraday’s law. Expressed in terms of

shift operators, the finite-difference form of Faraday’s law (ref. (3.14)) is

µs1/2
x ∂̃tĤ

q
y [m] = s1/2

x ∂̃xÊ
q
z [m] . (7.30)

As before, assuming plane-wave propagation, the shift operators can be replaced with multiplica-

tive equivalents. The resulting equation is

jµΩe−jω∆x/2Ĥq
y [m] = −jKxe

−jω∆x/2Êq
z [m] . (7.31)

Canceling terms common to both sides and rearranging yields

Ê0

Ĥ0

= −µΩ

Kx

= −µ∆x

∆t

sin
(
ω∆t

2

)

sin
(
β̃∆x

2

) . (7.32)

Equating (7.28) and (7.32) and cross-multiplying gives

µǫΩ2 = K2
x. (7.33)

This is the FDTD dispersion relation. Alternatively, expanding terms and rearranging slightly

yields

sin2

(
ω∆t

2

)

=
∆2
t

ǫµ∆2
x

sin2

(

β̃∆x

2

)

. (7.34)

Taking the square root of both sides of either form of the dispersion relation yields

√
µǫΩ = Kx, (7.35)

or

sin

(
ω∆t

2

)

=
∆t√
ǫµ∆x

sin

(

β̃∆x

2

)

. (7.36)

These equations dictate the relationship between ω and β̃. Contrast this to the dispersion relation

(7.5) which pertains to the continuous world. The two appear quite dissimilar! However, the two

equations do agree in the limit as the discretization gets small.

The first term in the Taylor series expansion of sin(ξ) is ξ. Thus ξ provides a good approxi-

mation of sin(ξ) when ξ is small. Assume that the spatial and temporal steps are small enough so

that the arguments of the sine functions in (7.36) are small. Retaining the first-order term in the

Taylor-series expansion of the sine functions in (7.36) yields

ω∆t

2
=

∆t√
ǫµ∆x

β̃∆x

2
. (7.37)

From this β̃ is seen to be

β̃ = ω
√
µǫ, (7.38)

164 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

which is exactly the same as in the continuous world. However, this is only true when the dis-

cretization goes to zero. For finite discretization, the phase speed in the FDTD grid and in the

continuous world differ.

In the continuous world the phase speed is cp = ω/β. In the FDTD world the same relation

holds, i.e., c̃p = ω/β̃ where the tilde indicates this is the phase speed in the discretized world. In

one dimension, a closed form solution for β̃ is possible (a similar dispersion relation holds in two

and three dimensions, but there a closed-form solution is not possible). Bringing the coefficient to

the other side of (7.36) and taking the arc sine yields

β̃∆x

2
= sin−1

[
∆x

√
µǫ

∆t

sin

(
ω∆t

2

)]

. (7.39)

As was shown in Sec. 5.2.2 (ref. (5.7) and (5.8)), the factor ω∆t/2 is equivalent to πSc/Nλ where

Sc = c∆t/∆x. Thus (7.39) can be written

β̃∆x

2
= sin−1

[√
µrǫr

Sc
sin

(
πSc
Nλ

)]

. (7.40)

Consider the ratio of the phase speed in the grid to the true phase speed

c̃p
cp

=
ω/β̃

ω/β
=
β

β̃
=

β∆x

2

β̃∆x

2

. (7.41)

The phase constant in the continuous world can be written

β = ω
√
µǫ = 2π

c

λ

√
µ0ǫ0µrǫr =

2π

λ

√
µrǫr =

2π

Nλ∆x

√
µrǫr (7.42)

where Nλ is the number of points per free-space wavelength. Using this in the numerator of the

last term on the right-hand side of (7.41) and using (7.40) in the denominator, this ratio becomes

c̃p
cp

=
π
√
µrǫr

Nλ sin−1
[√

µrǫr
Sc

sin
(
πSc

Nλ

)] . (7.43)

This equation is a function of the material parameters (ǫr and µr), the Courant number (Sc), and

the number of points per wavelength (Nλ).

For propagation in free space, i.e., ǫr = µr = 1, when there are 20 points per wavelength and

the Courant number Sc is 1/2, the ratio of the numeric to the exact phase speed is approximately

0.9969 representing an error of 0.31 percent. Thus, for every wavelength of travel, the FDTD wave

will accumulate about 1.12 degrees of phase error (0.0031 × 360). If the discretization is lowered

to 10 points per wavelength, the ratio drops to 0.9873, or about a 1.27 percent error. Note that as

the discretization was halved, the error increased by roughly a factor of four. This is as should be

expected for a second-order method.

Consider the case of propagation in free space and a Courant number of 1. In that case the ratio

collapses to
c̃p
cp

=
π

Nλ sin−1
[

sin
(

π
Nλ

)] = 1. (7.44)

7.4. DISPERSION IN THE FDTD GRID 165

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 14 16 18 20

ph
as

e
sp

ee
d

ra
tio

 (
F

D
T

D
/e

xa
ct

)

Points per wavelength

Ideal

Courant number 0.75
Courant number 0.50
Courant number 0.25

Figure 7.1: Ratio of the FDTD and exact phase speeds (c̃p/cp) versus the discretization. Propa-

gation in free space is assumed. Ideally the ratio would be unity for all discretizations. Courant

numbers of 1/4, 1/2, and 3/4 are considered.

Thus the phase speed in the FDTD grid is exactly what it is in the continuous world! This is true

for all discretization.

Figure 7.1 shows a plot of the ratio of the FDTD and exact phase speeds as a function of

discretization. Three different Courant numbers are used. Ideally the ratio would be unity for all

discretizations. As can be seen, the greater the Courant number, the closer the curve is to ideal.

A large Courant number is thus desirable for two reasons. First, the larger the Courant number,

the greater the temporal step and hence the more quickly a simulation advances (i.e., each update

represents a greater advance in time). Second, the larger the Courant number, the smaller the

dispersion error. In one dimension a Courant number of unity is the greatest possible and, since

there is no dispersion error with this Courant number, the corresponding time step is known as the

magic time-step. Unfortunately a magic time-step does not exist in higher dimensions.

Figure 7.2 shows snapshots of Ricker wavelets propagating to the right that have been dis-

cretized at either 20 or 10 points per wavelength at the most energetic frequency (i.e., the param-

eter NP discussed in Sec. 5.2.3 is either 20 or 10). The wavelets are propagating in grids that

have a Courant number of either 1 or 0.5. In Figs. 7.2(a) and (b) the discretizations are 20 and 10,

respectively, and the Courant number is unity. Since this corresponds to the magic time-step, the

wavelets propagate without distortion. The discretizations in Figs. 7.2(c) and (b) are also 20 and

10, respectively, but now the Courant number is 0.5. The snapshots in (a) and (b) were taken after

100 time-steps while the snapshots in (c) and (d) were taken after 200 time-steps (since the time

step is half as large in (c) and (d) as it is in (a) and (b), this ensures the snapshots are depicting

the field at the same time). In Fig. 7.2(c) the distortion of the Ricker wavelet is visible in that the

166 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c
F

ie
ld

 [
V

/m
]

spatial index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c
F

ie
ld

 [
V

/m
]

spatial index

(a) NP = 20, Sc = 1 (b) NP = 10, Sc = 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c
F

ie
ld

 [
V

/m
]

spatial index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

E
le

ct
ri

c
F

ie
ld

 [
V

/m
]

spatial index

(c) NP = 20, Sc = 0.5 (d) NP = 10, Sc = 0.5

Figure 7.2: Snapshots of Ricker wavelets with different discretization propagating in grids with

different Courant numbers. (a) 20 points per wavelength at the most energetic frequency, i.e.,

NP = 20, Sc = 1, (b) NP = 10, Sc = 1, (c) NP = 20, Sc = 0.5, and (d) NP = 10, Sc = 0.5. The

snapshots were taken after 100 time-steps for (a) and (b), and after 200 time-steps for (c) and (d).

function is no longer symmetric about the peak. In Fig. 7.2(d) the distortion caused by dispersion

is rather extreme and the function is no longer recognizable as a Ricker wavelet. The reason that

Fig. 7.2(d) is so much more distorted than Fig. 7.2(c) is that the spectral energy lies at a coarser

discretization. The more coarsely a harmonic is discretized, the more dispersion it will suffer—the

higher frequencies propagate more slowly than the lower frequencies. This causes the ringing that

is evident on the trailing side of the pulse.

7.5. NUMERIC IMPEDANCE 167

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ µµ µµ

ε2

Hy

Ez

position, x

x=0
transmitted fieldincident + reflected field

Figure 7.3: One-dimensional simulation where the permittivity changes abruptly at x = 0. The in-

terface between the two media coincides with a magnetic-field node. The permeability is assumed

to be constant throughout the computational domain. The figure depicts the nodes and the material

values associated with their updates. The field to the left of the interface is the sum of the incident

and reflected fields. The transmitted field exists to the right of the boundary.

7.5 Numeric Impedance

Let us return to (7.28) which nominally gave the numeric impedance and which is repeated below

Ê0

Ĥ0

= −Kx

ǫΩ
. (7.45)

The dispersion relation (7.35) expressed Kx in terms of Ω. Plugging this into (7.45) yields

Ê0

Ĥ0

= −
√
µǫΩ

ǫΩ
=

√
µ

ǫ
= η. (7.46)

Thus, despite the inherent approximations in the FDTD method, the impedance in the grid is

exactly the same as in the continuous world (this also holds in higher dimensions).

7.6 Analytic FDTD Reflection and Transmission Coefficients

Section 5.8.2 discussed the way in which an FDTD simulation could be used to measure the trans-

mission coefficient associated with a planar interface. In this section, instead of using a simulation

to measure the transmission coefficient, an expression will be derived that gives the transmission

coefficient for the FDTD grid.

Consider a one-dimensional FDTD simulation as shown in Fig. 7.3. The permittivity changes

abruptly at the magnetic field which is assumed to coincide with the interface at x = 0. The

permeability is constant throughout the computational domain.

Assume there is an incident unit-amplitude plane wave propagating in the +x direction. Be-

cause of the change in permittivity, a reflected field will exist to the left of the boundary which

propagates in the −x direction. Additionally, there will be a transmitted field which propagates to

168 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

the right of the boundary. The incident, reflected, and transmitted electrics fields are given by

Êi
z[m, q] = Êi

z[m]ejωq∆t = e−jβ̃1m∆xejωq∆t , (7.47)

Êr
z [m, q] = Êr

z [m]ejωq∆t = ˆ̃Γejβ̃1m∆xejωq∆t , (7.48)

Êt
z[m, q] = Êt

z[m]ejωq∆t = ˆ̃Te−jβ̃2m∆xejωq∆t (7.49)

where
ˆ̃Γ and

ˆ̃T are the FDTD reflection and transmission coefficients, respectively. Note that all

fields will have the common temporal phase factor exp(jωq∆t). Therefore this term will not be

explicitly written (its existence is implicit in the fact that we are doing harmonic analysis).

As shown in the previous section, the characteristic impedance in the FDTD grid is exact.

Therefore the magnetic fields can be related to the electric fields in the same manner as they are in

the continuous world, i.e.,

Ĥ i
y[m] = − 1

η1

e−jβ̃1m∆x , (7.50)

Ĥr
y [m] =

ˆ̃Γ

η1

ejβ̃1m∆x , (7.51)

Ĥ t
y[m] = −

ˆ̃T

η2

e−jβ̃2m∆x . (7.52)

The incident and reflected waves exist to the left of the interface and the transmitted field exists

to the right of the interface. The magnetic field at the interface, i.e., the node at x = 0 is, in a sense,

common to both the left and the right half-spaces. The field at this node can be described equally

well as the sum of the incident and reflected waves or by the transmitted wave. This node enforces

the continuity of the magnetic field across the boundary. Hence, just as in the continuous world,

the fields are governed by the equation

− 1

η1

+
ˆ̃Γ

η1

= −
ˆ̃T

η2

. (7.53)

In the continuous world enforcing the continuity of the tangential electric and magnetic fields

at a boundary yields two equations. These two equations can be used to solve for the reflection

and transmission coefficients as was shown in Sec. 5.8.1. In FDTD, however, there are no electric

field nodes that coincide with the interface (at least not with this geometry). Therefore continuity

of the electric fields cannot be enforced directly nor is there a readily available second equation

with which to solve for the reflection and transmission coefficients.

The necessary second equation is obtained by considering the update equation for the magnetic

field at the interface. This node depends on the electric field to either side of the interface and hence

ties the two half-spaces together. Specifically, the harmonic form of Faraday’s law which governs

the magnetic-field node at the interface can be used to write the following

µs1/2
x ∂̃tĤ

q
y [m]

∣
∣
∣
x=0

= s1/2
x ∂̃xÊz[m]

∣
∣
∣
x=0

, (7.54)

µjΩĤy[m]
∣
∣
∣
x=0

=
1

∆x

(
s1/2
x − s−1/2

x

)
Êq
z [m]

∣
∣
∣
∣
x=0

, (7.55)

jΩĤy[m]
∣
∣
∣
x=0

=
1

µ∆x

(
ˆ̃Te−jβ̃2∆x/2 −

[

ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2
])

. (7.56)

7.6. ANALYTIC FDTD REFLECTION AND TRANSMISSION COEFFICIENTS 169

In the last form of the equation, we have used the fact that the transmitted field is present when

space is shifted a half spatial-step in the +x direction relative to the boundary. Conversely the field

is the sum of the incident and reflected waves when space is shifted a half spatial-step in the −x
direction relative to the boundary.

Equation (7.56) provides the second equation which, when coupled to (7.53), can be used to

solve for the transmission and reflection coefficients. However, what is Ĥy[m]
∣
∣
∣
x=0

? Since this

node is on the interface, the expression for either the transmitted field or the sum of the incident

and reflected field can be used. Using the transmitted field (evaluated at m = 0), the equation

becomes

jΩ

(

−
ˆ̃T

η2

)

=
1

µ∆x

(
ˆ̃Te−jβ̃2∆x/2 −

[

ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2
])

. (7.57)

Regrouping terms yields

ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2 =

(

e−jβ̃2∆x/2 + j
Ωµ∆x

η2

)

ˆ̃T. (7.58)

After multiplying through by −η1 exp(−jβ̃1∆x/2), (7.53) becomes

e−jβ̃1∆x/2 − ˆ̃Γe−jβ̃1∆x/2 =
η1

η2

e−jβ̃1∆x/2 ˆ̃T. (7.59)

Adding the left- and right-hand sides of (7.58) and (7.59) yields an expression that does not depend

on the reflection coefficient. Multiplying this expression through by η2 yields

η2

(

ejβ̃1∆x/2 + e−jβ̃1∆x/2
)

=
(

η1e
−jβ̃1∆x + η2e

−jβ̃2∆x/2 + jΩµ∆x

)
ˆ̃T. (7.60)

Let us consider the third term in parentheses on the right-hand side. Recall from (7.35) that Ω =
Kx/

√
µǫ. Taking the material and propagation constants that pertain in the second medium,† we

can write

jΩµ∆x = j
Kx2√
µǫ2

µ∆x, (7.61)

= j

√
µ

ǫ2

2

∆x

sin

(

β̃2∆x

2

)

∆x, (7.62)

= jη22

(

ejβ̃2∆x/2 − e−jβ̃2∆x/2

j2

)

, (7.63)

= η2

(

ejβ̃2∆x/2 − e−jβ̃2∆x/2
)

, (7.64)

where (7.22) was used to go from (7.61) to (7.62). Plugging this final form into (7.60), employing

Euler’s formula, and solving for the transmission coefficient yields

ˆ̃T =
2η2 cos

(
β̃1∆x

2

)

η1e−jβ̃1∆x/2 + η2ejβ̃2∆x/2
. (7.65)

†As will be more obvious at the end of this derivation, we could instead select the material properties that pertain

in the first medium and still obtain the same final result.

170 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

This can be compared to the exact transmission coefficient which is given in (5.88). At first it

may appear that these are quite dissimilar. However, if the discretization is sufficiently small, the

cosine and complex exponentials are close to unity (and become one as the discretization goes

to zero). Hence the FDTD reflection coefficient reduces to the exact reflection coefficient as the

discretization goes to zero.

The complex exponentials in (7.65) make it appear that the FDTD transmission coefficient is

complex. This would impart a phase shift to the transmitted field that is not present in the contin-

uous world. However, this is not the case—(7.65) can be simplified further. The one-dimensional

dispersion relation (7.36) dictates that

sin

(

β̃∆x

2

)

=

√
ǫµ∆x

∆t

sin

(
ω∆t

2

)

. (7.66)

Now consider the denominator of (7.65)

η1e
−jβ̃1∆x/2 + η2e

jβ̃2∆x/2

= η1

(

cos

(

β̃1∆x

2

)

− j sin

(

β̃1∆x

2

))

+ η2

(

cos

(

β̃2∆x

2

)

+ j sin

(

β̃2∆x

2

))

(7.67)

Using (7.66) to convert the sine terms and employing the definition of impedance, the denominator

can be written

η1 cos

(

β̃1∆x

2

)

+ η2 cos

(

β̃2∆x

2

)

−j
√
µ

ǫ1

√
ǫ1µ∆x

∆t

sin

(
ω∆t

2

)

+ j

√
µ

ǫ2

√
ǫ2µ∆x

∆t

sin

(
ω∆t

2

)

. (7.68)

Upon canceling the ǫ’s, the imaginary parts cancel and hence the denominator is purely real. There-

fore another expression for the FDTD transmission coefficient is

ˆ̃T =
2η2 cos

(
β̃1∆x

2

)

η2 cos
(
β̃2∆x

2

)

+ η1 cos
(
β̃1∆x

2

) . (7.69)

Combining this with (7.53) yields the reflection coefficient

ˆ̃Γ =
η2 cos

(
β̃2∆x

2

)

− η1 cos
(
β̃1∆x

2

)

η2 cos
(
β̃2∆x

2

)

+ η1 cos
(
β̃1∆x

2

) . (7.70)

Because the permeability is assumed to be constant throughout the computational domain, the

reflection and transmission coefficients can be written as

ˆ̃T =
2
√
ǫ1 cos

(
β̃1∆x

2

)

√
ǫ1 cos

(
β̃2∆x

2

)

+
√
ǫ2 cos

(
β̃1∆x

2

) , (7.71)

ˆ̃Γ =

√
ǫ1 cos

(
β̃2∆x

2

)

−√
ǫ2 cos

(
β̃1∆x

2

)

√
ǫ1 cos

(
β̃2∆x

2

)

+
√
ǫ2 cos

(
β̃1∆x

2

) . (7.72)

7.7. REFLECTION FROM A PEC 171

10 15 20 25 30 35 40

Points per wavelength, Nλ

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t,

 Γ

Exact
FDTD

ε1 = 1.0 ε2 = 4.0

Figure 7.4: Reflection coefficient versus discretization for a wave traveling from free space to a

dielectric with a relative permittivity of 4.0 (i.e., ǫr1 = 1.0 and ǫr2 = 4.0). The discretization Nλ

shown on the horizontal axis is that which pertains to free space. (These values should be halved

to give the discretization pertaining to the dielectric.)

Figure 7.4 shows a plot of the FDTD reflection coefficient versus the points per wavelength (in

free space) when a wave is incident from free space to a dielectric with a relative permittivity of

4.0. For these materials the exact reflection coefficient, which is independent of the discretization

and is also shown in the plot, is Γ̂ = (1− 2)/(1 + 2) = −1/3. When the discretization is 10 points

per wavelength the FDTD reflection coefficient is nearly −0.42 which corresponds to an error of

approximately 26 percent. This error is rather large, but one must keep in mind that in the dielectric

the discretization is only five points per wavelength. This coarse discretization affects the quality

of the results throughout the computational domain, not just in the dielectric. Thus, even though

one may ultimately be interested in the fields over only a portion of the computational domain,

nevertheless, one must assure that a proper level of discretization is maintained throughout the

grid.

7.7 Reflection from a PEC

A perfect electric conductor is realized by setting to zero electric field nodes. Let us assume that

one wants to continue to define the interface as shown in Fig. 7.3, i.e., the boundary is assumed

to coincide with a magnetic-field node. The new scenario is shown in Fig. 7.5. The electric-field

172 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Ez

Hy HyHy

Ez=0Ez

ε1 ε1

µ µµHy

Ez

position, x

x=0
incident + reflected field

Figure 7.5: One-dimensional space with a perfect electric conductor realized by setting an electric

field node to zero. No fields propagate beyond the zeroed node. The reference point x = 0 is still

assumed to coincide with a magnetic-field node.

node to the right of the interface is set to zero. We now seek to find the reflection coefficient for

this case. There is no transmitted field so the transmission coefficient
ˆ̃T must be zero. That might

lead one to think, given (7.53), that the reflection coefficient must be −1 as it is in the continuous

world for a PEC boundary. However, that is not correct. Implicit in (7.53) is the assumption that

the magnetic field is continuous across the interface. When a PEC is present, this is no longer the

case. In the continuous world the discontinuity in the magnetic field is accounted for by a surface

current.

When a PEC is present there is only one unknown, the reflection coefficient can be obtained

from a single equation since the transmission coefficient is known a priori. This equation is pro-

vided, as before, by the update equation of the magnetic-field node at the interface. To this end,

(7.56) is used with the transmission coefficient set to zero. Also, instead of using the transmitted

form of the magnetic field at the interface as was done to obtain (7.57), the sum of the incident and

reflected fields is used to obtain:

jΩ

(

− 1

η1

+
ˆ̃Γ

η1

)

=
1

µ∆x

(

0 −
[

ejβ̃1∆x/2 + ˆ̃Γe−jβ̃1∆x/2
])

. (7.73)

Solving for the reflection coefficient yields

ˆ̃ΓPEC =
jΩµ∆x − η1e

jβ̃1∆x/2

jΩµ∆x + η1e−jβ̃1∆x/2
. (7.74)

As was shown in (7.61)–(7.64), the factor jΩµ∆x can be expressed in terms of the impedance and a

difference of complex exponentials. Employing such a conversion allows the reflection coefficient

to be written as
ˆ̃ΓPEC = −e−jβ̃1∆x . (7.75)

Note that the magnitude of the reflection coefficient is unity so that the entire incident field, regard-

less of the frequency, is reflected from the interface.

It appears that the FDTD reflection coefficient for a PEC is introducing a shift that is not present

in the continuous world. However, this is being a bit unfair to the FDTD method. The location

of the PEC boundary really corresponds to the electric-field node that was set to zero. Thus, one

should really think of the PEC boundary existing at x = ∆x/2.

7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 173

Ez

Hy Hy Hy HyHy

EzEzEzEz

ε1 ε1 ε2 ε2

µ µµ µµ

εa

Hy

Ez

position, x

x=0
transmitted fieldincident + reflected field

Figure 7.6: One-dimensional space with a discontinuity in permittivity. The interface in the con-

tinuous world corresponds to an electric-field node in the FDTD grid. The permittivity to the left

of the interface is ǫ1 and is ǫ2 to the right. These values are dictated by those in the continuous

world. The permittivity of the node at the interface is ǫa.

In the continuous world, let us consider a scenario where the origin is located a distance ∆x/2
in front of a PEC boundary. In that case the incident and reflected fields must sum to zero at

x = ∆x/2, i.e.,

E inc(x) + Eref(x)
∣
∣
x=∆x/2

= 0, (7.76)

e−jβ1∆x/2 + Γ̂ejβ1∆x/2 = 0. (7.77)

Thus, in the continuous world the reflection coefficient is

Γ̂ = −e−jβ1∆x . (7.78)

When first comparing (7.75) and (7.78) it may appare that in this case the FDTD reflection coeffi-

cient is exact. However the two differ owing to the fact that phase constants β1 and β̃1 are different

in the two domains.

7.8 Interface Aligned with an Electric-Field Node

There are situations which necessitate that a discontinuity in permittivity be modeled as coinciding

with an electric field node. The permittivity that should be used to either side of the interface is

unambiguous but the permittivity of the node at the interface is open to question since it is neither in

one half-space nor the other. This scenario was mentioned in Sec. 3.11 where it was suggested that

the average permittivity be used for the node at the interface. In this section we wish to provide

a more rigorous analysis to justify this permittivity. For now, let the permittivity of the node at

the interface be ǫa as depicted in Fig. 7.6. The goal now is to find the reflection or transmission

coefficients for this geometry and find the value of ǫa which yields the best agreement with the

continuous-world values.

Although the origin x = 0 has shifted from that which was assumed in the previous section,

the incident, reflected, and transmitted fields are still assumed to be given by (7.47)–(7.49) and

(7.50)–(7.52). The electric-field node at the interface is a member of both half-spaces, i.e., the

field is the same whether considered to be the sum of the incident and reflected field or simply to

be the transmitted field. This yields a boundary condition of

1 + ˆ̃Γ = ˆ̃T. (7.79)

174 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Another equation relating the transmission and reflection coefficients is obtained via the update

equation for the electric-field node at the interface. Ampere’s law evaluated at the interface is

jǫaΩ
ˆ̃T =

1

∆x

(

−
ˆ̃T

η2

e−jβ̃2∆x/2 −
[

− 1

η1

ejβ̃1∆x/2 +
ˆ̃Γ

η1

e−jβ̃1∆x/2

])

. (7.80)

Using (7.79)
ˆ̃T can be replaced with 1 + ˆ̃Γ. Then solving for

ˆ̃Γ yields

ˆ̃Γ =
η2e

jβ̃1∆x/2 − η1e
−jβ̃2∆x/2 − jη1η2ǫaΩ∆x

η2e−jβ̃1∆x/2 + η1e−jβ̃2∆x/2 + jη1η2ǫaΩ∆x

. (7.81)

The term Ω∆x can be written as

Ω∆x =
2

∆t

sin

(
ω∆t

2

)

∆x, (7.82)

= 2c
∆x

c∆t

sin

(
ω∆t

2

)

, (7.83)

= 2c
1

Sc
sin

(
2πc

Nλ∆x

∆t

2

)

, (7.84)

= 2c
1

Sc
sin

(
π

Nλ

Sc

)

. (7.85)

The conversion of ω∆t/2 to πSc/Nλ was discussed in connection with (5.74). Using this last form

of Ω∆x, the third term in the numerator and denominator of (7.81) can be written

jη1η2ǫaΩ∆x = j

√
µ

ǫ0ǫr1

√
µ

ǫ0ǫr2
2cǫ0ǫra

1

Sc
sin

(
π

Nλ

Sc

)

, (7.86)

= j
ǫra√
ǫr1ǫr2

µ

ǫ0
2cǫ0

1

Sc
sin

(
π

Nλ

Sc

)

, (7.87)

= j
ǫra√
ǫr1ǫr2

2µc
1

Sc
sin

(
π

Nλ

Sc

)

, (7.88)

where ǫra is the relative permittivity of the node at the interface.

Assume that the permeability throughout the computational domain is the permeability of free

space so that µc in (7.88) can be written µ0c = µ0/
√
µ0ǫ0 =

√

µ0/ǫ0 = η0. The reflection

coefficient (7.81) can now be written as

ˆ̃Γ =

1√
ǫr2
η0e

jβ̃1∆x/2 − 1√
ǫr1
η0e

−jβ̃2∆x/2 − j ǫra√
ǫr1ǫr2

η0
2
Sc

sin
(

π
Nλ
Sc

)

1√
ǫr2
η0e−jβ̃1∆x/2 + 1√

ǫr1
η0e−jβ̃2∆x/2 + j ǫra√

ǫr1ǫr2
η0

2
Sc

sin
(

π
Nλ
Sc

) . (7.89)

Multiplying numerator and denominator by
√
ǫr1ǫr2/η0 yields

ˆ̃Γ =

√
ǫr1e

jβ̃1∆x/2 −√
ǫr2e

−jβ̃2∆x/2 − jǫra
2
Sc

sin
(

π
Nλ
Sc

)

√
ǫr1e−jβ̃1∆x/2 +

√
ǫr2e−jβ̃2∆x/2 + jǫra

2
Sc

sin
(

π
Nλ
Sc

) . (7.90)

7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 175

As is often the case, the expression for a quantity in the FDTD grid bears little resemblance to

that in the continuous world. However, as the discretization goes to zero (i.e., Nλ goes to infinity),

(7.90) does indeed reduce to the reflection coefficient in the continuous world.

The first two terms in the numerator and denominator of (7.90) depend on the material constants

to either side of the interface while the third term depends on the permittivity at the interface, the

Courant number, and the number of points per wavelength (in continuous-world free space). We

now seek the value of ǫa (or the corresponding relative permittivity ǫra) which minimizes the

difference between the reflection coefficient in the continuous world and the one in the FDTD

world. It is important to note that in general the FDTD reflection coefficient in this case is truly

complex—there will be a phase shift imparted that does not exist in the continuous world.

Before going further with the analysis, let us consider an example with specific parameters and

graphically solve for the optimum value of ǫa. Let ǫr1 = 1, ǫr2 = 4, and the discretization be

10 points per wavelength. In this case the reflection coefficient in the continuous world is −1/3
(independent of frequency). Figure 7.7 shows the FDTD reflection coefficient in the complex plane

for various values of ǫra. The continuous-world result, i.e., the exact result, is a single point on the

negative real axis. As ǫra varies a curve is obtained in the complex plane which is closest to the

exact value when ǫra is 2.5 which is the arithmetic average of 1 and 4. Thus the optimum value for

the interface permittivity is the average of the permittivities to either side. However, these results

are only for a specific discretization and for one set of permittivities. Is the average value the

optimum one for all permittivities and discretizations?

To answer this question, let us return to (7.81) and separate the numerator and denominator

into real and imaginary parts. The result is

ˆ̃Γ =
η2 cos(κ1) − η1 cos(κ2) + j [η2 sin(κ1) + η1 sin(κ2) − η1η2ǫaΩ∆x]

η2 cos(κ1) + η1 cos(κ2) − j [η2 sin(κ1) + η1 sin(κ2) − η1η2ǫaΩ∆x]
(7.91)

where

κ1 = β̃1∆x/2, (7.92)

κ2 = β̃2∆x/2. (7.93)

The continuous-world reflection coefficient is purely real and thus any imaginary part is an error.

Furthermore, the imaginary part goes to zero as the discretization goes to zero. Let us consider just

this imaginary part of the numerator and denominator. The sin(κ) terms can be related to the K
terms which have been used previously—one merely had to multiply (and divide) by 2/∆x. Thus

the imaginary part can be written

η2
2

∆x

sin(κ1)
∆x

2
+η1

2

∆x

sin(κ2)
∆x

2
−η1η2ǫaΩ∆x = η1η2

∆x

2

(
1

η1

K1 +
1

η2

K2 − 2ǫaΩ

)

. (7.94)

From the dispersion relation 7.33 we know that K1 =
√
µǫ1Ω and K2 =

√
µǫ2Ω. This allows the

imaginary part of the numerator and denominator of the reflection coefficient to be written

η1η2
∆x

2
Ω (ǫ1 + ǫ2 − 2ǫa) . (7.95)

Setting ǫa equal to (ǫ1 + ǫ2)/2 will yield zero for this imaginary term. Hence the average permit-

tivity is the optimum value for all permittivities and discretizations! Using the average permittivity

176 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

-0.35 -0.3 -0.25 -0.2 -0.15

Real part of Γ

-0.1

-0.05

0

0.05

0.1

Im
ag

in
ar

y
 p

ar
t

o
f

Γ

Exact

ε
ra

 = 4.0

ε
ra

 = 3.5

ε
ra

 = 3.0

ε
ra

 = 2.5

ε
ra

 = 2.0

ε
ra

 = 1.5

ε
ra

 = 1.0

FDTD

ε
ra

ε
r1

 = 1.0 ε
r2

 = 4.0

Figure 7.7: Curve showing the FDTD reflection coefficient in the complex plane as a function

of ǫra as ǫra varies between the relative permittivity to the left of the interface (ǫra = 1) and the

relative permittivity to the right of the interface (ǫra = 4). The value of ǫra which minimizes the

difference between the FDTD reflection coefficient and the exact value of −1/3 is the average

permittivity, i.e., ǫra = 2.5.

7.8. INTERFACE ALIGNED WITH AN ELECTRIC-FIELD NODE 177

yields reflection and transmission coefficients of

ˆ̃Γ =
η2 cos(κ1) − η1 cos(κ2)

η2 cos(κ1) + η1 cos(κ2)
, (7.96)

ˆ̃T =
2η2 cos(κ1)

η2 cos(κ1) + η1 cos(κ2)
. (7.97)

Note that these equations appear almost identical to those which pertained to the case of an abrupt

interface (i.e., when no averaging is done and the resulting reflection and transmission coefficients

are (7.70) and (7.69)). However, these equations differ in the arguments of the cosine terms and,

in fact, it can be shown that the abrupt boundary is slightly more accurate than the one which is

implemented with the average permittivity at the interface. Nevertheless, when the situation calls

for the interface to coincide with a tangential electric field, the average permittivity is the optimum

one to use.

178 CHAPTER 7. DISPERSION, IMPEDANCE, REFLECTION, AND TRANSMISSION

Chapter 8

Two-Dimensional FDTD Simulations

8.1 Introduction

One of the truly compelling features of the FDTD method is that the simplicity the method enjoys

in one dimension is largely maintained in higher dimensions. The complexity of other numerical

techniques often increases substantially as the number of dimensions increases. With the FDTD

method, if you understand the algorithm in one dimension, you should have no problem under-

standing the basic algorithm in two or three dimensions. Nevertheless, introducing additional

dimensions has to come at the price of some additional complexity.

This chapter provides details concerning the implementation of two-dimensional simulations

with either the magnetic field or the electric field orthogonal to the normal to the plane of propa-

gation, i.e., TMz or TEz polarization, respectively. Multidimensional simulations require that we

think in terms of a multidimensional grid and thus we require multidimensional arrays to store the

fields. Since we are primarily interested in writing programs in C, we begin with a discussion of

multidimensional arrays in the C language.

8.2 Multidimensional Arrays

Whether an array is one-, two-, or three-dimensional, it ultimately is using a block of contiguous

memory where each element has a single address. The distinction between the different dimensions

is primarily a question of how we want to think about, and access, array elements. For higher-

dimensional arrays, we want to specify two, or more, indices to dictate the element of interest.

However, regardless of the number of indices, ultimately a single address dictates which memory

is being accessed. The translation of multiple indices to a single address can be left to the compiler

or that translation is something we can do ourselves.

The code shown in Fragment 8.1 illustrates how one can think and work with what is effec-

tively a two-dimensional array even though the memory allocation is essentially the same as was

used with the one-dimensional array considered in Fragment 4.1. In Fragment 8.1 the user is

prompted to enter the desired number of rows and columns which are stored in num rows and

num columns, respectively. In line 8 the pointer ez is set to the start of a block of memory

†Lecture notes by John Schneider. fdtd-multidimensional.tex

179

180 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

which can hold num rows × num columns doubles. Thus sufficient space is available to store

the desired number of rows and columns, but this pointer is dereferenced with a single index (or

offset).

Fragment 8.1 Fragment of code demonstrating the construction of a two-dimensional array.

1 #define Ez(I, J) ez[(I) * num_columns + (J)]

...

2 double *ez;
3 int num_rows, num_columns, m, n;
4

5 printf("Enter the number of row and columns: ");
6 scanf("%d %d", &num_rows, &num_columns);
7

8 ez = calloc(num_rows * num_columns, sizeof(double));
9

10 for (m=0; m < num_rows; m++)
11 for (n=0; n < num_columns; n++)
12 Ez(m, n) = m * n;

In this code the trick to thinking and working in two dimensions, i.e., working with two indices

instead of one, is the macro which is shown in line 1. This macro tells the preprocessor that

every time the string Ez appears with two arguments—here the first argument is labeled I and the

second argument is labeled J—the compiler should translate that to ez[(I) * num columns
+ (J)]. Note the uppercase E in Ez distinguishes this from the pointer ez. I and J in the

macro are just dummy arguments. They merely specify how the first and second arguments should

be used in the translated code. Thus, if Ez(2, 3) appears in the source code, the macro tells

the preprocessor to translate that to ez[(2) * num columns + (3)]. In this way we have

specified two indices, but the macro translates those indices into an expression which evaluates

to a single number which represents the offset into a one-dimensional array (the array ez). Even

though Ez is technically a macro, we will refer to it as an array. Note that, as seen in line 12, Ez’s

indices are enclosed in parentheses, not brackets.

To illustrate this further, assume the user specified that there are 4 columns (num columns is

4) and 3 rows. When the row number increments by one, that corresponds to moving 4 locations

forward in memory. The following shows the arrangement of the two-dimensional array Ez(m,
n) where m is used for the row index and n is used for the column index.

n=0 n=1 n=2 n=3

m=0 Ez(0, 0) Ez(0, 1) Ez(0, 2) Ez(0, 3)

m=1 Ez(1, 0) Ez(1, 1) Ez(1, 2) Ez(1, 3)

m=2 Ez(2, 0) Ez(2, 1) Ez(2, 2) Ez(2, 3)

The Ez array really corresponds to the one-dimensional ez array. The macro calculates the index

for the ez array based on the arguments (i.e., indices) of the Ez array. The following shows the

same table of values, but in terms of the ez array.

8.2. MULTIDIMENSIONAL ARRAYS 181

n=0 n=1 n=2 n=3

m=0 ez[0] ez[1] ez[2] ez[3]

m=1 ez[4] ez[5] ez[6] ez[7]

m=2 ez[8] ez[9] ez[10] ez[11]

Again, in this example, when the row is incremented by one, the array index is incremented by 4
(which is the number of columns). This is due to the fact that we are storing the elements by rows.

An entire row of values is stored, then the next row, and so on. Each row contains num columns
elements.

Instead of storing things by rows, we could have easily employed “column-centric storage”

where an entire column is stored contiguously. This would be accomplished by using the macro

#define Ez(I, J) ez[(I) + (J) * num_rows]

This would be used instead of line 1 in Fragment 8.1. If this were used, each time the row is

incremented by one the index of ez is incremented by one. If the column is incremented by one,

the index of ez would be incremented by num rows. In this case the elements of the ez array

would correspond to elements of the Ez array as shown below:

n=0 n=1 n=2 n=3

m=0 ez[0] ez[3] ez[6] ez[9]

m=1 ez[1] ez[4] ez[7] ez[10]

m=2 ez[2] ez[5] ez[8] ez[11]

Note that when the row index is incremented by one, the index of ez is also incremented by

one. However, when the column is incremented by one, the index of ez is incremented by 3,

which is the number of rows. This type of column-centric storage is used in FORTRAN. However,

multidimensional arrays in C are generally assumed to be stored in row-order. Thus column-

centric storage will not be considered further and we will use row-centric macros similar to the

one presented in Fragment 8.1.

When an array is stored by rows, it is most efficient to access the array one row at a time—not

one column at a time. Lines 10 through 12 of Fragment 8.1 demonstrate this by using two loops to

set the elements of Ez to the product of the row and column indices. The inner loop is over the row

and the outer loop sets the column. This is more efficient than if these loops were interchanged

(although there is likely to be no difference for small arrays). This is a consequence of the way

memory is stored both on the disk and in the CPU cache.

Memory is accessed in small chunks known as pages. If the CPU needs access to a certain

variable that is not already in the cache, it will generate a page fault (and servicing a page fault

takes more time than if the variable were already in the cache). When the page gets to the cache

it contains more than just the variable the CPU wanted—it contains other variables which were

stored in memory adjacent to the variable of interest (the page may contain many variables). If the

subsequent CPU operations involve a variable that is already in the cache, that operation can be

done very quickly. It is most likely that that variable will be in the cache, and the CPU will not

have to generate a page fault, if that variable is adjacent in memory to the one used in the previous

operation. Thus, assuming row-centric storage, working with arrays row-by-row is the best way to

avoid needless page faults.

182 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

It is important to note that we should not feel constrained to visualize our arrays in terms of the

standard way in which arrays are displayed! Typically two-dimensional arrays are displayed in a

table with the first element in the upper, left-hand corner of the table. The first index gives the row

number and the second index gives the column number. FDTD simulations are modeling a physical

space, not a table of numbers. In two dimensions we will be concerned with spatial dimensions x
and y. It is convention to give the x location as the first argument and the y location as the second

argument, i.e., Ez(x, y). It is also often the case that it is convenient to think of the lower left-hand

corner of some finite rectangular region of space as the origin. It is perfectly acceptable to use

the array mechanics which have been discussed so far but to imagine them corresponding to an

arrangement in space which corresponds to our usual notion of variation in the x and y directions.

So, for example, in the case of a 3 by 4 array, one can visualize the nodes as being arranged in the

following way:

n=3 Ez(0,3) Ez(1,3) Ez(2,3) n=3 ez[3] ez[7] ez[11]

n=2 Ez(0,2) Ez(1,2) Ez(2,2) n=2 ez[2] ez[6] ez[10]

n=1 Ez(0,1) Ez(1,1) Ez(2,1) ⇐⇒ n=1 ez[1] ez[5] ez[9]

n=0 Ez(0,0) Ez(1,0) Ez(2,0) n=0 ez[0] ez[4] ez[8]

m=0 m=1 m=2 m=0 m=1 m=2

Nothing has changed in terms of the implementation of the macro to realize this two-dimensional

array—the only difference is the way the elements have been displayed. The depiction here is

natural when thinking in terms of variations in x and y, where the first index corresponds to x and

the second index corresponds to y. The previous depiction was natural to the way most people

discuss tables of data. Regardless of how we think of the arrays, it is still true that the second index

is the one that should vary most rapidly in the case of nested loops (i.e., one should strive to have

consecutive operations access consecutive elements in memory).

As mentioned in Sec. 4.2, it is always best to check that an allocation of memory was success-

ful. If calloc() is unable to allocated the requested memory, it will return NULL. After every

allocation we could add code to check that the request was successful. However, as we did in

one-dimension, a better approach is again offered with the use of macros. Fragment 8.2 shows a

macro that can be used to allocate memory for a two-dimensional array.

Fragment 8.2 Macro for allocating memory for a two-dimensional array.

1 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \
2 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_2D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n");\
7 exit(-1); \
8 }

The macro ALLOC 2D() is similar to ALLOC 1D(), which was presented in Fragment 4.2, except

it takes four arguments instead of three. The first argument is a pointer, the second is the number

8.3. TWO DIMENSIONS: TMZ POLARIZATION 183

of rows, the third is the number of columns, and the fourth is the data type. As an example of how

this macro could be used, line 8 of Fragment 8.1 could be replaced with

ALLOC_2D(ez, num_rows, num_columns, double);

8.3 Two Dimensions: TMz Polarization

The one-dimensional problems considered thus far assumed a non-zero z component of the electric

field and variation only in the x direction. This required the existence of a non-zero y component

of the magnetic field. Here the field is assumed to vary in both the x and y directions, but not the

z direction. From the outset we will include the possibility of a magnetic conductivity σm. With

these assumptions Faraday’s law becomes

−σmH − µ
∂H

∂t
= ∇× E =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

∂
∂y

0

0 0 Ez

∣
∣
∣
∣
∣
∣

= âx
∂Ez
∂y

− ây
∂Ez
∂x

. (8.1)

Since the right-hand side only has non-zero components in the x and y directions, the time-varying

components of the magnetic field can only have non-zero x and y components (we are not con-

cerned with static fields nor a rather pathological case where the magnetic current σmH cancels

the time-varying field ∂H/∂t). The magnetic field is transverse to the z direction and hence this is

designated the TMz case. Ampere’s law becomes

σE + ǫ
∂E

∂t
= ∇× H =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

∂
∂y

0

Hx Hy 0

∣
∣
∣
∣
∣
∣

= âz

(
∂Hy

∂x
− ∂Hx

∂y

)

. (8.2)

The scalar equations obtained from (8.1) and (8.2) are

−σmHx − µ
∂Hx

∂t
=

∂Ez
∂y

, (8.3)

σmHy + µ
∂Hy

∂t
=

∂Ez
∂x

, (8.4)

σEz + ǫ
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
. (8.5)

Note that, ignoring the conduction terms for a moment, the temporal derivative of the magnetic

field is related to the spatial derivative of the electric field and vice versa. The only difference

from the one-dimensional case is the additional field component Hx and the derivatives in the y
direction.

Space-time is now discretized so that (8.3)–(8.5) can be expressed in terms of finite-differences.

From these difference equations the future fields can be expressed in terms of past fields. Following

the notation used in Sec. 3.3, the following notation will be used:

Hx(x, y, t) = Hx(m∆x, n∆y, q∆t) = Hq
x[m,n] , (8.6)

Hy(x, y, t) = Hy(m∆x, n∆y, q∆t) = Hq
y [m,n] , (8.7)

Ez(x, y, t) = Ez(m∆x, n∆y, q∆t) = Eq
z [m,n] . (8.8)

184 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

As before, the index m corresponds to the spatial step in the x direction while the index q corre-

sponds to the temporal step. Additionally the index n represents the spatial step in the y direction.

The spatial step sizes in the x and y directions are ∆x and ∆y, respectively (these need not be

equal).

In order to obtain the necessary update-equations, each of the field components must be stag-

gered in space. However, it is not necessary to stagger all the field components in time. The electric

field must be offset from the magnetic field, but the magnetic field components do not need to be

staggered relative to each other—all the magnetic field components can exist at the same time. A

suitable spatial staggering of the electric and magnetic field components is shown in Fig. 8.1.

When we say the dimensions of a TMz grid is M × N , that corresponds to the dimensions

of the Ez array. We will ensure the grid is terminated such that there are electric-field nodes on

the edge of the grid. Thus, the Hx array would by M × (N − 1) while the Hy array would be

(M − 1) ×N .

In the arrangement of nodes shown in Fig. 8.1 we will assume the electric field nodes fall at

integer spatial steps and the magnetic field nodes are offset a half spatial step in either the x or y
direction. As with one dimension, the electric field is assumed to exist at integer multiples of the

temporal step while both magnetic fields components are offset a half time-step from the electric

fields. With this arrangement in mind, the finite difference approximation of (8.3) expanded about

the space-time point (m∆x, (n+ 1/2)∆y, q∆t) is

−σm
H
q+ 1

2
x

[
m,n+ 1

2

]
+H

q− 1
2

x

[
m,n+ 1

2

]

2
− µ

H
q+ 1

2
x

[
m,n+ 1

2

]
−H

q− 1
2

x

[
m,n+ 1

2

]

∆t

=

Eq
z [m,n+ 1] − Eq

z [m,n]

∆y

. (8.9)

This can be solved for the future valueH
q+ 1

2
x

[
m,n+ 1

2

]
in terms of the “past” values. The resulting

update equation is

H
q+ 1

2
x

[

m,n+
1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
x

[

m,n+
1

2

]

− 1

1 + σm∆t

2µ

∆t

µ∆y

(Eq
z [m,n+ 1] − Eq

z [m,n]) .

(8.10)

As was the case in one dimension, the material parameters µ and σm are those which pertain at the

given evaluation point.

The update equation for the y component of the magnetic field is obtained by the finite-

difference approximation of (8.4) expanded about the space-time point ((m+ 1/2)∆x, n∆y, q∆t).
The resulting equation is

H
q+ 1

2
y

[

m+
1

2
, n

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[

m+
1

2
, n

]

+
1

1 + σm∆t

2µ

∆t

µ∆x

(Eq
z [m+ 1, n] − Eq

z [m,n]) .

(8.11)

Again, the material parameters µ and σm are those which pertain at the given evaluation point.

Note that Hy nodes are offset in space from Hx nodes. Hence the µ and σm appearing in (8.10)

and (8.11) are not necessarily the same even when m and n are the same.

8.3. TWO DIMENSIONS: TMZ POLARIZATION 185

same
indices

same
indices

same
indices

same
indices

same
indices

∆x

∆y

Ez(m,n)

y

xz

Hy(m,n)

Hx(m,n)

Ez(m,n)
Hy(m+1/2,n)

Hx(m,n+1/2)

y

xz

Figure 8.1: Spatial arrangement of electric- and magnetic-field nodes for TMz polarization. The

electric-field nodes are shown as circles and the magnetic-field nodes as squares with a line that

indicates the orientation of the field component. The somewhat triangularly shaped dashed lines

indicate groupings of nodes that have the same array indices. For example, in the lower left corner

of the grid all the nodes would have indices in a computer program of (m = 0, n = 0). In this

case the spatial offset of the fields is implicitly understood. This grouping is repeated throughout

the grid. However, groups at the top of the grid lack an Hx node and groups at the right edge lack

an Hy node. The diagram at the bottom left of the figure indicates nodes with their offsets given

explicitly in the spatial arguments whereas the diagram at the bottom right indicates how the same

nodes would be specified in a computer program where the offsets are understood implicitly.

186 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

The electric-field update equation is obtained via the finite-difference approximation of (8.5)

expanded about (m∆x, n∆y, (q + 1/2)∆t):

Eq+1
z [m,n] =

1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
z [m,n] +

1

1 + σ∆t

2ǫ

(
∆t

ǫ∆x

{

H
q+ 1

2
y

[

m+
1

2
, n

]

−H
q+ 1

2
y

[

m− 1

2
, n

]}

− ∆t

ǫ∆y

{

H
q+ 1

2
x

[

m,n+
1

2

]

−H
q+ 1

2
x

[

m,n− 1

2

]})

. (8.12)

A uniform grid is one in which the spatial step size is the same in all directions. Assuming a

uniform grid such that ∆x = ∆y = δ, we define the following quantities

Chxh(m,n+ 1/2) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y

, (8.13)

Chxe(m,n+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y

, (8.14)

Chyh(m+ 1/2, n) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y

, (8.15)

Chye(m+ 1/2, n) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y

, (8.16)

Ceze(m,n) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
m∆x,n∆y

, (8.17)

Cezh(m,n) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
m∆x,n∆y

. (8.18)

These quantities appear in the update equations and employ the following naming convention: the

first letter identifies the quantity as a constant which does not vary in time (one can also think of

this C as representing the word coefficient), the next two letters indicate the field being updated,

and the last letter indicates the type of field this quantity multiplies. For example, Chxh appears in

the update equation for Hx and it multiples the previous value of the magnetic field. On the other

hand, Chxe , which also appears in the update equation for Hx, multiplies the electric fields.

To translate these update equations into a form that is suitable for use in a computer program,

we follow the approach that was used in one dimension: explicit references to the time step are

dropped and the spatial offsets are understood. As illustrated in Fig. 8.1, an Hy node is assumed

to be a half spatial step further in the x direction than the corresponding Ez node with the same

indices. Similarly, anHx node is assumed to be a half spatial step further in the y direction than the

corresponding Ez node with the same indices. Thus, in C, the update equations could be written

Hx(m, n) = Chxh(m, n) * Hx(m, n) -
Chxe(m, n) * (Ez(m, n + 1) - Ez(m, n));

Hy(m, n) = Chyh(m, n) * Hy(m, n) +
Chye(m, n) * (Ez(m + 1, n) - Ez(m, n));

8.4. TMZ EXAMPLE 187

Ez(m, n) = Ceze(m, n) * Ez(m, n) +
Cezh(m, n) * ((Hy(m, n) - Hy(m - 1, n)) - (Hx(m, n) - Hx(m, n - 1)));

The reason that the “arrays” appearing in these equations start with an uppercase letter and use

parentheses (instead of two pairs of brackets that would be used with traditional two-dimensional

arrays in C) is because these terms are actually macros consistent with the usage described in

Sec. 8.2. In order for these equations to be useful, they have to be contained within loops that

cycle over the spatial indices and these loops must themselves be contained within a time-stepping

loop. Additional considerations are initialization of the arrays, the introduction of energy, and

termination of the grid. This issues are covered in the following sections.

8.4 TMz Example

To illustrate the simplicity of the FDTD method in two dimensions, let us consider a simulation of a

TMz grid which is 101 nodes by 81 nodes and filled with free space. The grid will be terminated on

electric field nodes which will be left at zero (so that the simulation is effectively of a rectangular

resonator with PEC walls). A Ricker wavelet with 20 points per wavelength at its most energetic

frequency is hardwired to the electric-field node at the center of the grid.

Before we get to the core of the code, we are now at a point where it is convenient to split the

main header file into multiple header files: one defining the Grid structure, one defining various

macros, one giving the allocation macros, and one providing the function prototypes. Not all the

“.c” files need to include each of these header files.

The arrangement of the code is shown in Fig. 8.2. In this figure the header files fdtd-grid1.h,

fdtd-alloc1.h, fdtd-macro-tmz.h, and fdtd-proto1.h are shown in a single box

but they exist as four separate files (as will be shown below).

The contents of fdtd-grid1.h are shown in Program 8.3. The Grid structure, which

begins on line 6, now has elements for any of the possible electric or magnetic field components as

well as their associated coefficient arrays. Note that just because all the pointers are declared, they

do not have to be used or point to anything useful. The Grid structure shown here could be used

for a 1D simulation—it provides elements for everything that was needed to do a 1D simulation—

but most of the pointers would be unused, i.e., those elements that pertain to anything other than a

1D simulation would be ignored.

The way we will distinguish between what different grids are being used for is by setting the

“type” field of the grid. Note that line 4 creates a GRIDTYPE enumeration. This command

merely serves to set the value of oneDGrid to zero, the value of teZGrid to one, and the value

of tmZGrid to two. (The value of threeDGrid would be three, but we are not yet concerned

with three-dimensional grids.) A Grid will have its type set to one of these values. Functions

can then check the type and act accordingly.

Program 8.3 fdtd-grid1.h Contents of the header file that defines the Grid structure. This

structure now contains pointers for each of the possible field values. However, not all these pointers

would be used for any particular grid. The pointers that are meaningful would be determined by

the “type” of the grid. The type takes on one of the values of the GRIDTYPE enumeration.

188 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

tmzdemo1.c

main()

fdtd-proto1.h

ezinc.h

ricker.c

ezIncInit()
ezInc()

updatetmz.c

updateE2d()
updateH2d()

gridtmz.c

gridInit()

snapshot2d.c

snapshotInit2d()
snapshot2d()

fdtd-alloc1.h

fdtd-macro-tmz.h

fdtd-grid1.h

Figure 8.2: The files associated with a simple TMz simulation with a hard source at the center of

the grid. The four header files with an fdtd- prefix are lumped into a single box. Not all these

files are included in each of the files to which this box is linked. See the code for the specifics

related to the inclusion of these files.

8.4. TMZ EXAMPLE 189

1 #ifndef _FDTD_GRID1_H
2 #define _FDTD_GRID1_H
3

4 enum GRIDTYPE {oneDGrid, teZGrid, tmZGrid, threeDGrid};
5

6 struct Grid {
7 double *hx, *chxh, *chxe;
8 double *hy, *chyh, *chye;
9 double *hz, *chzh, *chze;

10 double *ex, *cexe, *cexh;
11 double *ey, *ceye, *ceyh;
12 double *ez, *ceze, *cezh;
13 int sizeX, sizeY, sizeZ;
14 int time, maxTime;
15 int type;
16 double cdtds;
17 };
18

19 typedef struct Grid Grid;
20

21 #endif

The contents of fdtd-alloc1.h are shown in Program 8.4. This header file merely provides

the memory-allocation macros that have been discussed previously.

Program 8.4 fdtd-alloc1.h Contents of the header file that defines the memory allocation

macros suitable for 1D and 2D arrays.

1 #ifndef _FDTD_ALLOC1_H
2 #define _FDTD_ALLOC1_H
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 /* memory allocation macros */

8 #define ALLOC_1D(PNTR, NUM, TYPE) \
9 PNTR = (TYPE *)calloc(NUM, sizeof(TYPE)); \

10 if (!PNTR) { \
11 perror("ALLOC_1D"); \
12 fprintf(stderr, \
13 "Allocation failed for " #PNTR ". Terminating...\n");\
14 exit(-1); \
15 }
16

190 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

17 #define ALLOC_2D(PNTR, NUMX, NUMY, TYPE) \
18 PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE)); \
19 if (!PNTR) { \
20 perror("ALLOC_2D"); \
21 fprintf(stderr, \
22 "Allocation failed for " #PNTR ". Terminating...\n");\
23 exit(-1); \
24 }
25

26 #endif

The contents of fdtd-macro-tmz.h are shown in Program 8.5. This file provides the

macros used to access the field arrays and elements of a pointer to a Grid structure. Thus far all

the macros we have used assumed the Grid pointer was called g. The macros provided in lines

8–35 no longer make this assumption. Instead, one specifies the name of the pointer as the first

argument. To this point in our code there is no need for this added degree of freedom. We only

considered code that has one pointer to a Grid and we have consistently named it g. However,

as we will see when we discuss the TFSF boundary, it is convenient to have the ability to refer to

different grids.

The macros in lines 39–66 do assume the Grid pointer is named g. These macros are actually

defined in terms of the first set of macros where the first argument has been set to g. Note that

although we are discussing a 2D TMz problem, this file still provides macros that can be used for

a 1D array. Again, we will see, when we implement a 2D TFSF boundary, that there are valid

reasons for doing this. Since any function that is using these macros will also need to know about

a Grid structure, line 4 ensures that the fdtd-grid1.h header file is also included.

Program 8.5 fdtd-macro-tmz.h Header file providing macros suitable for accessing the el-

ements and arrays of either a 1D or 2D Grid. There are two distinct sets of macros. The first

set takes an argument that speficies the name of the pointer to the Grid structure. The second set

assumes the name of the pointer is g.

1 #ifndef _FDTD_MACRO_TMZ_H
2 #define _FDTD_MACRO_TMZ_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */

7 /* one-dimensional grid */

8 #define Hy1G(G, M) G->hy[M]
9 #define Chyh1G(G, M) G->chyh[M]

10 #define Chye1G(G, M) G->chye[M]
11

12 #define Ez1G(G, M) G->ez[M]
13 #define Ceze1G(G, M) G->ceze[M]

8.4. TMZ EXAMPLE 191

14 #define Cezh1G(G, M) G->cezh[M]
15

16 /* TMz grid */

17 #define HxG(G, M, N) G->hx[(M) * (SizeYG(G)-1) + (N)]
18 #define ChxhG(G, M, N) G->chxh[(M) * (SizeYG(G)-1) + (N)]
19 #define ChxeG(G, M, N) G->chxe[(M) * (SizeYG(G)-1) + (N)]
20

21 #define HyG(G, M, N) G->hy[(M) * SizeYG(G) + (N)]
22 #define ChyhG(G, M, N) G->chyh[(M) * SizeYG(G) + (N)]
23 #define ChyeG(G, M, N) G->chye[(M) * SizeYG(G) + (N)]
24

25 #define EzG(G, M, N) G->ez[(M) * SizeYG(G) + (N)]
26 #define CezeG(G, M, N) G->ceze[(M) * SizeYG(G) + (N)]
27 #define CezhG(G, M, N) G->cezh[(M) * SizeYG(G) + (N)]
28

29 #define SizeXG(G) G->sizeX
30 #define SizeYG(G) G->sizeY
31 #define SizeZG(G) G->sizeZ
32 #define TimeG(G) G->time
33 #define MaxTimeG(G) G->maxTime
34 #define CdtdsG(G) G->cdtds
35 #define TypeG(G) G->type
36

37 /* macros that assume the "Grid" is "g" */

38 /* one-dimensional grid */

39 #define Hy1(M) Hy1G(g, M)
40 #define Chyh1(M) Chyh1G(g, M)
41 #define Chye1(M) Chye1G(g, M)
42

43 #define Ez1(M) Ez1G(g, M)
44 #define Ceze1(M) Ceze1G(g, M)
45 #define Cezh1(M) Cezh1G(g, M)
46

47 /* TMz grid */

48 #define Hx(M, N) HxG(g, M, N)
49 #define Chxh(M, N) ChxhG(g, M, N)
50 #define Chxe(M, N) ChxeG(g, M, N)
51

52 #define Hy(M, N) HyG(g, M, N)
53 #define Chyh(M, N) ChyhG(g, M, N)
54 #define Chye(M, N) ChyeG(g, M, N)
55

56 #define Ez(M, N) EzG(g, M, N)
57 #define Ceze(M, N) CezeG(g, M, N)
58 #define Cezh(M, N) CezhG(g, M, N)
59

60 #define SizeX SizeXG(g)

192 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

61 #define SizeY SizeYG(g)
62 #define SizeZ SizeZG(g)
63 #define Time TimeG(g)
64 #define MaxTime MaxTimeG(g)
65 #define Cdtds CdtdsG(g)
66 #define Type TypeG(g)
67

68 #endif /* matches #ifndef _FDTD_MACRO_TMZ_H */

Finally, the contents of fdtd-proto1.h are shown in Program 8.6. This file provides the

prototypes for the various functions associated with the simulation. Since a pointer to a Grid
appears as an argument to these functions, any file that includes this header will also need to

include fdtd-grid1.h as is done in line 4.

Program 8.6 fdtd-proto1.h Header file providing the function prototypes.

1 #ifndef _FDTD_PROTO1_H
2 #define _FDTD_PROTO1_H
3

4 #include "fdtd-grid1.h"
5

6 /* Function prototypes */

7 void gridInit(Grid *g);
8

9 void snapshotInit2d(Grid *g);
10 void snapshot2d(Grid *g);
11

12 void updateE2d(Grid *g);
13 void updateH2d(Grid *g);
14

15 #endif

The file tmzdemo1.c, which contains the main() function, is shown in Program 8.7. The

program begins with the inclusion of the necessary header files. Note that only three of the four

fdtd- header files are explicitly included. However, both the header files fdtd-macro-tmz.h
and fdtd-proto1.h ensure that the “missing” file, fdtd-grid1.h, is included.

Fields are introduced into the grid by hardwiring the value of an electric-field node as shown

in line 22. Because the source function is used in main(), the header file ezinc.h had to be

included in this file. Other than those small changes, this program looks similar to many of the 1D

programs which we have previously considered.

Program 8.7 tmzdemo1.c FDTD implementation of a TMz grid with a Ricker wavelet source

at the center of the grid. No ABC have been implemented so the simulation is effectively of a

8.4. TMZ EXAMPLE 193

resonator.

1 /* TMz simulation with Ricker source at center of grid. */

2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5 #include "fdtd-proto1.h"
6 #include "ezinc.h"
7

8 int main()
9 {

10 Grid *g;
11

12 ALLOC_1D(g, 1, Grid); // allocate memory for Grid

13

14 gridInit(g); // initialize the grid

15 ezIncInit(g);
16 snapshotInit2d(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic field

21 updateE2d(g); // update electric field

22 Ez(SizeX / 2, SizeY / 2) = ezInc(Time, 0.0); // add a source

23 snapshot2d(g); // take a snapshot (if appropriate)

24 } // end of time-stepping

25

26 return 0;
27 }

The contents of gridtmz.c, which contains the grid initialization function gridInit(),

is shown in Program 8.8. On line 9 the type of grid is defined. This is followed by statements

which set the size of the grid, in both the x and y directions, the duration of the simulation, and

the Courant number. Then, on lines 15 through 23, space is allocated for the field arrays and

their associated coefficients array. Note that although the Ez array is SizeX×SizeY, Hx is

SizeX×(SizeY − 1), and Hy is (SizeX − 1)×SizeY. The remainder of the program merely

sets the coefficient arrays. Here there is no need to include the header file fdtd-proto1.h since

this function does not call any of the functions listed in that file.

Program 8.8 gridtmz.c Grid initialization function for a TMz simulation. Here the grid is

simply homogeneous free space.

1 #include "fdtd-macro-tmz.h"
2 #include "fdtd-alloc1.h"

194 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn;
8

9 Type = tmZGrid;
10 SizeX = 101; // x size of domain

11 SizeY = 81; // y size of domain

12 MaxTime = 300; // duration of simulation

13 Cdtds = 1.0 / sqrt(2.0); // Courant number

14

15 ALLOC_2D(g->hx, SizeX, SizeY - 1, double);
16 ALLOC_2D(g->chxh, SizeX, SizeY - 1, double);
17 ALLOC_2D(g->chxe, SizeX, SizeY - 1, double);
18 ALLOC_2D(g->hy, SizeX - 1, SizeY, double);
19 ALLOC_2D(g->chyh, SizeX - 1, SizeY, double);
20 ALLOC_2D(g->chye, SizeX - 1, SizeY, double);
21 ALLOC_2D(g->ez, SizeX, SizeY, double);
22 ALLOC_2D(g->ceze, SizeX, SizeY, double);
23 ALLOC_2D(g->cezh, SizeX, SizeY, double);
24

25 /* set electric-field update coefficients */

26 for (mm = 0; mm < SizeX; mm++)
27 for (nn = 0; nn < SizeY; nn++) {
28 Ceze(mm, nn) = 1.0;
29 Cezh(mm, nn) = Cdtds * imp0;
30 }
31

32 /* set magnetic-field update coefficients */

33 for (mm = 0; mm < SizeX; mm++)
34 for (nn = 0; nn < SizeY - 1; nn++) {
35 Chxh(mm, nn) = 1.0;
36 Chxe(mm, nn) = Cdtds / imp0;
37 }
38

39 for (mm = 0; mm < SizeX - 1; mm++)
40 for (nn = 0; nn < SizeY; nn++) {
41 Chyh(mm, nn) = 1.0;
42 Chye(mm, nn) = Cdtds / imp0;
43 }
44

45 return;
46 }

The functions for updating the fields are contained in the file updatetmz.c which is shown

in Program 8.9. In line 7 the Type is checked (i.e., g->type is checked). If it is oneDGrid

8.4. TMZ EXAMPLE 195

then only the Hy field is updated and it only has a single spatial index. If the grid is not a 1D grid,

it is assumed to be a TMz grid. Thus, starting on line 12, Hx and Hy are updated and they now

have two spatial indices.

Program 8.9 updatetmz.c Functions to update the fields. Depending on the type of grid, the

fields can be treated as either one- or two-dimensional.

1 #include "fdtd-macro-tmz.h"
2

3 /* update magnetic field */

4 void updateH2d(Grid *g) {
5 int mm, nn;
6

7 if (Type == oneDGrid) {
8 for (mm = 0; mm < SizeX - 1; mm++)
9 Hy1(mm) = Chyh1(mm) * Hy1(mm)

10 + Chye1(mm) * (Ez1(mm + 1) - Ez1(mm));
11 } else {
12 for (mm = 0; mm < SizeX; mm++)
13 for (nn = 0; nn < SizeY - 1; nn++)
14 Hx(mm, nn) = Chxh(mm, nn) * Hx(mm, nn)
15 - Chxe(mm, nn) * (Ez(mm, nn + 1) - Ez(mm, nn));
16

17 for (mm = 0; mm < SizeX - 1; mm++)
18 for (nn = 0; nn < SizeY; nn++)
19 Hy(mm, nn) = Chyh(mm, nn) * Hy(mm, nn)
20 + Chye(mm, nn) * (Ez(mm + 1, nn) - Ez(mm, nn));
21 }
22

23 return;
24 }
25

26 /* update electric field */

27 void updateE2d(Grid *g) {
28 int mm, nn;
29

30 if (Type == oneDGrid) {
31 for (mm = 1; mm < SizeX - 1; mm++)
32 Ez1(mm) = Ceze1(mm) * Ez1(mm)
33 + Cezh1(mm) * (Hy1(mm) - Hy1(mm - 1));
34 } else {
35 for (mm = 1; mm < SizeX - 1; mm++)
36 for (nn = 1; nn < SizeY - 1; nn++)
37 Ez(mm, nn) = Ceze(mm, nn) * Ez(mm, nn) +
38 Cezh(mm, nn) * ((Hy(mm, nn) - Hy(mm - 1, nn)) -
39 (Hx(mm, nn) - Hx(mm, nn - 1)));

196 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

40 }
41

42 return;
43 }

The function for updating the electric field, updateE2d(), only is responsible for updating

the Ez field. However, as shown in line 30, it still must check the grid type. If this is a 1D grid, Ez
only has a single spatial index and only depends on Hy. If it is not a 1D grid, it is assumed to be a

TMz grid and Ez now depends on both Hx and Hy.

The function to implement the Ricker wavelet is shown in Program 8.10. The header file

ezinc.h is virtually unchanged from Program 4.16. The one minor change is that instead of in-

cluding fdtd2.h, now the file fdtd-macro-tmz.h is included. Thus ezinc.h is not shown.

The initialization function ezIncInit() prompts the user to enter the points per wavelength at

which the Ricker wavelet has maximum energy. In line 10 it also makes a local copy of the Courant

number (since the Grid is not passed to the ezInc() function and would not otherwise know

this value).

Program 8.10 ricker.c Function to implement a Ricker wavelet. This is a traveling-wave

version of the function so ezInc() takes arguments of both time and space.

1 #include "ezinc.h"
2

3 static double cdtds, ppw = 0;
4

5 /* initialize source-function variables */

6 void ezIncInit(Grid *g){
7

8 printf("Enter the points per wavelength for Ricker source: ");
9 scanf(" %lf", &ppw);

10 cdtds = Cdtds;
11 return;
12 }
13

14 /* calculate source function at given time and location */

15 double ezInc(double time, double location) {
16 double arg;
17

18 if (ppw <= 0) {
19 fprintf(stderr,
20 "ezInc: ezIncInit() must be called before ezInc.\n"
21 " Points per wavelength must be positive.\n");
22 exit(-1);
23 }
24

25 arg = M_PI * ((cdtds * time - location) / ppw - 1.0);

8.4. TMZ EXAMPLE 197

26 arg = arg * arg;
27

28 return (1.0 - 2.0 * arg) * exp(-arg);
29 }

Finally, snapshot2d.c is shown in Program 8.11. The function snapshotInit2d()
obtains information from the user about the output that is desired. The goal is to write the data so

that the electric field can be visualized over the entire 2D computational domain.

Program 8.11 snapshot2d.c Function to record the 2D field to a file. The data is stored as

binary data.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "fdtd-macro-tmz.h"
4

5 static int temporalStride = -2, frame = 0, startTime,
6 startNodeX, endNodeX, spatialStrideX,
7 startNodeY, endNodeY, spatialStrideY;
8 static char basename[80];
9

10 void snapshotInit2d(Grid *g) {
11

12 int choice;
13

14 printf("Do you want 2D snapshots? (1=yes, 0=no) ");
15 scanf("%d", &choice);
16 if (choice == 0) {
17 temporalStride = -1;
18 return;
19 }
20

21 printf("Duration of simulation is %d steps.\n", MaxTime);
22 printf("Enter start time and temporal stride: ");
23 scanf(" %d %d", &startTime, &temporalStride);
24 printf("In x direction grid has %d total nodes"
25 " (ranging from 0 to %d).\n", SizeX, SizeX - 1);
26 printf("Enter first node, last node, and spatial stride: ");
27 scanf(" %d %d %d", &startNodeX, &endNodeX, &spatialStrideX);
28 printf("In y direction grid has %d total nodes"
29 " (ranging from 0 to %d).\n", SizeY, SizeY - 1);
30 printf("Enter first node, last node, and spatial stride: ");
31 scanf(" %d %d %d", &startNodeY, &endNodeY, &spatialStrideY);
32 printf("Enter the base name: ");
33 scanf(" %s", basename);

198 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

34

35 return;
36 }
37

38 void snapshot2d(Grid *g) {
39 int mm, nn;
40 float dim1, dim2, temp;
41 char filename[100];
42 FILE *out;
43

44 /* ensure temporal stride set to a reasonable value */

45 if (temporalStride == -1) {
46 return;
47 } if (temporalStride < -1) {
48 fprintf(stderr,
49 "snapshot2d: snapshotInit2d must be called before snapshot.\n"
50 " Temporal stride must be set to positive value.\n");
51 exit(-1);
52 }
53

54 /* get snapshot if temporal conditions met */

55 if (Time >= startTime &&
56 (Time - startTime) % temporalStride == 0) {
57 sprintf(filename, "%s.%d", basename, frame++);
58 out = fopen(filename, "wb");
59

60 /* write dimensions to output file --

61 * express dimensions as floats */

62 dim1 = (endNodeX - startNodeX) / spatialStrideX + 1;
63 dim2 = (endNodeY - startNodeY) / spatialStrideY + 1;
64 fwrite(&dim1, sizeof(float), 1, out);
65 fwrite(&dim2, sizeof(float), 1, out);
66

67 /* write remaining data */

68 for (nn = endNodeY; nn >= startNodeY; nn -= spatialStrideY)
69 for (mm = startNodeX; mm <= endNodeX; mm += spatialStrideX) {
70 temp = (float)Ez(mm, nn); // store data as a float

71 fwrite(&temp, sizeof(float), 1, out); // write the float

72 }
73

74 fclose(out); // close file

75 }
76

77 return;
78 }

Similar to the snapshot code in one dimension, the Ez field is merely recorded (in binary

8.4. TMZ EXAMPLE 199

format) to a file at the appropriate time-steps. It is up to some other program or software to render

this data in a suitable way. In order to understand what is happening in the two-dimensional grid,

it is extremely helpful to display the fields in a manner that is consistent with the underlying two-

dimensional format. This can potentially be quite a bit of data. To deal with it efficiently, it is often

best to store the data directly in binary format, which we will refer to as “raw” data. In line 58 the

output file is opened as a binary file (hence “b” which appears in the second argument of the call

to fopen()).

The arrays being used to store the fields are doubles. However, storing a complete double can

be considered overkill when it comes to generating graphics. We certainly do not need 15 digits

of precision when viewing the fields. Instead of writing doubles, the output is converted to a float.

(By using floats instead of doubles, the file size is reduced by a factor of two.) Within each output

data file, first the dimensions of the array are written, as floats, as shown in lines 64 and 65. After

that, starting in line 68 of Program 8.11, two nested loops are used to write each element of the

array. Note that the elements are not written in what might be considered a standard way. The

elements are written consistent with how you would read a book in English: from left to right, top

to bottom. As mentioned previously, this is not the most efficient way to access arrays, but there

are some image-processing tools which prefer that data be stored this way.

Once this data is generated, there are several ways in which the data can be displayed. It is

possible to read the data directly using Matlab and even create an animation of the field. Appendix

C presents a Matlab function that can be used to generate a movie from the data generated by

Program 8.7.

After compiling Program 8.7 in accordance with all the files shown in Fig. 8.2, let us assume

the executable is named tmzdemo1. The following shows a typical session where this program is

run on a UNIX system (where the executable is entered at the command-line prompt of “>”). The

user’s entries are shown in bold.

> tmzdemo1
Enter the points per wavelength for Ricker source: 20
Do you want 2D snapshots? (1=yes, 0=no) 1
Duration of simulation is 300 steps.
Enter start time and temporal stride: 10 10
In x direction grid has 101 total nodes (ranging from 0 to 100).
Enter first node, last node, and spatial stride: 0 100 1
In y direction grid has 81 total nodes (ranging from 0 to 80).
Enter first node, last node, and spatial stride: 0 80 1
Enter the base name: sim

In this case the user set the Ricker wavelet to have 20 points per wavelength at the most energetic

frequency. Snapshots were generated every 10 time-steps beginning at the 10th time-step. The

snapshots were taken of the entire computational domain since the start- and stop-points were the

first and last nodes in the x and y directions and the spatial stride was unity. The snapshots had a

common base name of sim.

Figure 8.3 shows three snapshots of the electric field that are generated by Program 8.7. These

images are individual frames generated by the code presented in Appendix C (the frames are in

color when viewed on a suitable output device). These frames correspond to snapshots taken at

time-steps 30, 70, and 110. Logarithmic scaling is used so that the maximum normalized value

of one corresponds to the color identified as zero on the color-bar to the right of each image. A

200 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

normalization value of unity was used for these images. Three decades are displayed so that the

minimum visible normalized field is 10−3. This value is shown with a color corresponding to −3
on the color-bar (any values less than the minimum are also displayed using this same color).

At time-step 30, the field is seen to be radiating concentrically away from the source at the

center of the grid. At time-step 70 the field is just starting to reach the top and bottom edges

of the computational domain. Since the electric-field nodes along the edge of the computational

domain are not updated (due to these nodes lacking a neighboring magnetic-field node in their

update equations), these edges behave as PEC boundaries. Hence the field is reflected back from

these walls. The reflection of the field in clearly evident at time-step 110. As the simulation

progresses, the field bounces back and forth. (The field at a given point can be recorded and then

Fourier transformed. The peaks in the transform correspond to the resonant modes of this particular

structure.)

To model an infinite domain, the second-order ABC discussed in Sec. 6.6 can be applied to

every electric field node on the boundary. In one dimension the ABC needed to be applied to only

two nodes. In two dimensions, there would essentially be four lines of nodes to which the ABC

must be applied: nodes along the left, right, top, and bottom. However, in all cases the form of

the ABC is the same. For a second-order ABC, a node on the boundary depends on two interior

nodes as well as the field at the boundary and those same two interior nodes at two previous time

steps. As before, the old values would have to be stored in supplementary arrays—six old values

for each node on the boundary. This is accomplished fairly easily by extrapolating the 1D case so

that there are now four storage arrays (one for the left, right, top, and bottom). These would be

three-dimensional arrays. In addition to two indices which indicate displacement from the edge

(i.e., displacement into the interior) and the time step, there would be a third index to indicate

displacement along the edge. So, for example, this third index would specify the particular node

along the top or bottom (and hence would vary between 0 and “SizeX - 1”) or the node along

the left or right (and hence would vary between 0 and “SizeY - 1”).

For nodes in the corner of the computational domain, there is some ambiguity as to which

nodes are the neighboring “interior” nodes which should be used by the ABC. However, the corner

nodes never couple back to the interior and hence it does not matter what one does with these

nodes. They can be left zero or assumed to contain meaningless numbers and that will not affect

the values in the interior of the grid. The magnetic fields that are adjacent to corner nodes are

affected by the values of the field in the corners. However, these nodes themselves are not used be

any other nodes in their updates. The electric fields which are adjacent to these magnetic fields are

updated using the ABC; they ignore the field at the neighboring magnetic-field nodes. Therefore

no special consideration will be given to resolving the corner ambiguity.

8.5 The TFSF Boundary for TMz Polarization

For a distant source illuminating a scatterer, it is not feasible to discretize the space surrounding

the source, discretize the space between the source and the scatterer, and discretize the space

surrounding the scatterer. Even if a large enough computer could be obtained that was capable of

storing all that discretized space, one simply would not want to use the FDTD grid to propagate

the field from the source to the scatterer. Such an endeavor would be slow, incredibly inefficient,

and suffer from needless numerical artifacts. Instead, one should discretize the space surrounding

8.5. THE TFSF BOUNDARY FOR TMZ POLARIZATION 201

(a)

(b)

(c)

Figure 8.3: Display of Ez field generated by Program 8.7 at time steps (a) 30, (b) 70, and (c) 110.

A Ricker source with 20 points per wavelength at its most energetic frequency is hard-wired to the

Ez node at the center of the grid.

202 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

the scatterer and introduce the incident field via a total-field/scattered-field boundary. When the

source is distant from the scatterer, the incident field is nearly planar and thus we will restrict

consideration to incident plane waves.

Section 3.10 showed how the TFSF concept could be implemented in a one-dimensional prob-

lem. The TFSF boundary separated the grid into two regions: a total-field (TF) region and a

scattered-field (SF) region. There were two nodes adjacent to this boundary. One was in the SF

region and depended on a node in the TF region. The other was in the TF region and depended on

a node in the SF region. To obtain self-consistent update equations, when updating nodes in the

TF region, one must use the total field which pertains at the neighboring nodes. Conversely, when

updating nodes in the SF region, one must use the scattered field which pertains at neighboring

nodes. In one dimension, the two nodes adjacent to the boundary must have the incident field

either added to or subtracted from the field which exists at their neighbor on the other side of the

boundary. Thus, in one dimension we required knowledge of the incident field at two locations for

every time step.

In two dimensions, the grid is again divided into a TF region and a SF region. In this case

the boundary between the two regions is no longer a point. Figure 8.4 shows a TMz grid with a

rectangular TFSF boundary. (The boundary does not have to be rectangular, but the implementation

details are simplest when the boundary has straight sides and hence we will restrict ourselves to

TFSF boundaries which are rectangular.) In this figure the TF region is enclosed within the TFSF

boundary which is drawn with a dashed line. The SF region is any portion of the grid that is

outside this boundary. Nodes that have a neighbor on the other side of the boundary are enclosed

in a solid rectangle with rounded corners. Note that these encircled nodes are tangential to the

TFSF boundary (we consider the Ez field, which points out of the page, to be tangential to the

boundary if we envision the boundary extending into the third dimension). The fields that are

normal to the boundary, such as the Hy nodes along the top and bottom of the TFSF boundary,

do not have neighbors which are across the boundary (even though the field could be considered

adjacent to the boundary).

In the implementation used here, the TF region is defined by the indices of the “first” and “last”

electric-field nodes which are in the TF region. These nodes are shown in Fig. 8.4 where the “first”

node is the one in the lower left corner and the “last” one is in the upper right corner. Note that

electric fields and magnetic fields with the same indices are not necessarily on the same side of

the boundary. For example, the Ez nodes on the right side of the TF region have one of their

neighboring Hy nodes in the SF region. This is true despite the fact that these Hy nodes share the

same x-index as the Ez nodes.

Further note that in this particular construction of a TFSF boundary, the electric fields tantential

to the TFSF boundary are always in the TF region. These nodes will have at least one neighboring

magnetic field node that is in the SF region. Thus, the correction necessary to obtain a consistent

update of these electric field nodes would involve adding the incident field the neighboring mag-

netic fields on the other side of the TFSF boundary. Conversely, the magnetic field nodes that are

tangential to the TFSF boundary are always in the SF region. These nodes will have one neighbor-

ing electric field node that is in the TF region. Thus, the correction necessary to obtain a consistent

update of these magnetic field nodes would involve subtracting the incident field from the electric

field node on the other side of the TFSF boundary.

As in the one-dimensional case, to implement the TFSF method, one must know the incident

field at every node which has a neighbor on the other side of the TFSF boundary. The incident

8.5. THE TFSF BOUNDARY FOR TMZ POLARIZATION 203

Total-Field Region

Scattered-Field Region

TF/SF Boundary

first node
in TF region

last node
in TF region

Figure 8.4: Depiction of a total-field/scattered-field boundary in a TMz grid. The size of the TF

region is defined by the indices of the first and last electric field nodes which are within the region.

Note that at the right-hand side of the boundary the Hy nodes with the same x-index (i.e., the same

“m” index) as the “last” node will be in the SF region. Similarly, at the top of the grid, Hx nodes

with the same y-index as the last node will be in the SF region. Therefore one must pay attention

to the field component as well as the indices to determine if a node is in the SF or TF region.

204 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

field must be known at all these points and for every time-step. In Section 3.10 analytic expres-

sions were used for the incident field, i.e., the expressions that describes propagation of the incident

field in the continuous world. However, the incident field does not propagate the same way in the

FDTD grid as the continuous world (except in the special case of one-dimensional propagation

with a Courant number of unity). Therefore, if the continuous-world expressions were used for

the incident field, there would be a mismatch between the fields in the grid and the fields given

by the continuous-world expressions. This mismatch would cause fields to leak across the bound-

ary. Another drawback to using the continuous-world expressions is that they typically involve a

transcendental function (such as a trigonometric function or an exponential). Calculation of these

functions is somewhat computationally expensive—at least compared to a few simple algebraic

calculations. If the transcendental functions have to be calculated at numerous points for every

time-step, this can impose a potentially significant computational cost. Fortunately, provided the

direction of the incident-field propagation coincides with one of the axes of the grid, there is a way

to ensure that the incident field exactly matches the way in which the incident field propagates in

the two-dimensional FDTD grid. Additionally, the calculation of the incident field can be done

efficiently.

The trick to calculating the incident field is to perform an auxiliary one-dimensional FDTD

simulation which calculates the incident field. This auxiliary simulation uses the same Courant

number and material parameters as pertain in the two-dimensional grid but is otherwise completely

separate from the two-dimensional grid. The one-dimensional grid is merely used to find the

incident fields needed to implement the TFSF boundary. (Each Ez and Hy node in the 1D grid

can be thought as providing Einc
z and H inc

y , respectively, at the appropriate point in space-time as

dictated by the discretization and time-stepping.)

Figure 8.5 shows the auxiliary 1D grid together with the 2D grid. The base of the vertical

arrows pointing from the 1D grid to the 2D grid indicate the nodes in the 1D grid from which

the nodes in the 2D grid obtain the incident field (only nodes in the 2D grid adjacent to the TFSF

boundary require knowledge of the incident field). Since the incident field propagates in the +x
direction, there is no incident Hx field. Hence nodes that depend on an Hx node on the other side

of the TFSF boundary do not need to be corrected since H inc
x = 0.

Despite the representation in Fig. 8.5, the 1D grid does not need to be the same width as the

2D grid, but it must be at least as long as necessary to provide the incident field for all the nodes

tangential to the TFSF boundary (i.e., it must be large enough to provide the values associated with

the base of each of the vertical arrows shown in Fig. 8.5). Additionally, the 1D grid must include

a source on the left and the right side of the grid must be suitably terminated so that the incident

field does not reflect back. Here we will assume fields are introduced into the 1D grid via a hard

source at the left end.

Using an auxiliary 1D grid, the TFSF boundary could be realized as follows. First, outside of

the time-stepping loop, a function would be called to initialize the TFSF code. This initialization

would allocate arrays of the necessary size for the 1D auxiliary grid and set all the necessary

constants. Then, within the time-stepping loop, the following steps would be taken (where we use

the additional subscripts 1D and 2D to distinguish between arrays associated with the 1D and 2D

grids):

1. Update the magnetic fields in the two-dimensional grid using the usual update equations (i.e.,

do not account for the existence of TFSF boundary): H
q− 1

2
x2D ⇒ H

q+ 1
2

x2D and H
q− 1

2
y2D ⇒ H

q+ 1
2

y2D .

8.5. THE TFSF BOUNDARY FOR TMZ POLARIZATION 205

hard
source

incident field obtained from 1D simulation

auxiliary 1D simulation

grid terminated
with suitable

ABC

direction of propagation

Figure 8.5: A one-dimensional auxiliary grid is used to calculate the incident field which is as-

sumed to be propagating in the +x direction. The vertical arrows indicate the nodes whose values

are needed to implement the TFSF boundary. The incidentHx field is zero and hence no correction

is needed in association with Ez nodes that have a neighboring Hx node on the other side of the

boundary. The 1D grid is driven by a hard source at the left side. The 1D grid must be suitably

terminated at the right side to model an infinite domain. The size of the 1D grid is somewhat

independent of the size of the 2D grid—it must be large enough to provide incident field associ-

ated with each of the vertical arrows shown above but otherwise may be larger or smaller than the

overall width of the 2D grid.

206 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

2. Call a function to make all calculations and corrections associated with the TFSF boundary:

(a) Correct the two-dimensional magnetic fields tangential to the TFSF boundary using the

incident electric field from the one-dimensional grid, i.e., using Eq
z1D.

(b) Update the magnetic field in the one-dimensional grid: H
q− 1

2
y1D ⇒ H

q+ 1
2

y1D .

(c) Update the electric field in the one-dimensional grid: Eq
z1D ⇒ Eq+1

z1D .

(d) Correct the electric field in the two-dimensional grid using the incident magnetic field

from the one-dimensional grid, i.e., using H
q+ 1

2
y1D . (Since there is no Hx1D in this partic-

ular case with grid-aligned propagation, no correction is necessary in association with

Ez nodes that have a neighboring Hx node on the other side of the TFSF boundary.)

3. Update the electric field in the two-dimensional grid using the usual update equations (i.e.,

do not account for the existence of TFSF boundary): Eq
z2D ⇒ Eq+1

z2D .

8.6 TMz TFSF Boundary Example

Figure 8.6 shows three snapshots of a computational domain that incorporates a TFSF boundary.

The size of the grid is 101 nodes wide and 81 nodes high. The incident field is a Ricker wavelet

with 30 points per wavelength at its most energetic frequency. The indices for the first electric-field

node in the TF region are (5, 5) and the indices of the last node in the TF region are (95, 75). There

is no scatterer present and hence there are no fields visible in the SF region.

In Fig. 8.6(a) the incident field is seen to have entered the left side of the TF region. There is

an abrupt discontinuity in the field as one cross the TFSF boundary. This discontinuity is visible

to the left of the TF region as well as along a portion of the top and bottom of the region. In Fig.

8.6(b) the pulse is nearly completely within the TF region. In Fig. 8.6(b) the incident pulse has

encountered the right side of the TF region. At this point the incident field seemingly disappears!

The corrections to the fields at the right side of the boundary are such that the incident field does

not escape the TF region.

Figure 8.7 shows three snapshots of a computational domain that is similar to the one shown in

Fig. 8.6. The only difference is that a PEC plate has been put into the grid. The plate is realized by

setting to zero the Ez nodes along a vertical line. This line of nodes is offset 20 cells from the left

side of the computational domain and runs vertically from 20 cells from the bottom of the domain

to 20 cells from the top. (The way in which one models a PEC in 2D grids will be discussed further

in Sec. 8.8.)

Second-order ABC’s are used to terminate the grid. (In Fig. 8.6 the fields were normalized to

1.0. In Fig. 8.7 they have been normalized to 2.0.)

In Fig. 8.7(a) the incident field has just barely reached the plate. There is no scattering evident

yet and hence no scattered fields are visible in the SF region. In Fig. 8.7(b) the interaction of the

field with the plate is obvious. One can see how the fields have diffracted around the edges of

the plate. As can be seen, the field scattered from the plate has had time to propagate into the SF

region. Figure 8.7(c) also shows the non-zero field in the SF region (together with the total field

throughout the TF region). The ABC’s must absorb the scattered field, but they do have to contend

with the incident field since, as shown in Fig. 8.6, the incident field never escapes the TF region

8.6. TMZ TFSF BOUNDARY EXAMPLE 207

(a)

(b)

(c)

Figure 8.6: Display of Ez field in a computational domain employing a TFSF boundary. Snapshots

are taken at time-steps (a) 30, (b) 100, and (c) 170. The pulsed, plane-wave source corresponds to

a Ricker wavelet with 30 points per wavelength at its most energetic frequency.

208 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

(a)

(b)

(c)

Figure 8.7: Display of Ez field in a computational domain employing a TFSF boundary. There is a

PEC vertical plate which is realized by setting to zero the Ez field over a lines that is 41 cells high

and 20 cells from the left edge of the computational domain. Snapshots are taken at time steps (a)

30, (b) 100, and (c) 170. A second-order ABC is used to terminate the grid.

8.6. TMZ TFSF BOUNDARY EXAMPLE 209

tmzdemo2.c

main()

update2d.c

updateE2d()
updateH2d()

gridInit()

tfsftmz.c

tfsfInit()
tfsfUpdate()

abctmz.c

abcInit()
abc()

snapshot2d.c

snapshotInit2d()
snapshot2d()

gridtmz.c

ricker.c

ezIncInit()
ezInc()

gridInit1d()

grid1dez.c

Figure 8.8: Organization of files associated with a TMz simulation that employs a TFSF boundary

and a second-order ABC. The header files are not shown.

(but, of course, the scattered field at any point along the edge of the computational domain could

be as large or larger than the incident field—it depends on how the scatterer scatters the field).

The organization of code used to generate the results shown in Fig. 8.7 is depicted in Fig.

8.8. The header files are not shown. The contents of the files updatetmz.c, ricker.c, and

snapshot2d.c are unchanged from the previous section (refer to Programs 8.9, 8.10, and 8.11,

respectively). The file gridtmz.c has changed only slightly from the code shown in Program

8.8 in that a line of electric-field update coefficients are now set to zero corresponding to the

location of the PEC. Since this change is so minor, this file is not presented here. The header files

fdtd-alloc1.h, fdtd-grid1.h and fdtd-macro-tmz.h are also unchanged from the

previous section (refer to Programs 8.4, 8.3, and 8.5).

The contents of tmzdemo2.c are shown in Program 8.12. This program differs from Program

8.7 only in the call to the TFSF and ABC functions. Also, a different prototype header file is

included. These difference are shown in bold.

Program 8.12 tmzdemo2.c Program to perform a TMz simulation where the field is introduced

via a TFSF boundary and the grid is terminated with a second-order ABC. The differences between

this code and Program 8.7 are shown in bold.

1 /* TMz simulation with a TFSF boundary and a second-order ABC. */

2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5 #include "fdtd-proto2.h"
6

7 int main()
8 {

210 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

9 Grid *g;
10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid

12 gridInit(g); // initialize 2D grid

13

14 abcInit(g); // initialize ABC

15 tfsfInit(g); // initialize TFSF boundary

16 snapshotInit2d(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic fields

21 tfsfUpdate(g); // apply TFSF boundary
22 updateE2d(g); // update electric fields

23 abc(g); // apply ABC
24 snapshot2d(g); // take a snapshot (if appropriate)

25 } // end of time-stepping

26

27 return 0;
28 }

After initialization of the 2D grid in line 11, the ABC, TFSF, and snapshot functions are ini-

tialized. Time-stepping begins in line 19. Within the time-stepping loop, first the magnetic fields

are updated. As already mentioned, the function updateH2d() is unchanged from before. We

merely pass to it the the Grid pointer g. Next, the function tfsfUpdate() is used to update

the fields adjacent to the TFSF boundary. This function takes (the 2D Grid pointer) g as an ar-

gument. As we will see, the TFSF function also keeps track of an auxiliary 1D that is completely

hidden from main(). The electric fields are then updated, the ABC is applied, and a snapshot is

generated (if the time-step is appropriate).

The header file fdtd-proto2.h is shown in Program 8.13. The only substantial changes

from Program 8.6 are the addition of the prototypes for the TFSF, ABC functions, and a function

used to initialize the 1D grid.

Program 8.13 fdtd-proto2.h Header file that now includes the prototypes for the TFSF and

ABC functions. The differences between this file and 8.6 are shown in bold.

1 #ifndef _FDTD_PROTO2_H
2 #define _FDTD_PROTO2_H
3

4 #include "fdtd-grid1.h"
5

6 /* Function prototypes */

7 void abcInit(Grid *g);
8 void abc(Grid *g);
9

8.6. TMZ TFSF BOUNDARY EXAMPLE 211

10 void gridInit1d(Grid *g);
11 void gridInit(Grid *g);
12

13 void snapshotInit2d(Grid *g);
14 void snapshot2d(Grid *g);
15

16 void tfsfInit(Grid *g);
17 void tfsfUpdate(Grid *g);
18

19 void updateE2d(Grid *g);
20 void updateH2d(Grid *g);
21

22 #endif

The code to implement the TFSF boundary is shown in Program 8.14. There are five global

variables in this program. The four declared on lines 7 and 8 give the indices of the first and last

points in the TF region. The global variable g1, declared on line 10, is a Grid pointer that will be

used for the auxiliary 1D grid.

The function tfsfInit() starts by allocating space for g1. Once that space has been allo-

cated we could set the Courant number, the maximum number of time steps, and the size of the

grid. However, it is important that these values match, at least in some ways, the value of the 2D

grid that has already been declared. Thus, in line 15, the contents of the 2D grid structure are copy

to the 1D grid structure. To accomplish this copying the C function memcpy() is used. This

function takes three arguments: the destination memory address, the source memory address, and

the amount of memory to be copied. After this copying has been completed, there are some things

about the g1 which are incorrect. For example, its type corresponds to a 2D TMz grid. Also, the

pointers for its arrays are the same as those for the 2D grid. We do not want the 1D grid writing to

the same arrays as the 2D grid! Therefore these values within the Grid pointer g1 need to be fix

and this is accomplished with the grid-initialization function gridInit1D() called in 16. We

will consider the details of that function soon. Just prior to returning, tfsfInit() initializes the

source function by calling ezIncInit().

As we saw in the main() function in Program 8.12, tfsfUpdate() is called once per

time-step, after the magnetic fields have been updated and before the electric field is updated. Note

that the fields throughout the grid are not consistent until after the electric field has been updated

in the 2D grid (i.e., after step three in the algorithm described on page 204). This is because just

prior to calling tfsfUpdate() the magnetic fields have not been corrected to account for the

TFSF boundary. Just after tfsfUpdate() has returned the electric field has been corrected in

anticipation of the next update.

Program 8.14 tfsftmz.c Source code to implement a TFSF boundary for a TMz grid. The

incident field is assumed to propagate along the x direction and is calculated using an auxiliary 1D

simulation.

212 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

1 #include <string.h> // for memcpy

2 #include "fdtd-macro-tmz.h"
3 #include "fdtd-proto2.h"
4 #include "fdtd-alloc1.h"
5 #include "ezinc.h"
6

7 static int firstX = 0, firstY, // indices for first point in TF region

8 lastX, lastY; // indices for last point in TF region

9

10 static Grid *g1; // 1D auxilliary grid

11

12 void tfsfInit(Grid *g) {
13

14 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid

15 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array

16 gridInit1d(g1); // initialize 1d grid

17

18 printf("Grid is %d by %d cell.\n", SizeX, SizeY);
19 printf("Enter indices for first point in TF region: ");
20 scanf(" %d %d", &firstX, &firstY);
21 printf("Enter indices for last point in TF region: ");
22 scanf(" %d %d", &lastX, &lastY);
23

24 ezIncInit(g); // initialize source function

25

26 return;
27 }
28

29 void tfsfUpdate(Grid *g) {
30 int mm, nn;
31

32 // check if tfsfInit() has been called

33 if (firstX <= 0) {
34 fprintf(stderr,
35 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
36 " Boundary location must be set to positive value.\n");
37 exit(-1);
38 }
39

40 // correct Hy along left edge

41 mm = firstX - 1;
42 for (nn = firstY; nn <= lastY; nn++)
43 Hy(mm, nn) -= Chye(mm, nn) * Ez1G(g1, mm + 1);
44

45 // correct Hy along right edge

46 mm = lastX;
47 for (nn = firstY; nn <= lastY; nn++)

8.6. TMZ TFSF BOUNDARY EXAMPLE 213

48 Hy(mm, nn) += Chye(mm, nn) * Ez1G(g1, mm);
49

50 // correct Hx along the bottom

51 nn = firstY - 1;
52 for (mm = firstX; mm <= lastX; mm++)
53 Hx(mm, nn) += Chxe(mm, nn) * Ez1G(g1, mm);
54

55 // correct Hx along the top

56 nn = lastY;
57 for (mm = firstX; mm <= lastX; mm++)
58 Hx(mm, nn) -= Chxe(mm, nn) * Ez1G(g1, mm);
59

60 updateH2d(g1); // update 1D magnetic field

61 updateE2d(g1); // update 1D electric field

62 Ez1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node

63 TimeG(g1)++; // increment time in 1D grid

64

65 /* correct Ez adjacent to TFSF boundary */

66 // correct Ez field along left edge

67 mm = firstX;
68 for (nn = firstY; nn <= lastY; nn++)
69 Ez(mm, nn) -= Cezh(mm, nn) * Hy1G(g1, mm - 1);
70

71 // correct Ez field along right edge

72 mm = lastX;
73 for (nn = firstY; nn <= lastY; nn++)
74 Ez(mm, nn) += Cezh(mm, nn) * Hy1G(g1, mm);
75

76 // no need to correct Ez along top and bottom since

77 // incident Hx is zero

78

79 return;
80 }

The function tfsfUpdate(), which is called once per time-step, starts by ensuring that the

initialization function has been called. It then corrects Hy along the left and right edges and Hx

along the top and bottom edges. Then, in line 60, the magnetic field in the 1D grid is updated, then

the 1D electric field. Then the source is realized by hard-wiring the first electric-field node in the

1D grid to the source function (in this case a Ricker wavelet). This is followed by incrementing the

time-step in the 1D grid. Now that the 1D grid has been updated, starting in line 67, the electric

fields adjacent to the TFSF boundary are corrected. Throughout tfsfUpdate() any macro that

pertains to g1 must explicitly specify the Grid as an argument.

The function used to initialize the 1D grid is shown in Program 8.15. After inclusion of the

appropriate header files, NLOSS is defined to be 20. The 1D grid is terminated with a lossy layer

rather than an ABC. NLOSS represents the number of nodes in this lossy region.

214 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Program 8.15 grid1dez.c Initialization function for the 1D auxilliary grid used by the TFSF

function to calculate the incident field.

1 #include <math.h>
2 #include "fdtd-macro-tmz.h"
3 #include "fdtd-alloc1.h"
4

5 #define NLOSS 20 // number of lossy cells at end of 1D grid

6 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer

7

8 void gridInit1d(Grid *g) {
9 double imp0 = 377.0, depthInLayer, lossFactor;

10 int mm;
11

12 SizeX += NLOSS; // size of domain

13 Type = oneDGrid; // set grid type

14

15 ALLOC_1D(g->hy, SizeX - 1, double);
16 ALLOC_1D(g->chyh, SizeX - 1, double);
17 ALLOC_1D(g->chye, SizeX - 1, double);
18 ALLOC_1D(g->ez, SizeX, double);
19 ALLOC_1D(g->ceze, SizeX, double);
20 ALLOC_1D(g->cezh, SizeX, double);
21

22 /* set the electric- and magnetic-field update coefficients */

23 for (mm = 0; mm < SizeX - 1; mm++) {
24 if (mm < SizeX - 1 - NLOSS) {
25 Ceze1(mm) = 1.0;
26 Cezh1(mm) = Cdtds * imp0;
27 Chyh1(mm) = 1.0;
28 Chye1(mm) = Cdtds / imp0;
29 } else {
30 depthInLayer = mm - (SizeX - 1 - NLOSS) + 0.5;
31 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
32 Ceze1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
33 Cezh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);
34 depthInLayer += 0.5;
35 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
36 Chyh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
37 Chye1(mm) = Cdtds / imp0 / (1.0 + lossFactor);
38 }
39 }
40

41 return;
42 }

8.6. TMZ TFSF BOUNDARY EXAMPLE 215

Recall that in tfsfInit() the values from the 2D grid were copied to the 1D grid (ref. line

15 of Program 8.14). Thus at the start of this function the value of SizeX is set to that of the 2D

grid. (The value of SizeY is also set to that of the 2D grid, but this value is ignored in the context

of a 1D grid.) In line 12 the size is increased by the number of nodes in the lossy layer. This is the

final size of the 1D grid: 20 cells greater than the x dimension of the 2D grid.

The grid type is specified as being a oneDGrid in line 13. (There is no need to set the Courant

number since that was copied from the 2D grid.) This is followed by memory allocation for the

various arrays in lines 15 to 20.

The update-equation coefficients are set by the for-loop that begins on line 23. (The final

electric-field node does not have its coefficient set as it will not be updated.) The region of the

1D grid corresponding to the width of the 2D grid is set to free space. Recalling the discussion of

Sec. 3.12, the remainder of the grid is set to a lossy layer where the electric and magnetic loss are

matched so that the characteristic impedance remains that of free space. However, unlike in Sec.

3.12, here the amount of loss is small at the start of the layer and grows towards the end of the

grid: The loss increases quadratically as one approaches the end of the grid. The maximum “loss

factor” (which corresponds to σ∆t/2ǫ in the electric-field update equations or σm∆t/2µ in the

magnetic-field update equations) is set by the #define statement on line 6 to 0.35. By gradually

ramping up the loss, the reflections associated with having an abrupt change in material constants

can be greatly reduced. Further note that although the loss factor associated with the electric and

magnetic fields are matches, because the electric and magnetic fields are spatially offset, the loss

factor that pertains at electric and magnetic field nodes differ even when they have the same spatial

index. The loss factor is based on the variable depthInLayer which represents how deep a

particular node is within the lossy layer. The greater the depth, the greater the loss.

Finally, the file abctmz.c is shown in Program 8.16. There are four arrays used to store the

old values of field needed by the ABC—one array for each side of the grid. For each node along

the edge of the grid, six values must be stored. Thus the arrays that store values along the left

and right sides have a total of 6× SizeY elements while the arrays that store values along the top

and bottom have 6× SizeX elements. Starting on line 17 four macros are defined that simplify

accessing the elements of these arrays. The macros take three arguments. One arguments specifies

displacement along the edge of the grid. Another specifies the displacement into the interior. The

third argument specifies the number of steps back in time.

Program 8.16 abctmz.c Function to apply a second-order ABC to a TMz grid.

1 /* Second-order ABC for TMz grid. */

2 #include <math.h>
3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tmz.h"
5

6 /* Define macros for arrays that store the previous values of the

7 * fields. For each one of these arrays the three arguments are as

8 * follows:

9 *

10 * first argument: spatial displacement from the boundary

216 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

11 * second argument: displacement back in time

12 * third argument: distance from either the bottom (if EzLeft or

13 * EzRight) or left (if EzTop or EzBottom) side

14 * of grid

15 *

16 */

17 #define EzLeft(M, Q, N) ezLeft[(N) * 6 + (Q) * 3 + (M)]
18 #define EzRight(M, Q, N) ezRight[(N) * 6 + (Q) * 3 + (M)]
19 #define EzTop(N, Q, M) ezTop[(M) * 6 + (Q) * 3 + (N)]
20 #define EzBottom(N, Q, M) ezBottom[(M) * 6 + (Q) * 3 + (N)]
21

22 static int initDone = 0;
23 static double coef0, coef1, coef2;
24 static double *ezLeft, *ezRight, *ezTop, *ezBottom;
25

26 void abcInit(Grid *g) {
27 double temp1, temp2;
28

29 initDone = 1;
30

31 /* allocate memory for ABC arrays */

32 ALLOC_1D(ezLeft, SizeY * 6, double);
33 ALLOC_1D(ezRight, SizeY * 6, double);
34 ALLOC_1D(ezTop, SizeX * 6, double);
35 ALLOC_1D(ezBottom, SizeX * 6, double);
36

37 /* calculate ABC coefficients */

38 temp1 = sqrt(Cezh(0, 0) * Chye(0, 0));
39 temp2 = 1.0 / temp1 + 2.0 + temp1;
40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
43

44 return;
45 }
46

47 void abc(Grid *g)
48 {
49 int mm, nn;
50

51 /* ABC at left side of grid */

52 for (nn = 0; nn < SizeY; nn++) {
53 Ez(0, nn) = coef0 * (Ez(2, nn) + EzLeft(0, 1, nn))
54 + coef1 * (EzLeft(0, 0, nn) + EzLeft(2, 0, nn)
55 - Ez(1, nn) - EzLeft(1, 1, nn))
56 + coef2 * EzLeft(1, 0, nn) - EzLeft(2, 1, nn);
57

8.6. TMZ TFSF BOUNDARY EXAMPLE 217

58 /* memorize old fields */

59 for (mm = 0; mm < 3; mm++) {
60 EzLeft(mm, 1, nn) = EzLeft(mm, 0, nn);
61 EzLeft(mm, 0, nn) = Ez(mm, nn);
62 }
63 }
64

65 /* ABC at right side of grid */

66 for (nn = 0; nn < SizeY; nn++) {
67 Ez(SizeX - 1, nn) = coef0 * (Ez(SizeX - 3, nn) + EzRight(0, 1, nn))
68 + coef1 * (EzRight(0, 0, nn) + EzRight(2, 0, nn)
69 - Ez(SizeX - 2, nn) - EzRight(1, 1, nn))
70 + coef2 * EzRight(1, 0, nn) - EzRight(2, 1, nn);
71

72 /* memorize old fields */

73 for (mm = 0; mm < 3; mm++) {
74 EzRight(mm, 1, nn) = EzRight(mm, 0, nn);
75 EzRight(mm, 0, nn) = Ez(SizeX - 1 - mm, nn);
76 }
77 }
78

79 /* ABC at bottom of grid */

80 for (mm = 0; mm < SizeX; mm++) {
81 Ez(mm, 0) = coef0 * (Ez(mm, 2) + EzBottom(0, 1, mm))
82 + coef1 * (EzBottom(0, 0, mm) + EzBottom(2, 0, mm)
83 - Ez(mm, 1) - EzBottom(1, 1, mm))
84 + coef2 * EzBottom(1, 0, mm) - EzBottom(2, 1, mm);
85

86 /* memorize old fields */

87 for (nn = 0; nn < 3; nn++) {
88 EzBottom(nn, 1, mm) = EzBottom(nn, 0, mm);
89 EzBottom(nn, 0, mm) = Ez(mm, nn);
90 }
91 }
92

93 /* ABC at top of grid */

94 for (mm = 0; mm < SizeX; mm++) {
95 Ez(mm, SizeY - 1) = coef0 * (Ez(mm, SizeY - 3) + EzTop(0, 1, mm))
96 + coef1 * (EzTop(0, 0, mm) + EzTop(2, 0, mm)
97 - Ez(mm, SizeY - 2) - EzTop(1, 1, mm))
98 + coef2 * EzTop(1, 0, mm) - EzTop(2, 1, mm);
99

100 /* memorize old fields */

101 for (nn = 0; nn < 3; nn++) {
102 EzTop(nn, 1, mm) = EzTop(nn, 0, mm);
103 EzTop(nn, 0, mm) = Ez(mm, SizeY - 1 - nn);
104 }

218 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

105 }
106

107 return;
108 }

The initialization function starting on line 26 allocates space for the arrays and calculates the

coefficients used by the ABC. It is assumed the grid is uniform along the edge and the coefficients

are calculated based on the parameters that pertain at the first node in the grid (as indicated by the

statements starting on line 38).

The abc() function, which starts on line 47 and is called once per time step, systematically

applies the ABC to each node along the edge of the grid. After the ABC is applied to an edge, the

“old” stored values are updated.

8.7 TEz Polarization

In TEz polarization the non-zero fields areEx, Ey, andHz, i.e., the electric field is transverse to the

z direction. The fields may vary in the x and y directions but are invariant in z. These fields, and

the corresponding governing equations, are completely decoupled from those of TMz polarization.

The governing equations are

σEx + ǫ
∂Ex
∂t

=
∂Hz

∂y
, (8.19)

σEy + ǫ
∂Ey
∂t

= −∂Hz

∂x
, (8.20)

−σmHz − µ
∂Hz

∂t
=

∂Ey
∂x

− ∂Ex
∂y

. (8.21)

As usual, space-time is discretized so that (8.19)–(8.21) can be expressed in terms of finite-

differences. From these difference equations the future fields can be expressed in terms of past

fields. The following notation will be used:

Ex(x, y, t) = Ex(m∆x, n∆y, q∆t) = Eq
x[m,n] , (8.22)

Ey(x, y, t) = Ey(m∆x, n∆y, q∆t) = Eq
y [m,n] (8.23)

Hz(x, y, t) = Hz(m∆x, n∆y, q∆t) = Hq
z [m,n] . (8.24)

As before the indices m, n, and q specify the step in the x, y, and t “directions.”

A suitable arrangement of nodes in shown in Fig. 8.9. The triangularly shaped dashed lines in

the lower left of the grid enclose nodes which would have the same indices in a computer program.

Note that the grid is terminated such that there are tangential electric field nodes adjacent to

the boundary. (When it comes to the application of ABC’s, these are the nodes to which the ABC

would be applied.) When we say a TEz grid has dimensions M×N , the arrays are dimensioned as

follows: Ex is (M−1)×N , Ey isM×(N−1), andHz is (M−1)×(N−1). Therefore, although

the grid is described as M ×N , no array actually has these dimensions! Each magnetic-field node

has four adjacent electric-field nodes that “swirl” about it. One can think of these four nodes as

8.7. TEZ POLARIZATION 219

∆x

∆y

same
indices

same
indices

same
indices

same
indices

same
indices

Hz(m,n)y

xz

Ey(m,n)

Ex(m,n)

Hz(m+1/2,n+1/2)

Ey(m,n+1/2)

Ex(m+1/2,n)

y

xz

Figure 8.9: Spatial arrangement of electric- and magnetic-field nodes for TEz polarization. The

magnetic-field nodes are shown as squares and the electric-field nodes are circles with a line that

indicates the orientation of the field component. The somewhat triangularly shaped dashed lines

indicate groupings of nodes which have the same array indices. This grouping is repeated through-

out the grid. However, at the top of the grid the “group” only contains an Ex node and on the right

side of the grid the group only contains an Ey node. The diagram at the bottom left of the figure

indicates nodes with their offsets given explicitly in the spatial arguments whereas the diagram at

the bottom right indicates how the same nodes would be specified in a computer program where

the offsets are understood implicitly.

220 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Hz(m+1/2,n+1/2)

Ey(m,n+1/2)

Ex(m+1/2,n)

y

xz

Ez(m,n)

Hy(m+1/2,n)

Hx(m,n+1/2)

same
indices

same
indices

same
indices

same
indices

same
indices

Figure 8.10: Superposition of a TMz and TEz grid. The symbols used for the nodes is as be-

fore. The dashed boxes encloses nodes which have the same indices. Although this is nominally

identified as an M ×N grid, only the Ez array has M ×N nodes.

defining a square with the magnetic field at the center of the square (if the grid is not uniform, the

square becomes a rectangle). An M × N grid would consist of (M − 1) × (N − 1) complete

squares.

The way in which the TEz arrays are dimensioned may seem odd but it is done with an eye

toward having a consistent grid in three dimensions. As an indication of where we will ultimately

end up, we can overlay a TMz and TEz grid as shown in Fig. 8.10. As will be shown in the

discussion of 3D grids, a 3D grid is essentially layers of TMz and TEz grids which are offset from

each other in the z direction. The update equations of these offset grids will have to be modified to

account for variations in the z directions. This modification will provide the coupling between the

TMz and TEz grids which is lacking in 2D.

Given the governing equations (8.19)–(8.21) and the arrangement of nodes shown in Fig. 8.9,

the Hz update equation is

H
q+ 1

2
z

[

m+
1

2
, n+

1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
z

[

m+
1

2
, n+

1

2

]

− 1

1 + σm∆t

2ǫ

(
∆t

ǫ∆x

{

Eq
y

[

m+ 1, n+
1

2

]

− Eq
y

[

m,n+
1

2

]}

− ∆t

µ∆y

{

Eq
x

[

m+
1

2
, n+ 1

]

− Eq
x

[

m+
1

2
, n

]})

.(8.25)

8.7. TEZ POLARIZATION 221

The electric-field update equations are

Eq+1
x

[

m+
1

2
, n

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
x

[

m+
1

2
, n

]

+
1

1 + σ∆t

2ǫ

∆t

ǫ∆y

(

H
q+ 1

2
z

[

m+
1

2
, n+

1

2

]

−H
q+ 1

2
z

[

m+
1

2
, n− 1

2

])

, (8.26)

Eq+1
y

[

m,n+
1

2

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
y

[

m,n+
1

2

]

− 1

1 + σ∆t

2ǫ

∆t

ǫ∆x

(

H
q+ 1

2
z

[

m+
1

2
, n+

1

2

]

−H
q+ 1

2
z

[

m− 1

2
, n+

1

2

])

. (8.27)

Similar to the TMz case, we assume a uniform grid and define the following quantities

Chxh(m+ 1/2, n+ 1/2) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
(m+1/2)∆x,(n+1/2)∆y

, (8.28)

Chxe(m+ 1/2, n+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
(m+1/2)∆x,(n+1/2)∆y

, (8.29)

Cexe(m+ 1/2, n) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y

, (8.30)

Cexh(m+ 1/2, n) =
1

1 + σm∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y

, (8.31)

Ceye(m,n+ 1/2) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y

, (8.32)

Ceyh(m,n+ 1/2) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y

. (8.33)

By discarding the explicit offsets of one-half (but leaving them as implicitly understood) the update

equations can be written in a form suitable for implementation in a computer. Because of the

arrangement of the nodes, this “discarding” implies that sometimes the one-half truly is discarded

and sometimes it should be replaced with unity. The distinction is whether or not the one-half

indicates the nodes on the right side of the update equation are within the same grouping of cells

as the node on the left side of the equation. If they are, the one-half is truly discarded. If they are

not, the node on the right side of the update equation must have its index reflect which group of

cells it is within relative to the node on the left side of the equation. The resulting equations are

Hz(m, n) = Chzh(m, n) * Hz(m, n) +
Chze(m, n) * ((Ex(m, n + 1) - Ex(m, n)) -

(Ey(m + 1, n) - Ey(m, n)));
Ex(m, n) = Cexe(m, n) * Ex(m, n) +

Cexh(m, n) * (Hz(m, n) - Hz(m, n - 1));

222 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Total-Field Region

Scattered-Field Region

indices specifying
start of TF region

indices specifying
end of TF region

Figure 8.11: TFSF boundary in a TEz grid. The rounded boxes indicate the nodes that have a

neighboring node on the other side of the boundary and hence have to have their update equations

corrected.

Ey(m, n) = Ceye(m, n) * Ey(m, n) -
Ceyh(m, n) * (Hz(m, n) - Hz(m - 1, n));

A TFSF boundary can be incorporated in a TEz grid. Conceptually the implementation is the

same as has been shown in 1D and in the TMz grid. Nodes that are tangential to the boundary will

have a neighboring node on the other side of the boundary. The incident field will have to be either

added to or subtracted from that neighboring node to obtain consistent equations. A portion of a

TEz grid showing the TFSF boundary is shown in Fig. 8.11. We will specify the size of the TF

region as indicated in the figure. Indices that specify the start of the TF region correspond to the

first Ex and Ey nodes which are in the TF region. Referring to Figs. 8.4 and 8.10, these indices

would also correspond to the first Ez node in the TF region. The indices which specify the end

of the TF region correspond to Ex and Ey nodes which are actually in the SF region. These two

nodes, as shown in Fig. 8.10, are not tangential to the TFSF boundary and hence do to have to be

corrected. However, note that the Ez node in the overlain grid that has these indices does lie in the

TF region (and does, when dealing with a 3D or TMz grid, have to be corrected to account for the

presence of the boundary).

8.8 PEC’s in TEz and TMz Simulations

When modeling a PEC in a TMz grid, if an Ez node falls within the PEC, it is set to zero. Figure

8.12 shows a portion of a TMz grid that depicts how Ez would set to zero. The curved boundary

8.8. PEC’S IN TEZ AND TMZ SIMULATIONS 223

Figure 8.12: TMz grid with a PEC object. The PEC is assumed to exist below and to the right of

the curved boundary. The PEC is realized be setting to zero the Ez nodes that fall within the PEC.

The nodes that would be set to zero are surrounded by gray boxes.

is the surface of the PEC and it is assumed that the PEC extends down and to the right of this

boundary. The Ez nodes which would be set to zero are indicated with gray boxes. Although the

goal is to model a continuously varying boundary, the discrete nature of the FDTD grid gives rise

to a “staircased” approximation of the surface.

When we say a node is “set to zero” this could mean various things. For example, it may me

that the field is initially zero and then never updated. It could mean that it is updated, but the

update coefficients are set to zero. Or, it could even mean that the field is updated with non-zero

coefficients, but then additional code is used to set the field to zero each time-step. The means by

which a field is set to zero is not particularly important to us right now.

A thin PEC plate can be modeled in a TMz grid by setting to zero nodes along a vertical or

horizontal line. If the physical plate being modeled is not aligned with the grid, one would have

to zero nodes in a manner that approximates the true slope of the plate. Again, this would yield a

staircased approximate to the true surface. (One may have to be careful to ensure that there are no

“gaps” in the model of a thin PEC that is not aligned with the grid. Fields should only be able to

get from one side of the PEC to the other by propagating around the ends of the PEC.)

In a TEz grid, the realization of a PEC is slightly more complicated. For a PEC object which

224 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

Figure 8.13: TEz grid with a PEC object. The PEC is assumed to exist below and to the right of the

curved boundary. The PEC is realized be setting to zero any electric field which has a neighboring

Hz node within the PEC. The nodes that would be set to zero are surrounded by gray rectangles.

has a specified cross section, one should not merely set to zero the electric-field nodes that fall

within the boundary of the PEC (as was done in the TEz case). Instead, one should consider the

PEC as consisting of a collection of patches of metal. If an Hz node falls within the PEC, then four

surrounding electric-field nodes should be set to zero. Thus, if an Hz node is in the PEC we fill the

square surrounding that node with PEC and this causes the four surrounding electric field nodes to

be zero. The TEz representation of a PEC object is depicted in Fig. 8.13. The object is the same

as shown in Fig. 8.12. In both figures the curved boundary is a portion of a circle that is center on

what would correspond to the location of an Ez node (regardless of whether or not an Ez node is

actually present). The nodes that are set to zero are enclosed in gray rectangles.

A horizontal PEC plate would be implemented by zeroing a horizontal line of Ex nodes while

a vertical plate would be realized by zeroing a vertical line of Ey nodes. A tilted plate would be

realized as a combination of zeroed Ex and Ey nodes.

For both TEz and TMz grids, all the magnetic fields are updated in the usual way. Magnetic

fields are oblivious to the presence of PEC’s.

8.9. TEZ EXAMPLE 225

8.9 TEz Example

In this section we present the computer code to model a circular PEC scatterer in a TEz grid. The

scatterer is illuminated by a pulsed plane wave that is introduced via a TFSF boundary. We will

use a grid that is nominally 92 by 82 (keeping in mind that for TEz polarization none of the field

arrays will actually have these dimensions). The code is organized in essentially the same way as

was the TMz code presented in Sec. 8.6.

The PEC scatterer is assumed to have a radius of 12 cells and be centered on an Hz node. The

indices of the center are (45, 40). The PEC is realized by checking if an Hz node is within the

circle (specifically, if the distance from the center to the node is less than the radius). As we will

see, if an Hz is within the circle, the four surrounding electric-field nodes are set to zero by setting

the corresponding update coefficients to zero.

Program 8.17 contains the main() function. Other than the difference of one header file, this

program is identical to the TMz code presented in Program 8.12. However, despite similar names,

the functions that are called here differ from those used by Program 8.12—different files are linked

together for the different simulations.

Program 8.17 tezdemo.c The main() function for a simulation involving a TEz grid.

1 /* TEz simulation with a TFSF boundary and a second-order ABC. */

2

3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tez.h"
5 #include "fdtd-proto2.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid

12 gridInit(g); // initialize 2D grid

13

14 abcInit(g); // initialize ABC

15 tfsfInit(g); // initialize TFSF boundary

16 snapshotInit2d(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH2d(g); // update magnetic fields

21 tfsfUpdate(g); // apply TFSF boundary

22 updateE2d(g); // update electric fields

23 abc(g); // apply ABC

24 snapshot2d(g); // take a snapshot (if appropriate)

25 } // end of time-stepping

26

27 return 0;

226 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

28 }

The code to construct the TEz grid is shown in Program 8.18, i.e., the code to set the elements

of the Grid pointer g. The simulation is run at the Courant limit of 1/
√

2 as shown in line 16.

Between lines 31 and 41 the update coefficients for all the electric field nodes are set to that of free

space. Then, starting at line 49, each Hz node is checked to see if it is within the PEC scatterer. If

it is, the coefficients for the surrounding nodes are set to zero. Starting at line 71 all the magnetic-

field coefficients are set to that of free space. There is no need to change these coefficients to

account for the PEC—the PEC is realized solely by dictating the behavior of the electric field.

Program 8.18 gridtezpec.c Function to initialize a TEz grid. A circular PEC scatterer is

present.

1 #include "fdtd-macro-tez.h"
2 #include "fdtd-alloc1.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn;
8

9 /* terms for the PEC scatterer */

10 double rad, r2, xLocation, yLocation, xCenter, yCenter;
11

12 Type = teZGrid;
13 SizeX = 92; // size of domain

14 SizeY = 82;
15 MaxTime = 300; // duration of simulation

16 Cdtds = 1.0 / sqrt(2.0); // Courant number

17

18 ALLOC_2D(g->hz, SizeX - 1, SizeY - 1, double);
19 ALLOC_2D(g->chzh, SizeX - 1, SizeY - 1, double);
20 ALLOC_2D(g->chze, SizeX - 1, SizeY - 1, double);
21

22 ALLOC_2D(g->ex, SizeX - 1, SizeY, double);
23 ALLOC_2D(g->cexh, SizeX - 1, SizeY, double);
24 ALLOC_2D(g->cexe, SizeX - 1, SizeY, double);
25

26 ALLOC_2D(g->ey, SizeX, SizeY - 1, double);
27 ALLOC_2D(g->ceye, SizeX, SizeY - 1, double);
28 ALLOC_2D(g->ceyh, SizeX, SizeY - 1, double);
29

30 /* set electric-field update coefficients */

31 for (mm = 0; mm < SizeX - 1; mm++)
32 for (nn = 0; nn < SizeY; nn++) {

8.9. TEZ EXAMPLE 227

33 Cexe(mm, nn) = 1.0;
34 Cexh(mm, nn) = Cdtds * imp0;
35 }
36

37 for (mm = 0; mm < SizeX; mm++)
38 for (nn = 0; nn < SizeY - 1; nn++) {
39 Ceye(mm, nn) = 1.0;
40 Ceyh(mm, nn) = Cdtds * imp0;
41 }
42

43 /* Set to zero nodes associated with PEC scatterer.

44 * Circular scatterer assumed centered on Hz node

45 * at (xCenter, yCenter). If an Hz node is less than

46 * the radius away from this node, set to zero the

47 * four electric fields that surround that node.

48 */

49 rad = 12; // radius of circle

50 xCenter = SizeX / 2;
51 yCenter = SizeY / 2;
52 r2 = rad * rad; // square of radius

53 for (mm = 1; mm < SizeX - 1; mm++) {
54 xLocation = mm - xCenter;
55 for (nn = 1; nn < SizeY - 1; nn++) {
56 yLocation = nn - yCenter;
57 if (xLocation * xLocation + yLocation * yLocation < r2) {
58 Cexe(mm, nn) = 0.0;
59 Cexh(mm, nn) = 0.0;
60 Cexe(mm, nn + 1) = 0.0;
61 Cexh(mm, nn + 1) = 0.0;
62 Ceye(mm + 1, nn) = 0.0;
63 Ceyh(mm + 1, nn) = 0.0;
64 Ceye(mm, nn) = 0.0;
65 Ceyh(mm, nn) = 0.0;
66 }
67 }
68 }
69

70 /* set magnetic-field update coefficients */

71 for (mm = 0; mm < SizeX - 1; mm++)
72 for (nn = 0; nn < SizeY - 1; nn++) {
73 Chzh(mm, nn) = 1.0;
74 Chze(mm, nn) = Cdtds / imp0;
75 }
76

77 return;
78 }

228 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

The header file fdtd-macro-tez.h that defines the macros used in the TEz simulations is

shown in Program 8.19. The header files that define the function prototypes (fdtd-proto2.h),

the allocation macros (fdtd-alloc1.h), and the Grid structure (fdtd-grid1.h) are un-

changed from before and hence are not repeated here (refer to Programs 8.13, 8.4, and 8.3, respec-

tively).

Program 8.19 fdtd-macro-tez.h Macros used for TEz grids.

1 #ifndef _FDTD_MACRO_TEZ_H
2 #define _FDTD_MACRO_TEZ_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */

7 /* one-dimensional grid */

8 #define Hz1G(G, M) G->hz[M]
9 #define Chzh1G(G, M) G->chzh[M]

10 #define Chze1G(G, M) G->chze[M]
11

12 #define Ey1G(G, M) G->ey[M]
13 #define Ceye1G(G, M) G->ceye[M]
14 #define Ceyh1G(G, M) G->ceyh[M]
15

16 /* TEz grid */

17 #define HzG(G, M, N) G->hz[(M) * (SizeYG(G) - 1) + (N)]
18 #define ChzhG(G, M, N) G->chzh[(M) * (SizeYG(G) - 1) + (N)]
19 #define ChzeG(G, M, N) G->chze[(M) * (SizeYG(G) - 1) + (N)]
20

21 #define ExG(G, M, N) G->ex[(M) * SizeYG(G) + (N)]
22 #define CexeG(G, M, N) G->cexe[(M) * SizeYG(G) + (N)]
23 #define CexhG(G, M, N) G->cexh[(M) * SizeYG(G) + (N)]
24

25 #define EyG(G, M, N) G->ey[(M) * (SizeYG(G) - 1) + (N)]
26 #define CeyeG(G, M, N) G->ceye[(M) * (SizeYG(G) - 1) + (N)]
27 #define CeyhG(G, M, N) G->ceyh[(M) * (SizeYG(G) - 1) + (N)]
28

29 #define SizeXG(G) G->sizeX
30 #define SizeYG(G) G->sizeY
31 #define SizeZG(G) G->sizeZ
32 #define TimeG(G) G->time
33 #define MaxTimeG(G) G->maxTime
34 #define CdtdsG(G) G->cdtds
35 #define TypeG(G) G->type
36

37 /* macros that assume the "Grid" is "g" */

38 /* one-dimensional grid */

8.9. TEZ EXAMPLE 229

39 #define Hz1(M) Hz1G(g, M)
40 #define Chzh1(M) Chzh1G(g, M)
41 #define Chze1(M) Chze1G(g, M)
42

43 #define Ey1(M) Ey1G(g, M)
44 #define Ceye1(M) Ceye1G(g, M)
45 #define Ceyh1(M) Ceyh1G(g, M)
46

47 /* TEz grid */

48 #define Hz(M, N) HzG(g, M, N)
49 #define Chzh(M, N) ChzhG(g, M, N)
50 #define Chze(M, N) ChzeG(g, M, N)
51

52 #define Ex(M, N) ExG(g, M, N)
53 #define Cexh(M, N) CexhG(g, M, N)
54 #define Cexe(M, N) CexeG(g, M, N)
55

56 #define Ey(M, N) EyG(g, M, N)
57 #define Ceye(M, N) CeyeG(g, M, N)
58 #define Ceyh(M, N) CeyhG(g, M, N)
59

60 #define SizeX SizeXG(g)
61 #define SizeY SizeYG(g)
62 #define SizeZ SizeZG(g)
63 #define Time TimeG(g)
64 #define MaxTime MaxTimeG(g)
65 #define Cdtds CdtdsG(g)
66 #define Type TypeG(g)
67

68 #endif /* matches #ifndef _FDTD_MACRO_TEZ_H */

The functions to update the fields are shown in Program 8.20. These functions can update

fields in either one- or two-dimensional grid. If the grid type is oneDGrid, here it is assumed

the non-zero fields are Ey and Hz. If that is not the case, it is assume the grid is a TEz grid with

non-zero fields Ex, Ey, and Hz. As has been the case in the past the electric field updates, starting

at line 37, update all the nodes except the nodes at the edge of the grid. However, since all the

magnetic-field nodes have all their neighbors, as shown starting on line 15, all the magnetic-field

nodes in the grid are updated.

Program 8.20 updatetez.c: Functions to update fields in a TEz grid.

1 #include "fdtd-macro-tez.h"
2

3 /* update magnetic field */

4 void updateH2d(Grid *g) {

230 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

5 int mm, nn;
6

7 if (Type == oneDGrid) {
8

9 for (mm = 0; mm < SizeX - 1; mm++)
10 Hz1(mm) = Chzh1(mm) * Hz1(mm)
11 - Chze1(mm) * (Ey1(mm + 1) - Ey1(mm));
12

13 } else {
14

15 for (mm = 0; mm < SizeX - 1; mm++)
16 for (nn = 0; nn < SizeY - 1; nn++)
17 Hz(mm, nn) = Chzh(mm, nn) * Hz(mm, nn) +
18 Chze(mm, nn) * ((Ex(mm, nn + 1) - Ex(mm, nn))
19 - (Ey(mm + 1, nn) - Ey(mm, nn)));
20 }
21

22 return;
23 }
24

25 /* update electric field */

26 void updateE2d(Grid *g) {
27 int mm, nn;
28

29 if (Type == oneDGrid) {
30

31 for (mm = 1; mm < SizeX - 1; mm++)
32 Ey1(mm) = Ceye1(mm) * Ey1(mm)
33 - Ceyh1(mm) * (Hz1(mm) - Hz1(mm - 1));
34

35 } else {
36

37 for (mm = 0; mm < SizeX - 1; mm++)
38 for (nn = 1; nn < SizeY - 1; nn++)
39 Ex(mm, nn) = Cexe(mm, nn) * Ex(mm, nn) +
40 Cexh(mm, nn) * (Hz(mm, nn) - Hz(mm, nn - 1));
41

42 for (mm = 1; mm < SizeX - 1; mm++)
43 for (nn = 0; nn < SizeY - 1; nn++)
44 Ey(mm, nn) = Ceye(mm, nn) * Ey(mm, nn) -
45 Ceyh(mm, nn) * (Hz(mm, nn) - Hz(mm - 1, nn));
46 }
47

48 return;
49 }

The second-order absorbing boundary condition is realized with the code in the file abctez.c

8.9. TEZ EXAMPLE 231

which is shown in Program 8.21. Because of the way the grid is constructed, the ABC is applied

to Ey nodes along the left and right side of the computational domain and to Ex nodes along the

top and bottom.

Program 8.21 abctez.c: Contents of file that implements the second-order absorbing bound-

ary condition for the TEz grid.

1 /* Second-order ABC for TEz grid. */

2 #include <math.h>
3 #include "fdtd-alloc1.h"
4 #include "fdtd-macro-tez.h"
5

6 /* Define macros for arrays that store the previous values of the

7 * fields. For each one of these arrays the three arguments are as

8 * follows:

9 *

10 * first argument: spatial displacement from the boundary

11 * second argument: displacement back in time

12 * third argument: distance from either the bottom (if EyLeft or

13 * EyRight) or left (if ExTop or ExBottom) side

14 * of grid

15 *

16 */

17 #define EyLeft(M, Q, N) eyLeft[(N) * 6 + (Q) * 3 + (M)]
18 #define EyRight(M, Q, N) eyRight[(N) * 6 + (Q) * 3 + (M)]
19 #define ExTop(N, Q, M) exTop[(M) * 6 + (Q) * 3 + (N)]
20 #define ExBottom(N, Q, M) exBottom[(M) * 6 + (Q) * 3 + (N)]
21

22 static int initDone = 0;
23 static double coef0, coef1, coef2;
24 static double *eyLeft, *eyRight, *exTop, *exBottom;
25

26 void abcInit(Grid *g) {
27 double temp1, temp2;
28

29 initDone = 1;
30

31 /* allocate memory for ABC arrays */

32 ALLOC_1D(eyLeft, (SizeY - 1) * 6, double);
33 ALLOC_1D(eyRight, (SizeY - 1) * 6, double);
34 ALLOC_1D(exTop, (SizeX - 1) * 6, double);
35 ALLOC_1D(exBottom, (SizeX - 1) * 6, double);
36

37 /* calculate ABC coefficients */

38 temp1 = sqrt(Cexh(0, 0) * Chze(0, 0));
39 temp2 = 1.0 / temp1 + 2.0 + temp1;

232 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

40 coef0 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
41 coef1 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
42 coef2 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
43

44 return;
45 }
46

47 void abc(Grid *g)
48 {
49 int mm, nn;
50

51 /* ABC at left side of grid */

52 for (nn = 0; nn < SizeY - 1; nn++) {
53 Ey(0, nn) = coef0 * (Ey(2, nn) + EyLeft(0, 1, nn))
54 + coef1 * (EyLeft(0, 0, nn) + EyLeft(2, 0, nn)
55 - Ey(1, nn) - EyLeft(1, 1, nn))
56 + coef2 * EyLeft(1, 0, nn) - EyLeft(2, 1, nn);
57

58 /* memorize old fields */

59 for (mm = 0; mm < 3; mm++) {
60 EyLeft(mm, 1, nn) = EyLeft(mm, 0, nn);
61 EyLeft(mm, 0, nn) = Ey(mm, nn);
62 }
63 }
64

65 /* ABC at right side of grid */

66 for (nn = 0; nn < SizeY - 1; nn++) {
67 Ey(SizeX - 1, nn) = coef0 * (Ey(SizeX - 3, nn) + EyRight(0, 1, nn))
68 + coef1 * (EyRight(0, 0, nn) + EyRight(2, 0, nn)
69 - Ey(SizeX - 2, nn) - EyRight(1, 1, nn))
70 + coef2 * EyRight(1, 0, nn) - EyRight(2, 1, nn);
71

72 /* memorize old fields */

73 for (mm = 0; mm < 3; mm++) {
74 EyRight(mm, 1, nn) = EyRight(mm, 0, nn);
75 EyRight(mm, 0, nn) = Ey(SizeX - 1 - mm, nn);
76 }
77 }
78

79 /* ABC at bottom of grid */

80 for (mm = 0; mm < SizeX - 1; mm++) {
81 Ex(mm, 0) = coef0 * (Ex(mm, 2) + ExBottom(0, 1, mm))
82 + coef1 * (ExBottom(0, 0, mm) + ExBottom(2, 0, mm)
83 - Ex(mm, 1) - ExBottom(1, 1, mm))
84 + coef2 * ExBottom(1, 0, mm) - ExBottom(2, 1, mm);
85

86 /* memorize old fields */

8.9. TEZ EXAMPLE 233

87 for (nn = 0; nn < 3; nn++) {
88 ExBottom(nn, 1, mm) = ExBottom(nn, 0, mm);
89 ExBottom(nn, 0, mm) = Ex(mm, nn);
90 }
91 }
92

93 /* ABC at top of grid */

94 for (mm = 0; mm < SizeX - 1; mm++) {
95 Ex(mm, SizeY - 1) = coef0 * (Ex(mm, SizeY - 3) + ExTop(0, 1, mm))
96 + coef1 * (ExTop(0, 0, mm) + ExTop(2, 0, mm)
97 - Ex(mm, SizeY - 2) - ExTop(1, 1, mm))
98 + coef2 * ExTop(1, 0, mm) - ExTop(2, 1, mm);
99

100 /* memorize old fields */

101 for (nn = 0; nn < 3; nn++) {
102 ExTop(nn, 1, mm) = ExTop(nn, 0, mm);
103 ExTop(nn, 0, mm) = Ex(mm, SizeY - 1-nn);
104 }
105 }
106

107 return;
108 }

The contents of the file tfsftez.c are shown in Program 8.22. This closely follows the

TFSF code that was used for the TMz grid. Again, a 1D auxiliary grid is used to describe the

incident field. The 1D grid is available via in the Grid pointer g1 which is only visible to the

functions in this file. Space for the structure is allocated in line 16. In the following line the

contents of the 2D structure are copied to the 1D structure. This is done to set the size of the grid

and the Courant number. Then, in line 18, the function gridInit1d() is called to complete the

initialization of the 1D grid.

The function tfsfUpdate(), which starts on line 31, is called once per time-step. After

ensuring that the initialization function has been called, the magnetic fields adjacent to the TFSF

boundary are corrected. Following this, as shown starting on line 52, the magnetic field in the 1D

grid is updated, then the 1D electric field is updated, then the source function is applied to the first

node in the 1D grid, and finally the time-step of the 1D grid is incremented. Starting on line 58,

the electric fields in the 2D grid adjacent to the TFSF boundary are corrected.

The header file ezinctez.h differs from ezinc.h used in the TMz code only in that it in-

cludes fdtd-macro-tez.h instead of fdtd-macro-tmz.h. Hence it is not shown here nor

is the code used to realize the source function which is a Ricker wavelet (which is also essentially

unchanged from before).

Program 8.22 tfsftez.c: Implementation of a TFSF boundary for a TEz grid. The incident

field propagates in the x direction and an auxiliary 1D grid is used to compute the incident field.

234 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

1 /* TFSF implementation for a TEz grid. */

2

3 #include <string.h> // for memcpy

4 #include "fdtd-macro-tez.h"
5 #include "fdtd-proto2.h"
6 #include "fdtd-alloc1.h"
7 #include "ezinctez.h"
8

9 static int firstX = 0, firstY, // indices for first point in TF region

10 lastX, lastY; // indices for last point in TF region

11

12 static Grid *g1; // 1D auxilliary grid

13

14 void tfsfInit(Grid *g) {
15

16 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid

17 memcpy(g1, g, sizeof(Grid)); // copy information from 2D array

18 gridInit1d(g1); // initialize 1d grid

19

20 printf("Grid is %d by %d cell.\n", SizeX, SizeY);
21 printf("Enter indices for first point in TF region: ");
22 scanf(" %d %d", &firstX, &firstY);
23 printf("Enter indices for last point in TF region: ");
24 scanf(" %d %d", &lastX, &lastY);
25

26 ezIncInit(g); // initialize source function

27

28 return;
29 }
30

31 void tfsfUpdate(Grid *g) {
32 int mm, nn;
33

34 // check if tfsfInit() has been called

35 if (firstX <= 0) {
36 fprintf(stderr,
37 "tfsfUpdate: tfsfInit must be called before tfsfUpdate.\n"
38 " Boundary location must be set to positive value.\n");
39 exit(-1);
40 }
41

42 // correct Hz along left edge

43 mm = firstX - 1;
44 for (nn = firstY; nn < lastY; nn++)
45 Hz(mm, nn) += Chze(mm, nn) * Ey1G(g1, mm + 1);
46

47 // correct Hz along right edge

8.9. TEZ EXAMPLE 235

48 mm = lastX;
49 for (nn = firstY; nn < lastY; nn++)
50 Hz(mm, nn) -= Chze(mm, nn) * Ey1G(g1, mm);
51

52 updateH2d(g1); // update 1D magnetic field

53 updateE2d(g1); // update 1D electric field

54 Ey1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node

55 TimeG(g1)++; // increment time in 1D grid

56

57 // correct Ex along the bottom

58 nn = firstY;
59 for (mm = firstX; mm < lastX; mm++)
60 Ex(mm, nn) -= Cexh(mm, nn) * Hz1G(g1, mm);
61

62 // correct Ex along the top

63 nn = lastY;
64 for (mm = firstX; mm < lastX; mm++)
65 Ex(mm, nn) += Cexh(mm, nn) * Hz1G(g1, mm);
66

67 // correct Ey field along left edge

68 mm = firstX;
69 for (nn = firstY; nn < lastY; nn++)
70 Ey(mm, nn) += Ceyh(mm, nn) * Hz1G(g1, mm - 1);
71

72 // correct Ey field along right edge

73 mm = lastX;
74 for (nn = firstY; nn < lastY; nn++)
75 Ey(mm, nn) -= Ceyh(mm, nn) * Hz1G(g1, mm);
76

77 // no need to correct Ex along top and bottom since

78 // incident Ex is zero

79

80 return;
81 }

The function to initialize the 1D auxiliary grid is shown in Program 8.23. As was the case for

the TMz case, the grid is terminated on the right with a lossy layer that is 20 cells wide. The rest

of the grid corresponds to free space. (The first node in the grid is the hard-wired source node and

hence the left side of the grid does not need to be terminated.)

Program 8.23 grid1dhz.c: Initialization function used for the 1D auxiliary grid for the TEz

TFSF boundary.

1 /* Create a 1D grid suitable for an auxilliary grid used as part of

2 * the implementation of a TFSF boundary in a TEz simulations. */

236 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

3

4 #include <math.h>
5 #include "fdtd-macro-tez.h"
6 #include "fdtd-alloc1.h"
7

8 #define NLOSS 20 // number of lossy cells at end of 1D grid

9 #define MAX_LOSS 0.35 // maximum loss factor in lossy layer

10

11 void gridInit1d(Grid *g) {
12 double imp0 = 377.0, depthInLayer = 0.0, lossFactor;
13 int mm;
14

15 SizeX += NLOSS; // size of domain

16 Type = oneDGrid; // set grid type

17

18 ALLOC_1D(g->hz, SizeX - 1, double);
19 ALLOC_1D(g->chzh, SizeX - 1, double);
20 ALLOC_1D(g->chze, SizeX - 1, double);
21 ALLOC_1D(g->ey, SizeX, double);
22 ALLOC_1D(g->ceye, SizeX, double);
23 ALLOC_1D(g->ceyh, SizeX, double);
24

25 /* set electric-field update coefficients */

26 for (mm = 0; mm < SizeX - 1; mm++) {
27 if (mm < SizeX - 1 - NLOSS) {
28 Ceye1(mm) = 1.0;
29 Ceyh1(mm) = Cdtds * imp0;
30 Chzh1(mm) = 1.0;
31 Chze1(mm) = Cdtds / imp0;
32 } else {
33 depthInLayer += 0.5;
34 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
35 Ceye1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
36 Ceyh1(mm) = Cdtds * imp0 / (1.0 + lossFactor);
37 depthInLayer += 0.5;
38 lossFactor = MAX_LOSS * pow(depthInLayer / NLOSS, 2);
39 Chzh1(mm) = (1.0 - lossFactor) / (1.0 + lossFactor);
40 Chze1(mm) = Cdtds / imp0 / (1.0 + lossFactor);
41 }
42 }
43

44 return;
45 }

Figure 8.14 shows snapshots of the magnetic field throughout the computational domain at

three different times. The snapshot in Fig. 8.14(a) was taken after 60 time steps. The leading edge

of the incident pulse has just started to interact with the scatterer. No scattered fields are evident

8.9. TEZ EXAMPLE 237

in the SF region. The snapshot in Fig. 8.14(b) was taken after 100 time steps. The entire scatterer

is now visible and scattered fields have just started to enter the SF region. The final snapshot was

taken after 140 time steps.

To obtain these snapshots, the snapshot code of Program 8.11 has to be slightly modified. Since

we are now interested in obtaining Hz instead of Ez, the limits of the for-loops starting in 68 of

Program 8.11 would have to be changed to that which pertain to the Hz array. Furthermore, one

would have to change Ez(mm, nn) in line 70 to Hz(mm, nn). Because these changes are

minor, the modified version of the program is not shown.

238 CHAPTER 8. TWO-DIMENSIONAL FDTD SIMULATIONS

(a)

(b)

(c)

Figure 8.14: Pulsed TEz illumination of a circular scatter. Display of the Hz field at time-steps (a)

60, (b) 100 and (c) 140. The field has been normalized by 1/377 (i.e., the characteristic impedance

of free space) and is shown with three decades of logarithmic scaling. The incident field is a Ricker

wavelet discretized such that there are 30 points per wavelength at the most energetic frequency.

Chapter 9

Three-Dimensional FDTD

9.1 Introduction

With an understanding of the FDTD implementation of TEz and TMz grids, the additional steps

needed to implement a three-dimensional (3D) grid are almost trivial. A 3D grid can be viewed

as stacked layers of TEz and TMz grids which are offset a half spatial step in the z direction. The

update equations for the Hz and Ez nodes are nearly identical to those which have been given

already—the only difference is an additional index to specify the z location. The update equations

for the other field components require slight changes to account for variations in the z direction

(i.e., in the governing equations the partial derivative with respect to z is no longer zero).

We begin this chapter by discussing the implementation of 3D arrays in C. This is followed

by details concerning the arrangement of nodes in 3D and the associated update equations. The

chapter concludes with the code for an incremental dipole in a homogeneous space.

9.2 3D Arrays in C

For fields in a 3D space, it is, of course, natural to specify the location of a node using three indices

representing the displacement in the x, y, and z directions. However, as was done for 2D grids, we

will use a macro to translate the given indices into an offset into a 1D array. The memory associated

with the 1D array will be allocated dynamically and the amount of memory will be precisely what

is needed to store all the elements of the 3D “array.” (We will refer to the macro as a 3D array

since, other than the cleaner specification of the indices, its use in the code is indistinguishable

from a traditional 3D array.)

For 3D arrays, incrementing the third index by one changes the variable being specified to

the next consecutive variable in memory. Thinking of the third index as corresponding to the z
direction, this implies that nodes that are adjacent to each other in the z direction are also adjacent

to each other in memory. On the other hand, when the first or second index is incremented by one,

that will not correspond to the next variable in memory. When the second index is incremented,

one must move forward in memory an amount corresponding to the number of variables in the

third dimension. For example, if the array size in the third dimension was 32 elements, then

Lecture notes by John Schneider. fdtd-3d.tex

239

240 CHAPTER 9. THREE-DIMENSIONAL FDTD

Ez(0,0,0)

Ez(1,0,0)

Ez(2,0,0)

Ez(0,1,0)

Ez(1,1,0)

Ez(2,1,0)

Ez(0,2,0)

Ez(1,2,0)

Ez(2,2,0)

Ez(0,3,0)

Ez(1,3,0)

Ez(2,3,0)

Ez(0,0,1)

Ez(1,0,1)

Ez(2,0,1)

Ez(0,1,1)

Ez(1,1,1)

Ez(2,1,1)

Ez(0,2,1)

Ez(1,2,1)

Ez(2,2,1)

Ez(0,3,1)

Ez(1,3,1)

Ez(2,3,1)

Ez(0,0,2)

Ez(1,0,2)

Ez(2,0,2)

Ez(0,1,2)

Ez(1,1,2)

Ez(2,1,2)

Ez(0,2,2)

Ez(1,2,2)

Ez(2,2,2)

Ez(0,3,2)

Ez(1,3,2)

Ez(2,3,2)

n=0

m=0

n=3n=2n=1

m=1

m=2

p=0

p=2

p=1

y
x

z

Figure 9.1: Depiction of elements of an array with dimensions 3×4×3 in the x, y, and z directions,

respectively. The indices m, n, and p, are used to specify the x, y, and z locations, respectively.

The element at the “origin” has indices (0, 0, 0) and is shown in the upper left corner of the bottom

plane.

incrementing the second index by one would require that the offset in memory be advanced by

32. This is the same as in the 2D case where we can think of the size of the third dimension as

corresponding to the number of columns (or, said another way, the number of elements in a row).

When the first index is incremented by one, the offset in memory must account for the array

size in both the second and third dimension. To illustrate this, consider Fig. 9.1 which shows the

elements of the 3D array Ez. The array is 3×4×3, corresponding to the dimensions in the x, y and

z directions. In reality, these elements will map to elements of a 1D array called ezwhich is shown

in 9.2. Since ez is a 1D array, it takes a single index (or offset). Note that if one holds the m and n
indices fixed (corresponding to the x and y directions) but increments the p index (corresponding

to a movement in the z direction), the index of ez changes by one. However, if m and p are held

fixed and n is incremented by one, the index of ez changed by 3 which correspond to the number

of elements in the z directions. Finally, if n and p are held fixed but m is incremented by one,

the index of ez changed by 12 which is the product of the dimensions in the y and z directions.

Three-dimensional arrays can be thought of as a collection of 2D arrays. For the way in which

we perform the indexing, the 2D arrays correspond to constant-x planes. Each of these 2D arrays

must be large enough to hold the product of the number of elements along the y and z directions.

The construct we use for 3D arrays largely parallels that which was used for 2D arrays. The

allocation macro ALLOC 3D() is shown in Fragment 9.1. The only difference between this and

the allocation macros shown previously is the addition of another argument to specify the size of

the array in the third dimension (this is the argument NUMZ). This dimension is multiplied by the

other two dimensions and used as the first argument of calloc().

9.2. 3D ARRAYS IN C 241

ez[0]

ez[12]

ez[24]

ez[3]

ez[15]

ez[27]

ez[6]

ez[18]

ez[30]

ez[9]

ez[21]

ez[33]

ez[1]

ez[13]

ez[25]

ez[4]

ez[16]

ez[28]

ez[7]

ez[19]

ez[31]

ez[10]

ez[22]

ez[34]

ez[2]

ez[14]

ez[26]

ez[5]

ez[17]

ez[29]

ez[8]

ez[20]

ez[32]

ez[11]

ez[23]

ez[35]

n=0

m=0

n=3n=2n=1

m=1

m=2

p=0

p=2

p=1

y
x

z

Figure 9.2: The 1D array ez is used to store the elements of Ez. The three indices for each

elements of Ez shown in Fig. 9.1 map to the single index shown here.

Fragment 9.1 Macro for allocating memory for a 3D array.

1 #define ALLOC_3D(PNTR, NUMX, NUMY, NUMZ, TYPE) \
2 PNTR = (TYPE *)calloc((NUMX) * (NUMY) * (NUMZ), sizeof(TYPE)); \
3 if (!PNTR) { \
4 perror("ALLOC_3D"); \
5 fprintf(stderr, \
6 "Allocation failed for " #PNTR ". Terminating...\n"); \
7 exit(-1); \
8 }

To illustrate the construction and use of a 3D array, the code in Fragment 9.2 shows how

one could create a 6 × 7 × 8 array. In this example the array dimensions are set in #define-

statements in lines 1–3. Line 5 provides the macro Ez() which takes three (dummy) arguments.

The preprocessor will replace all occurrences of Ez() with the expression involving ez[] shown

at the right. The pointer ez is defined in line 6 and initially at run-time does not have any memory

associated with it. However, after line 9 has executed ez will point to a block of memory that is

sufficient to hold all the elements of the array and, at this point, ez can be treated as a 1D array (but

we never use ez directly in the code—instead, we use the macro Ez() to access array elements).

The nested for-loops starting at line 11 merely set each element equal to the product of the indices

for that element. Note that this order of nesting is the one that should be used in practice: the

inner-most loop should be over the z index and the outer-most loop should be over the x index.

(This order helps minimize page faults and hence maximize performance.)

242 CHAPTER 9. THREE-DIMENSIONAL FDTD

Fragment 9.2 Demonstration of the construction and manipulation of a 6 × 7 × 8 array.

1 #define num_rows 8
2 #define num_columns 7
3 #define num_planes 6
4

5 #define Ez(M, N, P) ez[((M) * num_columns + (N)) * num_rows + (P)]

...

5 double *ez;
6 int m, n, p;
7

8 ALLOC_3D(ez, num_planes, num_columns, num_rows, double);
9

10 for (m = 0; m < num_planes; m++)
11 for (n = 0; n < num_columns; n++)
12 for (p = 0; p < num_rows; p++)
13 Ez(m, n, p) = m * n * p;

9.3 Governing Equations and the 3D Grid

As has been the case previously, Ampere’s and Faraday’s laws are the relevant governing equations

in constructing the FDTD algorithm. These equations are

−σmH − µ
∂H

∂t
= ∇× E =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣
∣
∣
∣
∣
∣

, (9.1)

σE + ǫ
∂E

∂t
= ∇× H =

∣
∣
∣
∣
∣
∣

âx ây âz
∂
∂x

∂
∂x

∂
∂z

Hx Hy Hz

∣
∣
∣
∣
∣
∣

. (9.2)

The components of these equations, when approximated by finite-differences at the appropriate

points in space-time, yield the discretized update equations.

The necessary arrangement of nodes is show in Fig. 9.3. This grouping of six nodes can be

considered the fundamental building block of a 3D grid. The following notation is used:

Hx(x, y, z, t) = Hx(m∆x, n∆y, p∆z, q∆t) = Hq
x[m,n, p] , (9.3)

Hy(x, y, z, t) = Hy(m∆x, n∆y, p∆z, q∆t) = Hq
y [m,n, p] , (9.4)

Hz(x, y, z, t) = Hz(m∆x, n∆y, p∆z, q∆t) = Hq
z [m,n, p] , (9.5)

Ex(x, y, z, t) = Ex(m∆x, n∆y, p∆z, q∆t) = Eq
x[m,n, p] , (9.6)

Ey(x, y, z, t) = Ey(m∆x, n∆y, p∆z, q∆t) = Eq
y [m,n, p] , (9.7)

Ez(x, y, z, t) = Ez(m∆x, n∆y, p∆z, q∆t) = Eq
z [m,n, p] . (9.8)

9.3. GOVERNING EQUATIONS AND THE 3D GRID 243

Hz(m+1/2,n+1/2,p)

Ey(m,n+1/2,p)

Ex(m+1/2,n,p)

Hy(m+1/2,n,p+1/2)
Hx(m,n+1/2,p+1/2)

y

x

z

Ez(m,n,p+1/2)

Figure 9.3: Arrangement of nodes in three dimensions. In a computer program all these nodes

would have the same m, n, and p indices (the one-halves would be discarded from the equations—

the offset would be understood). Electric-field nodes are displaced a half step in the direction in

which they point while magnetic-field nodes are displaced a half step in the two directions they

do not point. It is also implicitly understood that the electric- and magnetic-field nodes are offset

from each other a half step in time.

In Fig. 9.3 the temporal location of the nodes is not specified. It is assumed the electric-field

nodes exist at integer multiples of the time step and the magnetic-field nodes exists one-half of

a temporal step away from the electric field nodes. As we will see when we implement the 3D

algorithm in a computer program, the halves are suppressed and these six nodes will all have the

same indices. Note that, for any given set of indices the electric-field nodes are displaced a half

step in the direction in which they point while magnetic-field nodes are displaced a half step in the

two directions they do not point.

Another view of a portion of the 3D grid is shown in Fig. 9.4. This type of depiction is typically

call the Yee cube or Yee cell. This cube consists of electric-field nodes on the edges of the cube

(hence four nodes of each electric-field component) and magnetic-field nodes on the faces (two

nodes of each magnetic-field component). In a 3D grid one can shift the origin of this cube so that

magnetic-field nodes are along the edges and electric-field nodes are on the faces. Although this is

done by some authors, we will use the arrangement shown in Fig. 9.4.

With the arrangement of nodes shown in Figs. 9.3 and 9.4, the components of (9.1) and (9.2)

244 CHAPTER 9. THREE-DIMENSIONAL FDTD

Ey(m,n+1/2,p+1)

Ex(m+1/2,n+1,p)

y

x

z

Ez(m,n+1,p+1/2)

Ez(m+1,n,p+1/2)

Ex(m+1/2,n,p+1)

Ey(m+1,n+1/2,p)

∆z

∆y

∆x

Figure 9.4: The nodes in a 3D FDTD grid are often drawn in the form of a Yee cube or Yee cell. In

this depiction the nodes do not all have the same indices. As drawn here the cube would consist of

four Ex nodes, four Ey nodes, and four Ez nodes, i.e., the electric fields are along the cube edges.

Magnetic fields are on the cube faces and hence there would be two Hx nodes, two Hy nodes, and

two Hz nodes.

expressed at the appropriate evaluation points are

−σmHx − µ
∂Hx

∂t
=

∂Ez
∂y

− ∂Ey
∂z

∣
∣
∣
∣
x=m∆x,y=(n+1/2)∆y ,z=(p+1/2)∆z ,t=q∆t

, (9.9)

−σmHy − µ
∂Hy

∂t
=

∂Ex
∂z

− ∂Ez
∂x

∣
∣
∣
∣
x=(m+1/2)∆x,y=n∆y ,z=(p+1/2)∆z ,t=q∆t

, (9.10)

−σmHz − µ
∂Hz

∂t
=

∂Ey
∂x

− ∂Ex
∂y

∣
∣
∣
∣
x=(m+1/2)∆x,y=(n+1/2)∆y ,z=p∆z ,t=q∆t

, (9.11)

σEx + ǫ
∂Ex
∂t

=
∂Hz

∂y
− ∂Hy

∂z

∣
∣
∣
∣
x=(m+1/2)∆x,y=n∆y ,z=p∆z ,t=(q+1/2)∆t

, (9.12)

σEy + ǫ
∂Ey
∂t

=
∂Hx

∂z
− ∂Hz

∂x

∣
∣
∣
∣
x=m∆x,y=(n+1/2)∆y ,z=p∆z ,t=(q+1/2)∆t

, (9.13)

σEz + ǫ
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y

∣
∣
∣
∣
x=m∆x,y=n∆y ,z=(p+1/2)∆z ,t=(q+1/2)∆t

. (9.14)

In these equations, ignoring loss for a moment, the temporal derivative of each field-component is

always given by the spatial derivative of two components of the “other field.” Also, the components

of one field are related to the two orthogonal components of the other field. As has been done

previously, the loss term can be approximated by the average of the field at two times steps.

Given our experience with 1- and 2D grids, the 3D update equations can be written simply by

9.3. GOVERNING EQUATIONS AND THE 3D GRID 245

inspection of the governing equations in the continuous world. The update equations are

H
q+ 1

2
x

[

m,n+
1

2
, p+

1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
x

[

m,n+
1

2
, p+

1

2

]

+
1

1 + σm∆t

2µ

(
∆t

µ∆z

{

Eq
y

[

m,n+
1

2
, p+ 1

]

− Eq
y

[

m,n+
1

2
, p

]}

− ∆t

µ∆y

{

Eq
z

[

m,n+ 1, p+
1

2

]

− Eq
z

[

m,n, p+
1

2

]})

, (9.15)

H
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
y

[

m+
1

2
, n, p+

1

2

]

+
1

1 + σm∆t

2µ

(
∆t

µ∆x

{

Eq
z

[

m+ 1, n, p+
1

2

]

− Eq
z

[

m,n, p+
1

2

]}

− ∆t

µ∆z

{

Eq
x

[

m+
1

2
, n, p+ 1

]

− Eq
x

[

m+
1

2
, n, p

]})

, (9.16)

H
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

H
q− 1

2
z

[

m+
1

2
, n+

1

2
, p

]

+
1

1 + σm∆t

2ǫ

(
∆t

µ∆y

{

Eq
x

[

m+
1

2
, n+ 1, p

]

− Eq
x

[

m+
1

2
, n, p

]}

− ∆t

ǫ∆x

{

Eq
y

[

m+ 1, n+
1

2
, p

]

− Eq
y

[

m,n+
1

2
, p

]})

. (9.17)

Eq+1
x

[

m+
1

2
, n, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
x

[

m+
1

2
, n, p

]

+
1

1 + σ∆t

2ǫ

(
∆t

ǫ∆y

{

H
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

−H
q+ 1

2
z

[

m+
1

2
, n− 1

2
, p

]}

− ∆t

ǫ∆z

{

H
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

−H
q+ 1

2
y

[

m+
1

2
, n, p− 1

2

]})

, (9.18)

Eq+1
y

[

m,n+
1

2
, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
y

[

m,n+
1

2

]

+
1

1 + σ∆t

2ǫ

(
∆t

ǫ∆z

{

H
q+ 1

2
x

[

m,n+
1

2
, p− 1

2

]

−H
q+ 1

2
x

[

m,n+
1

2
, p− 1

2

]}

− ∆t

ǫ∆x

{

H
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

−H
q+ 1

2
z

[

m− 1

2
, n+

1

2
, p

]})

, (9.19)

246 CHAPTER 9. THREE-DIMENSIONAL FDTD

Eq+1
z

[

m,n, p+
1

2

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

Eq
z

[

m,n, p+
1

2

]

+
1

1 + σ∆t

2ǫ

(
∆t

ǫ∆x

{

H
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

−H
q+ 1

2
y

[

m− 1

2
, n, p+

1

2

]}

− ∆t

ǫ∆y

{

H
q+ 1

2
x

[

m,n+
1

2
, p+

1

2

]

−H
q+ 1

2
x

[

m,n− 1

2
, p+

1

2

]})

. (9.20)

The coefficients in the update equations are assumed constant (in time) but may be functions

of position. Consistent with the notation adopted previously and assuming a uniform grid in which

∆x = ∆y = ∆z = δ, the magnetic-field update coefficients can be expressed as

Chxh(m,n+ 1/2, p+ 1/2) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
mδ,(n+1/2)δ,(p+1/2)δ

, (9.21)

Chxe(m,n+ 1/2, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
mδ,(n+1/2)δ,(p+1/2)δ

, (9.22)

Chyh(m+ 1/2, n, p+ 1/2) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
(m+1/2)δ,nδ,(p+1/2)δ

, (9.23)

Chye(m+ 1/2, n, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
(m+1/2)δ,nδ,(p+1/2)δ

, (9.24)

Chxh(m+ 1/2, n+ 1/2, p) =
1 − σm∆t

2µ

1 + σm∆t

2µ

∣
∣
∣
∣
∣
(m+1/2)δ,(n+1/2)δ,pδ

, (9.25)

Chxe(m+ 1/2, n+ 1/2, p) =
1

1 + σm∆t

2µ

∆t

µδ

∣
∣
∣
∣
∣
(m+1/2)δ,(n+1/2)δ,pδ

. (9.26)

9.3. GOVERNING EQUATIONS AND THE 3D GRID 247

For the electric-field update equations the coefficients are

Cexe(m+ 1/2, n, p) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
(m+1/2)δ,nδ,pδ

, (9.27)

Cexh(m+ 1/2, n, p) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
(m+1/2)δ,nδ,pδ

, (9.28)

Ceye(m,n+ 1/2, p) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
mδ,(n+1/2)δ,pδ

, (9.29)

Ceyh(m,n+ 1/2, p) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
mδ,(n+1/2)δ,pδ

, (9.30)

Ceze(m,n) =
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

∣
∣
∣
∣
∣
mδ,nδ,(p+1/2)δ

, (9.31)

Cezh(m,n, p+ 1/2) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

∣
∣
∣
∣
∣
mδ,nδ,(p+1/2)δ

. (9.32)

These coefficients can be related to the Courant number c∆t/δ. For a uniform grid in three di-

mensions the Courant limit is 1/
√

3. There are rigorous derivations of this limit but there is also a

simple empirical argument. It takes three time-steps to communicate information across the diag-

onal of a cube in the grid. The distance traveled across this diagonal is
√

3δ. To ensure stability we

must have that the distance traveled in the continuous world over these three time steps is less than

the distance over which the grid can communicate information. Thus, we must have c3∆t ≤
√

3δ
or, rearranging, Sc ≤ 1/

√
3.

As has been done previously, the explicit reference to time is dropped. Additionally, so that

the indexing can be easily handled within a computer program, the spatial offsets of one-half are

dropped explicitly but left implicitly understood. Thus, all one-halves are discarded from the left

side of the update equations. Nodes on the right side of the equation will also have the one-halves

dropped if the node is within the same group of nodes as the node being updated (where a group of

nodes is as shown in Fig. 9.3). However, if the node on the right side is contained within a group

that is a neighbor to the group that contains the node being updated, the one-half is replaced with

a one. To illustrate further the grouping of nodes in three dimensions, Fig. 9.5 shows six groups

of nodes and the corresponding set of indices for each group. The update-equation coefficients are

evaluated at a point that is collocated with the node being updated. Thus, the 3D update equations

can be written (assuming a suitable collection of macros which will be considered later):

Hx(m, n, p) = Chxh(m, n, p) * Hx(m, n, p) +
Chxe(m, n, p) * ((Ey(m, n, p + 1) - Ey(m, n, p)) -

(Ez(m, n + 1, p) - Ez(m, n, p)));
Hy(m, n, p) = Chyh(m, n, p) * Hy(m, n, p) +

Chye(m, n, p) * ((Ez(m + 1, n, p) - Ez(m, n, p)) -
(Ex(m, n, p + 1) - Ex(m, n, p)));

Hz(m, n, p) = Chzh(m, n, p) * Hz(m, n, p) +

248 CHAPTER 9. THREE-DIMENSIONAL FDTD

y

x

z

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1) (0,1,1)

(0,1,0)

Figure 9.5: Arrangement of six groups of nodes where all of the nodes within the group have the

same set of indices. The nodes in a group are joined by gray lines and their indices are shown as

an ordered triplet in the center of the group.

Chze(m, n, p) * ((Ex(m, n + 1, p) - Ex(m, n, p)) -
(Ey(m + 1, n, p) - Ey(m, n, p)));

Ex(m, n, p) = Cexe(m, n, p) * Ex(m, n, p) +
Cexh(m, n, p) * ((Hz(m, n, p) - Hz(m, n - 1, p)) -

(Hy(m, n, p) - Hy(m, n, p - 1)));
Ey(m, n, p) = Ceye(m, n, p) * Ey(m, n, p) +

Ceyh(m, n, p) * ((Hx(m, n, p) - Hx(m, n, p - 1)) -
(Hz(m, n, p) - Hz(m - 1, n, p)));

Ez(m, n, p) = Ceze(m, n, p) * Ez(m, n, p) +
Cezh(m, n, p) * ((Hy(m, n, p) - Hy(m - 1, n, p)) -

(Hx(m, n, p) - Hx(m, n - 1, p)));

In our construction of 3D grids, the faces of the grid will always be terminated such that there

are two electric-field components tangential to the face and one magnetic field normal to it. This is

illustrated in Fig. 9.6. The computational domain shown in this figure is one which we describe as

having dimensions of 5× 9× 7 in the x, y, and z directions, respectively. Even though we call this

a 5× 9× 7 grid, none of the arrays associated with this computational domain actually have these

9.3. GOVERNING EQUATIONS AND THE 3D GRID 249

y

x

z

Ey and Ez

Ex and Ez

Ex and Ey

Figure 9.6: Faces of a computational domain which is 5 × 9 × 7 in the x, y, and z directions,

respectively. On the constant-x face the tangential fields are Ey and Ez, on the constant-y face

they are Ex and Ez, and on the constant-z face they are Ex and Ey. There are also magnetic-field

nodes which exist on these faces but their orientation is normal to the face.

dimensions! The fields of a computational domain that is M ×N × P would have dimensions of

Ex : (M − 1) ×N × P (9.33)

Ey : M × (N − 1) × P (9.34)

Ez : M ×N × (P − 1) (9.35)

Hx : M × (N − 1) × (P − 1) (9.36)

Hy : (M − 1) ×N × (P − 1) (9.37)

Hz : (M − 1) × (N − 1) × P (9.38)

Note that the electric fields have one less element in the direction in which they point than the

nominal size of this grid. This is because of the inherent displacement of electric-field nodes in the

direction in which they point. Rather than having an additional node essentially sticking beyond

the rest of the grid, the array is truncated in this direction. Recall that the displacement of the

magnetic-field nodes is in the two directions in which they do not point. Thus the magnetic-field

arrays are truncated in the two directions they do not point. In terms of Yee cubes, an M ×N ×P
grid would consists of (M − 1) × (N − 1) × (P − 1) complete cubes.

250 CHAPTER 9. THREE-DIMENSIONAL FDTD

9.4 3D Example

Here we provide the code to implement a simple 3D simulation in which a short dipole source is

embedded in a homogeneous domain. The dipole is merely an additive source applied to an Ex
node in the center of the grid. First-order ABC’s are used to terminate the grid. Since there are

two tangential electric fields on each face of the computational domain, the ABC must be applied

to two fields per face.

The main() function is shown in Program 9.3. The overall structure is little changed from

previous simulations. The ABC, the grid, the source function, and the snapshot code are initialized

by calling initialization functions outside of the time-stepping loop. Within the time-stepping loop

the magnetic fields are updated, the electric fields are updated, the source function is applied to the

Ex node at the center of the grid, the ABC is applied, and then, assuming it is the appropriate time

step, a snapshot is taken. Actually, as we will see, two different snapshots are taken. There are

many ways one might choose to display these 3D vector fields. We will merely record one field

component over a 2D plane (or perhaps multiple planes).

Program 9.3 3ddemo.c 3D simulation of an electric dipole realized with an additive source

applied to an Ex node.

1 /* 3D simulation with dipole source at center of grid. */

2

3 #include "fdtd-alloc.h"
4 #include "fdtd-macro.h"
5 #include "fdtd-proto.h"
6 #include "ezinc.h"
7

8 int main()
9 {

10 Grid *g;
11

12 ALLOC_1D(g, 1, Grid); // allocate memory for grid structure

13 gridInit(g); // initialize 3D grid

14

15 abcInit(g); // initialize ABC

16 ezIncInit(g);
17 snapshot3dInit(g); // initialize snapshots

18

19 /* do time stepping */

20 for (Time = 0; Time < MaxTime; Time++) {
21 updateH(g); // update magnetic fields

22 updateE(g); // update electric fields

23 Ex((SizeX - 1) / 2, SizeY / 2, SizeZ / 2) += ezInc(Time, 0.0);
24 abc(g); // apply ABC

25 snapshot3d(g); // take a snapshot (if appropriate)

26 } // end of time-stepping

27

9.4. 3D EXAMPLE 251

28 return 0;
29 }

The code used to realize the source function, i.e., the Ricker wavelet, is unchanged from be-

fore and hence not shown (ref. Program 8.10). The header fdtd-alloc.h merely provides the

three allocation macros ALLOC 1D(), ALLOC 2D(), and ALLOC 3D() and hence is not shown

here. Similarly, the header fdtd-grid1.h, which defines the elements of the Grid structure,

is unchanged from before and thus not shown (ref. Program 8.3). The header fdtd-proto.h
provides the prototypes for the various functions. Since these prototypes simply show that each

function takes a single argument (i.e., a pointer to a Grid structure), that header file is also not

shown.

The header fdtd-macro.h shown in Program 9.4 provides macros for all the types of grids

we have considered so far. In this particular program we only need the macros for the 3D arrays,

but having created this collection of macros we are well prepared to use it, unchanged, to tackle

a wide variety of FDTD problems. As was done in the previous chapter, there are macros which

assume that the Grid structure is named g while there is another set of macros that allows the

name of the Grid to be specified explicitly.

Program 9.4 fdtd-macro.h Header that provides the macros to access the elements of any of

the arrays that have been considered thus far. One set of macros assumes the name of the Grid is

g. Another set allows the name of the Grid to be specified as an additional argument.

1 #ifndef _FDTD_MACRO_H
2 #define _FDTD_MACRO_H
3

4 #include "fdtd-grid1.h"
5

6 /* macros that permit the "Grid" to be specified */

7 /* one-dimensional grid */

8 #define Hy1G(G, M) G->hy[M]
9 #define Chyh1G(G, M) G->chyh[M]

10 #define Chye1G(G, M) G->chye[M]
11

12 #define Ez1G(G, M) G->ez[M]
13 #define Ceze1G(G, M) G->ceze[M]
14 #define Cezh1G(G, M) G->cezh[M]
15

16 /* TMz grid */

17 #define Hx2G(G, M, N) G->hx[(M) * (SizeYG(G) - 1) + N]
18 #define Chxh2G(G, M, N) G->chxh[(M) * (SizeYG(G) - 1) + N]
19 #define Chxe2G(G, M, N) G->chxe[(M) * (SizeYG(G) - 1) + N]
20

21 #define Hy2G(G, M, N) G->hy[(M) * SizeYG(G) + N]
22 #define Chyh2G(G, M, N) G->chyh[(M) * SizeYG(G) + N]

252 CHAPTER 9. THREE-DIMENSIONAL FDTD

23 #define Chye2G(G, M, N) G->chye[(M) * SizeYG(G) + N]
24

25 #define Ez2G(G, M, N) G->ez[(M) * SizeYG(G) + N]
26 #define Ceze2G(G, M, N) G->ceze[(M) * SizeYG(G) + N]
27 #define Cezh2G(G, M, N) G->cezh[(M) * SizeYG(G) + N]
28

29 /* TEz grid */

30 #define Ex2G(G, M, N) G->ex[(M) * SizeYG(G) + N]
31 #define Cexe2G(G, M, N) G->cexe[(M) * SizeYG(G) + N]
32 #define Cexh2G(G, M, N) G->cexh[(M) * SizeYG(G) + N]
33

34 #define Ey2G(G, M, N) G->ey[(M) * (SizeYG(G) - 1) + N]
35 #define Ceye2G(G, M, N) G->ceye[(M) * (SizeYG(G) - 1) + N]
36 #define Ceyh2G(G, M, N) G->ceyh[(M) * (SizeYG(G) - 1) + N]
37

38 #define Hz2G(G, M, N) G->hz[(M) * (SizeYG(G) - 1) + N]
39 #define Chzh2G(G, M, N) G->chzh[(M) * (SizeYG(G) - 1) + N]
40 #define Chze2G(G, M, N) G->chze[(M) * (SizeYG(G) - 1) + N]
41

42 /* 3D grid */

43 #define HxG(G, M, N, P) G->hx[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P]
44 #define ChxhG(G, M, N, P) G->chxh[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P
45 #define ChxeG(G, M, N, P) G->chxe[((M) * (SizeYG(G) - 1) + N) * (SizeZG(G) - 1) + P
46

47 #define HyG(G, M, N, P) G->hy[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
48 #define ChyhG(G, M, N, P) G->chyh[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
49 #define ChyeG(G, M, N, P) G->chye[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
50

51 #define HzG(G, M, N, P) G->hz[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
52 #define ChzhG(G, M, N, P) G->chzh[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
53 #define ChzeG(G, M, N, P) G->chze[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
54

55 #define ExG(G, M, N, P) G->ex[((M) * SizeYG(G) + N) * SizeZG(G) + P]
56 #define CexeG(G, M, N, P) G->cexe[((M) * SizeYG(G) + N) * SizeZG(G) + P]
57 #define CexhG(G, M, N, P) G->cexh[((M) * SizeYG(G) + N) * SizeZG(G) + P]
58

59 #define EyG(G, M, N, P) G->ey[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
60 #define CeyeG(G, M, N, P) G->ceye[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
61 #define CeyhG(G, M, N, P) G->ceyh[((M) * (SizeYG(G) - 1) + N) * SizeZG(G) + P]
62

63 #define EzG(G, M, N, P) G->ez[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
64 #define CezeG(G, M, N, P) G->ceze[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
65 #define CezhG(G, M, N, P) G->cezh[((M) * SizeYG(G) + N) * (SizeZG(G) - 1) + P]
66

67 #define SizeXG(G) G->sizeX
68 #define SizeYG(G) G->sizeY
69 #define SizeZG(G) G->sizeZ

9.4. 3D EXAMPLE 253

70 #define TimeG(G) G->time
71 #define MaxTimeG(G) G->maxTime
72 #define CdtdsG(G) G->cdtds
73 #define TypeG(G) G->type
74

75 /* macros that assume the "Grid" is "g" */

76 /* one-dimensional grid */

77 #define Hy1(M) Hy1G(g, M)
78 #define Chyh1(M) Chyh1G(g, M)
79 #define Chye1(M) Chye1G(g, M)
80

81 #define Ez1(M) Ez1G(g, M)
82 #define Ceze1(M) Ceze1G(g, M)
83 #define Cezh1(M) Cezh1G(g, M)
84

85 /* TMz grid */

86 #define Hx2(M, N) Hx2G(g, M, N)
87 #define Chxh2(M, N) Chxh2G(g, M, N)
88 #define Chxe2(M, N) Chxe2G(g, M, N)
89

90 #define Hy2(M, N) Hy2G(g, M, N)
91 #define Chyh2(M, N) Chyh2G(g, M, N)
92 #define Chye2(M, N) Chye2G(g, M, N)
93

94 #define Ez2(M, N) Ez2G(g, M, N)
95 #define Ceze2(M, N) Ceze2G(g, M, N)
96 #define Cezh2(M, N) Cezh2G(g, M, N)
97

98 /* TEz grid */

99 #define Hz2(M, N) Hz2G(g, M, N)
100 #define Chzh2(M, N) Chzh2G(g, M, N)
101 #define Chze2(M, N) Chze2G(g, M, N)
102

103 #define Ex2(M, N) Ex2G(g, M, N)
104 #define Cexe2(M, N) Cexe2G(g, M, N)
105 #define Cexh2(M, N) Cexh2G(g, M, N)
106

107 #define Ey2(M, N) Ey2G(g, M, N)
108 #define Ceye2(M, N) Ceye2G(g, M, N)
109 #define Ceyh2(M, N) Ceyh2G(g, M, N)
110

111 /* 3D grid */

112 #define Hx(M, N, P) HxG(g, M, N, P)
113 #define Chxh(M, N, P) ChxhG(g, M, N, P)
114 #define Chxe(M, N, P) ChxeG(g, M, N, P)
115

116 #define Hy(M, N, P) HyG(g, M, N, P)

254 CHAPTER 9. THREE-DIMENSIONAL FDTD

117 #define Chyh(M, N, P) ChyhG(g, M, N, P)
118 #define Chye(M, N, P) ChyeG(g, M, N, P)
119

120 #define Hz(M, N, P) HzG(g, M, N, P)
121 #define Chzh(M, N, P) ChzhG(g, M, N, P)
122 #define Chze(M, N, P) ChzeG(g, M, N, P)
123

124 #define Ex(M, N, P) ExG(g, M, N, P)
125 #define Cexe(M, N, P) CexeG(g, M, N, P)
126 #define Cexh(M, N, P) CexhG(g, M, N, P)
127

128 #define Ey(M, N, P) EyG(g, M, N, P)
129 #define Ceye(M, N, P) CeyeG(g, M, N, P)
130 #define Ceyh(M, N, P) CeyhG(g, M, N, P)
131

132 #define Ez(M, N, P) EzG(g, M, N, P)
133 #define Ceze(M, N, P) CezeG(g, M, N, P)
134 #define Cezh(M, N, P) CezhG(g, M, N, P)
135

136 #define SizeX SizeXG(g)
137 #define SizeY SizeYG(g)
138 #define SizeZ SizeZG(g)
139 #define Time TimeG(g)
140 #define MaxTime MaxTimeG(g)
141 #define Cdtds CdtdsG(g)
142 #define Type TypeG(g)
143

144 #endif

The file update3d.c is shown in Program 9.5. When updateE() or updateH() are

called they begin by checking the Type of the grid. These same functions can be called whether

updating a 1D, 2D, or 3D grid. However, for the 1D grid there is the assumption that one is dealing

with a z-polarized wave and for 2D propagation one has either TMz- or TEz-polarization. (A

rotation of coordinate systems can be used to map any 1D simulation to one that is z-polarized or

any 2D simulation to one that is either TEz- or TMz-polarized.)

Program 9.5 update3d.c Function that can be used to update any of the grids.

1 #include "fdtd-macro.h"
2 #include <stdio.h>
3

4 /* update magnetic field */

5 void updateH(Grid *g) {
6 int mm, nn, pp;
7

9.4. 3D EXAMPLE 255

8 if (Type == oneDGrid) {
9

10 for (mm = 0; mm < SizeX - 1; mm++)
11 Hy1(mm) = Chyh1(mm) * Hy1(mm)
12 + Chye1(mm) * (Ez1(mm + 1) - Ez1(mm));
13

14 } else if (Type == tmZGrid) {
15

16 for (mm = 0; mm < SizeX; mm++)
17 for (nn = 0; nn < SizeY - 1; nn++)
18 Hx2(mm, nn) = Chxh2(mm, nn) * Hx2(mm, nn)
19 - Chxe2(mm, nn) * (Ez2(mm, nn + 1) - Ez2(mm, nn));
20

21 for (mm = 0; mm < SizeX - 1; mm++)
22 for (nn = 0; nn < SizeY; nn++)
23 Hy2(mm, nn) = Chyh2(mm, nn) * Hy2(mm, nn)
24 + Chye2(mm, nn) * (Ez2(mm + 1, nn) - Ez2(mm, nn));
25

26 } else if (Type == teZGrid) {
27

28 for(mm = 0; mm < SizeX - 1; mm++)
29 for(nn = 0; nn < SizeY - 1; nn++)
30 Hz2(mm, nn) = Chzh2(mm, nn) * Hz2(mm, nn) -
31 Chze2(mm, nn) * ((Ey2(mm + 1, nn) - Ey2(mm, nn)) -
32 (Ex2(mm, nn + 1) - Ex2(mm, nn)));
33

34 } else if (Type == threeDGrid) {
35

36 for (mm = 0; mm < SizeX; mm++)
37 for (nn = 0; nn < SizeY - 1; nn++)
38 for (pp = 0; pp < SizeZ - 1; pp++)
39 Hx(mm, nn, pp) = Chxh(mm, nn, pp) * Hx(mm, nn, pp) +
40 Chxe(mm, nn, pp) * ((Ey(mm, nn, pp + 1) - Ey(mm, nn, pp)) -
41 (Ez(mm, nn + 1, pp) - Ez(mm, nn, pp)));
42

43 for (mm = 0; mm < SizeX - 1; mm++)
44 for (nn = 0; nn < SizeY; nn++)
45 for (pp = 0; pp < SizeZ - 1; pp++)
46 Hy(mm, nn, pp) = Chyh(mm, nn, pp) * Hy(mm, nn, pp) +
47 Chye(mm, nn, pp) * ((Ez(mm + 1, nn, pp) - Ez(mm, nn, pp)) -
48 (Ex(mm, nn, pp + 1) - Ex(mm, nn, pp)));
49

50 for (mm = 0; mm < SizeX - 1; mm++)
51 for (nn = 0; nn < SizeY - 1; nn++)
52 for (pp = 0; pp < SizeZ; pp++)
53 Hz(mm, nn, pp) = Chzh(mm, nn, pp) * Hz(mm, nn, pp) +
54 Chze(mm, nn, pp) * ((Ex(mm, nn + 1, pp) - Ex(mm, nn, pp)) -

256 CHAPTER 9. THREE-DIMENSIONAL FDTD

55 (Ey(mm + 1, nn, pp) - Ey(mm, nn, pp)));
56

57 } else {
58 fprintf(stderr, "updateH: Unknown grid type. Terminating...\n");
59 }
60

61 return;
62 } /* end updateH() */

63

64

65 /* update electric field */

66 void updateE(Grid *g) {
67 int mm, nn, pp;
68

69 if (Type == oneDGrid) {
70

71 for (mm = 1; mm < SizeX - 1; mm++)
72 Ez1(mm) = Ceze1(mm) * Ez1(mm)
73 + Cezh1(mm) * (Hy1(mm) - Hy1(mm - 1));
74

75 } else if (Type == tmZGrid) {
76

77 for (mm = 1; mm < SizeX - 1; mm++)
78 for (nn = 1; nn < SizeY - 1; nn++)
79 Ez2(mm, nn) = Ceze2(mm, nn) * Ez2(mm, nn) +
80 Cezh2(mm, nn) * ((Hy2(mm, nn) - Hy2(mm - 1, nn)) -
81 (Hx2(mm, nn) - Hx2(mm, nn - 1)));
82

83 } else if (Type == teZGrid) {
84

85 for(mm = 1; mm < SizeX - 1; mm++)
86 for(nn = 1; nn < SizeY - 1; nn++)
87 Ex2(mm, nn) = Cexe2(mm, nn) * Ex2(mm, nn) +
88 Cexh2(mm, nn) * (Hz2(mm, nn) - Hz2(mm, nn - 1));
89

90 for(mm = 1; mm < SizeX - 1; mm++)
91 for(nn = 1; nn < SizeY - 1; nn++)
92 Ey2(mm, nn) = Ceye2(mm, nn) * Ey2(mm, nn) -
93 Ceyh2(mm, nn) * (Hz2(mm, nn) - Hz2(mm - 1, nn));
94

95 } else if (Type == threeDGrid) {
96

97 for (mm = 0; mm < SizeX - 1; mm++)
98 for (nn = 1; nn < SizeY - 1; nn++)
99 for (pp = 1; pp < SizeZ - 1; pp++)

100 Ex(mm, nn, pp) = Cexe(mm, nn, pp) * Ex(mm, nn, pp) +
101 Cexh(mm, nn, pp) * ((Hz(mm, nn, pp) - Hz(mm, nn - 1, pp)) -

9.4. 3D EXAMPLE 257

102 (Hy(mm, nn, pp) - Hy(mm, nn, pp - 1)));
103

104 for (mm = 1; mm < SizeX - 1; mm++)
105 for (nn = 0; nn < SizeY - 1; nn++)
106 for (pp = 1; pp < SizeZ - 1; pp++)
107 Ey(mm, nn, pp) = Ceye(mm, nn, pp) * Ey(mm, nn, pp) +
108 Ceyh(mm, nn, pp) * ((Hx(mm, nn, pp) - Hx(mm, nn, pp - 1)) -
109 (Hz(mm, nn, pp) - Hz(mm - 1, nn, pp)));
110

111 for (mm = 1; mm < SizeX - 1; mm++)
112 for (nn = 1; nn < SizeY - 1; nn++)
113 for (pp = 0; pp < SizeZ - 1; pp++)
114 Ez(mm, nn, pp) = Ceze(mm, nn, pp) * Ez(mm, nn, pp) +
115 Cezh(mm, nn, pp) * ((Hy(mm, nn, pp) - Hy(mm - 1, nn, pp)) -
116 (Hx(mm, nn, pp) - Hx(mm, nn - 1, pp)));
117

118 } else {
119 fprintf(stderr, "updateE: Unknown grid type. Terminating...\n");
120 }
121

122 return;
123 } /* end updateE() */

The code to realize the first-order ABC is shown in Program 9.6. A first-order ABC requires

that a single “old” value be recorded for each electric field that is tangential to a face of the grid.

There are two tangential components per face. For example, at the “x = 0” face, Ey and Ez are the

tangential components. These fields are stored in arrays named Eyx0(n, p) and Ezx0(n, p).

The “x0” part of the name specifies that these values are at the start of the grid in the x-direction.

Since these old fields are recorded over a constant-x face, only the indices corresponding to the

y and z directions are specified (hence these arrays only take two indices). The array Eyx1(n,
p) and Ezx1(n, p) correspond to the tangential field at the end of the grid in the x-direction.

There are similarly named arrays for the other two directions.

Program 9.6 abc3dfirst.c The code used to implement a first-order ABC on each face of

the 3D domain.

1 #include "fdtd-alloc.h"
2 #include "fdtd-macro.h"
3

4 /* Macros to access stored "old" value */

5 #define Eyx0(N, P) eyx0[(N) * (SizeZ) + (P)]
6 #define Ezx0(N, P) ezx0[(N) * (SizeZ - 1) + (P)]
7 #define Eyx1(N, P) eyx1[(N) * (SizeZ) + (P)]
8 #define Ezx1(N, P) ezx1[(N) * (SizeZ - 1) + (P)]
9

258 CHAPTER 9. THREE-DIMENSIONAL FDTD

10 #define Exy0(M, P) exy0[(M) * (SizeZ) + (P)]
11 #define Ezy0(M, P) ezy0[(M) * (SizeZ - 1) + (P)]
12 #define Exy1(M, P) exy1[(M) * (SizeZ) + (P)]
13 #define Ezy1(M, P) ezy1[(M) * (SizeZ - 1) + (P)]
14

15 #define Exz0(M, N) exz0[(M) * (SizeY) + (N)]
16 #define Eyz0(M, N) eyz0[(M) * (SizeY - 1) + (N)]
17 #define Exz1(M, N) exz1[(M) * (SizeY) + (N)]
18 #define Eyz1(M, N) eyz1[(M) * (SizeY - 1) + (N)]
19

20 /* global variables not visible outside of this package */

21 static double abccoef = 0.0;
22 static double *exy0, *exy1, *exz0, *exz1,
23 *eyx0, *eyx1, *eyz0, *eyz1,
24 *ezx0, *ezx1, *ezy0, *ezy1;
25

26 /* initialization function */

27 void abcInit(Grid *g)
28 {
29

30 abccoef = (Cdtds - 1.0) / (Cdtds + 1.0);
31

32 /* allocate memory for ABC arrays */

33 ALLOC_2D(eyx0, SizeY - 1, SizeZ, double);
34 ALLOC_2D(ezx0, SizeY, SizeZ - 1, double);
35 ALLOC_2D(eyx1, SizeY - 1, SizeZ, double);
36 ALLOC_2D(ezx1, SizeY, SizeZ - 1, double);
37

38 ALLOC_2D(exy0, SizeX - 1, SizeZ, double);
39 ALLOC_2D(ezy0, SizeX, SizeZ - 1, double);
40 ALLOC_2D(exy1, SizeX - 1, SizeZ, double);
41 ALLOC_2D(ezy1, SizeX, SizeZ - 1, double);
42

43 ALLOC_2D(exz0, SizeX - 1, SizeY, double);
44 ALLOC_2D(eyz0, SizeX, SizeY - 1, double);
45 ALLOC_2D(exz1, SizeX - 1, SizeY, double);
46 ALLOC_2D(eyz1, SizeX, SizeY - 1, double);
47

48 return;
49 } /* end abcInit() */

50

51 /* function that applies ABC -- called once per time step */

52 void abc(Grid *g)
53 {
54 int mm, nn, pp;
55

56 if (abccoef == 0.0) {

9.4. 3D EXAMPLE 259

57 fprintf(stderr,
58 "abc: abcInit must be called before abc. Terminating...\n");
59 exit(-1);
60 }
61

62 /* ABC at "x0" */

63 mm = 0;
64 for (nn = 0; nn < SizeY - 1; nn++)
65 for (pp = 0; pp < SizeZ; pp++) {
66 Ey(mm, nn, pp) = Eyx0(nn, pp) +
67 abccoef * (Ey(mm + 1, nn, pp) - Ey(mm, nn, pp));
68 Eyx0(nn, pp) = Ey(mm + 1, nn, pp);
69 }
70 for (nn = 0; nn < SizeY; nn++)
71 for (pp = 0; pp < SizeZ - 1; pp++) {
72 Ez(mm, nn, pp) = Ezx0(nn, pp) +
73 abccoef * (Ez(mm + 1, nn, pp) - Ez(mm, nn, pp));
74 Ezx0(nn, pp) = Ez(mm + 1, nn, pp);
75 }
76

77 /* ABC at "x1" */

78 mm = SizeX - 1;
79 for (nn = 0; nn < SizeY - 1; nn++)
80 for (pp = 0; pp < SizeZ; pp++) {
81 Ey(mm, nn, pp) = Eyx1(nn, pp) +
82 abccoef * (Ey(mm - 1, nn, pp) - Ey(mm, nn, pp));
83 Eyx1(nn, pp) = Ey(mm - 1, nn, pp);
84 }
85 for (nn = 0; nn < SizeY; nn++)
86 for (pp = 0; pp < SizeZ - 1; pp++) {
87 Ez(mm, nn, pp) = Ezx1(nn, pp) +
88 abccoef * (Ez(mm - 1, nn, pp) - Ez(mm, nn, pp));
89 Ezx1(nn, pp) = Ez(mm - 1, nn, pp);
90 }
91

92 /* ABC at "y0" */

93 nn = 0;
94 for (mm = 0; mm < SizeX - 1; mm++)
95 for (pp = 0; pp < SizeZ; pp++) {
96 Ex(mm, nn, pp) = Exy0(mm, pp) +
97 abccoef * (Ex(mm, nn + 1, pp) - Ex(mm, nn, pp));
98 Exy0(mm, pp) = Ex(mm, nn + 1, pp);
99 }

100 for (mm = 0; mm < SizeX; mm++)
101 for (pp = 0; pp < SizeZ - 1; pp++) {
102 Ez(mm, nn, pp) = Ezy0(mm, pp) +
103 abccoef * (Ez(mm, nn + 1, pp) - Ez(mm, nn, pp));

260 CHAPTER 9. THREE-DIMENSIONAL FDTD

104 Ezy0(mm, pp) = Ez(mm, nn + 1, pp);
105 }
106

107 /* ABC at "y1" */

108 nn = SizeY - 1;
109 for (mm = 0; mm < SizeX - 1; mm++)
110 for (pp = 0; pp < SizeZ; pp++) {
111 Ex(mm, nn, pp) = Exy1(mm, pp) +
112 abccoef * (Ex(mm, nn - 1, pp) - Ex(mm, nn, pp));
113 Exy1(mm, pp) = Ex(mm, nn - 1, pp);
114 }
115 for (mm = 0; mm < SizeX; mm++)
116 for (pp = 0; pp < SizeZ - 1; pp++) {
117 Ez(mm, nn, pp) = Ezy1(mm, pp) +
118 abccoef * (Ez(mm, nn - 1, pp) - Ez(mm, nn, pp));
119 Ezy1(mm, pp) = Ez(mm, nn - 1, pp);
120 }
121

122 /* ABC at "z0" (bottom) */

123 pp = 0;
124 for (mm = 0; mm < SizeX - 1; mm++)
125 for (nn = 0; nn < SizeY; nn++) {
126 Ex(mm, nn, pp) = Exz0(mm, nn) +
127 abccoef * (Ex(mm, nn, pp + 1) - Ex(mm, nn, pp));
128 Exz0(mm, nn) = Ex(mm, nn, pp + 1);
129 }
130 for (mm = 0; mm < SizeX; mm++)
131 for (nn = 0; nn < SizeY - 1; nn++) {
132 Ey(mm, nn, pp) = Eyz0(mm, nn) +
133 abccoef * (Ey(mm, nn, pp + 1) - Ey(mm, nn, pp));
134 Eyz0(mm, nn) = Ey(mm, nn, pp + 1);
135 }
136

137 /* ABC at "z1" (top) */

138 pp = SizeZ - 1;
139 for (mm = 0; mm < SizeX - 1; mm++)
140 for (nn = 0; nn < SizeY; nn++) {
141 Ex(mm, nn, pp) = Exz1(mm, nn) +
142 abccoef * (Ex(mm, nn, pp - 1) - Ex(mm, nn, pp));
143 Exz1(mm, nn) = Ex(mm, nn, pp - 1);
144 }
145 for (mm = 0; mm < SizeX; mm++)
146 for (nn = 0; nn < SizeY - 1; nn++) {
147 Ey(mm, nn, pp) = Eyz1(mm, nn) +
148 abccoef * (Ey(mm, nn, pp - 1) - Ey(mm, nn, pp));
149 Eyz1(mm, nn) = Ey(mm, nn, pp - 1);
150 }

9.4. 3D EXAMPLE 261

151

152 return;
153 } /* end abc() */

The function to initialize the 3D grid is shown in Program 9.7. Here the grid is simply homoge-

neous free space. The function starts by setting various parameters of the grid, such as the size and

the number of time steps, in lines 9–14. The function then allocates space for the various arrays

(lines 17–35). Finally, the function initializes the values of the coefficient arrays to correspond to

free space (lines 38–79).

Program 9.7 grid3dhomo.c Function to initialize a homogeneous 3D grid.

1 #include "fdtd-macro.h"
2 #include "fdtd-alloc.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn, pp;
8

9 Type = threeDGrid;
10 SizeX = 32; // size of domain

11 SizeY = 31;
12 SizeZ = 31;
13 MaxTime = 300; // duration of simulation

14 Cdtds = 1.0 / sqrt(3.0); // Courant number

15

16 /* memory allocation */

17 ALLOC_3D(g->hx, SizeX, SizeY - 1, SizeZ - 1, double);
18 ALLOC_3D(g->chxh, SizeX, SizeY - 1, SizeZ - 1, double);
19 ALLOC_3D(g->chxe, SizeX, SizeY - 1, SizeZ - 1, double);
20 ALLOC_3D(g->hy, SizeX - 1, SizeY, SizeZ - 1, double);
21 ALLOC_3D(g->chyh, SizeX - 1, SizeY, SizeZ - 1, double);
22 ALLOC_3D(g->chye, SizeX - 1, SizeY, SizeZ - 1, double);
23 ALLOC_3D(g->hz, SizeX - 1, SizeY - 1, SizeZ, double);
24 ALLOC_3D(g->chzh, SizeX - 1, SizeY - 1, SizeZ, double);
25 ALLOC_3D(g->chze, SizeX - 1, SizeY - 1, SizeZ, double);
26

27 ALLOC_3D(g->ex, SizeX - 1, SizeY, SizeZ, double);
28 ALLOC_3D(g->cexe, SizeX - 1, SizeY, SizeZ, double);
29 ALLOC_3D(g->cexh, SizeX - 1, SizeY, SizeZ, double);
30 ALLOC_3D(g->ey, SizeX, SizeY - 1, SizeZ, double);
31 ALLOC_3D(g->ceye, SizeX, SizeY - 1, SizeZ, double);
32 ALLOC_3D(g->ceyh, SizeX, SizeY - 1, SizeZ, double);
33 ALLOC_3D(g->ez, SizeX, SizeY, SizeZ - 1, double);

262 CHAPTER 9. THREE-DIMENSIONAL FDTD

34 ALLOC_3D(g->ceze, SizeX, SizeY, SizeZ - 1, double);
35 ALLOC_3D(g->cezh, SizeX, SizeY, SizeZ - 1, double);
36

37 /* set electric-field update coefficients */

38 for (mm = 0; mm < SizeX - 1; mm++)
39 for (nn = 0; nn < SizeY; nn++)
40 for (pp = 0; pp < SizeZ; pp++) {
41 Cexe(mm, nn, pp) = 1.0;
42 Cexh(mm, nn, pp) = Cdtds * imp0;
43 }
44

45 for (mm = 0; mm < SizeX; mm++)
46 for (nn = 0; nn < SizeY - 1; nn++)
47 for (pp = 0; pp < SizeZ; pp++) {
48 Ceye(mm, nn, pp) = 1.0;
49 Ceyh(mm, nn, pp) = Cdtds * imp0;
50 }
51

52 for (mm = 0; mm < SizeX; mm++)
53 for (nn = 0; nn < SizeY; nn++)
54 for (pp = 0; pp < SizeZ - 1; pp++) {
55 Ceze(mm, nn, pp) = 1.0;
56 Cezh(mm, nn, pp) = Cdtds * imp0;
57 }
58

59 /* set magnetic-field update coefficients */

60 for (mm = 0; mm < SizeX; mm++)
61 for (nn = 0; nn < SizeY - 1; nn++)
62 for (pp = 0; pp < SizeZ - 1; pp++) {
63 Chxh(mm, nn, pp) = 1.0;
64 Chxe(mm, nn, pp) = Cdtds / imp0;
65 }
66

67 for (mm = 0; mm < SizeX - 1; mm++)
68 for (nn = 0; nn < SizeY; nn++)
69 for (pp = 0; pp < SizeZ - 1; pp++) {
70 Chyh(mm, nn, pp) = 1.0;
71 Chye(mm, nn, pp) = Cdtds / imp0;
72 }
73

74 for (mm = 0; mm < SizeX - 1; mm++)
75 for (nn = 0; nn < SizeY - 1; nn++)
76 for (pp = 0; pp < SizeZ; pp++) {
77 Chzh(mm, nn, pp) = 1.0;
78 Chze(mm, nn, pp) = Cdtds / imp0;
79 }
80

9.4. 3D EXAMPLE 263

81 return;
82 } /* end gridInit() */

As mentioned, there are many ways one might display 3D vector data. Here we merely record

the Ex field over a constant-x and a constant-y plane. In this way, the core of the snapshot code is

quite similar to that which was used in the 2D simulations. The snapshot code to accomplish this

is shown in Program 9.8.

Program 9.8 snapshot3d.c Functions used to record 2D snapshots of the Ex field. At the

appropriate time steps, two snapshots are taken: one over a constant-x plane and another over a

constant-y plane. These snapshots are written to separate files.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "fdtd-macro.h"
4

5 static int temporalStride = -2, frameX = 0, frameY = 0, startTime;
6 static char basename[80];
7

8 void snapshot3dInit(Grid *g) {
9

10 int choice;
11

12 printf("Do you want 2D snapshots of the 3D grid? (1=yes, 0=no) ");
13 scanf("%d", &choice);
14 if (choice == 0) {
15 temporalStride = -1;
16 return;
17 }
18

19 printf("Duration of simulation is %d steps.\n", MaxTime);
20 printf("Enter start time and temporal stride: ");
21 scanf(" %d %d", &startTime, &temporalStride);
22 printf("Enter the base name: ");
23 scanf(" %s", basename);
24

25 return;
26 } /* end snapshot3dInit() */

27

28

29 void snapshot3d(Grid *g) {
30 int mm, nn, pp;
31 float dim1, dim2, temp;
32 char filename[100];
33 FILE *out;

264 CHAPTER 9. THREE-DIMENSIONAL FDTD

34

35 /* ensure temporal stride set to a reasonable value */

36 if (temporalStride == -1) {
37 return;
38 } if (temporalStride < -1) {
39 fprintf(stderr,
40 "snapshot2d: snapshotInit2d must be called before snapshot.\n"
41 " Temporal stride must be set to positive value.\n");
42 exit(-1);
43 }
44

45 /* get snapshot if temporal conditions met */

46 if (Time >= startTime &&
47 (Time - startTime) % temporalStride == 0) {
48

49 /************ write the constant-x slice ************/

50 sprintf(filename, "%s-x.%d", basename, frameX++);
51 out = fopen(filename, "wb");
52

53 /* write dimensions to output file */

54 dim1 = SizeY; // express dimensions as floats

55 dim2 = SizeZ; // express dimensions as floats

56 fwrite(&dim1, sizeof(float), 1, out);
57 fwrite(&dim2, sizeof(float), 1, out);
58

59 /* write remaining data */

60 mm = (SizeX - 1) / 2;
61 for (pp = SizeZ - 1; pp >= 0; pp--)
62 for (nn = 0; nn < SizeY; nn++) {
63 temp = (float)Ex(mm, nn, pp); // store data as a float

64 fwrite(&temp, sizeof(float), 1, out); // write the float

65 }
66

67 fclose(out); // close file

68

69 /************ write the constant-y slice ************/

70 sprintf(filename, "%s-y.%d", basename, frameY++);
71 out = fopen(filename, "wb");
72

73 /* write dimensions to output file */

74 dim1 = SizeX - 1; // express dimensions as floats

75 dim2 = SizeZ; // express dimensions as floats

76 fwrite(&dim1, sizeof(float), 1, out);
77 fwrite(&dim2, sizeof(float), 1, out);
78

79 /* write remaining data */

80 nn = SizeY / 2;

9.5. TFSF BOUNDARY 265

81 for (pp = SizeZ - 1; pp >= 0; pp--)
82 for (mm = 0; mm < SizeX - 1; mm++) {
83 temp = (float)Ex(mm, nn, pp); // store data as a float

84 fwrite(&temp, sizeof(float), 1, out); // write the float

85 }
86

87 fclose(out); // close file

88 }
89

90 return;
91 } /* end snapshot3d() */

Figure 9.7 shows snapshots of Ex taken over two different planes at time step 40. The Ricker

wavelet is such that there are 15 points per wavelength at the most energetic frequency. The field

has been normalized by 0.3 and three decades of scaling are used. In Fig. 9.7(a), taken over a

constant-x plane, the field is seen to radiate isotropically away from the dipole source—the dipole

is normal to the plane. In Fig. 9.7(b), taken over a constant-y plane, the source is contained in the

plane and oriented horizontally. Therefore the radiated field is stronger above and below the dipole

than along the line of the dipole.

9.5 TFSF Boundary

A total-field scattered-field boundary can be used in 3D grids to introduce the incident field. Al-

though we have only considered using the TFSF boundary to introduce plane waves, it is worth

noting that in principle any field could be introduced over the boundary. So, for example, if the

incident field were due to a dipole source which was located physically outside of the grid, the

field due to that source could be introduced over the TFSF boundary. But, whatever the type of

incident field, one should be careful to ensure that the description of the incident field over the

boundary matches the way the field actually behaves in the grid. Simply using the expression for

the incident field in the continuous world will invariably cause some leakage across the boundary

(the amount of leakage can always be reduced by using a finer discretization and may be accept-

ably small for various applications). Here we will restrict consideration to an incident plane wave

and a one-dimensional auxiliary grid will be used to determine the incident field. Furthermore, we

will assume the direction of wave propagation is along one of the grid axes.

Figure 9.8 shows a 3D computational domain in which a TFSF boundary exists. The TFSF

boundary can be any shape, but we will restrict consideration to the cuboid shape shown in the

figure. The boundary has six faces. Each face has two electric-field components and two magnetic-

field components tangential to the boundary. These are the fields that must have their values cor-

rected to account for the presence of the TFSF boundary since they will have at least one neighbor

on the opposite side of the boundary.

To illustrate the dependence of nodes across the boundary, 2D slices are taken through a com-

putational domain with nominal dimensions 9 × 7 × 8. Figure 9.9 shows the orientation of two

constant-x slices. These slices are separated by a half spatial-step in the x direction. The fields

contained in these slices are shown in Fig. 9.10. The TFSF boundary is shown as a dashed line and

266 CHAPTER 9. THREE-DIMENSIONAL FDTD

−3

−2.5

−2

−1.5

−1

−0.5

0

5 10 15 20 25 30

5

10

15

20

25

30

y location

z
lo

ca
tio

n

(a)

−3

−2.5

−2

−1.5

−1

−0.5

0

5 10 15 20 25 30

5

10

15

20

25

30

x location

z
lo

ca
tio

n

(b)

Figure 9.7: Color map of the Ex field at time-step 40. (a) Field over a constant-x plane that passes

through the source node. (b) Field over a constant-y plane that passes through the source node.

The field has been normalize by 0.3 and three decades of scaling are used. These images were

generated using the Matlab commands in Appendix C. The image could be interpolated to smooth

the obvious pixelization but that is not done here in order to emphasizes the inherent discrete nature

of the simulation.

9.5. TFSF BOUNDARY 267

y

x

z

TFSF

Boundary

Figure 9.8: Three-dimensional computational domain which contains a TFSF boundary.

nodes that must be corrected owing to the existence of a neighbor on the other side of the boundary

are enclosed in a “box” with rounded edges. Figure 9.10(a) shows the plane that contains Ey, Ez,
and Hx while Fig. 9.10(b) contains Ex, Hy, and Hz. These two slices can be overlain to show the

view seen looking along the x axis. The TFSF boundary would be specified by the first and last

node associated with the boundary, i.e., two ordered triplets. The correspondence of these nodes to

the boundary dimensions are indicated by the nodes enclosed by a dashed line and labeled “First”

and “Last.” In the example shown here, the indices of the first node would be (2, 2, 2) and the in-

dices of the last node would be (6, 4, 5). (However, from just these two slices we cannot determine

the extent of the TF region in the x direction. Instead, that will be shown in subsequent figures.)

Note that along the “bottom” and “top” of the TFSF boundary in Fig. 9.10(a) there are two

pairs of nodes that must be corrected while in Fig. 9.10(b) there are three pairs of nodes that must

be corrected. Similarly, there are different numbers of pairs along the two sides. The construction

of the TFSF boundary used here is such that corrections are only applied to electric fields within

the total-field region and are only applied to magnetic fields in the scattered-field region.

Figure 9.11 shows the orientation of two constant-y slices and Fig. 9.12 shows the fields over

these two slices. The slices are separated by a half spatial-step in the y direction. As before, these

slices can be overlain to see the view looking along the axis (in this case the y axis). From this

view one can see that the first and last indices in the x direction are 2 and 6, respectively.

Figure 9.13 shows the orientation of two constant-z slices and Fig. 9.14 shows the fields over

these two slices. The slices are separated by a half spatial-step in the z direction. These slices

correspond to the TEz and TMz grids which were studied in Chap. 8.

Figures 9.10, 9.12, and 9.14 show all the possible dependencies across the TFSF boundary.

However, in some applications not all these dependencies may be relevant. For example, consider

the case when the incident electric field is polarized in the z direction and propagating in the x
direction. In this case there are only two non-zero components of the incident field: Ez and Hy.

268 CHAPTER 9. THREE-DIMENSIONAL FDTD

y

x

z Slice containing

 Ey, Ez, and HxSlice containing

 Ex, Hy, and Hz

Figure 9.9: Constant-x slices of the computational domain used to illustration the relationship of

nodes across the TFSF boundary. The slices are separated by a half spatial-step in the x direction.

Thus, not all of the fields tangential to the TFSF boundary would have to be corrected. Only

those fields that depend on an Ez or Hy node on the other side of the boundary would need to be

corrected.

Continuing with the assumption of an incident field whose only non-zero components are Ez
and Hy, one sees from Fig. 9.10(a) that Hx nodes on the constant-y faces would have to be cor-

rected since they depend on Ez nodes on the other side of the boundary (these are the nodes along

the left and right side of the TFSF boundary in Fig. 9.10(a)). However, the correspondingEz nodes

would not have to be corrected because there is no incident Hx field. From Fig. 9.10(b) it is seen

that Ex nodes on the constant-z faces would have to be be corrected since they depend on Hy

on the other side of the boundary. But, the corresponding Hy nodes do not have to be corrected

because there is no incident Ex field.

Figure 9.12(a) shows that Ex must be corrected over constant-z faces (the top and bottom of

the TFSF boundary in the figure). (This agrees with the conclusion drawn from inspection of Fig.

9.10(a). There is redundant information in these figures.) Figure 9.12(a) also shows that both Ez
and Hy must be corrected on constant-x faces. Inspection of Fig. 9.12(b) shows that there is no

need to correct Ey, Hx, or Hz over constant-x or constant-z faces since there is no incident field at

the nodes that neighbor these components.

Figure 9.14(a) indicates, for the assumed incident field, there is no need to correct Ex, Ey, or

Hz over constant-x and constant-y faces. Figure 9.14(b) shows that Hx must be corrected over

constant-y faces. This is the same conclusion one draws from inspection of Fig. 9.10(a). It also

shows, as was seen in Fig. 9.12(a), that both Ez and Hy must be corrected over constant-x faces.

9.5. TFSF BOUNDARY 269

Hx(m,n,p)

Ey(m,n,p)

Ez(m,n,p)z

x

Total-Field Region

Scattered-Field Region

Last

First

y

(a)

Ex(m,n,p)
Hz(m,n,p)

Hy(m,n,p)
z

yx

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.10: Fields over the constant-x slices depicted in Fig. 9.9. (a) Slice containing Ey, Ez, and

Hx. (b) Slice containing Ex, Hy, and Hz.

270 CHAPTER 9. THREE-DIMENSIONAL FDTD

y

x

z

Slice containing

 Ex, Ez, and Hy

Slice containing

 Ey, Hx, and Hz

Figure 9.11: Constant-y slices of the computational domain used to illustration the relationship of

nodes across the TFSF boundary. The slices are separated by a half spatial-step in the y direction.

9.6 TFSF Demonstration

To demonstrate the implementation of a 3D TFSF boundary, we will model an incident field that

is polarized in the z direction and propagating in the x direction. This corresponds to the scenario

described in the previous section. Because of the given polarization and direction of propagation,

many of the dependencies shown in Figs. 9.10–9.14 will not require any coding.

The grid will be 35× 35× 35. A Courant number equal to the limit of 1/
√

3 will be used. Two

simulations will be performed. In one there will be no scatterer and in the other a spherical PEC

scatterer will be present. In 3D, the simplest way to model a solid PEC is to test if the center of a

given Yee cube is within the PEC. If it is, as will be shown below, the 12 electric-field nodes on

the edges of the cube are set to zero.

Program 9.9 shows the main body of the program. This program is essentially the same as

the 2D program that contained a TFSF boundary (ref. Program 8.12). As shown in line 14, the

TFSF code is initialized by calling an initialization function outside of the time-stepping loop. The

corrections to the TFSF boundary are applied by the function tfsf() which, as shown in line 21,

is called once per time-step. To work properly, this function must be called after the magnetic-field

update, but before the electric-field update. After the magnetic fields are updated, the function

tfsf() applies the necessary correction to the fields tangential to the TFSF boundary. Immedi-

ately after returning from this function, the electric fields are not in a consistent state in that the

correction has been applied to the electric fields in anticipation of the impending update. This is

the same as the case for the 2D implementation of a TFSF boundary discussed in Sec. 8.6.

Program 9.9 3d-tfsf-demo.c Main body of a program to implement a TFSF boundary in

3D.

9.6. TFSF DEMONSTRATION 271

Hy(m,n,p)

Ex(m,n,p)

Ez(m,n,p)z

y

Total-Field Region

Scattered-Field Region

Last

First

x

(a)

Ey(m,n,p)
Hz(m,n,p)

Hx(m,n,p)
z

xy

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.12: Fields over the constant-y slices depicted in Fig. 9.11. (a) Slice containing Ex, Ez,
and Hy. (b) Slice containing Ey, Hx, and Hz.

272 CHAPTER 9. THREE-DIMENSIONAL FDTD

y

x

z

Slice containing

 Ex, Ey, and Hz

Slice containing

 Ez, Hx, and Hy

Figure 9.13: Constant-z slices of the computational domain used to illustration the relationship of

nodes across the TFSF boundary. The slices are separated by a half spatial-step in the z direction.

1 /* 3D simulation with a TFSF boundary. */

2

3 #include "fdtd-alloc.h"
4 #include "fdtd-macro.h"
5 #include "fdtd-proto.h"
6

7 int main()
8 {
9 Grid *g;

10

11 ALLOC_1D(g, 1, Grid); // allocate memory for grid structure

12 gridInit(g); // initialize 3D grid

13

14 tfsfInit(g); // initialize TFSF boundary

15 abcInit(g); // initialize ABC

16 snapshot3dInit(g); // initialize snapshots

17

18 /* do time stepping */

19 for (Time = 0; Time < MaxTime; Time++) {
20 updateH(g); // update magnetic fields

21 tfsf(g); // apply correction to TFSF boundary

22 updateE(g); // update electric fields

23 abc(g); // apply ABC

24 snapshot3d(g); // take a snapshot (if appropriate)

25 } // end of time-stepping

26

9.6. TFSF DEMONSTRATION 273

Hz(m,n,p)

Ex(m,n,p)

Ey(m,n,p)y

z

Total-Field Region

Scattered-Field Region

Last

First

x

(a)

Ez(m,n,p)
Hy(m,n,p)

Hx(m,n,p)
y

xz

Total-Field Region

Scattered-Field Region

First

Last

(b)

Figure 9.14: Fields over the constant-z slices depicted in Fig. 9.13. (a) Slice containing Ex, Ey,
and Hz. (b) Slice containing Ez, Hx, and Hy.

274 CHAPTER 9. THREE-DIMENSIONAL FDTD

27 return 0;
28 }

Program 9.10 provides the code for the TFSF functions. The function tfsfInit() take a

single Grid argument, i.e., the 3D grid. There are seven static local variables in this program.

Six of those specify the first and last points in the total-field region. The seventh is the Grid
pointer g1 that is used for the 1D auxiliary grid that represents the incident field. The initialization

function tfsfInit() starts by allocating memory for g1 and then copying the values from the

3D grid to the 1D grid. As discussed in connection with the 2D TFSF boundary, this is done to

ensure the duration and Courant number are the same in both grids. Then, in line 21, the function

gridInit1D() is called to complete the initialization of the 1D grid. This function is unchanged

from that shown in Program 8.15. Starting in 23, tfsfInit() prompts the user for indices for

the first and last points in the total-field region. Finally, the source function initialization is called

(line 29). In the results to be shown, the source function was a Ricker wavelet discretized such that

there were 20 points per wavelength at the most energetic frequency.

Program 9.10 tfsf-3d-ez.c Three-dimensional TFSF implementation that assumes the elec-

tric field is polarized in the z direction and propagation is in the x direction.

1 /* TFSF boundary for a 3D grid. A 1D auxiliary grid is used to

2 * calculate the incident field which is assumed to be propagating in

3 * the x direction and polarized in the z direction. */

4

5 #include <string.h> // for memcpy

6 #include "fdtd-macro.h"
7 #include "fdtd-proto.h"
8 #include "fdtd-alloc.h"
9 #include "ezinc.h"

10

11 static int
12 firstX = 0, firstY, firstZ, // indices for first point in TF region

13 lastX, lastY, lastZ; // indices for last point in TF region

14

15 static Grid *g1; // 1D auxilliary grid

16

17 void tfsfInit(Grid *g) {
18

19 ALLOC_1D(g1, 1, Grid); // allocate memory for 1D Grid

20 memcpy(g1, g, sizeof(Grid)); // copy information from 3D array

21 gridInit1d(g1); // initialize 1d grid

22

23 printf("Grid is %d by %d by %d.\n", SizeX, SizeY, SizeZ);
24 printf("Enter indices for first point in TF region: ");
25 scanf(" %d %d %d", &firstX, &firstY, &firstZ);

9.6. TFSF DEMONSTRATION 275

26 printf("Enter indices for last point in TF region: ");
27 scanf(" %d %d %d", &lastX, &lastY, &lastZ);
28

29 ezIncInit(g); // initialize source function

30

31 return;
32 } /* end tfsfInit() */

33

34

35 void tfsf(Grid *g) {
36 int mm, nn, pp;
37

38 // check if tfsfInit() has been called

39 if (firstX <= 0) {
40 fprintf(stderr,
41 "tfsf: tfsfInit must be called before tfsfUpdate.\n"
42 " Boundary location must be set to positive value.\n");
43 exit(-1);
44 }
45

46 /****** constant x faces -- scattered-field nodes ******/

47

48 // correct Hy at firstX-1/2 by subtracting Ez_inc

49 mm = firstX;
50 for (nn = firstY; nn <= lastY; nn++)
51 for (pp = firstZ; pp < lastZ; pp++)
52 Hy(mm - 1, nn, pp) -= Chye(mm, nn, pp) * Ez1G(g1, mm);
53

54 // correct Hy at lastX + 1/2 by adding Ez_inc

55 mm = lastX;
56 for (nn = firstY; nn <= lastY; nn++)
57 for (pp = firstZ; pp < lastZ; pp++)
58 Hy(mm, nn, pp) += Chye(mm, nn, pp) * Ez1G(g1, mm);
59

60 /**** constant y faces -- scattered-field nodes ****/

61

62 // correct Hx at firstY-1/2 by adding Ez_inc

63 nn = firstY;
64 for (mm = firstX; mm <= lastX; mm++)
65 for (pp = firstZ; pp < lastZ; pp++)
66 Hx(mm, nn - 1, pp) += Chxe(mm, nn - 1, pp) * Ez1G(g1, mm);
67

68 // correct Hx at lastY+1/2 by subtracting Ez_inc

69 nn = lastY;
70 for (mm = firstX; mm <= lastX; mm++)
71 for (pp = firstZ; pp < lastZ; pp++)
72 Hx(mm, nn, pp) -= Chxe(mm, nn, pp) * Ez1G(g1, mm);

276 CHAPTER 9. THREE-DIMENSIONAL FDTD

73

74 /**** constant z faces -- scattered-field nodes ****/

75

76 // nothing to correct on this face

77

78 /**** update the fields in the auxiliary 1D grid ****/

79 updateH(g1); // update 1D magnetic field

80 updateE(g1); // update 1D electric field

81 Ez1G(g1, 0) = ezInc(TimeG(g1), 0.0); // set source node

82 TimeG(g1)++; // increment time in 1D grid

83

84 /**** constant x faces -- total-field nodes ****/

85

86 // correct Ez at firstX face by subtracting Hy_inc

87 mm = firstX;
88 for (nn = firstY; nn <= lastY; nn++)
89 for (pp = firstZ; pp < lastZ; pp++)
90 Ez(mm, nn, pp) -= Cezh(mm, nn, pp) * Hy1G(g1, mm - 1);
91

92 // correct Ez at lastX face by adding Hy_inc

93 mm = lastX;
94 for (nn = firstY; nn <= lastY; nn++)
95 for (pp = firstZ; pp < lastZ; pp++)
96 Ez(mm, nn, pp) += Cezh(mm, nn, pp) * Hy1G(g1, mm);
97

98 /**** constant y faces -- total-field nodes ****/

99

100 // nothing to correct on this face

101

102 /**** constant z faces -- total-field nodes ****/

103

104 // correct Ex at firstZ face by adding Hy_inc

105 pp = firstZ;
106 for (mm = firstX; mm < lastX; mm++)
107 for (nn = firstY; nn <= lastY; nn++)
108 Ex(mm, nn, pp) += Cexh(mm, nn, pp) * Hy1G(g1, mm);
109

110 // correct Ex at lastZ face by subtracting Hy_inc

111 pp = lastZ;
112 for (mm = firstX; mm < lastX; mm++)
113 for (nn = firstY; nn <= lastY; nn++)
114 Ex(mm, nn, pp) -= Cexh(mm, nn, pp) * Hy1G(g1, mm);
115

116 return;
117 } /* end tfsf() */

The function tfsf() begins on line 35. This function, which is called once per time-step,

9.6. TFSF DEMONSTRATION 277

applies the corrections to the various faces of the TFSF boundary as described in the previous

section.

The code to implement the 3D grid is shown in Program 9.11. This code is almost identical

to the code for the homogeneous grid that was given in Program 9.7. The the only significant

difference is the possible inclusion of the PEC sphere. The variables associated with the sphere

are listed in lines 10 and 11. The users is queried if the sphere is present. If it is, the variable

isSpherePresent is set to one. Otherwise it is set to zero. The radius of the sphere, which

is stored in radius, is set to 8 cells while the indices for the center of the sphere are set to

(17, 17, 17). The grid is initially set to uniform free space. However, if the sphere is present, as

shown starting at line 67, the center of each Yee cube is checked. If it is within a distance of

radius cells from the center of the sphere, all 12 electric-field nodes on the edges of the cube

are set to zero. (In the for-loops associated with this check, the squared values of the distances are

used so as to avoid having to calculate square roots.) The update coefficients for the magnetic field

are uneffected by the presence of the PEC.

Program 9.11 grid3dsphere.c Function to initialize a Grid structure. The user is prompted

to determine if a PEC sphere of radius 8-cells should be present. If it is not, the grid is homoge-

neous free space.

1 #include "fdtd-macro.h"
2 #include "fdtd-alloc.h"
3 #include <math.h>
4

5 void gridInit(Grid *g) {
6 double imp0 = 377.0;
7 int mm, nn, pp;
8

9 // sphere parameters

10 int m_c = 17, n_c = 17, p_c = 17, isSpherePresent;
11 double m2, n2, p2, r2, radius = 8.0;
12

13 Type = threeDGrid;
14 SizeX = 35; // size of domain

15 SizeY = 35;
16 SizeZ = 35;
17 MaxTime = 300; // duration of simulation

18 Cdtds = 1.0 / sqrt(3.0); // Courant number

19

20 printf("If the sphere present: (1=yes, 0=no) ");
21 scanf(" %d", &isSpherePresent);
22

23 /* memory allocation */

24 ALLOC_3D(g->hx, SizeX, SizeY - 1, SizeZ - 1, double);
25 ALLOC_3D(g->chxh, SizeX, SizeY - 1, SizeZ - 1, double);
26 ALLOC_3D(g->chxe, SizeX, SizeY - 1, SizeZ - 1, double);
27 ALLOC_3D(g->hy, SizeX - 1, SizeY, SizeZ - 1, double);

278 CHAPTER 9. THREE-DIMENSIONAL FDTD

28 ALLOC_3D(g->chyh, SizeX - 1, SizeY, SizeZ - 1, double);
29 ALLOC_3D(g->chye, SizeX - 1, SizeY, SizeZ - 1, double);
30 ALLOC_3D(g->hz, SizeX - 1, SizeY - 1, SizeZ, double);
31 ALLOC_3D(g->chzh, SizeX - 1, SizeY - 1, SizeZ, double);
32 ALLOC_3D(g->chze, SizeX - 1, SizeY - 1, SizeZ, double);
33

34 ALLOC_3D(g->ex, SizeX - 1, SizeY, SizeZ, double);
35 ALLOC_3D(g->cexe, SizeX - 1, SizeY, SizeZ, double);
36 ALLOC_3D(g->cexh, SizeX - 1, SizeY, SizeZ, double);
37 ALLOC_3D(g->ey, SizeX, SizeY - 1, SizeZ, double);
38 ALLOC_3D(g->ceye, SizeX, SizeY - 1, SizeZ, double);
39 ALLOC_3D(g->ceyh, SizeX, SizeY - 1, SizeZ, double);
40 ALLOC_3D(g->ez, SizeX, SizeY, SizeZ - 1, double);
41 ALLOC_3D(g->ceze, SizeX, SizeY, SizeZ - 1, double);
42 ALLOC_3D(g->cezh, SizeX, SizeY, SizeZ - 1, double);
43

44 /* set electric-field update coefficients */

45 for (mm = 0; mm < SizeX - 1; mm++)
46 for (nn = 0; nn < SizeY; nn++)
47 for (pp = 0; pp < SizeZ; pp++) {
48 Cexe(mm, nn, pp) = 1.0;
49 Cexh(mm, nn, pp) = Cdtds * imp0;
50 }
51

52 for (mm = 0; mm < SizeX; mm++)
53 for (nn = 0; nn < SizeY - 1; nn++)
54 for (pp = 0; pp < SizeZ; pp++) {
55 Ceye(mm, nn, pp) = 1.0;
56 Ceyh(mm, nn, pp) = Cdtds * imp0;
57 }
58

59 for (mm = 0; mm < SizeX; mm++)
60 for (nn = 0; nn < SizeY; nn++)
61 for (pp = 0; pp < SizeZ - 1; pp++) {
62 Ceze(mm, nn, pp) = 1.0;
63 Cezh(mm, nn, pp) = Cdtds * imp0;
64 }
65

66 // zero the nodes associated with the PEC sphere

67 if (isSpherePresent) {
68 r2 = radius * radius;
69 for (mm = 2; mm < SizeX - 2; mm++) {
70 m2 = (mm + 0.5 - m_c) * (mm + 0.5 - m_c);
71 for (nn = 2; nn < SizeY - 2; nn++) {
72 n2 = (nn + 0.5 - n_c) * (nn + 0.5 - n_c);
73 for (pp = 2; pp < SizeZ - 2; pp++) {
74 p2 = (pp + 0.5 - p_c) * (pp + 0.5 - p_c);

9.6. TFSF DEMONSTRATION 279

75 // if distance to center of a cube is less than radius

76 // of the sphere, zero all the surrounding electric

77 // field nodes

78 if (m2 + n2 + p2 < r2) {
79 // zero surrounding Ex nodes

80 Cexe(mm, nn, pp) = 0.0;
81 Cexe(mm, nn + 1, pp) = 0.0;
82 Cexe(mm, nn, pp + 1) = 0.0;
83 Cexe(mm, nn + 1, pp + 1) = 0.0;
84 Cexh(mm, nn, pp) = 0.0;
85 Cexh(mm, nn + 1, pp) = 0.0;
86 Cexh(mm, nn, pp + 1) = 0.0;
87 Cexh(mm, nn + 1, pp + 1) = 0.0;
88 // zero surrounding Ey nodes

89 Ceye(mm, nn, pp) = 0.0;
90 Ceye(mm + 1, nn, pp) = 0.0;
91 Ceye(mm, nn, pp + 1) = 0.0;
92 Ceye(mm + 1, nn, pp + 1) = 0.0;
93 Ceyh(mm, nn, pp) = 0.0;
94 Ceyh(mm + 1, nn, pp) = 0.0;
95 Ceyh(mm, nn, pp + 1) = 0.0;
96 Ceyh(mm + 1, nn, pp + 1) = 0.0;
97 // zero surrounding Ez nodes

98 Ceze(mm, nn, pp) = 0.0;
99 Ceze(mm + 1, nn, pp) = 0.0;

100 Ceze(mm, nn + 1, pp) = 0.0;
101 Ceze(mm + 1, nn + 1, pp) = 0.0;
102 Cezh(mm, nn, pp) = 0.0;
103 Cezh(mm + 1, nn, pp) = 0.0;
104 Cezh(mm, nn + 1, pp) = 0.0;
105 Cezh(mm + 1, nn + 1, pp) = 0.0;
106 }
107 }
108 }
109 }
110 }
111

112

113 /* set magnetic-field update coefficients */

114 for (mm = 0; mm < SizeX; mm++)
115 for (nn = 0; nn < SizeY - 1; nn++)
116 for (pp = 0; pp < SizeZ - 1; pp++) {
117 Chxh(mm, nn, pp) = 1.0;
118 Chxe(mm, nn, pp) = Cdtds / imp0;
119 }
120

121 for (mm = 0; mm < SizeX - 1; mm++)

280 CHAPTER 9. THREE-DIMENSIONAL FDTD

122 for (nn = 0; nn < SizeY; nn++)
123 for (pp = 0; pp < SizeZ - 1; pp++) {
124 Chyh(mm, nn, pp) = 1.0;
125 Chye(mm, nn, pp) = Cdtds / imp0;
126 }
127

128 for (mm = 0; mm < SizeX - 1; mm++)
129 for (nn = 0; nn < SizeY - 1; nn++)
130 for (pp = 0; pp < SizeZ; pp++) {
131 Chzh(mm, nn, pp) = 1.0;
132 Chze(mm, nn, pp) = Cdtds / imp0;
133 }
134

135 return;
136 } /* end gridInit() */

Figure 9.15 show the Ez field take over a constant y slice along the center of the computational

domain. The figures on the left show the field when there is no scatterer while the figures on the

right show the field at the same time-step but when the spherical scatterer is present. In the absence

of a scatterer, one can see that there are no fields in the scattered-field region. The first point in the

total-field region has indices of (5, 5, 5) while the last point had indices of (30, 30, 30).
In these simulations a first-order ABC is used and the code is unchanged from that presented

in Program 9.6. The snapshot code used to generate the data for Fig. 9.15 is slightly different from

Program 9.8 in that here the Ez field is being recorded while in Program 9.8 the Ex field was being

recorded. However, this represents a minor change and hence the modified snapshot code is not

shown. Another minor change that is not explicitly shown is that it would be necessary for the

header file fdtd-proto.h to include the prototypes for the TFSF functions tfsfInit() and

tfsf(). As with nearly all the other functions, these prototypes would merely show that these

functions have a pointer to a Grid structure as their single argument.

9.7 Unequal Spatial Steps

In the previous discussion we have always assumed that ∆x = ∆y = ∆z = δ. But how do things

change if ∆x 6= ∆y 6= ∆z? We will consider that question in this section. First, let us introduce

the following notation

δ = ∆x ⇒ ∆x = δ,

ry =
∆y

∆x

⇒ ∆y = ryδ,

rz =
∆z

∆x

⇒ ∆z = rzδ.

9.7. UNEQUAL SPATIAL STEPS 281

10 20 30

5

10

15

20

25

30

(a) time−step 20, no scatterer

x location

z
lo

ca
tio

n

10 20 30

5

10

15

20

25

30

(b) time−step 20, with sphere

x location

z
lo

ca
tio

n

10 20 30

5

10

15

20

25

30

(c) time−step 40, no scatterer

x location

z
lo

ca
tio

n

10 20 30

5

10

15

20

25

30

(d) time−step 40, with sphere

x location

z
lo

ca
tio

n

10 20 30

5

10

15

20

25

30

(e) time−step 60, no scatterer

x location

z
lo

ca
tio

n

10 20 30

5

10

15

20

25

30

(f) time−step 60, with sphere

x location

z
lo

ca
tio

n

Figure 9.15: The Ez field over a constant-y plane taken from a 3D simulation in which the incident

electric field is z-polarized and propagation is in the x direction. In the figures on the left no

scatterer is present. Figures (a), (c), and (e) are taken at time-steps, 20, 40, and 60, respectively.

The figures on the right show the field at the same time-steps, but a spherical scatterer is present.

282 CHAPTER 9. THREE-DIMENSIONAL FDTD

Furthermore, we will defined scaled field quantities such that

ex = ∆xEx, hx = ∆xHx,

ey = ∆yEy, hy = ∆yHy,

ez = ∆zEz, hz = ∆zHz.

With these definitions in place, let us consider a rewritten form of (9.18)

1

∆x

∆xE
q+1
x

[

m+
1

2
, n, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

1

∆x

∆xE
q
x

[

m+
1

2
, n, p

]

+
1

1 + σ∆t

2ǫ

(
∆t

ǫ∆y∆z

{

∆zH
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

− ∆zH
q+ 1

2
z

[

m+
1

2
, n− 1

2
, p

]}

− ∆t

ǫ∆y∆z

{

∆yH
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

− ∆yH
q+ 1

2
y

[

m+
1

2
, n, p− 1

2

]})

. (9.39)

Multiplying through by ∆x and employing the definitions given above, this update equation be-

comes

eq+1
x

[

m+
1

2
, n, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

eqx

[

m+
1

2
, n, p

]

+
1

1 + σ∆t

2ǫ

∆t

ǫδ

1

ryrz

({

h
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

− h
q+ 1

2
z

[

m+
1

2
, n− 1

2
, p

]}

−
{

h
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

− h
q+ 1

2
y

[

m+
1

2
, n, p− 1

2

]})

. (9.40)

Importantly, all the (scaled) magnetic fields are multiplied by the same coefficient.

From inspection of (9.18), it might have appeared that when the spatial step sizes are not equal,

another set of coefficients would have to be introduced (i.e., one for the term involving 1/∆y and

one for the term involving 1/∆z). This is true if the field components are not scaled by their

respective lengths. However, by scaling the fields, it is still only necessary to have two coefficients

per update equation.

The complete set up update equations for the scaled fields are:

h
q+ 1

2
x

[

m,n+
1

2
, p+

1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
x

[

m,n+
1

2
, p+

1

2

]

+
1

1 + σm∆t

2µ

∆t

µδ

1

ryrz

({

eqy

[

m,n+
1

2
, p+ 1

]

− eqy

[

m,n+
1

2
, p

]}

−
{

eqz

[

m,n+ 1, p+
1

2

]

− eqz

[

m,n, p+
1

2

]})

, (9.41)

9.7. UNEQUAL SPATIAL STEPS 283

h
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
y

[

m+
1

2
, n, p+

1

2

]

+
1

1 + σm∆t

2µ

∆t

µδ

ry
rz

({

eqz

[

m+ 1, n, p+
1

2

]

− eqz

[

m,n, p+
1

2

]}

−
{

eqx

[

m+
1

2
, n, p+ 1

]

− eqx

[

m+
1

2
, n, p

]})

, (9.42)

h
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

=
1 − σm∆t

2µ

1 + σm∆t

2µ

h
q− 1

2
z

[

m+
1

2
, n+

1

2
, p

]

+
1

1 + σm∆t

2ǫ

∆t

µδ

rz
ry

({

eqx

[

m+
1

2
, n+ 1, p

]

− eqx

[

m+
1

2
, n, p

]}

−
{

eqy

[

m+ 1, n+
1

2
, p

]

− eqy

[

m,n+
1

2
, p

]})

. (9.43)

eq+1
x

[

m+
1

2
, n, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

eqx

[

m+
1

2
, n, p

]

+
1

1 + σ∆t

2ǫ

∆t

ǫδ

1

ryrz

({

h
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

− h
q+ 1

2
z

[

m+
1

2
, n− 1

2
, p

]}

−
{

h
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

− h
q+ 1

2
y

[

m+
1

2
, n, p− 1

2

]})

. (9.44)

eq+1
y

[

m,n+
1

2
, p

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

eqy

[

m,n+
1

2

]

+
1

1 + σ∆t

2ǫ

∆t

ǫδ

ry
rz

({

h
q+ 1

2
x

[

m,n+
1

2
, p− 1

2

]

− h
q+ 1

2
x

[

m,n+
1

2
, p− 1

2

]}

−
{

h
q+ 1

2
z

[

m+
1

2
, n+

1

2
, p

]

− h
q+ 1

2
z

[

m− 1

2
, n+

1

2
, p

]})

, (9.45)

eq+1
z

[

m,n, p+
1

2

]

=
1 − σ∆t

2ǫ

1 + σ∆t

2ǫ

eqz

[

m,n, p+
1

2

]

+
1

1 + σ∆t

2ǫ

∆t

ǫδ

rz
ry

({

h
q+ 1

2
y

[

m+
1

2
, n, p+

1

2

]

− h
q+ 1

2
y

[

m− 1

2
, n, p+

1

2

]}

−
{

h
q+ 1

2
x

[

m,n+
1

2
, p+

1

2

]

− h
q+ 1

2
x

[

m,n− 1

2
, p+

1

2

]})

. (9.46)

Thinking now in terms of coefficients, note that all the “self-term” coefficients are virtually

unchanged from those given previously, i.e., Chxh , Chyh , Chxh , Cexe , Ceye , and Ceze are as given

284 CHAPTER 9. THREE-DIMENSIONAL FDTD

in (9.21), (9.23), (9.25), (9.27), (9.29), and (9.27), respectively. (There is a slight difference in

that those expressions listed the evaluation points merely in terms of a uniform spatial step size of

δ—one would now have to think in terms of ∆x, ∆y, and ∆z, for displacements in the x, y, and z
directions, respectively.)

The “cross” coefficients, such as Chxe and Ceyh , are nearly the same as before where the only

differences are that δ specifically represents the spatial step ∆x, the scale factors ry and rz now

appear, and the locations are specifically in terms of ∆x, ∆y, and ∆z. These scaled coefficients are

now

Chxe(m,n+ 1/2, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

1

ryrz

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y ,(p+1/2)∆z

, (9.47)

Chye(m+ 1/2, n, p+ 1/2) =
1

1 + σm∆t

2µ

∆t

µδ

ry
rz

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y ,(p+1/2)∆z

, (9.48)

Chxe(m+ 1/2, n+ 1/2, p) =
1

1 + σm∆t

2µ

∆t

µδ

rz
ry

∣
∣
∣
∣
∣
(m+1/2)∆x,(n+1/2)∆y ,p∆z

, (9.49)

Cexh(m+ 1/2, n, p) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

1

ryrz

∣
∣
∣
∣
∣
(m+1/2)∆x,n∆y ,p∆z

, (9.50)

Ceyh(m,n+ 1/2, p) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

ry
rz

∣
∣
∣
∣
∣
m∆x,(n+1/2)∆y ,p∆z

, (9.51)

Cezh(m,n, p+ 1/2) =
1

1 + σ∆t

2ǫ

∆t

ǫδ

rz
ry

∣
∣
∣
∣
∣
m∆x,n∆y ,(p+1/2)∆z

. (9.52)

Finally, stability dictates that

∆t ≤
1

c
√

1
∆2

x
+ 1

∆2
y

+ 1
∆2

z

(9.53)

which, after employing the definitions given above and rearranging, can be written as

c∆t

δ
≤ 1
√

1 + 1
r2y

+ 1
r2z

(9.54)

Note that when ry = rz = 1 all the update equations and coefficients are identical to what was

previously given for a uniform grid. This may seem rather odd because now we are discussing

scaled fields instead of the fields themselves, e.g., we are dealing with ex = ∆xEx instead of Ex.

(The scaled “electric” and “magnetic” fields have units of volts and amperes, respectively, instead

of volts per meter and ampere per meter, and hence these fields are really voltages and currents.)

However, one must keep in mind that for these scaled fields the source terms would corresponding

have to be scaled. For example, if there were an additive source current in the update equation for

Ex, in the scaled version of the update equation this source term would also be scaled by ∆x. Thus,

9.7. UNEQUAL SPATIAL STEPS 285

if one were to compare the values in a simulation involving the scaled and unscaled x-component

of the electric field, the scaled values would be larger by a factor of ∆x. When the scaled field is

divided by ∆x one obtains the same electric field that would be obtained directly from a simulation

with unscaled fields.

Returning to the question raised at the beginning of the section: But how do things change if

∆x 6= ∆y 6= ∆z? The answer is that very little changes. The same code can be used for simulations

with either equal or unequal spatial steps. The only differences will be in the Courant number, as

given by (9.54), in the coefficients of the “cross” coefficients, as given by (9.47)–(9.52), and the

fact that one is now modeling the scaled fields rather than the fields themselves. Source terms

should also be appropriately scaled but that will not be considered further here.

286 CHAPTER 9. THREE-DIMENSIONAL FDTD

Chapter 10

Dispersive Material

10.1 Introduction

For many problems one can obtain acceptably accurate results by assuming material parameters are

constants. However, constant material parameters are inherently an approximation. For example,

it is impossible to have a lossless dielectric with constant permittivity (except, of course, for free

space). If such a material did exist it would violate causality. (For a material to behave causally, the

Kramers-Kronig relations show that for any deviation from free-space behavior the imaginary part

of the permittivity or permeability, i.e., the loss, cannot vanish for all frequencies. Nevertheless, as

far as causality is concerned, the loss can be arbitrarily small.)

A non-unity, scalar, constant relative permittivity is equivalent to assuming the polarization

of charge within a material is instantaneous and in perfect proportion to the applied electric field.

Furthermore, the reaction is the same at all frequencies, is the same in all directions, is the same for

all times, and the same proportionality constant holds for all field strengths. In reality, essentially

none of the these assumptions are absolutely correct. The relationship between the electric flux

density D and the electric field E can reflect all the complexity of the real world. Instead of simply

having D = ǫE where ǫ is a scalar constant, one can make ǫ a tensor to describe different behaviors

in different directions (off diagonal terms would indicate the amount of coupling from one direction

to another). The permittivity can also be written as a nonlinear function of the applied electric field

to account for nonlinear media. The material parameters can be functions of time (such as might

pertain to a material which is being heated). Finally, one should not forget that the permittivity can

be a function of position to account for spatial inhomogeneities.

When the speed of light in a material is a function of frequency, the material is said to be

dispersive. The fact that the FDTD grid is dispersive has been discussed in Chap. 7. That dispersion

is a numerical artifact and is distinct from the subject of this chapter. We have also considered

lossy materials. Even when the conductivity of a material is assumed to be constant, the material

is dispersive (ref. (5.69) which shows that the phase constant is not linearly proportional to the

frequency which must be the case for non-dispersive propagation).

When the permittivity or permeability of a material are functions of frequency, the material is

dispersive. In time-harmonic form one can account for the frequency dependence of permittivity

by writing D̂(ω) = ǫ̂(ω)Ê(ω), where a caret is used to indicate a quantity in the frequency domain.

†Lecture notes by John Schneider. fdtd-dispersive-material.tex

287

288 CHAPTER 10. DISPERSIVE MATERIAL

This expression is simple in the frequency domain, but the FDTD method is a time-domain tech-

nique. The multiplication of harmonic functions is equivalent to convolution in the time domain.

Therefore it requires some additional effort to model these types of dispersive materials. We start

with a brief review of dispersive materials and then consider two ways in which to model such

materials in the FDTD method.

10.2 Constitutive Relations and Dispersive Media

The electric flux density and magnetic field are related to the electric field and the magnetic flux

density via

D = ǫ0E + P, (10.1)

H =
B

µ0

− M, (10.2)

where P and M account for the electric and magnetic dipoles, respectively, induced in the media.

Keep in mind that force on a charge is a function of E and B so in some sense E and B are the

“real” fields. The polarization vector P accounts for the local displacement of bound charge in a

material. Because of the way in which P is constructed, by adding it to ǫ0E the resulting electric

flux density D has the local effect of bound charge removed. In this way, the integral of D over

a closed surface yields the free charge (thus Gauss’s law, as expressed using the D field, is true

whether material is present or not).

The magnetic field H ignores the local effect of bound charge in motion. Thus, the integration

of H over a closed loop yields the current flowing through the surface enclosed by that loop where

the current is due to either the flow of free charge or displacement current (i.e., the integral form

of Ampere’s law). Rearranging the terms in (10.2) and multiplying by µ0 yields an expression for

the magnetic flux density∗, i.e.,

B = µ0(H + M). (10.3)

At a given frequency, for a linear, isotropic medium, the polarization vectors can be related to

the electric and magnetic fields via an electric or magnetic susceptibility

P̂(ω) = ǫ0χ̂e(ω)Ê(ω), (10.4)

M̂(ω) = µ0χ̂m(ω)Ĥ(ω), (10.5)

where χ̂e(ω) and χ̂m(ω) are the electric and magnetic susceptibility, respectively.† Thus we can

write

D̂(ω) = ǫ0Ê(ω) + ǫ0χ̂e(ω)Ê(ω), (10.6)

B̂(ω) = µ0Ĥ(ω) + µ0χ̂m(ω)Ĥ(ω). (10.7)

∗Note that there are those (e.g., Feynman) who advocate that one should avoid using D and H. Others (e.g.,

Sommerfeld) have discussed the unfortunate naming of the magnetic field and the magnetic flux density. However,

those issues are peripheral to the main subject of interest here and we will employ the notation and usage as is

commonly found in engineering electromagnetics.
†Here we will assume that χ̂e(ω) and χ̂m(ω) are not functions of time. Thus frequency response of the material

“today” is the same as it will be “tomorrow.”

10.2. CONSTITUTIVE RELATIONS AND DISPERSIVE MEDIA 289

For the time being we restrict discussion to the electric fields where the permittivity ǫ̂(ω) is defined

as

ǫ̂(ω) = ǫ0ǫ̂r(ω) = ǫ0(ǫ∞ + χ̂e(ω)). (10.8)

where ǫ̂r is the relative permittivity and, as will be seen, the constant ǫ∞ accounts for the effect of

the charged material at high frequencies where the susceptibility function goes to zero.

The time-domain electric flux density can be obtain by inverse transforming (10.6). The prod-

uct of χ̂e and Ê in the frequency domain yields a convolution in the time domain. The fields are

assumed to be zero prior to t = 0, so this yields

D(t) = ǫ0E(t) +

t∫

τ=0

χe(τ)E(t− τ)dτ (10.9)

where χe(t) is the inverse transform of χ̂e(ω):

χe(t) =
1

2π

∞∫

−∞

χ̂e(ω)ejωtdω. (10.10)

The time-domain function ǫ0χe(t) corresponds to the polarization vector P(t) for an impulsive

electric field—effectively the impulse response of the medium.

We now consider three common susceptibility functions. As will be shown these are based on

either simple mechanical or electrical models.

10.2.1 Drude Materials

In the Drude model, which often provides a good model of the behavior of conductors, charges are

assumed to move under the influence of the electric field but they experience a damping force as

well. This can be described by the following simple mechanical model

M
d2

x

dt2
= QE(t) −Mg

dx

dt
(10.11)

where M is the mass of the charge, g is the damping coefficient, Q is the amount of charge, and x

is the displacement of the charge (the displacement is assumed to be in an arbitrary direction and

not restricted to the x axis despite the use of the symbol x). The left side of this equation is mass

times acceleration and the right side is the sum of the forces on the charge, i.e., a driving force and

a damping force. Rearranging this and converting to the frequency domain yields

M(jω)2
x̂(ω) +Mg(jω)x̂(ω) = QÊ(ω). (10.12)

Thus the displacement can be expressed as

x̂(ω) = − Q

M (ω2 − jgω)
Ê(ω). (10.13)

The polarization vector P is related to the dipole moment of individual charges. IfN is the number

of dipoles per unit volume, the polarization vector is given by

P̂ = NQx̂. (10.14)

290 CHAPTER 10. DISPERSIVE MATERIAL

Note that P has units of charge per units area (C/m2) and thus, as would be expected from (10.1),

has the same units as electric flux. Combining (10.13) and (10.14) yields

P̂(ω) = −ǫ0
NQ2

Mǫ0

ω2 − jgω
Ê(ω). (10.15)

The electric susceptibility for Drude materials is thus given by

χ̂e(ω) = −
ω2
p

ω2 − jgω
(10.16)

where ω2
p = NQ2/(Mǫ0). However, we are not overly concerned with the specifics behind any

one constant. For example, some authors may elect to combine the mass and damping coefficient

which were kept as separate quantities in (10.11) (the product of the two dictates the damping

force). Regardless of how the constants are defined, ultimately the Drude susceptibility will take

the form shown in (10.16).

The relative permittivity for a Drude material can thus be written

ǫ̂r(ω) = ǫ∞ −
ω2
p

ω2 − jgω
. (10.17)

Note that as ω goes to infinity the relative permittivity reduces to ǫ∞. Consider a rather special

case in which ǫ∞ = 1 and g = 0. When ω = ωp/
√

2 the relative permittivity is −1. It is

possible, at least to some extent, to construct a material which has not only this kind of behavior

for permittivity but also for the behavior for the permeability, i.e., µr = ǫr = −1. This kind

of material, which is known by various names including meta material, double-negative material,

backward-wave material, and left-handed material, possesses many interesting properties. Some

properties of these “meta materials” are also rather controversial as some people have made claims

that others dispute (such as the ability to construct a “perfect” lens using a planar slab of this

material).

The impulse response for the medium is the inverse Fourier transform of (10.16):

χe(t) =
ω2
p

g

(
1 − e−gt

)
u(t) (10.18)

where u(t) is the unit step function. The factor g is seen to determine the rate at which the response

goes to zero, i.e., its inverse is the relaxation time. The factor ωp is known as the plasma frequency.

10.2.2 Lorentz Material

Lorentz material is based on a second-order mechanical model of charge motion. In this case, in

addition to a damping force, there is a restoring force (effectively a spring force which wants to

bring the charge back to its initial position). The sum of the forces can be expressed as

M
d2

x

dt2
= QE(t) −Mg

dx

dt
−MKx. (10.19)

10.2. CONSTITUTIVE RELATIONS AND DISPERSIVE MEDIA 291

The terms in commons with those in (10.11) as they had in the case of the Drude model. The

additional term represents the restoring force (which is proportional to the displacement) and is

scaled by the spring constant K.

Converting to the frequency domain and rearranging yields

−Mω2
x̂(ω) + jMgωx̂(ω) +MKx̂(ω) = QÊ(ω). (10.20)

Thus the displacement is given by

x̂(ω) =
Q

M (K + jgω − ω2)
Ê(ω). (10.21)

Relating displacement to the polarization vector via P̂ = NQx̂ yields

P̂(ω) = ǫ0
NQ2

Mǫ0 (K + jgω − ω2)
Ê(ω). (10.22)

From this the susceptibility is identified as

χ̂e(ω) =
NQ2

Mǫ0 (K + jgω − ω2)
(10.23)

However, as before, the important thing is the form of the function, not the individual constants.

We thus write this as

χ̂e(ω) =
ǫℓω

2
ℓ

ω2
ℓ + 2jgℓω − ω2

(10.24)

where ωℓ is the undamped resonant frequency, gℓ is the damping coefficient, and ǫℓ (together with

ǫ∞) accounts for the relatively permittivity at zero frequency. The corresponding relative permit-

tivity is given by

ǫ̂r(ω) = ǫ∞ +
ǫℓω

2
ℓ

ω2
ℓ + 2jgℓω − ω2

. (10.25)

Note that when the frequency goes to zero the relative permittivity becomes ǫ∞ + ǫℓ whereas when

the frequency goes to infinity the relative permittivity is simply ǫ∞.

The time-domain form of the susceptibility function is given by the inverse transform of (10.24).

This yields

χe(t) =
ǫℓω

2
ℓ

√

ω2
ℓ − g2

ℓ

e−gℓt sin

(

t
√

ω2
ℓ − g2

ℓ

)

u(t). (10.26)

10.2.3 Debye Material

Debye materials can be thought of as a simple RC circuit where the amount of polarization is re-

lated to the voltage across the capacitor. The “source” driving the circuit is the electric field. For a

step in the source, there may be a constant polarization. As the frequency goes to infinity, the po-

larization goes to zero (leaving just the constant residual high-frequency term). The susceptibility

is thus written

χ̂e(ω) =
ǫd

1 + jωτd
(10.27)

292 CHAPTER 10. DISPERSIVE MATERIAL

where τd is the time constant and ǫd (together with ǫ∞) accounts for the relative permittivity when

the frequency is zero. The relative permittivity is given by

ǫ̂r(ω) = ǫ∞ +
ǫd

1 + jωτd
. (10.28)

The time-domain form of the susceptibility function is

χe(t) =
ǫd
τd
e−t/τdu(t). (10.29)

10.3 Debye Materials Using the ADE Method

The finite-difference approximation of the differential equation that relates the polarization and the

electric field can be used to obtain the polarization at future times in terms of its past value and

an expression involving the electric field. By doing so, one can obtain a consistent FDTD model

that requires that a quantity related to the polarization be stored as an additional variable. This

approach is known as the auxiliary differential equation (ADE) method.

In the frequency domain Ampere’s law can be written

ǫ0ǫ∞jωÊ + σÊ + Ĵp = ∇× Ĥ (10.30)

where the polarization current Ĵp is given by

Ĵp = jωP̂ = jωǫ0χ̂eÊ. (10.31)

For a Debye material this becomes

Ĵp = jωǫ0
ǫd

1 + jωτ
Ê. (10.32)

Multiplying through by 1 + jωτ yields

Ĵp + jωτ Ĵp = jωǫ0ǫdÊ. (10.33)

Converting to the time domain produces

Jp + τ
∂Jp
∂t

= ǫ0ǫd
∂E

∂t
. (10.34)

Discretizing this about the time-step q + 1/2 yields

J
q+1
p + J

q
p

2
+ τ

J
q+1
p − J

q
p

∆t

= ǫ0ǫd
E
q+1 − E

q

∆t

. (10.35)

Since we are assuming an isotropic medium, the polarization current is aligned with the electric

field. Hence in (10.35) the x component of Jp depends only on the x component of E (and similarly

for the y and z components).

10.3. DEBYE MATERIALS USING THE ADE METHOD 293

Solving (10.35) for J
q+1
p yields

J
q+1
p =

1 − ∆t

2τ

1 + ∆t

2τ

J
q
p +

∆t

τ

1 + ∆t

2τ

ǫ0ǫd
∆t

(
E
q+1 − E

q
)
. (10.36)

Whatever the time-constant τ is, it can be expressed in terms of some multiple of the time-step,

i.e., τ = Nτ∆t where Nτ does not need to be an integer. As will be shown, it is convenient to

multiply both sides of (10.36) by the spatial step size. We will assume a uniform grid in which

∆x = ∆y = ∆z = δ. Thus (10.36) can be written

δJq+1
p =

1 − 1
2Nτ

1 + 1
2Nτ

J
q
p +

1
Nτ

1 + 1
2Nτ

ǫ0ǫdδ

∆t

(
E
q+1 − E

q
)
. (10.37)

Consider the factor ǫ0ǫdδ/∆t:

ǫ0ǫdδ

∆t

=

√
ǫ0µ0ǫdδ
√

µ0

ǫ0
∆t

=
ǫdδ

η0c∆t

=
ǫd
η0Sc

. (10.38)

Therefore (10.37) can be written

δJq+1
p = Cjj δJ

q
p + Cje

(
E
q+1 − E

q
)
, (10.39)

where

Cjj =
1 − 1

2Nτ

1 + 1
2Nτ

, (10.40)

Cje =
1
Nτ

1 + 1
2Nτ

ǫd
η0Sc

. (10.41)

Recall that Ampere’s law is discretized about the time-step (q + 1/2)∆t. Since the polarization

current appears in Ampere’s law, we thus need an expression for δJ
q+1/2
p . This is simply given by

the average of δJq+1
p (which is given by (10.39)) and δJqp:

δJq+1/2
p =

δJq+1
p + δJqp

2
=

1

2

(
[1 + Cjj]δJ

q
p + Cje

(
E
q+1 − E

q
))
. (10.42)

The discrete time-domain form of Ampere’s law expanded about the time-step (q + 1/2) is

ǫ0ǫ∞
E
q+1 − E

q

∆t

+ σ
E
q+1 + E

q

2
+ J

q+1/2
p = ∇× H

q+1/2. (10.43)

Multiplying through by δ and using (10.42) in (10.43) yields

ǫ∞ǫ0δ

∆t

(
E
q+1 − E

q
)

+
σδ

2

(
E
q+1 + E

q
)

+
1

2

(
[1 + Cjj]δJ

q
p + Cje

(
E
q+1 − E

q
))

= δ∇× H
q+1/2.

(10.44)

294 CHAPTER 10. DISPERSIVE MATERIAL

The curl of the magnetic field, which involves spatial derivatives, will have a δ in the denominator

of the finite differences. Thus δ∇ × H
q+1/2 will involve merely the difference of the various

magnetic-field components.

Regrouping terms in (10.44) produces

E
q+1

(
ǫ∞ǫ0δ

∆t

+
σδ

2
+

1

2
Cje

)

= E
q

(
ǫ∞ǫ0δ

∆t

− σδ

2
+

1

2
Cje

)

+ δ∇× H
q+1/2 − 1

2
[1 + Cjj] δJ

q
p.

(10.45)

The term multiplying the electric fields can be written as

ǫ∞ǫ0δ

∆t

(

1 ± σ∆t

2ǫ∞ǫ0
+

Cje∆t

2ǫ∞ǫ0δ

)

=
ǫ∞
η0Sc

(

1 ± σ∆t

2ǫ∞ǫ0
+
Cjeη0Sc

2ǫ∞

)

. (10.46)

Therefore (10.45) can be written

E
q+1 =

1 − σ∆t

2ǫ∞ǫ0
+

Cjeη0Sc

2ǫ∞

1 + σ∆t

2ǫ∞ǫ0
+

Cjeη0Sc

2ǫ∞

E
q +

η0Sc

ǫ∞

1 + σ∆t

2ǫ∞ǫ0
+

Cjeη0Sc

2ǫ∞

(

δ∇× H
q+1/2 − 1

2
[1 + Cjj] δJ

q
p

)

.

(10.47)

The way in which the term σ∆t/(2ǫ0) could be expressed in terms of the skin depth was discussed

in Sec. 5.7.

The FDTD model of a Debye material would be implemented as follows:

1. Update the magnetic fields in the usual way. H
q−1/2 ⇒ H

q+1/2.

2. For each electric-field component, do the following:

(a) Copy the electric field to a temporary variable. Etmp = Eq.

(b) Update the electric field using (10.47). Eq ⇒ Eq+1.

(c) Update the polarization current (actually δ times the polarization current) using (10.39).

Jqp ⇒ Jq+1
p . This update requires both Eq+1 and Eq (which is stored in Etmp).

3. Repeat.

The polarization current (actually the product of the spatial step-size and the polarization current,

i.e., δJp) must be stored as a separate quantity. Of course it only needs to be stored for nodes at

which it is non-zero.

If the polarization current is initially zero and Cje is zero, the polarization current will always

be zero and the material behaves as a standard non-dispersive material (although, of course, dis-

persion is always present in the grid itself). Thus the update equations presented here can be used

throughout a simulation which is a mix of dispersive and non-dispersive media. One merely has to

set the constants to the appropriate values for a given location.

10.4 Drude Materials Using the ADE Method

The electric susceptibility for a Drude material is given in (10.16) and can also be written

χ̂e(ω) =
ω2
p

jω(jω + g)
. (10.48)

10.4. DRUDE MATERIALS USING THE ADE METHOD 295

The associated polarization current is

Ĵp = jωP̂ = jωǫ0χ̂eÊ = jωǫ0
ω2
p

jω(jω + g)
Ê. (10.49)

Canceling jω and cross multiplying by g + jω yields

gĴp + jωĴp = ǫ0ω
2
pÊ. (10.50)

Expressed in the time-domain, this is

gJp +
∂Jp
∂t

= ǫ0ω
2
pE. (10.51)

Discretizing time and expanding this about the time-step q + 1/2 yields

g
J
q+1
p + J

q
p

2
+

J
q+1
p − J

q
p

∆t

= ǫ0ω
2
p

E
q+1 + E

q

2
. (10.52)

Solving for J
q+1
p we obtain

J
q+1
p =

1 − g∆t

2

1 + g∆t

2

J
q
p +

1

1 + g∆t

2

ǫ0ω
2
p∆t

2

(
E
q+1 + E

q
)
. (10.53)

The damping or loss term g is the inverse of the relaxation time and hence can be expressed as a

multiple of the number of time steps, i.e.,

g =
1

Ng∆t

(10.54)

where Ng does not need to be integer. Consider the term multiplying the electric field

ǫ0ω
2
p∆t

2
=

√
ǫ0µ04π

2f 2
p∆t

√
µ0

ǫ0
2

=
2π2c2∆t

η0λ2
pc

=
2π2c∆t

η0(Npδ)2
=

2π2Sc
η0N2

p δ
(10.55)

where fp is the plasma frequency in Hertz, λp is the free-space wavelength at this frequency, and

Np is the number of points per wavelength at the plasma frequency. Since this term contains δ in

the denominator, we multiply (10.53) by δ to obtain

δJq+1
p = Cjj δJ

q
p + Cje

(
E
q+1 + E

q
)

(10.56)

where

Cjj =
1 − 1

2Ng

1 + 1
2Ng

, (10.57)

Cje =
1

1 + 1
2Ng

2π2Sc
η0N2

p

. (10.58)

296 CHAPTER 10. DISPERSIVE MATERIAL

Note the similarity between (10.39) and (10.56). These equations have nearly identical forms but

the constants are different and there is a different sign associated with the “old” value of the electric

field.

The general discretized form of Ampere’s law expanded about the time-step (q + 1/2) is un-

changed from (10.43) and is repeat below

ǫ0ǫ∞
E
q+1 − E

q

∆t

+ σ
E
q+1 + E

q

2
+ J

q+1/2
p = ∇× H

q+1/2. (10.59)

As before, δJ
q+1/2
p can be obtained by the average of δJq+1

p and δJqp:

δJq+1/2
p =

δJq+1
p + δJqp

2
=

1

2

(
[1 + Cjj]δJ

q
p + Cje

(
E
q+1 + E

q
))
. (10.60)

Multiplying through by δ and using (10.60) for the polarization current yields

ǫ∞ǫ0δ

∆t

(
E
q+1 − E

q
)

+
σδ

2

(
E
q+1 + E

q
)

+
1

2

(
[1 + Cjj]δJ

q
p + Cje

(
E
q+1 + E

q
))

= δ∇× H
q+1/2.

(10.61)

Note that, other than the constants being those for a Drude material, the only way in which this

expression differs from (10.44) is the sign of the “old” electric field associated with the polarization

current. Therefore (10.47) again yields the expression for the “future” electric field if we make the

appropriate change of sign. The result is

E
q+1 =

1 − σ∆t

2ǫ∞ǫ0
− Cjeη0Sc

2ǫ∞

1 + σ∆t

2ǫ∞ǫ0
+

Cjeη0Sc

2ǫ∞

E
q +

η0Sc

ǫ∞

1 + σ∆t

2ǫ∞ǫ0
+

Cjeη0Sc

2ǫ∞

(

δ∇× H
q+1/2 − 1

2
[1 + Cjj] δJ

q
p

)

.

(10.62)

The implementation of an FDTD algorithm for Drude material now parallels that for Debye

material:

1. Update the magnetic fields in the usual way. H
q−1/2 ⇒ H

q+1/2.

2. For each electric-field component, do the following

(a) Copy the electric field to a temporary variable. Etmp = Eq.

(b) Update the electric field using (10.62). Eq ⇒ Eq+1.

(c) Update the polarization current (actually δ times the polarization current) using (10.56).

Jq ⇒ Jq+1. This update requires both Eq+1 and Eq (which is stored in Etmp).

3. Repeat.

10.5 Magnetically Dispersive Material

In the frequency domain Faraday’s law is

∇× Ê = −jωB̂ − σmĤ (10.63)

10.5. MAGNETICALLY DISPERSIVE MATERIAL 297

where σm is the magnetic conductivity. Generalizing (10.7) slightly, the permeability can be writ-

ten as

µ̂(ω) = µ0µ̂r(ω) = µ0(µ∞ + χ̂m(ω)). (10.64)

where the factor µ∞ accounts for the permeability at high frequencies. Faraday’s law can thus be

written

∇× Ê = −jωµ0µ∞Ĥ(ω) − σmĤ − Ĵm. (10.65)

where the magnetic polarization current Ĵm is given by

Ĵm = jωµ0M̂ = jωµ0χ̂m(ω)Ĥ(ω). (10.66)

The derivation of the equations which govern an FDTD implementation of a magnetically

dispersive material parallel that of electrically dispersive material. Here we consider the case of

Drude dispersion where

χ̂m(ω) = −
ω2
p

ω2 − jgω
=

ω2
p

jω(jω + g)
. (10.67)

(The plasma frequency ωp and damping term g for magnetic susceptibility are distinct from those

of electric susceptibility.) Thus the polarization current and magnetic field are related by

Ĵm = jωµ0

ω2
p

jω(jω + g)
Ĥ =

µ0ω
2
p

(jω + g)
Ĥ. (10.68)

Multiplying by g + jω yields

(g + jω)Ĵm = µ0ω
2
pĤ. (10.69)

The time-domain equivalent of this is

gJm +
∂Jm
∂t

= µ0ω
2
pH. (10.70)

Discretizing time and expanding this about the time-step q yields

g
J
q+1/2
m + J

q−1/2
m

2
+

J
q+1/2
m − J

q−1/2
m

∆t

= µ0ω
2
p

H
q+1/2 + H

q−1/2

2
. (10.71)

Solving for J
q+1/2
m yields

J
q+1/2
m =

1 − g∆t

2

1 + g∆t

2

J
q−1/2
m +

1

1 + g∆t

2

µ0ω
2
p∆t

2

(
H
q+1/2 + H

q−1/2
)
. (10.72)

Consider the term multiplying the magnetic field

µ0ω
2
p∆t

2
=

√
µ0

ǫ0

√
ǫ0µ04π

2f 2
p∆t

2
=

2π2η0c
2∆t

λ2
pc

=
2π2η0c∆t

(Npδ)2
=

2π2η0Sc
N2
p δ

. (10.73)

where, as before, fp is the plasma frequency in Hertz, λp is the free-space wavelength at this fre-

quency, and Np is the number of points per wavelength at the plasma frequency. Again expressing

298 CHAPTER 10. DISPERSIVE MATERIAL

the damping coefficient in terms of some multiple of the time step, i.e., g = 1/(Ng∆t), multiply-

ing all terms in (10.72) by δ, and employing the final form of the term given in (10.73), the update

equation for the polarization current can be written as

δJq+1/2
m = Cjj δJ

q−1/2
m + Cjh

(
H
q+1/2 + H

q−1/2
)

(10.74)

where

Cjj =
1 − 1

2Ng

1 + 1
2Ng

, (10.75)

Cjh =
1

1 + 1
2Ng

2π2η0Sc
N2
p

. (10.76)

To obtain the magnetic polarization current at time-step q, the current at time-steps q + 1/2 and

q − 1/2 are averaged:

δJqm =
δJ

q+1/2
m + δJ

q−1/2
m

2
=

1

2

(
[1 + Cjj]δJ

q−1/2
m + Cjh

(
H
q+1/2 + H

q−1/2
))
. (10.77)

The discretized form of Faraday’s law expanded about time-step q is

−µ0µ∞
H
q+1/2 − H

q−1/2

∆t

− σm
H
q+1/2 − H

q−1/2

2
− J

q
m = ∇× E

q. (10.78)

Multiplying through by −δ and using (10.77) for the polarization current yields

µ∞µ0δ

∆t

(
H
q+1/2 − H

q−1/2
)

+
σmδ

2

(
H
q+1/2 + H

q−1/2
)

+
1

2

(
[1 + Cjj]δJ

q−1/2
m + Cjh

(
H
q+1/2 + H

q−1/2
))

= −δ∇× E
q. (10.79)

After regrouping terms we obtain

H
q+1/2

(
µ∞µ0δ

∆t

+
σmδ

2
+

1

2
Cjh

)

=

H
q−1/2

(
µ∞µ0δ

∆t

− σmδ

2
+

1

2
Cjh

)

− δ∇× E
q − 1

2
[1 + Cjj] δJ

q−1/2
m . (10.80)

The factor µ0δ/∆t is equivalent to η0/Sc so that the update equation for the magnetic field can be

written

H
q+1/2 =

1 − σm∆t

2µ∞µ0
− CjhSc

2η0µ∞

1 + σm∆t

2µ∞µ0
+

CjhSc

2η0µ∞

H
q−1/2 +

Sc

η0µ∞

1 + σm∆t

2µ∞µ0
+

CjhSc

2η0µ∞

(

−δ∇× E
q − 1

2
[1 + Cjj] δJ

q−1/2
m

)

.

(10.81)

An FDTD model of a magnetically dispersive material would be implemented as follows:

1. For each magnetic-field component, do the following

10.6. PIECEWISE LINEAR RECURSIVE CONVOLUTION 299

(a) Copy the magnetic field to a temporary variable. Htmp = Hq−1/2.

(b) Update the magnetic field using (10.81). Hq−1/2 ⇒ Hq+1/2.

(c) Update the polarization current (actually δ times the polarization current) using (10.74).

J
q−1/2
m ⇒ J

q+1/2
m . This update requires both Hq+1/2 and Hq−1/2 (which is stored in

Htmp).

2. Update the electric fields in whatever way is appropriate (which may include the dispersive

implementations described previously) E
q ⇒ E

q+1.

3. Repeat.

10.6 Piecewise Linear Recursive Convolution

An alternative implementation of dispersive material is offered by the piecewise linear recursive

convolution (PLRC) method. Recall that multiplication in the frequency domain is equivalent to

convolution in the time domain. Thus, the frequency-domain relationship

D̂(ω) = ǫ0ǫ∞Ê(ω) + ǫ0χ̂e(ω)Ê(ω) (10.82)

is equivalent to the time-domain relationship

D(t) = ǫ0ǫ∞E(t) + ǫ0

t∫

ζ=0

E(t− ζ)χe(ζ)dζ (10.83)

where ζ is a dummy variable of integration. In discrete form the electric flux density at time-step

q∆t can be written

D
q = ǫ0ǫ∞E

q + ǫ0

q∆t∫

ζ=0

E(q∆t − ζ)χe(ζ)dζ. (10.84)

Although in an FDTD simulation the electric field E would only be available at discrete points

in time, we wish to treat the field as if it varies continuously insofar as the integral is concerned.

This is accomplished by assuming the field varies linearly between sample points. For example,

assume the continuous variable t is between i∆t and (i+ 1)∆t. Over this range the electric field is

approximated by

E(t) = E
i +

E
i+1 − E

i

∆t

(t− i∆t) for i∆t ≤ t ≤ (i+ 1)∆t. (10.85)

When t is equal to i∆t we obtain E
i and when t is (i + 1)∆t we obtain E

i+1. The field varies

linearly between these points.

To obtain a more general representation of the electric field, let us define the pulse function

pi(t) which is given by

pi(t) =

{
1 if i∆t ≤ t < (i+ 1)∆t,
0 otherwise.

(10.86)

300 CHAPTER 10. DISPERSIVE MATERIAL

Using this pulse function the electric field can be written as

E(t) =
M−1∑

i=0

[

E
i +

E
i+1 − E

i

∆t

(t− i∆t)

]

pi(t). (10.87)

This provides a piecewise-linear approximation of the electric field over M segments. Despite the

summation, the pulse function ensures that only one segment is turned on for any given value of t.
Hence the summation can be thought of as serving more to collect together the various segments

rather than as serving to add several terms.

In the integrand of (10.84) the argument of the electric field is q∆t − ζ where q∆t is constant

with respect to the variable of integration ζ. When ζ varies from i∆t to (i+ 1)∆t the electric field

should vary from the discrete points E
q−i to E

q−i−1. Thus, the electric field can be represented by

E(q∆t − ζ) = E
q−i +

E
q−i−1 − E

q−i

∆t

(ζ − i∆t) for i∆t ≤ ζ ≤ (i+ 1)∆t. (10.88)

Using the pulse function, the field over all values of ζ can be written

E(q∆t − ζ) =

q−1
∑

i=0

[

E
q−i +

E
q−i−1 − E

q−i

∆t

(ζ − i∆t)

]

pi(ζ). (10.89)

Note the limits of the summation. The upper limit of integration is q∆t which corresponds to the

end-point of the segment which varies from (q − 1)∆t to q∆t. This segment has an index of q − 1
(segment 0 varies from 0 to ∆t, segment 1 varies from ∆t to 2∆t, and so on). The lower limit used

here is not actually dictated by the electric field. Rather, when we combine the electric field with

the susceptibility function the product is zero for ζ less than zero since the susceptibility is zero

for ζ less than zero (due to the material impulse response being causal). Hence we start the lower

limit of the summation at zero.

Substituting (10.89) into (10.84) yields

D
q = ǫ0ǫ∞E

q + ǫ0

q∆t∫

ζ=0

q−1
∑

i=0

[

E
q−i +

E
q−i−1 − E

q−i

∆t

(ζ − i∆t)

]

pi(ζ)χe(ζ)dζ. (10.90)

The summation and integration can be interchanged. However, the pulse function dictates that the

integration only needs to be carried out over the range of values where the pulse function is unity.

Thus we can write

D
q = ǫ0ǫ∞E

q + ǫ0

q−1
∑

i=0

(i+1)∆t∫

ζ=i∆t

[

E
q−i +

E
q−i−1 − E

q−i

∆t

(ζ − i∆t)

]

χe(ζ)dζ. (10.91)

The samples of the electric field are constants with respect to the variable of integration and can be

taken outside of the integral. This yields

D
q = ǫ0ǫ∞E

q +

ǫ0

q−1
∑

i=0



E
q−i





(i+1)∆t∫

ζ=i∆t

χe(ζ)dζ



+
E
q−i−1 − E

q−i

∆t





(i+1)∆t∫

ζ=i∆t

(ζ − i∆t)χe(ζ)dζ







 .(10.92)

10.6. PIECEWISE LINEAR RECURSIVE CONVOLUTION 301

To simplify the notation, we define the following

χi =

(i+1)∆t∫

ζ=i∆t

χe(ζ)dζ, (10.93)

ξi =
1

∆t

(i+1)∆t∫

ζ=i∆t

(ζ − i∆t)χe(ζ)dζ. (10.94)

This allows us to write

D
q = ǫ0ǫ∞E

q + ǫ0

q−1
∑

i=0

[
E
q−iχi +

(
E
q−i−1 − E

q−i) ξi
]
. (10.95)

In discrete form and using the electric flux density, Ampere’s law can be written

∇× H
q+1/2 =

D
q+1 − D

q

∆t

. (10.96)

Equation (10.95) gives D
q in terms of the electric field. This equation can also be used to express

D
q+1 in terms of the electric field: one merely replaces q with q + 1. This yields

D
q+1 = ǫ0ǫ∞E

q+1 + ǫ0

q
∑

i=0

[
E
q−i+1χi +

(
E
q−i − E

q−i+1
)
ξi
]
. (10.97)

In order to obtain an update equation for the electric field, we must express E
q+1 in terms of other

known (or past) quantities. As things stand now, there is an E
q+1 “buried” inside the the summation

in (10.97). To express that explicitly, we extract the i = 0 term and then have the summation start

from i = 1. This yields

D
q+1 = ǫ0ǫ∞E

q+1 + ǫ0E
q+1χ0 + ǫ0

(
E
q − E

q+1
)
ξ0

+ǫ0

q
∑

i=1

[
E
q−i+1χi +

(
E
q−i − E

q−i+1
)
ξi
]
. (10.98)

Ultimately we want to combine the summations in (10.95) and (10.98) and thus the limits of the

summations must be the same. The limits of the summation in (10.98) can be adjusting by using a

new index i′ = i− 1 (thus i = i′ + 1). Substituting i′ for i, (10.98) can be written

D
q+1 = E

q+1ǫ0(ǫ∞ + χ0 − ξ0) + E
qǫ0ξ

0

+ǫ0

q−1
∑

i′=0

[

E
q−i′χi

′+1 +
(

E
q−i′−1 − E

q−i′
)

ξi
′+1
]

. (10.99)

Since i′ is just an index, we can return to calling is merely i.

302 CHAPTER 10. DISPERSIVE MATERIAL

The temporal finite-difference of the flux density is obtained by combining (10.95) and (10.99).

The result is

D
q+1 − D

q

∆t

=
1

∆t

(

E
q+1ǫ0(ǫ∞ − χ0 + ξ0) + E

qǫ0(−ǫ∞ + ξ0)

−ǫ0
q−1
∑

i=0

[
E
q−i∆χi +

(
E
q−i−1 − E

q−i)∆ξi
]
)

(10.100)

where

∆χi = χi − χi+1, (10.101)

∆ξi = ξi − ξi+1. (10.102)

The summation in (10.100) does not contain E
q+1. Hence, using (10.100) to replace the right

side of (10.96) and solving for E
q+1 yields

E
q+1 =

ǫ∞ − ξ0

ǫ∞ + χ0 − ξ0
E
q +

∆t

ǫ0

ǫ∞ + χ0 − ξ0
∇× H

q+1/2 +
1

ǫ∞ + χ0 − ξ0
Ψ
q (10.103)

where Ψ
q, known as the recursive accumulator, is given by

Ψ
q =

q−1
∑

i=0

[
E
q−i∆χi +

(
E
q−i−1 − E

q−i)∆ξi
]

(10.104)

Equation (10.103) is used to update the electric field. It appears that a summation must be

computed which requires knowledge of all the previous values of the electric field. Clearly this

would be prohibitive if this were the case in practice. Fortunately, provided the material impulse

response can be expressed in terms of exponentials, there is a recursive formulation which can be

used to efficiently express this summation.

Consider Ψ
q with the i = 0 term written explicitly, i.e.,

Ψ
q = E

q(∆χ0 − ∆ξ0) + E
q−1∆ξ0 +

q−1
∑

i=1

[
E
q−i∆χi +

(
E
q−i−1 − E

q−i)∆ξi
]
. (10.105)

Employing a change of indices for the summation so that the new limits range from 0 to q− 2, this

can be written:

Ψ
q = E

q(∆χ0 −∆ξ0) + E
q−1∆ξ0 +

q−2
∑

i=0

[
E
q−i−1∆χi+1 +

(
E
q−i−2 − E

q−i−1
)
∆ξi+1

]
. (10.106)

Now consider Ψ
q−1 by writing (10.104) with q replaced by q − 1:

Ψ
q−1 =

q−2
∑

i=0

[
E
q−i−1∆χi +

(
E
q−i−2 − E

q−i−1
)
∆ξi
]

(10.107)

Note the similarity between the summation in (10.106) and the right-hand side of (10.107). These

are the same except in (10.106) the summation involves ∆χi+1 and ∆ξi+1 while in (10.107) the

10.7. PLRC FOR DEBYE MATERIAL 303

summation involves ∆χi and ∆ξi. As we will see, for certain materials it is possible to relate these

values to each other in a simple way. Specifically, we will find that these are related by

∆χi+1 = Crec∆χ
i, (10.108)

∆ξi+1 = Crec∆ξ
i, (10.109)

where Crec is a “recursion constant” (which is yet to be determined). Given that this recursion

relationship exists for ∆χi+1 and ∆ξi+1, (10.106) can be written

Ψ
q = E

q(∆χ0 − ∆ξ0) + E
q−1∆ξ0 + Crec

q−2
∑

i=0

[
E
q−i−1∆χi +

(
E
q−i−2 − E

q−i−1
)
∆ξi
]
,

= E
q(∆χ0 − ∆ξ0) + E

q−1∆ξ0 + CrecΨ
q−1, (10.110)

or, after replacing q with q + 1, this becomes

Ψ
q+1 = E

q+1(∆χ0 − ∆ξ0) + E
q∆ξ0 + CrecΨ

q. (10.111)

The PLRC algorithm is now, at least in the abstract sense, complete. The implementation is as

follows:

1. Update the magnetic field in the usual way (perhaps using a dispersive formulation).

2. Update the electric field using (10.103) (being sure to first store the previous value of the

electric field).

3. Updated the recursive accumulator as specified by (10.111) (using both the updated electric

field and the stored value).

4. Repeat.

It now remains to determine the various constants for a given material. Specifically, one must know

χ0, ξ0, ǫ∞ (which appear in (10.103)), as well as ∆χ0, ∆ξ0, and Crec (which appear in (10.111)).

10.7 PLRC for Debye Material

The time-domain form of the susceptibility function for Deybe materials was given in (10.29).

Using this in (10.93) and (10.94) yields

χi = ǫd
(
1 − e−∆t/τd

)
e−i∆t/τd , (10.112)

ξi =
ǫdτd
∆t

(

1 −
[
∆t

τd
+ 1

]

e−∆t/τd

)

e−i∆t/τd . (10.113)

Setting i equal to zero yields

χ0 = ǫd
(
1 − e−∆t/τd

)
, (10.114)

ξ0 =
ǫdτd
∆t

(

1 −
[
∆t

τd
+ 1

]

e−∆t/τd

)

. (10.115)

304 CHAPTER 10. DISPERSIVE MATERIAL

The time-constant τd can be expressed in terms of multiples of the time step ∆t, e.g., τd = Nd∆t.

Note that the time step is always divided by τd in these expressions so that the only important

consideration is the ratio of these quantities, i.e., ∆t/τd = 1/Nd.

From (10.112) we observe

χi+1 = ǫd
(
1 − e−∆t/τd

)
e−(i+1)∆t/τd ,

= e−∆t/τdǫd
(
1 − e−∆t/τd

)
e−i∆t/τd ,

= e−∆t/τdχi. (10.116)

Now consider ∆χi which is given by

∆χi = χi − χi+1,

= χi − e−∆t/τdχi,

= χi(1 − e−∆t/τd). (10.117)

Thus ∆χi+1 can be written as

∆χi+1 = χi+1(1 − e−∆t/τd),

= e−∆t/τdχi(1 − e−∆t/τd),

= e−∆t/τd∆χi. (10.118)

Similar arguments pertain to ξi and ∆ξi resulting in

∆ξi+1 = e−∆t/τd∆ξi. (10.119)

From (10.118) and (10.119), and in accordance with the description of Crec given in (10.108)

and (10.109), we conclude that

Crec = e−∆t/τd . (10.120)

The factor exp(−∆t/τd), i.e., Crec , appears in several of the terms given above. Writing the ratio

∆t/τd as 1/Nd, all the terms involved in the implementation of the PLRC method can be expressed

as

Crec = e−1/Nd , (10.121)

χ0 = ǫd (1 − Crec) , (10.122)

ξ0 = ǫdNd

(

1 −
[

1

Nd

+ 1

]

Crec

)

, (10.123)

∆χ0 = χ0(1 − Crec), (10.124)

∆ξ0 = ξ0(1 − Crec). (10.125)

Nearly all the terms involved in the PLRC method are unitless and independent of scale. The

only term which is not is ∆t/ǫ0 which multiplies the curl of the magnetic field in (10.103). How-

ever, this is a term which has appeared in all the electric-field update equations we have ever con-

sidered and, after extracting the 1/δ inherent in the finite-difference form of the curl operator, it can

be expressed in terms of the Courant number and characteristic impedance, i.e., ∆t/(δǫ0) = Scη0.

Chapter 11

Perfectly Matched Layer

11.1 Introduction

The perfectly matched layer (PML) is generally consider the state-of-the-art for the termination of

FDTD grids. There are some situations where specially designed ABC’s can outperform a PML,

but this is very much the exception rather than the rule. The theory behind a PML is typically perti-

nent to the continuous world. In the continuous world the PML should indeed work “perfectly” (as

its name implies) for all incident angles and for all frequencies. However, when a PML is imple-

mented in the discretized world of FDTD, there are always some imperfections (i.e., reflections)

present.

There are several different PML formulations. However, all PML’s essentially act as a lossy

material. The lossy material, or lossy layer, is used to absorb the fields traveling away from the

interior of the grid. The PML is anisotropic and constructed in such a way that there is no loss

in the direction tangential to the interface between the lossless region and the PML (actually there

can be loss in the non-PML region too, but we will ignore that fact for the moment). However, in

the PML there is always loss in the direction normal to the interface.

The PML was originally proposed by J.-P. Bérenger in 1994. In that original work he split

each field component into two separate parts. The actual field components were the sum of these

two parts but by splitting the field Bérenger could create an (non-physical) anisotropic medium

with the necessary phase velocity and conductivity to eliminate reflections at an interface between

a PML and non-PML region. Since Bérenger first paper, others have described PML’s using dif-

ferent approaches such as the complex coordinate-stretching technique put forward by Chew and

Weedon, also in 1994.

Arguably the best PML formulation today is the Convolutional-PML (CPML). CPML con-

structs the PML from an anisotropic, dispersive material. CPML does not require the fields to be

split and can be implement in a relatively straightforward manner.

Before considering CPML, it is instructive to first consider a simple lossy layer. Recall that a

lossy layer provided an excellent ABC for 1D grids. However, a traditional lossy layer does not

work in higher dimensions where oblique incidence is possible. We will discuss this and show how

the split-field PML fixes this problem.

†Lecture notes by John Schneider. fdtd-pml.tex

305

306 CHAPTER 11. PERFECTLY MATCHED LAYER

11.2 Lossy Layer, 1D

A lossy layer was previously introduced in Sec. 3.12. Here we will revisit lossy material but

initially focus of the continuous world and time-harmonic fields. For continuous, time-harmonic

fields, the governing curl equations can be written

∇× H = jωǫE + σE = jω
(

ǫ− j
σ

ω

)

E = jωǫ̃E, (11.1)

∇× E = −jωµH − σmH = −jω
(

µ− j
σm
ω

)

H = −jωµ̃H, (11.2)

where the complex permittivity and permeability are given by

ǫ̃ = ǫ− j
σ

ω
, (11.3)

µ̃ = µ− j
σm
ω
. (11.4)

For now, let us restrict consideration to a 1D field that is z-polarized so that the electric field is

given by

E = âze
−γx = âzEz(x) (11.5)

where the propagation constant γ is yet to be determined. Given the electric field, the magnetic

field is given by

H = − 1

jωµ̃
∇× E = −ây

γ

jωµ̃
Ez(x). (11.6)

Thus the magnetic field only has a y component, i.e., H = âyHy(x).
The characteristic impedance of the medium η is the ratio of the electric field to the magnetic

field (actually, in this case, the negative of that ratio). Thus,

η = −Ez(x)

Hy(x)
=
jωµ̃

γ
. (11.7)

Since γ has not yet been determined, we have not actually specified the characteristic impedance

yet. To determine γ we use the other curl equation where we solve for the electric field in terms of

the magnetic field we just obtained:

E =
1

jωǫ̃
∇× H =

1

jωǫ̃

γ2

jωµ̃
e−γxâz. (11.8)

However, we already know the electric field since we started with that as a given, i.e., E =
exp(−γx)âz. Thus, in order for (11.8) to be true, we must have

γ2

(jω)2µ̃ǫ̃
= 1, (11.9)

or, solving for γ (and only keeping the positive root)

γ = jω
√

µ̃ǫ̃. (11.10)

11.2. LOSSY LAYER, 1D 307

Because µ̃ and ǫ̃ are complex, γ will be complex and we write γ = α+jβ where α is the attenuation

constant and β is the phase constant (or wave number).

Returning to the characteristic impedance as given in (11.7), we can now write

η =
jωµ̃

jω
√
µ̃ǫ̃

=

√

µ̃

ǫ̃
. (11.11)

Alternatively, we can write

η =

√
√
√
√
µ
(

1 − j σm

ωµ

)

ǫ
(
1 − j σ

ωǫ

) . (11.12)

Let us now consider a z-polarized plane wave normally incident from a lossless material to a

lossy material. There is a planar interface between the two media at x = 0. The (known) incident

field is given by

Ei
z = e−jβ1x H i

y = − 1

η1

e−jβ1x (11.13)

where β1 = ω
√
µ1ǫ1. The reflected field is given by

Er
z = Γejβ1x Hr

y =
Γ

η1

ejβ1x (11.14)

where the only unknown is the reflection coefficient Γ. The transmitted field is given by

Et
z = Te−γ2x H t

y = − T

η2

e−γ2x (11.15)

where the only unknown is the transmission coefficient T .

Both the electric field and the magnetic field are tangential to the interface at x = 0. Thus,

the boundary conditions dictate that the sum of the incident and reflected field must equal the

transmitted field at x = 0. Matching the electric fields at the interface yields

1 + Γ = T. (11.16)

Matching the magnetic fields yields

− 1

η1

+
Γ

η1

= − T

η2

(11.17)

or, rearranging slightly,

1 − Γ =
η1

η2

T. (11.18)

Adding (11.16) and (11.18) and rearranging yields

T =
2η2

η2 + η1

. (11.19)

Plugging this back into (11.16) yields

Γ =
η2 − η1

η2 + η1

. (11.20)

308 CHAPTER 11. PERFECTLY MATCHED LAYER

Consider the case where the media are related by

µ2

ǫ2
=
µ1

ǫ1
and

σm
µ2

=
σ

ǫ2
. (11.21)

We will call these conditions the “matching conditions.” Under these conditions the impedances

equal:

η2 =

√
√
√
√
√

µ2

(

1 − j σm

ωµ2

)

ǫ2

(

1 − j σ
ωǫ2

) =

√
√
√
√
√

µ1

(

1 − j σ
ωǫ2

)

ǫ1

(

1 − j σ
ωǫ2

) =

√
µ1

ǫ1
= η1. (11.22)

When the impedances are equal, from (11.20) we see that the reflection coefficient must be zero

(and the transmission coefficient is unity). We further note that this is true independent of the

frequency.

As we have seen previously, this type of lossy layer can be implemented in an FDTD grid. To

minimize numeric artifacts it is best to gradually increase the conductivity within the lossy region.

Any field that makes it to the end of the grid will be reflected, but, because of the loss, this reflected

field can be greatly attenuated. Furthermore, as the field propagates back through the lossy region

toward the lossless region, it is further attenuated. Thus the reflected field from this lossy region

(and the termination of the grid) can be made relatively inconsequential.

11.3 Lossy Layer, 2D

Since a lossy layer works so well in 1D and is so easy to implement, it is natural to ask if it can be

used in 2D. The answer, we shall see, is that a simple lossy layer cannot be matched to the lossless

region for obliquely traveling waves.

Consider a TMz field where the incident electric field is given by

E
i = âze

−jk1·r, (11.23)

= âze
−jβ1 cos(θi)x−jβ1 sin(θi)y, (11.24)

= âze
−jβ1xx−jβ1yy. (11.25)

Knowing that the angle of incidence equals the angle of reflection (owing to the required phase

matching along the interface), the reflected field is given by

E
r = âzΓe

jβ1xx−jβ1yy. (11.26)

Combining the incident and reflected field yields

E1 = âz

(
e−jβ1xx + Γejβ1xx

)
e−jβ1yy = âzE1z. (11.27)

The magnetic field in the first medium is given by

H1 = − 1

jωµ1

∇× E1, (11.28)

= âx
β1y

ωµ1

(
e−jβ1xx + Γeβ1xx

)
e−jβ1yy + ây

β1x

ωµ1

(
−e−jβ1xx + Γeβ1xx

)
e−jβ1yy. (11.29)

11.3. LOSSY LAYER, 2D 309

The transmitted electric field is

E
t = âzTe

−γ2·r (11.30)

= âzTe
−γ2xx−γ2yy, (11.31)

= âzE
t
z. (11.32)

Plugging this expression into Maxwell’s equations (or, equivalently, the wave equation) ultimately

yields the constraint equation

γ2
2x + γ2

2y = −ω2µ̃2ǫ̃2. (11.33)

Owing to the boundary condition that the fields must match at the interface, the propagation in the

y direction (i.e., tangential to the boundary) must be the same in both media. Thus, γ2y = jβ1y.

Plugging this into (11.33) and solving for γ2x yields

γ2x =
√

β2
1y − ω2µ̃2ǫ̃2 = α2x + jβ2x. (11.34)

Note that when β1y = 0, i.e., there is no propagation in the y direction and the field is normally

incident on the interface, this reduces to γ2x = jω
√
µ̃2ǫ̃2 which is what we had for the 1D case.

On the other hand, when σ = σm = 0 we obtain γ2x = j
(
ω2µ2ǫ2 − β2

1y

)1/2
where the term

in parentheses is purely real (so that γ2x will either be purely real or purely imaginary). The

transmitted magnetic field is given by

H
t = − 1

jωµ̃2

∇× E
t, (11.35)

= âx
β1y

ωµ̃2

Et
z − ây

γ2x

jωµ̃2

Et
z. (11.36)

Enforcing the boundary condition on the electric field and the y-component of the magnetic

field at x = 0 yields

1 + Γ = T, (11.37)

β1x

ωµ1

(−1 + Γ) = − γ2x

jωµ̃2

T, (11.38)

or, rearranging the second equation,

1 − Γ =
µ1γ2x

jµ̃2β1x

T. (11.39)

Adding (11.37) and (11.39) and rearranging yields

T =
j 2µ̃2

γ2x

j µ̃2

γ2x
+ µ1

β1x

. (11.40)

Using this in (11.37) yields the reflection coefficient

Γ =
j µ̃2

γ2x
− µ1

β1x

j µ̃2

γ2x
+ µ1

β1x

. (11.41)

310 CHAPTER 11. PERFECTLY MATCHED LAYER

The reflection coefficient will be zero only if the terms in the numerator cancel. Let us consider

these terms individually. Additionally, let us enforce a more restrictive form of the matching

conditions where now µ2 = µ1, ǫ2 = ǫ1 and, as before, σ/ǫ2 = σm/µ2. The first term in the

numerator can be written

j
µ̃2

γ2x

=
µ̃2

√

ω2µ̃2ǫ̃2 − β2
1y

, (11.42)

=
µ1

(

1 − j σ
ωǫ1

)

√

ω2µ1ǫ1

(

1 − j σ
ωǫ1

)2

− β2
1y

, (11.43)

=
µ1

√

ω2µ1ǫ1 −
β2
1y

“

1−j σ
ωǫ1

”2

. (11.44)

The second term in the numerator of the reflection coefficient is

µ1

β1x

=
µ1

√

ω2µ1ǫ1 − β2
1y

. (11.45)

Clearly (11.44) and (11.45) are not equal (unless we further require that σ = 0, but then the lossy

layer is not lossy). Thus, for oblique incidence, the numerator of the reflection coefficient cannot

be zero and there will always be some reflection from this lossy medium.

11.4 Split-Field Perfectly Matched Layer

To obtain a perfect match between the lossless and lossy regions, Bérenger proposed a non-physical

anisotropic material known as a perfectly matched layer (PML). In a PML there is no loss in the

direction tangential to the interface but there is loss normal to the interface.

First, consider the governing equations for the components of the magnetic fields for TMz

polarization. We have

jωµ2Hy + σmxHy =
∂Ez
∂x

(11.46)

jωµ2Hx + σmyHx = −∂Ez
∂y

(11.47)

where σmx and σmy are the magnetic conductivities associated not with the x and y components of

the magnetic field, but rather with propagation in the x or y direction. (Note that for 1D propagation

in the x direction the non-zero fields are Hy and Ez while for 1D propagation in the y direction

they are Hx and Ez.)
For the electric field the governing equation is

jωǫ2Ez + σEz =
∂Hy

∂x
− ∂Hx

∂y
(11.48)

11.4. SPLIT-FIELD PERFECTLY MATCHED LAYER 311

Here there is a single conductivity and no possibility to have explicitly anisotropic behavior of the

electrical conductivity. Thus, it would still be impossible to match the lossy region to the lossless

one.

Bérenger’s fix was to split the electric field into two (non-physical) components. To get the

“actual” field, we merely sum these components. Thus we write

Ez = Ezx + Ezy (11.49)

These components are governed by

jωǫ2Ezx + σxEzx =
∂Hy

∂x
, (11.50)

jωǫ2Ezy + σyEzy = −∂Hx

∂y
. (11.51)

Note that there are now two electrical conductivities: σx and σy. If we set σx = σy = σ and

add these two equations together, we recover the original equation (11.48). Further note that if

σy = σmy = 0 but σx 6= 0 and σmx 6= 0, then a wave with components Hx and Ezy would not

attenuate while a wave with components Hy and Ezx would attenuate.

Let us define the terms Sw and Smw as

Sw = 1 +
σw
jωǫ2

(11.52)

Smw = 1 +
σmw
jωµ2

(11.53)

where w is either x or y. We can then write the governing equations as

jωǫ2SxEzx =
∂Hy

∂x
, (11.54)

jωǫ2SyEzy = −∂Hx

∂y
, (11.55)

jωµ2SmxHy =
∂

∂x
(Ezx + Ezy) , (11.56)

jωµ2SmyHx = − ∂

∂y
(Ezx + Ezy) . (11.57)

Taking the partial of (11.56) with respect to x and then substituting in the left-hand side of (11.54)

yields

−ω2µ2ǫ2SxSmxEzx =
∂2

∂x2
(Ezx + Ezy) . (11.58)

Taking the partial of (11.57) with respect to y and then substituting in the left-hand side of (11.55)

yields

−ω2µ2ǫ2SySmyEzy =
∂2

∂y2
(Ezx + Ezy) . (11.59)

Adding these two expressions together after dividing by the S terms yields

−ω2µ2ǫ2 (Ezx + Ezy) =

(
1

SmxSx

∂2

∂x2
+

1

SmySy

∂2

∂y2

)

(Ezx + Ezy) (11.60)

312 CHAPTER 11. PERFECTLY MATCHED LAYER

or, after rearranging and recalling that Ezx + Ezy = Ez,

(
1

SmxSx

∂2

∂x2
+

1

SmySy

∂2

∂y2
+ ω2µ2ǫ2

)

Ez = 0. (11.61)

To satisfy this equation the transmitted field in the PML region would be given by

Et
z = Te−j

√
SmxSxβ2xx−j

√
SmySyβ2yy (11.62)

where we must also have

β2
2x + β2

2y = ω2µ2ǫ2. (11.63)

Using (11.56), the y component of the magnetic field in the PML is given by

H t
y =

1

jωµ2Smx

∂Et
z

∂x
(11.64)

= −
√
SmxSxβ2x

jωµ2Smx
Et
z, (11.65)

= − β2x

ωµ2

√

Sx
Smx

Et
z. (11.66)

As always, the tangential fields must match at the interface. Matching the electric fields again

yields (11.37). Matching the y component of the magnetic fields yields

1 − Γ =
µ1β2x

µ2β1x

√

Sx
Smx

T. (11.67)

Using this and (11.37) to solve for the transmission and reflection coefficients yields

T =
2β1x

µ1

β1x

µ1
+ β2x

µ2

√
Sx

Smx

, (11.68)

Γ =

β1x

µ1
− β2x

µ2

√
Sx

Smx

β1x

µ1
+ β2x

µ2

√
Sx

Smx

. (11.69)

It is now possible to match the PML to the non-PML region so that Γ is zero. We begin by

setting µ2 = µ1 and ǫ2 = ǫ1. Thus we have ω2µ2ǫ2 = ω2µ1ǫ1 and

β2x =
(
ω2µ2ǫ2 − β2

2y

)1/2
, (11.70)

=
(
ω2µ1ǫ1 − β2

2y

)1/2
. (11.71)

Recall that within the PML the propagation in the y direction is not given by β2y but rather by
√
SySmyβ2y. Phase matching along the interface requires that

√

SySmyβ2y = β1y. (11.72)

11.5. UN-SPLIT PML 313

If we let Sy = Smy = 1, which can be realized by setting σy = σmy = 0, then the phase matching

condition reduces to

β2y = β1y. (11.73)

Then, from (11.71), we have

β2x =
(
ω2µ1ǫ1 − β2

1y

)1/2
, (11.74)

= β1x. (11.75)

Returning to (11.69), we now have

Γ =

β1x

µ1
− β1x

µ1

√
Sx

Smx

β1x

µ1
+ β1x

µ1

√
Sx

Smx

, (11.76)

=
1 −

√
Sx

Smx

1 +
√

Sx

Smx

. (11.77)

The last remaining requirement to achieve a perfect match is to have Sx = Smx. This can be

realized by having σx/ǫ2 = σmx/µ2.

To summarize, the complete set of matching conditions for a constant-x interface are

ǫ2 = ǫ1 (11.78)

µ2 = µ1 (11.79)

σy = σmy = 0 (11.80)
σx
ǫ2

=
σmx
µ2

. (11.81)

Under these conditions propagation in the PML is governed by

e−jSxβ1xx−jβ1yy = exp

(

−j
(

1 +
σ

jωǫ1

)

β1xx− jβ1yy

)

, (11.82)

= exp

(

−β1xσ

ωǫ1
x

)

e−jβ1xx−jβ1yy. (11.83)

This shows that there is exponential decay in the x direction but otherwise the phase propagates in

exactly the same way as it does in the non-PML region.

11.5 Un-Split PML

In the previous section we had Sw and Smw where w ∈ {x, y}. However, once the matching

condition has been applied, i.e., σw/ǫ2 = σmw/µ2, then we have Sw = Smw. Hence we will drop

the m from the subscript. Additionally, with the understanding that we are talking about the PML

region, we will drop the subscript 2 from the material constants. We thus write

Sw = 1 +
σw
jωǫ

. (11.84)

314 CHAPTER 11. PERFECTLY MATCHED LAYER

The conductivity in the PML is not dictated by underlying parameters in the physical space being

modeled. Rather, this conductivity is set so as to minimize the reflections from the termination of

the grid. In that sense σw is somewhat arbitrary. Therefore let us normalize the conductivity by the

relative permittivity that pertains at that particular location, i.e.,

Sw = 1 +
σ′
w

jωǫ0
(11.85)

where σ′
w = σw/ǫr. However, since the conductivity has not yet been specified, we drop the prime

and merely write

Sw = 1 +
σw
jωǫ0

(11.86)

Note that there could potentially be a problem with Sw when the frequency goes to zero. In

practice, in the curl equations this term is also multiplied by ω and in that sense this is not a

major problem. However, if we want to move these Sw terms around, low frequencies may cause

problems. To fix this, we add an additional factor to ensure that Sw remains finite as the frequency

goes to zero.

We can further generalize Sw by allowing the leading term to take on values other than unity.

This is effectively equivalent to allowing the relative permittivity in the PML to change. The

general expression for Sw we will use is

Sw = κw +
σw

aw + jωǫ0
. (11.87)

For the sake of considering 3D problems we also assume w ∈ {x, y, z}.

Dividing by the S terms, the governing equations for TMz polarization are

jωǫEzx =
1

Sx

∂Hy

∂x
, (11.88)

jωǫEzy = − 1

Sy

∂Hx

∂y
, (11.89)

jωµHy =
1

Sx

∂Ez
∂x

, (11.90)

jωµHx = − 1

Sy

∂Ez
∂y

. (11.91)

Adding the first two equations together we obtain

jωǫEz =
1

Sx

∂Hy

∂x
− 1

Sy

∂Hx

∂y
. (11.92)

Note that in all these equations each Sw term is always paired with the derivative in the “w”

direction.

Let us define a new del operator ∇̃ that incorporates this pairing

∇̃ ≡ âx
1

Sx

∂

∂x
+ ây

1

Sy

∂

∂y
+ âz

1

Sz

∂

∂z
. (11.93)

11.5. UN-SPLIT PML 315

Using this operator Maxwell’s curl equations become

jωǫE = ∇̃ × H, (11.94)

−jωµH = ∇̃ × E. (11.95)

Note that these equations pertain to the general 3D case. This is known as the stretch-coordinate

PML formulation since, as shown in (11.93), the complex S terms scale the various coordinate

directions. Additionally, note there is no explicit mention of split fields in these equations. If we

can find a way to implement these equations directly in the FDTD algorithm, we can avoid splitting

the fields.

From these curl equations we obtain scalar equations such as (using the x-component of (11.94)

and (11.95) as examples)

jωǫEx =
1

Sy

∂Hz

∂y
− 1

Sz

∂Hy

∂z
, (11.96)

jωµHx = − 1

Sy

∂Ez
∂y

+
1

Sz

∂Ey
∂z

. (11.97)

Converting these to the time-domain yields

ǫ
∂Ex
∂t

= S̄y ⋆
∂Hz

∂y
− S̄z ⋆

∂Hy

∂z
, (11.98)

µ
∂Hx

∂t
= −S̄y ⋆

∂Ez
∂y

+ S̄z ⋆
∂Ey
∂z

, (11.99)

where “⋆” indicates convolution and S̄w is the inverse Fourier transform of 1/Sw, i.e.,

S̄w = F−1

[
1

Sw

]

. (11.100)

The reciprocal of Sw is given by

1

Sw
=

1

κw + σw

aw+jωǫ0

=
aw + jωǫ0

awκw + σw + jωκwǫ0
. (11.101)

This is of the form (a + jωb)/(c + jωd) and we cannot do a partial fraction expansion since the

order of the numerator and denominator are the same. Instead, we can divide the denominator into

the numerator to obtain

a+ jωb

c+ jωd
=
b

d
+

a− c b
d

c+ jωd
=
b

d
+

a
c
− b

d

1 + jω d
c

. (11.102)

Recall the following Fourier transform pairs:

1 ⇔ δ(t), (11.103)

1

1 + jωτ
⇔ 1

τ
e−t/τu(t), (11.104)

316 CHAPTER 11. PERFECTLY MATCHED LAYER

where δ(t) is the Dirac delta function and u(t) is the unit step function. Thus, we have

F−1

[

b

d
+

a
c
− b

d

1 + jω d
c

]

=
b

d
δ(t) +

ad− bc

d2
e−ct/du(t). (11.105)

For the problem at hand, we have a = aw, b = ǫ0, c = awκw + σw, and d = κwǫ0. Using these

values in (11.105) yields

S̄w =
1

κw
δ(t) − σw

κ2
wǫ0

exp

(

−t
[
aw
ǫ0

+
σw
κwǫ0

])

u(t). (11.106)

Let us define ζw(t) as

ζw(t) = − σw
κ2
wǫ0

exp

(

−t
[
aw
ǫ0

+
σw
κwǫ0

])

u(t) (11.107)

so that

S̄w =
1

κw
δ(t) + ζw(t). (11.108)

Recall that the convolution of a Dirac delta function with another function yields the original

function, i.e.,

δ(t) ⋆ f(t) = f(t). (11.109)

Incorporating this fact into (11.98) yields

ǫ
∂Ex
∂t

=
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z

+ ζy(t) ⋆
∂Hz

∂y
− ζz(t) ⋆

∂Hy

∂z
. (11.110)

Note that the first line of this equation is almost the usual governing equation. The only differ-

ences are the κ’s. However, these are merely real constants. In the FDTD algorithm it is trivial to

incorporate these terms in the update-equation coefficients. The second line again involves convo-

lutions. Fortunately, these convolution are rather “benign” and, as we shall see, can be calculated

efficiently using recursive convolution.

11.6 FDTD Implementation of Un-Split PML

We now wish to develop an FDTD implementation of the PML as formulated in the previous

section. We start by defining the function Ψq
Euw

as

Ψq
Euw

= ζw(t) ⋆
∂Hv

∂w

∣
∣
∣
∣
t=q∆t

(11.111)

=

q∆t∫

τ=0

ζw(τ)
∂Hv(q∆t − τ)

∂w
dτ (11.112)

11.6. FDTD IMPLEMENTATION OF UN-SPLIT PML 317

where Euw in the subscript indicates this function will appear in the update of the Eu component

of the electric field and it is concerned with the spatial derivative in the w direction. In (11.112) the

derivative is of the Hv component of the magnetic field where w, u, and v are such that {w, u, v} ∈
{x, y, z} and w 6= u 6= v.

In (11.112) note that ζw(τ) is zero for τ < 0 hence the integrand would be zero for τ < 0.

This fixes the lower limit of integration to zero. On the other hand, we assume the fields are zero

prior to t = 0, i.e., Hv(t) is zero for t < 0. In the convolution the argument of the magnetic field

is q∆t − τ . This argument will be negative when τ > q∆t. Thus the integrand will be zero for

τ > q∆t and this fixes the upper limit of integration to q∆t.

Let us assume the integration variable τ in (11.112) varies continuously but, since we are

considering fields in the FDTD method, Hv varies discretely. We can still express Hv in terms of

a continuously varying argument t, but it takes on discrete values. Specifically ∂Hv(t)/∂w can be

represented by

∂Hv(t)

∂w
=

Imax∑

i=0

∂Hv(i∆t)

∂w
pi(t) (11.113)

where pi(t) is the unit pulse function given by

pi(t) =

{
1 if i∆t ≤ t < (i+ 1)∆t,
0 otherwise.

(11.114)

To illustrate this further, for notational convenience let us write f(t) = ∂Hv(t)/∂w. The stepwise

representation of this function is shown in Fig. 11.1(a). Although not necessary, as is typical with

FDTD simulations, this function is assumed to be zero for the first time-step. At t = ∆t the

function is f1 and it remains constant until t = 2∆t when it changes to f2. At t = 3∆t the function

is f3, and so on.

The convolution contains the function f(q∆t−τ). At time-step zero (i.e., q = 0), this is merely

f(−τ) which is illustrated in Fig. 11.1(b). Here all the sample points fn are flipped symmetrically

about the origin. We assume that the function is constant to the right of these sample points so that

the function is f1 for −∆t ≤ τ < 0, it is f2 for −2∆t ≤ τ < ∆, f3 for −3∆t ≤ τ < −2∆t, and so

on.

Fig. 11.1(c) shows an example of f(q∆t − τ) when q 6= 0, specifically for q = 4. Recall that

in (11.112) the limits of integration are from zero to q∆t—we do not need to concern ourselves

with τ less than zero nor greater than q∆t. As shown in Fig. 11.1(c), the first “pulse” extending to

the right of τ = 0 has a value of fq, the pulse extending to the right of τ = ∆t has a value of fq−1,

the one to the right of τ = 2∆t has a value of fq−2, and so on. Thus, this shifted function can be

written as

f(q∆t − τ) =

q−1
∑

i=0

fq−ipi(τ). (11.115)

Returning to the derivative of the magnetic field, we write

∂Hv(q∆t − τ)

∂w
=

q−1
∑

i=0

∂Hq−i
v

∂w
pi(τ) (11.116)

whereHq−i
v is the magnetic field at time-step q−i and, when implemented in the FDTD algorithm,

the spatial derivative will be realized as a spatial finite difference.

318 CHAPTER 11. PERFECTLY MATCHED LAYER

t, ∆t

f0

f5
f4

f3

f2

f1

f(t)

1 2 3 4 50−1−2−3−4−5

(a)

τ, ∆t1 2 3 4 50

f0

f5
f4

f3

f2

f1

f(−τ)

−1−2−3−4−5

(b)

τ, ∆t1 2 3 4 50

f0

f5
f4

f3

f2

f1

f(4∆t−τ)

−1−2−3−4−5

(c)

Figure 11.1: (a) Stepwise representation of a function f(t). The function is a constant f0 for

0 ≤ t < ∆t, f1 for ∆t ≤ t < 2∆t, f2 for 2∆t ≤ t < 3∆t, and so on. (b) Stepwise representation

of a function f(−τ). Here the constants fn are flipped about the origin but the pulses still extend

for one time-step to the right of the corresponding point. Hence the function is a constant f1

for −∆t ≤ τ < 0, f2 for −2∆t ≤ τ < −∆t, etc. (c) Stepwise representation of the function

f(q∆t − τ) when q = 4.

11.6. FDTD IMPLEMENTATION OF UN-SPLIT PML 319

At time-step q, ΨEuw is given by

Ψq
Euw

=

q∆t∫

τ=0

ζw(τ)

q−1
∑

i=0

∂Hq−i
v

∂w
pi(τ)dτ (11.117)

Interchanging the order of summation and integration yields

Ψq
Euw

=

q−1
∑

i=0

∂Hq−i
v

∂w

q∆t∫

τ=0

ζw(τ)pi(τ)dτ, (11.118)

=

q−1
∑

i=0

∂Hq−i
v

∂w

(i+1)∆t∫

τ=i∆t

ζw(τ)dτ, (11.119)

where, in going from (11.118) to (11.119), the pulse function was used to establish the limits of

integration.

Consider the following integral

−
(i+1)∆∫

i∆

e−atdt =
1

a
e−at

](i+1)∆

i∆

(11.120)

=
1

a

(
e−a(i+1)∆ − e−ai∆

)
(11.121)

=
1

a

(
e−a∆ − 1

)
e−ai∆ (11.122)

=
1

a

(
e−a∆ − 1

) (
e−a∆

)i
(11.123)

Keeping this in mind, the integration in (11.119) can be written as

(i+1)∆t∫

τ=i∆t

ζw(τ)dτ = − σw
κ2ǫ0

(i+1)∆t∫

τ=i∆t

exp

(

−τ
[
aw
ǫ0

+
σw
κwǫ0

])

dτ (11.124)

= Cw(bw)i (11.125)

where

bw = exp

(

−
[
aw
ǫ0

+
σw
κwǫ0

]

∆t

)

, (11.126)

Cw =
σw

σwκw + κ2aw
(bw − 1) . (11.127)

Note that in (11.125) bw is raised to the power i which is an integer index. It is now possible to

express Ψq
Euw

as

Ψq
Euw

=

q−1
∑

i=0

∂Hq−i
v

∂w
Cw(bw)i. (11.128)

320 CHAPTER 11. PERFECTLY MATCHED LAYER

Let us explicitly separate the i = 0 term from the rest of the summation:

Ψq
Euw

= Cw
∂Hq

v

∂w
+

q−1
∑

i=1

∂Hq−i
v

∂w
Cw(bw)i. (11.129)

Replacing the index i with i′ = i− 1 (so that i = i′ + 1), this becomes

Ψq
Euw

= Cw
∂Hq

v

∂w
+

q−2
∑

i′=0

∂Hq−i′−1
v

∂w
Cw(bw)i

′+1. (11.130)

Dropping the prime from the index and rearranging slightly yields

Ψq
Euw

= Cw
∂Hq

v

∂w
+ bw

[q−1]−1
∑

i=0

∂H
[q−1]−i
v

∂w
Cw(bw)i. (11.131)

Comparing the summation in this expression to the one in (11.128) one sees that this expression

can be written as

Ψq
Euw

= Cw
∂Hq

v

∂w
+ bwΨq−1

Euw
. (11.132)

Note that ΨEuw at time-step q is a function of ΨEuw at time-step q− 1. Thus ΨEuw can be updated

recursively—there is no need to store the entire history of ΨEuw to obtain the next value. As is

typical with FDTD, one merely needs to know ΨEuw at the previous time step.

We now have all the pieces in place to implement a PML in the FDTD method. The algorithm

to update the electric fields is

1. Update the ΨEuw terms employing the recursive update equation given by (11.132). Recall

that these ΨEuw functions represent the convolutions given in the second line of (11.110).

2. Update the electric fields in the standard way. However, incorporate the κ’s where appropri-

ate. Essentially one employs the update equation implied by the top line of (11.110) (where

that equation applies to Ex and similar equations apply to Ey and Ez).

3. Apply, i.e., add or subtract, ΨEuw to the electric field as indicated by the second line of

(11.110).

This completes the update of the electric field.

The magnetic fields are updated in a completely analogous manner. First the Ψ functions that

pertain to the magnetic fields are updated (in this case there are ΨHuw functions that involve the

spatial derivatives of the electric fields), then the magnetic fields are updated in the usual way

(accounting for any κ’s), and finally the Ψ functions are applied to the magnetic fields (i.e., added

or subtracted).

Chapter 12

Acoustic FDTD Simulations

12.1 Introduction

The FDTD method employs finite-differences to approximate Ampere’s and Faraday’s laws. Am-

pere’s and Faraday’s laws are first-order differential equations that couple the electric and mag-

netics fields. As we have seen, with a judicious discretization of space and time, the resulting

equations can be solved for “future” fields in terms of known past fields.

Other physical phenomena are also described by coupled first-order differential equations

where the temporal derivative of one field is related to the spatial derivative of another field. Both

acoustics and elastic wave propagation are such phenomena. Here we will consider only acous-

tic propagation. Specifically we will consider small-signal acoustics which can be described in

terms of the scalar pressure field P (x, y, z, t) and the vector velocity v(x, y, z, t). The material

parameters are the speed of sound ca and the density ρ (both of which can vary as a function of

position).

The governing acoustic equations in three dimensions are

∂P

∂t
= −ρc2a∇ · v, (12.1)

∂v

∂t
= −1

ρ
∇P, (12.2)

or, expanded in terms of the components,

∂P

∂t
= −ρc2a

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)

, (12.3)

∂vx
∂t

= −1

ρ

∂P

∂x
, (12.4)

∂vy
∂t

= −1

ρ

∂P

∂y
, (12.5)

∂vz
∂t

= −1

ρ

∂P

∂z
. (12.6)

†Lecture notes by John Schneider. fdtd-acoustics.tex

321

322 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

Equation (12.2) is essentially a variation of Newton’s second law, F = ma, where instead of

acceleration a there is the derivative of the velocity, instead of mass m there is the mass density,

and instead of force F there is the derivative of pressure. Pressure is force per area and the negative

sign accounts for the fact that if pressure is building in a particular direction that tends to cause

acceleration in the opposite direction. Equation (12.1) comes from an equation of state for the

material (with various approximations assumed along the way).

Taking the divergence of (12.2) and interchanging the order of temporal and spatial differenti-

ation yields
∂

∂t
∇ · v = −1

ρ
∇2P. (12.7)

Taking the temporal derivative of (12.1) and using (12.7) yields

∂2P

∂t2
= −ρc2a

∂

∂t
∇ · v = c2a∇2P. (12.8)

Rearranging this yields the wave equation

∇2P − 1

c2a

∂2P

∂t2
= 0. (12.9)

Thus the usual techniques and solutions one is familiar with from electromagnetics carry over to

acoustics. For example, a harmonic plane wave given by

P (x, y, z, t) = P0e
−jβ·rejωt (12.10)

is a valid solution to the governing equations where P0 is a constant and the wave vector β can be

written

β = βxâx + βyây + βzâz = βâβ = (ω/ca)âβ. (12.11)

Substituting (12.10) into (12.4) and assuming exp(jωt) temporal dependence yields

jωvx =
1

ρ
(−jβx)P. (12.12)

Rearranging terms gives

vx =
βx
ρω
P. (12.13)

Following the same steps for the y and z components produces

vy =
βy
ρω
P, (12.14)

vz =
βz
ρω
P. (12.15)

Thus the harmonic velocity is given by

v = vxâx + vyây + vzâz =
1

ρω
(βxâx + βyây + βzâz)P =

β

ρω
P âβ. (12.16)

12.2. GOVERNING FDTD EQUATIONS 323

Since the wave number, i.e., the magnitude of the wave vector, is given by β = ω/ca, the ratio of

the magnitude of pressure to the velocity is given by

∣
∣
∣
∣

P

v

∣
∣
∣
∣
= ρca. (12.17)

The term on the right-hand side is known as the characteristic impedance of the medium which is

often written as Z.

12.2 Governing FDTD Equations

To obtain an FDTD algorithm for acoustic propagation, the pressure and components of velocity

are discretized in both time and space. In electromagnetics there were two vector fields and hence

six field-components that had to be arranged in space-time. In acoustics there is one scalar field

and one vector field. Thus there are only four field-components.

To implement a 3D acoustic FDTD algorithm, a suitable arrangement of nodes is as shown in

Fig. 12.1. A pressure node is surrounded by velocity components such that the components are

oriented along the line joining the component and the pressure node. This should be contrasted

to the arrangement of nodes in electromagnetic grids where the components of the magnetic field

swirled around the components of the electric field, and vice versa. In electromagnetics one is

modeling coupled curl equations where the partial derivatives are related to behavior orthogonal to

the direction of the derivative. In acoustics, where the governing equations involve the divergence

and gradient, the partial derivatives are associated with behavior in the direction of the derivative.

The arrangement of nodes in a 2D grid is illustrated in Fig. 12.2. This should be compared

to the 2D electromagnetic grids, i.e., Fig. 8.1 for the TMz case and Fig. 8.9 for the TEz case.

(Because pressure is inherently a scalar field, there are not two different polarization associated

with 2D acoustic simulations—nor is there a notion of polarization in three dimensions.)

In addition to the spatial offsets, the pressure nodes are assumed to be offset a half temporal

step from the velocity nodes (but all the velocity components exist at the same time-step). The

following notation will be used with an implicit understanding of spatial offsets

P (x, y, z, t) = P (m∆x, n∆y, p∆z, q∆t) = P q[m,n, p], (12.18)

vx(x, y, z, t) = vx ([m+ 1/2]∆x, n∆y, p∆z, [q + 1/2]∆t) = vq+1/2
x [m,n, p], (12.19)

vy(x, y, z, t) = vy (m∆x, [n+ 1/2]∆y, p∆z, [q + 1/2]∆t) = vq+1/2
y [m,n, p], (12.20)

vz(x, y, z, t) = vz (m∆x, n∆y, [p+ 1/2]∆z, [q + 1/2]∆t) = vq+1/2
z [m,n, p]. (12.21)

We will assume the spatial step sizes are the same, i.e., ∆x = ∆y = ∆z = δ.
Replacing the derivatives in (12.3) with finite differences and using the discretization of (12.18)–

(12.21) yields the following update equation:

P q[m,n, p] = P q−1[m,n, p] − ρc2a
∆t

δ

(
vq−1/2
x [m,n, p] − vq−1/2

x [m− 1, n, p] +

vq−1/2
y [m,n, p] − vq−1/2

y [m,n− 1, p] +

vq−1/2
z [m,n, p] − vq−1/2

z [m,n, p− 1]
)
. (12.22)

324 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

x

z

yP(m,n,p)

vx(m+1/2,n,p)

vz(m,n,p+1/2)

vy(m,n+1/2,p)

Figure 12.1: An acoustic unit cell in three dimensions showing the arrangement of velocity nodes

relative to the pressure node with the same spatial indices.

The sound speed and the density can be functions of space. Let us assume that the density and

sound speed are specified at the grid points corresponding to the location of pressure nodes. Addi-

tionally, assume that the sound speed can be defined in terms of a background sound speed c0 and

a relative sound speed cr:
ca = crc0. (12.23)

The background sound speed corresponds to the fastest speed of propagation at any location in the

grid so that cr ≤ 1. The coefficient of the spatial finite-difference in (12.22) can now be written

ρc2a
∆t

δ
= ρc2rc0

c0∆t

δ
= ρc2rc0Sc (12.24)

where, similar to electromagnetics, the Courant number is Sc = c0∆t/δ. The explicit spatial

dependence of the density and sound speed can be emphasized by writing the coefficient as

ρ[m,n, p]c2r[m,n, p]c0Sc (12.25)

where ρ[m,n, p] is the density that exists at the same point as the pressure node P [m,n, p] and

cr[m,n, p] is the relative sound speed at this same point. Note that the Courant number Sc and

the background sound speed c0 are independent of position. Furthermore, the entire coefficient is

independent of time.

The update equation for the x component of velocity is obtained from the discretized version

of (12.4) which yields

vq+1/2
x [m,n, p] = vq−1/2

x [m,n, p] − 1

ρ

∆t

δ
(P q[m+ 1, n, p] − P q[m,n, p]) (12.26)

The coefficient of this equation does not contain the Courant number but that can be obtained by

multiplying and dividing by the background sound speed

1

ρ

∆t

δ
=

1

ρc0

c0∆t

δ
=

1

ρc0
Sc. (12.27)

12.2. GOVERNING FDTD EQUATIONS 325

∆y

∆x

same
indices

same
indices

same
indices

same
indices

same
indices

Pr(m,n)

y

xz

Vx(m,n)

Vy(m,n)

P(m,n)

vx(m+1/2,n)

vy(m,n+1/2)
y

xz

Figure 12.2: The arrangement of nodes in a 2D acoustic simulation. In a computer FDTD imple-

mentation the nodes shown within the dashed enclosures will have the same spatial indices. This is

illustrated by the two depictions of a unit cell at the bottom of the figure. The one on the left shows

the nodes with the spatial offsets given explicitly. The one on the right shows the corresponding

node designations that would be used in a computer program. (Here Pr is used for the pressure

array.)

326 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

We wish to define the density only at the pressure nodes. Since the x-component of the velocity

is offset from the pressure a half spatial step in the x direction, what is the appropriate velocity

to use? The answer, much as it was in the case of an interface between two different materials

in electromagnetics, is the average of the densities to either side of the pressure node (where the

notion of “either side” is dictated by the orientation of the velocity node). Therefore the coefficient

can be written

1
(
ρ[m+1,n,p]+ρ[m,n,p]

2

)

c0
Sc =

2Sc
(ρ[m+ 1, n, p] + ρ[m,n, p])c0

. (12.28)

The update equations for the velocity components can now be written as

vq+1/2
x [m,n, p] = vq−1/2

x [m,n, p] −
2Sc

(ρ[m,n, p] + ρ[m+ 1, n, p])c0
(P q[m+ 1, n, p] − P q[m,n, p]) ,(12.29)

vq+1/2
y [m,n, p] = vq−1/2

y [m,n, p] −
2Sc

(ρ[m,n, p] + ρ[m,n+ 1, p])c0
(P q[m,n+ 1, p] − P q[m,n, p]) ,(12.30)

vq+1/2
z [m,n, p] = vq−1/2

z [m,n, p] −
2Sc

(ρ[m,n, p] + ρ[m,n, p+ 1])c0
(P q[m,n, p+ 1] − P q[m,n, p]) .(12.31)

12.3 Two-Dimensional Implementation

Let us consider a 2D simulation in which the fields vary in the x and y directions. The grid would

be as shown in Fig. 12.2 and it is assumed that ∆x = ∆y = δ. Assume the arrays pr, vx, and vy
hold the pressure, x component of the velocity, and the y component of the velocity, respectively.

Similar to the electromagnetic implementation, assume the macros Pr, Vx, and Vy have been

created to facilitate accessing these arrays (ref. Sec. 8.2). The update equations can be written

Vx(m,n) = Vx(m,n) - Cvxp(m,n)*(Pr(m+1,n) - Pr(m,n));
Vy(m,n) = Vy(m,n) - Cvyp(m,n)*(Pr(m,n+1) - Pr(m,n));
Pr(m,n) = Pr(m,n) - Cprv(m,n)*((Vx(m,n) - Vx(m-1,n))

+ (Vy(m,n) - Vy(m,n-1)));

where the coefficient arrays are given by

Cvxp(m,n) =
1

ρc0
Sc

∣
∣
∣
∣
(m+1/2)δ,nδ

=
2Sc

(ρ[m+ 1, n] + ρ[m,n])c0
, (12.32)

Cvyp(m,n) =
1

ρc0
Sc

∣
∣
∣
∣
mδ,(n+1/2)δ

=
2Sc

(ρ[m,n] + ρ[m,n+ 1])c0
, (12.33)

Cprv(m,n) = ρ[m,n]c2r[m,n]c0Sc. (12.34)

These update equations are little different from those for the TMz case. Referring to Sec. 8.3

for lossless materials, the TMz update equations are

12.3. TWO-DIMENSIONAL IMPLEMENTATION 327

Hy(m,n) = Hy(m,n) + Chye(m,n)*(Ez(m+1,n) - Ez(m,n));
Hx(m,n) = Hx(m,n) - Chxe(m,n)*(Ez(m,n+1) - Ez(m,n));
Ez(m,n) = Ez(m,n) + Cezh(m,n)*((Hy(m,n) - Hy(m-1,n))

-(Hx(m,n) - Hx(m,n-1)));

There is a one-to-one mapping between these sets of equations. One can equate values as follows

vx ⇔ −Hy, (12.35)

vy ⇔ Hx, (12.36)

P ⇔ Ez, (12.37)

Cvxp ⇔ Chye , (12.38)

Cvyp ⇔ Chxe , (12.39)

Cprv ⇔ Cezh . (12.40)

Thus, converting 2D programs that were written to model electromagnetic field propagation to

ones that can model acoustic propagation is surprisingly straightforward. Essentially, all one has

to do is change some labels and a few signs.

For TEz simulations, the updated equations for a lossless medium were

Hz(m,n) = Hz(m,n) +
Chze(m,n)*((Ex(m,n+1)-Ex(m,n))-(Ey(m+1,n)-Ey(m,n)));

Ex(m,n) = Ex(m,n) + Cexh(m,n)*(Hz(m,n)-Hz(m,n-1));
Ey(m,n) = Ey(m,n) - Ceyh(m,n)*(Hz(m,n)-Hz(m-1,n));

In this case the conversion from the electromagnetic equations to the acoustic equations can be

accomplished with the following mapping

vx ⇔ Ey, (12.41)

vy ⇔ −Ex, (12.42)

P ⇔ Hz, (12.43)

Cvxp ⇔ Ceyh , (12.44)

Cvyp ⇔ Cexh , (12.45)

Cprv ⇔ Chxe . (12.46)

For three dimensions 3D acoustic code is arguably simpler than the electromagnetic case since

there are not two vector fields. However porting 3D electromagnetic algorithms to the acoustic

case is not as trivial as in two dimensions.

328 CHAPTER 12. ACOUSTIC FDTD SIMULATIONS

Chapter 13

Parallel Processing

The FDTD method is said to be “trivially parallelizable,” meaning that there are several simple

ways in which the algorithm can be divided into tasks that can be executed simultaneously. For

example, in a 3D simulation one might write an FDTD program that simultaneously updates the

Ex, Ey, and Ez components of the electric field. These updates depend on the magnetic field and

previous values of themselves—they are not a function of each other and hence can be updated in

parallel. Then, Hx, Hy, and Hz might be updated simultaneously. Alternatively, one might divide

the computational domain into distinct, non-overlapping regions and assign different processors

to update the fields in those regions. This way fields in each of the regions could be updated

simultaneously.

Here we will example two approaches to parallelizing a program. The threading approach

typically use one computer to run a program. A threaded program is designed in such a way as to

split the total computation between two or more “threads.” If the computer has multiple processors,

these threads can be executed simultaneously. Each of the threads can share the same memory

space, i.e., the same set of variables. An alternative approach to parallelization uses the Message

Passing Interface (MPI) protocol. This protocol allows different computers to run programs that

pass information back and forth. MPI is ideally suited to partitioning the computational domain

into multiple non-overlapping regions. Different computers are used to update the fields in the

different regions. To update the fields on the interfaces with different regions, the computers have

to pass information back and forth about the tangential fields along those interfaces.

In this chapter we provide some simple examples illustrating the use of threads and MPI.

13.1 Threads

There are different threading packages available. Perhaps the most common is the POSIX threads

(pthreads) package. To use pthreads, you must include the header file pthread.h in your pro-

gram. When linking, you must link to the pthread library (which is accomplished with the compiler

flag -lpthread).

There are many functions related to pthreads. On a UNIX-based system on which pthreads are

installed, a list of these functions can typically be obtained with the command man -k pthread
and then one can see the individual man-pages to obtain details about a specific function.

Lecture notes by John Schneider. parallel-processing.tex

329

330 CHAPTER 13. PARALLEL PROCESSING

Despite all these functions, it is possible to do a great deal of useful programming using only

two functions: pthread create() and pthread join(). As the name implies, a thread is

created by the function pthread create(). You can think of a thread as a separate process

that happens to share all the variables and memory with the rest of your program. One of the

arguments of pthread create() will specify what this thread should do, specifically what

function it should run.

The prototype of pthread create() is:

1 int pthread_create(
2 pthread_t *thread_id, // ID number for thread

3 const pthread_attr_t *attr, // controls thread attributes

4 void *(*function)(void *), // function to be executed

5 void *arg // argument of function

6);

The first argument is a pointer to the thread identifier (which is simply a number but we do not

actually care about the details of how the ID is specified). This ID is set by pthread create(),

i.e., one would typically be interested in the returned value—it is not something that is set prior to

pthread create() being called.

The second argument is a pointer to a variable that controls the attributes of the thread. In this

case, the value of this variable is established prior to the call of the function. This pointer can be

set to NULL in which case the thread is created with the default attributes. Attributes control things

like the “joinability” of the thread and the scheduling of threads. Typically one can simply use the

default settings. The pthread t and pthread attr t data types are defined in pthread.h.

The third and fourth arguments specify what function the thread should call and what argu-

ment should be passed to the function. Notice that the prototype says the function takes a void

pointer as an argument and returns a void pointer. Keep in mind that “void” pointers are, in fact,

simply generic pointers to memory. We can typecast these pointers to what they actually are.

Thus, in practice, it would be perfectly acceptable for the function to take, for example, an ar-

gument of a pointer to a structure and return a pointer to a double. One would merely have to

do the appropriate typecasting. If the function does not take an argument, the fourth argument of

pthread create() is set to NULL.

Once a new thread is created using pthread create(), the program continues execution

at the next command—the program does not wait for the thread to complete whatever the thread

has been assigned to do. The function pthread join() is used to block further execution of

commands until the specified thread has completed. pthread join() can also be used to access

the return-value of the function that was run in a thread. The prototype of pthread join() is:

1 int pthread_join(
2 pthread_t thread_id, // ID of thread to "join"

3 void **value_pntr // address of function’s return value

4);

13.2. THREAD EXAMPLES 331

13.2 Thread Examples

To demonstrate the use of pthreads, let us first consider a standard serial implementation of a

program where first one function is called and then another is called. The program is shown in

Program 13.1.

Program 13.1 serial-example.c: Standard serial implementation of a program where first

one function is called and then another. (These function are merely intended to perform a lengthy

calculation. They do not do anything particularly useful.)

1 /* serial (i.e., non-threaded) implementation */

2 #include <stdio.h>
3

4 void func1();
5 void func2();
6

7 double a, b; // global variables

8

9 int main() {
10

11 func1(); // call first function

12 func2(); // call second function

13

14 printf("a: %f\n", a);
15 printf("b: %f\n", b);
16

17 return 0;
18 }
19

20 /* do some lengthy calculation which sets the value of the the global

21 variable "a"*/

22 void func1() {
23 int i, j;
24

25 for (j=0;j<4000;j++)
26 for (i=0;i<1000000;i++)
27 a = 3.1456*j+i;
28

29 return;
30 }
31

32 /* do another lengthy calculation which happens to be the same as

33 done by func1() except here the value of global variable "b" is set

34 */

35 void func2() {
36 int i, j;

332 CHAPTER 13. PARALLEL PROCESSING

37

38 for (j=0;j<4000;j++)
39 for (i=0;i<1000000;i++)
40 b = 3.1456*j+i;
41

42 return;
43 }

In this program the functions func1() and func2() do not take any arguments nor do they

explicitly return any values. Instead, the global variables a and b are used to communicate values

back to the main function. Neither func1() nor func2() are intended to do anything useful.

There are merely used to perform some lengthy calculation. Assuming the executable version

of this program is named serial-example, the execution time can be obtained, on a typical

UNIX-based system, by issuing the command “time serial-example”.

Now, let us consider a threaded implementation of this same program. The appropriate code is

shown in Program 13.2.

Program 13.2 threads-example1.c: A threaded implementation of the program shown in

Program 13.1.

1 /* threaded implementation */

2 #include <stdio.h>
3 #include <pthread.h>
4

5 void *func1();
6 void *func2();
7

8 double a, b;
9

10 int main() {
11 pthread_t thread1, thread2; // ID’s for threads

12

13 /* create threads which run in parallel -- one for each function */

14 pthread_create(&thread1, NULL, func1, NULL);
15 pthread_create(&thread2, NULL, func2, NULL);
16

17 /* wait for first thread to complete */

18 pthread_join(thread1,NULL);
19 printf("a: %f\n", a);
20

21 /* wait for second thread to complete */

22 pthread_join(thread2,NULL);
23 printf("b: %f\n", b);
24

25 return 0;

13.2. THREAD EXAMPLES 333

26 }
27

28 void *func1() {
29 int i, j;
30

31 for (j=0;j<4000;j++)
32 for (i=0;i<1000000;i++)
33 a = 3.1456*j+i;
34

35 return NULL;
36 }
37

38 void *func2() {
39 int i, j;
40

41 for (j=0;j<4000;j++)
42 for (i=0;i<1000000;i++)
43 b = 3.1456*j+i;
44

45 return NULL;
46 }

In Program 13.2 func1() and func2() are slightly different from the functions of the same

name used in 13.2. In both these programs these functions perform the same calculations, but

in 13.2 these functions returned nothing. However pthread create() assumes the function

returns a void pointer (i.e., a generic pointer to memory). Since in this example these functions do

not need to return anything, they simply return NULL (which is effectively zero).

If Program 13.2 is run on a computer that has two (or more) processors, one should observe

that the execution time (as measured by a “wall clock”) is about half of what it was for Program

13.2. Again, assuming the executable version of Program 13.2 is named threads-example1,

the execution time can be obtained by issuing the command “time threads-example1”.

This timing command will typically return three values: the “wall-clock” time (the actual time that

elapsed from the start to the completion of the program), the CPU time (the sum of time spent by

all processors used to run the program), and system time (time used by the operating system to

run things necessary for your program to run, but not directly associated with your program). You

should observe that ultimately nearly the same amount of CPU time was used by both the threaded

and serial programs but the threaded program required about half the wall-clock time. In the case

of the second program two processors were working simultaneously and hence the wall-clock time

was half as much, or nearly so. In fact, there is slightly more computation involved in the threaded

program than the serial program since there is some computational overhead associated with the

threads.

Let us now modify the first function so that it returns a value, specifically a pointer to a double

where we simply store an arbitrary number (in this case 10.0). The appropriate code is shown in

Program 13.3.

334 CHAPTER 13. PARALLEL PROCESSING

Program 13.3 threads-example2.c: Modified version of Program 13.2 where now func1()
has a return value.

1 /* threaded implementation -- returning a value */

2 #include <stdio.h>
3 #include <stdlib.h> // needed for malloc()

4 #include <pthread.h>
5

6 double *func1(); // now returns a pointer to a double

7 void *func2();
8

9 double a, b;
10

11 int main() {
12 double *c; // used for return value from func1

13 pthread_t thread1, thread2; // ID’s for threads

14

15 // typecast the return value of func1 to a void pointer

16 pthread_create(&thread1, NULL, (void *)func1, NULL);
17 pthread_create(&thread2, NULL, func2, NULL);
18

19 // typecast the address of c to a void pointer to a pointer

20 pthread_join(thread1,(void **)&c);
21 printf("a,c: %f %f\n", a, *c);
22

23 pthread_join(thread2,NULL);
24 printf("b: %f\n", b);
25

26 return 0;
27 }
28

29 double *func1() {
30 int i, j;
31

32 double *c; // c is a pointer to a double

33

34 // allocate space to store a double

35 c=(double *)malloc(sizeof(double));
36 *c = 10.0;
37

38 for (j=0;j<4000;j++)
39 for (i=0;i<1000000;i++)
40 a = 3.1456*j+i;
41

42 return c;
43 }
44

13.2. THREAD EXAMPLES 335

45 void *func2() {
46 int i, j;
47

48 for (j=0;j<4000;j++)
49 for (i=0;i<1000000;i++)
50 b = 3.1456*j+i;
51

52 return NULL;
53 }

Note that in this new version of func1() we declare c to be a pointer to a double and then, in

line 35, allocate space where the double can be stored and then, finally, store 10.0 at this location.

This is rather complicated and it might seem that a simpler approach would be merely to declare

c to be a double and then return the address of c, i.e., end the function with return &c. Unfor-

tunately this would not work. The problem with that approach is that declaring c to be a double

would make it a local variable (one only known to func1()) whose memory would disappear

when the function returned.

The second argument of pthread join() in line 20 provides the pointer to the return value

of the function that was executed by the thread. Since c by itself is a pointer to a double, &c is

a pointer to a pointer to a double, i.e., of type (double **). However, pthread join()
assumes the second argument is a void pointer to a pointer and hence a typecast is used to keep the

compiler from complaining.

In the next example, shown in Program 13.4, func1() and func2() are modified so that

they each take an argument. These arguments are the double variables e and d that are set in

main().

Program 13.4 threads-example3.c: Functions func1() and func2() have been modi-

fied so that they now take arguments.

1 /* threaded implementation -- passing arguments and

2 returning a value */

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <pthread.h>
6

7 double *func1(double *);
8 void *func2(double *);
9

10 double a, b;
11

12 int main() {
13 double *c; // used for return value from func1

14 double d=3.0, e=2.0; // arguments passed to functions

15 pthread_t thread1, thread2; // ID’s for threads

336 CHAPTER 13. PARALLEL PROCESSING

16

17 pthread_create(&thread1, NULL, (void *)func1, (void *)&d);
18 pthread_create(&thread2, NULL, (void *)func2, (void *)&e);
19

20 pthread_join(thread1,(void **)&c);
21 printf("a,c: %f %f\n", a, *c);
22

23 pthread_join(thread2,NULL);
24 printf("b: %f\n", b);
25

26 return 0;
27 }
28

29 double *func1(double *arg) {
30 int i, j;
31

32 double *c;
33

34 c=(double *)malloc(sizeof(double));
35 *c = 10.0;
36

37 for (j=0;j<4000;j++)
38 for (i=0;i<1000000;i++)
39 a = (*arg)*j+i;
40

41 return c;
42 }
43

44 void *func2(double *arg) {
45 int i, j;
46

47 for (j=0;j<4000;j++)
48 for (i=0;i<1000000;i++)
49 b = (*arg)*j+i;
50

51 return NULL;
52 }

In all these examples func1() and func2() have performed essentially the same computa-

tion. The only reason there were two separate functions is that func1() set the global variable a
while func2() set the global variable b. However, knowing that we can both pass arguments and

obtain return values, it is possible to have a single function in our program. It can be called mul-

tiple times and simultaneously. Provided the function does not use global variables, the different

calls will not interfere with each other.

A program that uses a single function to accomplish what the previous programs used two

function for is shown in Program 13.5.

13.2. THREAD EXAMPLES 337

Program 13.5 threads-example4.c: The global variables have been removed and a single

function func() is called twice. The function func() and main() communicate by passing

arguments and checking returns values (instead of via global variables).

1 /* threaded implementation -- passing an argument and checking

2 return the value from a single function */

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <pthread.h>
6

7 double *func(double *);
8

9 int main() {
10 double *a, *b; // used for return values

11 double d=3.0, e=2.0;
12 pthread_t thread1, thread2; // ID’s for threads

13

14 pthread_create(&thread1, NULL, (void *)func, (void *)&d);
15 pthread_create(&thread2, NULL, (void *)func, (void *)&e);
16

17 pthread_join(thread1,(void **)&a);
18 printf("a: %f\n", *a);
19

20 pthread_join(thread2,(void **)&b);
21 printf("b: %f\n", *b);
22

23 return 0;
24 }
25

26 double *func(double *arg) {
27 int i, j;
28

29 double *a;
30

31 a=(double *)malloc(sizeof(double));
32

33 for (j=0;j<4000;j++)
34 for (i=0;i<1000000;i++)
35 *a = (*arg)*j+i;
36

37 return a;
38 }

Threads provide a simple way to obtain parallelization. However, one may find that in practice

they do not provide the benefits one might expect when applied to FDTD programs. FDTD is

338 CHAPTER 13. PARALLEL PROCESSING

both computational expensive and memory-bandwidth intensive. A great deal of data must be

passed between memory and the CPU. Often the bottleneck is not the CPU but rather the speed of

the “bus” that carries data between memory and the CPU. Multi-processor machines do not have

multiple memory busses. Thus, splitting an FDTD computation between multiple CPU’s on the

same computer will have those CPU’s all requesting memory from a bus that is already acting at

full capacity. These CPU’s will have to wait on the arrival of the requested memory. Therefore,

in practice when using threaded code with N threads on a computer with N processors, one is

unlikely to see a computation-time reduction that is anywhere close to the hypothetical maximum

reduction of 1/N .

13.3 Message Passing Interface

The message passing interface (MPI) is a standardized protocol, or set of protocols, which have

been implemented on a wide range of platforms. MPI facilitates the communication between

processes whether they are running on a single host or multiple hosts. As with pthreads, MPI

provides a large number of functions. These functions allow the user to control many aspects

of the communication or they greatly simplify what would otherwise be quite cumbersome tasks

(such as the efficient distribution of data to a large number of hosts). Despite the large number of

MPI functions, just six are needed to begin exploiting the benefits of parallelization.

Before considering those six functions, it needs to be said that one must have the supporting

MPI framework installed on each of the hosts to be used. Different implementations of the MPI

protocol (or the MPI 2 protocol) are available from the Web. For example, LAM MPI is available

from www.lam-mpi.org but it is no longer being actively developed. Instead, several MPI-

developers have joined together to work on OpenMPI which is available from www.open-mpi.
org. Alternatively, MPICH2 is available from www.mcs.anl.gov/research/projects/
mpich2. Installation of these packages is relatively trivial (at least that is the case when using

Linux or Mac OS X), but some of the details associated with getting jobs to run can be somewhat

complicated (for example, ensuring that access is available to remote machines without requiring

explicit typing of a password).

There is a great deal of MPI documentation available from the Web (there are also a few

books written on the subject). A good resource for getting started is computing.llnl.gov/
tutorials/mpi/. In fact, Lawrence Livermore has many useful pages related to threads, MPI,

and other aspects of high-performance and parallel processing. You can find the material by going

to computing.llnl.gov and following the link to “Training.”

Returning to the six functions needed to use MPI in a meaningful way, two of them concern

initializing and closing the MPI set-up, two deal with sending and receiving information, and two

deal with determining the number of processes and which particular process number is associated

with the given invocation. Programs which use MPI must include the header file mpi.h. Before

any other MPI functions are called, the function MPI Init() must be called. The last MPI

function called should be MPI Finalize(). Thus, a valid, but useless, MPI program is shown

in Program 13.6.

Program 13.6 useless-mpi.c: A trivial, but valid, MPI program.

13.4. OPEN MPI BASICS 339

1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5

6 MPI_Init(&argc,&argv);
7

8 printf("I don’t do anything useful yet.\n");
9

10 MPI_Finalize();
11

12 return 0;
13 }

When an MPI program is run, each process runs the same program. In this case, there is nothing

to distinguish between the processes. They will all generate the same line of output. If there were

100 processes, you would see 100 lines of “I don’t do anything useful yet.”

13.4 Open MPI Basics

At this point we need to ask the question: What does it mean to run an MPI program? Ultimately

many copies of the same program are run. Each copy may reside on a different computer and, in

fact, multiple copies may run on the same computer. The details concerning how one gets these

copies to run are somewhat dependent on the MPI package one uses. Here we will briefly describe

the steps associated with the Open MPI package.

When Open MPI is installed, several executable files will be placed on your system(s), e.g.,

mpicc, mpiexe, mpirun, etc. On most systems by default these files will be installed in the

directory /usr/local/bin (but one can specify that the files should be installed elsewhere if

so desired). One must ensure that the directory where these excutables reside is in the search path.

When using MPI it is usually necessary to compile the source code in a special way. Instead

of using the gcc compiler on UNIX/Linux machines, one would use mpicc (mpicc is merely a

wrapper that ultimately calls the underlying compiler that one would have used normally). So, for

example, to compile the MPI program given above, one would issue a command such as

mpicc -Wall -O useless-mpi.c -o useless-mpi

One can now run the executable file useless-mpi. The command to do this is either

mpirun or mpiexec (these commands are synonymous). There are numerous arguments that

can be specified with the most important being the number of processes. The following command

says to run four copies of useless-mpi:

mpiexec -np 4 useless-mpi

340 CHAPTER 13. PARALLEL PROCESSING

But where, precisely, is this run? In this case four copies of the program are run on the local host.

That is not precisely what we want—we are interested in distributing the job to different machines.

There are multiple ways in which one can excercise control of the running of MPI programs and

we will explore just a few.

First, let us assume a “multicomputer” consists of five nodes with names node01, node02,

node03, node04, and node05. To make things more interesting, let us further assume that

node01 is one particular brand of computer and the other nodes are a different brand (e.g., per-

haps node01 is an Intel-based machine while the other nodes are PowerPC-based machines).

Additionally assume that node01 has four processors while each of the other nodes has two pro-

cessors.

We can specify some of this information in a “hostfile.” For now, let us exclude node01 since

it is a different architecture. A hostfile that describes a multicomputer consisting of the remaining

four nodes might be

node05 slots=2
node04 slots=2
node03 slots=2
node02 slots=2

Let us assume this information is stored in the file my hostfile. The slots are the number of

processors on a particular machine. If one does not specify the number of slots, it is assumed to be

one.

Let us further assume the executable useless-mpi exists in a director called ˜/Ompi
(where the tilde is recognized as a shorthand for the user’s home directory on a UNIX/Linux

machine). If all the computers mount the same file structure, this may actually be the exact

same directory that all the machines are sharing. In that case there would only be one copy of

useless-mpi. Alternatively, each of the computers may have their own local copy of a di-

rectory named ˜/Ompi. In that case there would have to be a local copy of the excutable file

useless-mpi present on each of the individual computers.

One could now run eight copies of the program by issuing the following command:

mpirun -np 8 -hostfile my_hostfile ˜/Ompi/useless-mpi

This command could be issued from any of the nodes. Note that the number of processes does not

have to match the number of slots. The following command will launch 12 copies of the program

mpirun -np 12 -hostfile my_hostfile ˜/Ompi/useless-mpi

However, it will generally be best if one can match the job to the physical configuration of the

multicomputer, i.e., one job per “slot.”

In order to incorporate node01 into the multicomputer, things become slightly more compli-

cated because executables compiled for node01 will not run on the other nodes and vice versa.

Thus one must compile separate versions of the program on the different machines. Let’s assume

that was done and on each of the nodes a copy of useless-mpi was place in the local directory

/tmp (i.e., there is a copy of this directory and this executable on each of the nodes). The hostfile

my hostfile could then be changed to

13.5. RANK AND SIZE 341

node05 slots=2
node04 slots=2
node03 slots=2
node02 slots=2
node01 slots=4

Note that there are four slots specified for node01 instead of two. The command to run 12 copies

of the program would now be

mpirun -np 12 -hostfile my_hostfile /tmp/useless-mpi

By introducing more arguments to the command line, one can exercise more fine-grained con-

trol of the executation of the program. Let us again assume that there is one common directory

˜/Ompi that all the machines share. Let us further assume two version of useless-mpi have

been compiled: one for PowerPC-based machines called useless-mpi-ppc and one for Intel-

based machines called useless-mpi-intel. We can use a command that does away with the

hostfile and instead provide all the details explicitly:

mpirun -host node05,node04,node03,node02 \
-np 8 ˜/Ompi/useless-mpi-ppc \
-host node01 -np 4 ˜/Ompi/useless-mpi-intel

Note that the backslashes here are quoting the end of the line. This command can be given on a

single line or can be given on multiple lines, as shown here, if one “quotes” the carriage return.

13.5 Rank and Size

To do more meaningful tasks, it is typically necessary for each processor to know how many to-

tal processes there are and which process number is assigned to a particular invocation. In this

way, each processor can do something different based on its process number. In MPI the pro-

cess number is known as the rank. The number of processes can be determined with the function

MPI Comm size() and the rank can be determined with MPI Comm rank(). The code shown

in Program 13.7 is a slight modification of the previous program that now incorporates these func-

tions.

Program 13.7 find-rank.c: An MPI program where each process can determine the total

number of processes and its individual rank (i.e., process number).

1 #include <mpi.h>
2 #include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5 int rank, size;
6

7 MPI_Init(&argc,&argv);

342 CHAPTER 13. PARALLEL PROCESSING

8

9 MPI_Comm_size(MPI_COMM_WORLD, &size);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11 printf("I have rank %d out of %d total.\n",rank,size);
12

13 MPI_Finalize();
14

15 return 0;
16 }

Assume this is run with four total processes. The output will be similar to this:

I have rank 1 out of 4 total.
I have rank 0 out of 4 total.
I have rank 2 out of 4 total.
I have rank 3 out of 4 total.

Note that the size is 4, but rank ranges between 0 and 3 (i.e., size− 1). Also note that there is

no guarantee that the processes will report in rank order.

The argument MPI COMM WORLD is known as an MPI communicator. A communicator essen-

tially specifies the processes which are grouped together. One can create different communicators,

i.e., group different sets of processes together, and this can simplify handling certain tasks for

a particular problem. However, we will simply use MPI COMM WORLD which specifies all the

processes.

13.6 Communicating Between Processes

To communicate between processes we can use the commands MPI Send() and MPI Recv().

MPI Send() has arguments of the form:

MPI_Send(&buffer, // address where data stored
count, // number of items to send
type, // type of data to send
dest, // rank of destination process
tag, // programmer-specified ID
comm); // MPI communicator

where buffer is an address where the data to be sent is stored (for example, the address of the

start of an array), count is the number of elements or items to be sent, type is the type of

data to be sent, dest is the rank of the process to which this information is being sent, tag is

a programmer-specified number to identify this data, and comm is an MPI communicator (which

we will leave as MPI COMM WORLD). The type is similar to the standard C data types, but it is

specified using MPI designations. Some of those are: MPI INT, MPI FLOAT, and MPI DOUBLE,

corresponding to the C data types of int, float, and double (other types, some of which are specific

to MPI, such as MPI BYTE and MPI PACKED, exist too).

MPI Recv() has arguments of the form:

13.6. COMMUNICATING BETWEEN PROCESSES 343

MPI_Recv(&buffer,count,type,source,tag,comm,&status);

In this case buffer is the address where the received data is to be stored. The meaning of count,

type, tag, and comm are unchanged from before. source is the rank of the process sending

the data. The status is a pointer to a structure, specifically an MPI status structure which is

specified in mpi.h. This structure contains the rank of the source and the tag number.

Program 13.8 demonstrates the use of MPI Send() and MPI Recv(). Here the process

with rank 0 serves as the master process. It collects input from the user which will subsequently

be sent to the other processes. Specifically, the parent process prompts the user for as many values

(doubles) as there are number of processes minus one. The master process then sends one number

to each of the other processes. These processes do a calculation based on the number they receive

and then send the result back to the master. The master prints this received data and then the

program terminates.

Program 13.8 sendrecv.c: An MPI program that sends information back and forth between a

master process and slave processes.

1 #include <mpi.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 int main(int argc, char *argv[]) {
6 int i, rank, size, tag_out=10, tag_in=11;
7 MPI_Status status;
8

9 MPI_Init(&argc,&argv);
10

11 MPI_Comm_size(MPI_COMM_WORLD, &size);
12 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
13

14 if (rank==0) {
15 /* "master" process collects and distributes input */

16 double *a, *b;
17

18 /* allocate space for input and result */

19 a=malloc((size-1)*sizeof(double));
20 b=malloc((size-1)*sizeof(double));
21

22 /* prompt user for input */

23 printf("Enter %d numbers: ",size-1);
24 for (i=0; i<size-1; i++)
25 scanf("%lf",a+i);
26

27 /* send values to other processes */

28 for (i=0; i<size-1; i++)
29 MPI_Send(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD);

344 CHAPTER 13. PARALLEL PROCESSING

30

31 /* receive results calculated by other process */

32 for (i=0; i<size-1; i++)
33 MPI_Recv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,&status);
34

35 for (i=0; i<size-1; i++)
36 printf("%f\n",b[i]);
37

38 } else {
39 /* "slave" process */

40 int j;
41 double c, d;
42

43 /* receive input from the master process */

44 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);
45

46 /* do some silly number crunching */

47 for (j=0;j<4000;j++)
48 for (i=0;i<100000;i++)
49 d = c*j+i;
50

51 /* send the result back to master */

52 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);
53 }
54

55 MPI_Finalize();
56

57 return 0;
58 }

The six commands covered so far are sufficient to parallelize any number of problems. How-

ever, there is some computational overhead associated with parallelizing the code. Additionally,

there is often a significant cost associated with communication between processes, especially if

those processes are running on different hosts and the network linking those hosts is slow.

The functions MPI Send() and MPI Recv() are blocking commands. They do not return

until they have accomplished the requested send or receive. In some cases, especially if there is a

large amount of data to transmit, this can be costly. There are also nonblocking or “immediate”

versions of these functions. For these functions control is returned to the calling function without a

guarantee of the send or receive having been accomplished. In this way the program can continue

some other useful task while the communication is taking place. When one must ensure that

the communication is finished, the function MPI Wait() provides a blocking mechanism that

suspends execution until the specified communication is completed. The immediate send and

receive functions are of the form:

MPI_Isend(&buffer,count,type,dest,tag,comm,&request);
MPI_Irecv(&buffer,count,type,source,tag,comm,&request);

13.6. COMMUNICATING BETWEEN PROCESSES 345

The arguments to these functions are the same as the blocking version except the final argument is

now a pointer to an MPI Request structure instead of an MPI Status. The wait command has

the following form:

MPI_Wait(&request,&status);

Note that the communication for which the waiting is being done is specified by the “request,”

not the “status.” So, if there are multiple transmissions which are being done asynchronously,

one may have to create an array of MPI Request’s. If one is not concerned with the status of the

transmissions, one does not have to define a separate status for each transmission.

The code shown in Program 13.9 illustrates the use of non-blocking send and receive. In this

case the master process sends the numbers to the other processes via MPI Isend(). However, the

master does not bother to ensure that the send was performed. Instead, the master will ultimately

wait for the other process to communicate the result back. The fact that the other processes are

sending information back serves as confirmation that the data was sent from the master. After

sending the data, the master process then calls MPI Irecv(). There is one call for each of the

“slave” processes. After calling these functions, MPI Wait() is used to ensure the data has been

received before printing the results. The code associated with the slave processes is unchanged

from before.

Program 13.9 nonblocking.c: An MPI program that uses non-blocking sends and receives.

1 #include <mpi.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 int main(int argc, char *argv[]) {
6 int i, rank, size, tag_out=10, tag_in=11;
7 MPI_Status status;
8 MPI_Request *request_snd, *request_rcv;
9

10 MPI_Init(&argc,&argv);
11

12 MPI_Comm_size(MPI_COMM_WORLD, &size);
13 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
14

15 if (rank==0) {
16 /* "master" process collects and distributes input */

17 double *a, *b;
18

19 /* allocate space for input and result */

20 a=malloc((size-1)*sizeof(double));
21 b=malloc((size-1)*sizeof(double));
22

23 /* allocate space for the send and receive requests */

24 request_snd=malloc((size-1)*sizeof(MPI_Request));

346 CHAPTER 13. PARALLEL PROCESSING

25 request_rcv=malloc((size-1)*sizeof(MPI_Request));
26

27 /* prompt user for input */

28 printf("Enter %d numbers: ",size-1);
29 for (i=0; i<size-1; i++)
30 scanf("%lf",a+i);
31

32 /* non-blocking send of values to other processes */

33 for (i=0; i<size-1; i++)
34 MPI_Isend(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD,request_snd+i);
35

36 /* non-blocking reception of results calculated by other process */

37 for (i=0; i<size-1; i++)
38 MPI_Irecv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,request_rcv+i);
39

40 /* wait until we have received all the results */

41 for (i=0; i<size-1; i++)
42 MPI_Wait(request_rcv+i,&status);
43

44 for (i=0; i<size-1; i++)
45 printf("%f\n",b[i]);
46

47 } else {
48 /* "slave" process */

49 int j;
50 double c, d;
51

52 /* receive input from the master process */

53 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);
54

55 /* do some silly number crunching */

56 for (j=0;j<4000;j++)
57 for (i=0;i<100000;i++)
58 d = c*j+i;
59

60 /* send the result back to master */

61 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);
62 }
63

64 MPI_Finalize();
65

66 return 0;
67 }

Compared to the previous version of this program, this version runs over 30 percent faster

on a dual-processor G5 when using five processes. (By “over 30 percent faster” is meant that if

13.6. COMMUNICATING BETWEEN PROCESSES 347

the execution time for the previous code is normalized to 1.0, the execution time using the non-

blocking calls is approximately 0.68.)

348 CHAPTER 13. PARALLEL PROCESSING

Chapter 14

Near-to-Far-Field Transformation

14.1 Introduction

As we have seen, the FDTD method provides the fields throughout some finite region of space, i.e.,

the fields throughout the computational domain. However, in practice, we are often interested in

the fields far away from the region we have modeled. For example, an FDTD implementation may

have modeled an antenna or some scatterer. But, the fields in the immediate vicinity of that antenna

or scatterer may not be the primary concern. Rather, the distant or “far” fields may be the primary

concern. In this chapter we show how the near fields, which are essentially the fields within the

FDTD grid, can be used to obtain the far fields. We start with a brief review of the underlying

theory that pertains in the continuous world and then discuss the implementation details for the

FDTD method.

14.2 The Equivalence Principle

Recall the boundary conditions that pertain to the electric and magnetic fields tangential to an

interface:

n̂
′ × (E1 − E2) = −Ms, (14.1)

n̂
′ × (H1 − H2) = Js, (14.2)

where n̂
′ is normal to the interface, pointing toward region 1. The subscript 1 indicates the fields

immediately adjacent to one side of the interface and the subscript 2 indicates the fields just on the

other side of the interface. The “interface” can either be a physical boundary between two media

or a fictitious boundary with the same medium to either side. The current Ms is a magnetic surface

current, i.e., a current that only flows tangential to the interface. In practice there is no magnetic

charge and thus no magnetic current. Therefore (14.1) states that the tangential components of E

must be continuous across the boundary. However, in theory, we can imagine a scenario where the

tangential fields are discontinuous. If this were the case, the magnetic current Ms must be non-

zero to account for this discontinuity. In a little while we will see why it is convenient to envision

such a scenario. The current Js in (14.2) is the usual electric surface current.

Lecture notes by John Schneider. fdtd-near-to-far.tex

349

350 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

As depicted in Fig. 14.1(a), consider a space in which there is a source or scatterer that radiates

(or scatters) some fields. We can define a fictitious boundary that surrounds this source or scatterer.

Let us then imagine that the fields exterior to this boundary are unchanged but the fields interior

to the boundary are set to zero as depicted in Fig. 14.1(b). By setting the fields interior to the

boundary to zero, we will create discontinuities in the tangential components on either side of

the fictitious boundary. These discontinuities are perfectly fine provided we account for them by

having the appropriate surface currents flow over the boundary. These currents are given by (14.1)

and (14.2) where the fields in region 2 are now zero. Thus,

Ms = −n̂
′ × E1, (14.3)

Js = n̂
′ × H1. (14.4)

As you may recall and as will be discussed in further detail below, it is fairly simple to find

the fields radiated by a current (whether electric or magnetic) when that current is radiating in

a homogeneous medium. Unfortunately, as shown in Fig. 14.1(b), the surface currents are not

radiating in a homogeneous medium. But, in fact, since the fields within the fictitious boundary

are zero, we can place anything, or nothing, within the boundary and that will have no effect on

the fields exterior to the boundary. So, let us maintain the same surface currents but discard any

inhomogeneity that were within the boundary. That leaves a homogeneous region as depicted in

Fig. 14.1(c) and it is fairly straightforward to find these radiated fields.

14.3 Vector Potentials

Before proceeding further, let us briefly review vector potentials. First, consider the case (which

corresponds to the physical world) where there is no magnetic charge—electric currents can flow

but magnetic currents cannot. Thus,

∇ · BA = ∇ · µHA = 0 (14.5)

where the subscript A indicates we are considering the case of no magnetic charge. There is a

vector identity that the divergence of the curl of any vector field is identically zero. Therefore

(14.5) will automatically be satisfied if we write

HA =
1

µ
∇× A (14.6)

where A is a yet-to-be-determined field known as the magnetic vector potential. Now, using

Faraday’s law we obtain

∇× EA = −jωµHA = −jω∇× A. (14.7)

Using the terms on the left and the right and regrouping yields

∇× (EA + jωA) = 0. (14.8)

The curl of the gradient of any function is identically zero. Thus we can set the term in parentheses

equal to the (negative of the) gradient of some unknown scalar electric potential function Φe and

in this way (14.8) will automatically be satisfied. Therefore we have

EA + jωA = −∇Φe (14.9)

14.3. VECTOR POTENTIALS 351

scatterer

or

source

ra
di

at
ed

 f
ie

ld
s

radiated fields

fictitious
boundary

E1,H1 E2,H2

(a)

scatterer

or

source

fictitious
boundary

E1,H1

n’^

0,0

Js = n’×H1
^

Ms = −n’×E1
^

(b)

fictitious
boundary

E1,H1

n’^

0,0

Js = n’×H1
^

Ms = −n’×E1
^

ε0,µ0
ε0,µ0

(c)

Figure 14.1: (a) A space containing a source or scatterer that is surrounded by a fictitious boundary

which is indicated by the dashed line. The fields are continuous across this boundary. (b) The fields

are set to zero within the boundary. Surface currents must be used to account for the discontinuity

across the boundary. (c) Since the fields are zero within the boundary, any inhomogeneities within

the boundary can be discarded.

352 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

or, after rearranging,

EA = −jωA −∇Φe. (14.10)

Using the remaining curl equation, Ampere’s law, we can write

∇× HA = J + jωǫEA (14.11)

∇× 1

µ
∇× A = J + jωǫ(−jωA −∇Φe) (14.12)

Multiplying through by µ and expanding the curl operations yields

∇(∇ · A) −∇2
A = µJ + ω2µǫA − jωµǫ∇Φe. (14.13)

Regrouping terms yields

∇2
A + ω2µǫA = −µJ + ∇(∇ · A + jωµǫΦe). (14.14)

So far we have said what the curl of A must be, but that does not fully describe the field. To fully

describe a vector field one must specify the curl, the divergence, and the value at a point (which

we will ultimately assume is zero at a infinite distance from the origin). We are free to make the

divergence of A any convenient value. Let us use the “Lorentz gauge” of

∇ · A = −jωµǫΦe. (14.15)

By doing this, (14.14) reduces to

∇2
A + k2

A = −µJ. (14.16)

where k = ω
√
µǫ.

Distinct from the scenario described above, let us imagine a situation where there is no free

electric charge. Magnetic currents can flow, but electric currents cannot. Thus the divergence of

the electric flux density is

∇ · DF = ∇ · ǫEF = 0 (14.17)

where here the subscript F is used to indicate the case of no electric charge. Again, this equation

will be satisfied automatically if we represent the electric field as the curl of some potential function

F. To this end we write

EF = −1

ǫ
∇× F (14.18)

where F is known as the electric vector potential.

Following steps similar to the ones we used to obtain (14.16), one can obtain the differential

equation that governs F, namely,

∇2
F + k2

F = −ǫM. (14.19)

Thus both A and F are governed by the wave equation. We see that the source of A, i.e., the

forcing function that creates A is the electric current J. Similarly, the source of F is the magnetic

current M. (We have not yet restricted these currents to be surface currents. At this point they

can be any current distribution, whether distributed throughout a volume, over a surface, or along

a line.)

Note that both the Laplacian (∇2) and the constant k2 that appear in (14.16) and (14.19) are

scalar operators. They do not change the orientation of a vector. Thus, the x component of J gives

14.3. VECTOR POTENTIALS 353

rise to the x component of A, the y component of M gives rise to the y component of F, and so

on. In this way, (14.16) and (14.19) could each be broken into their three Cartesian components

and we would be left with six scalar equations.

These equations have relatively straightforward solutions. Let us consider a slightly simpli-

fied problem, the solution of which can easily be extended to the full general problem. Consider

the case of an incremental current of length dℓ that is located at the origin and oriented in the z
direction. In this case (14.16) reduces to

∇2Az(r) + k2Az(r) = −µIdℓδ(r) (14.20)

where I is the amount of current and δ(r) is the 3D Dirac delta function. The Dirac delta function

is zero expect when its argument is zero. For an argument of zero, δ(r) is singular, i.e., infinite.

However, this singularity is integrable. A volume integral of any region of space that includes the

Dirac delta function at the origin (i.e., r = 0) will yield unit volume. For any observation point

other than the origin, (14.20) can be written

∇2Az(r) + k2Az(r) = 0 r 6= 0. (14.21)

It is rather easy to show that a general solution to this is

Az(r) = C1
e−jkr

r
+ C2

ejkr

r
. (14.22)

We discard the second term on the right-hand side since that represents a spherical wave propagat-

ing in toward the origin. Thus we are left with

Az(r) = C1
e−jkr

r
(14.23)

where we must now determine the constant C1 based on the “driving function” on the right side of

(14.20).

To obtain C1, we integrate both side of (14.20) over a small spherical volume of radius r0 and

take the limit as r0 approaches zero:

lim
r0→0

∫

V

[
∇2Az + k2Az

]
dv = lim

r0→0

∫

V

−µIdℓδ(r)dv. (14.24)

Using the sifting property of the delta function, the right-hand side of (14.24) is simply −µIdℓ.
For the left-hand side, we first expand the integral associated with the second term in the square

brackets

lim
r0→0

r0∫

r=0

π∫

θ=0

2π∫

φ=0

k2C1
e−jkr

r
r2 sin θ dφ dθ dr. (14.25)

Including the term r2 sin θ, which is contributed by the volume element dv, the entire integrand is

proportional to r. Therefore as r0 (the upper limit of integration in r) goes to zero, this integral

goes to zero.

354 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

The remaining integral on the left side of (14.24) is

lim
r0→0

∫

V

∇ · ∇Azdv = lim
r0→0

∮

S

∇Az · ds (14.26)

where we have used the divergence theorem to convert the volume integral to a surface integral

(and used the fact that ∇2 = ∇ · ∇). The integrand of the surface integral is given by

∇Az|r=r0 = r̂
∂Az
∂r

∣
∣
∣
∣
r=r0

= r̂

(

−e
−jkr0

r2
0

− jk
e−jkr0

r0

)

C1. (14.27)

The surface element ds is given by r̂ r2
0 sin θdφ dθ so that the entire surface integral is given by

lim
r0→0

π∫

θ=0

2π∫

φ=0

C1e
−jkr0(−1 − jkr0) sin θdφ dθ = lim

r0→0
−C1e

−jkr0(1 + jkr0)4π = −C14π. (14.28)

Equating this with the right-hand side of (14.20), we can solve for C1. The final result is

C1 =
µIdℓ

4π
. (14.29)

It should be noted that there is actually nothing special about having r0 approach zero. The

same coefficient is obtained for any value of r0. Letting r0 approach zero merely simplifies the

problem a bit.

We now have that a filamentary current I of length dℓ located at the origin and oriented in the

z direction produces the vector potential

Az(r) =
µIdℓ

4π

e−jkr

r
. (14.30)

This is simply a spherical wave radiating symmetrically away from the origin. If the source is

located at the point r′ instead of the origin, one merely needs to account for this displacement. The

vector potential in that case is

Az(r) =
µIdℓ

4π

e−jk|r−r
′|

|r − r′| . (14.31)

If the current was oriented in the x or y direction, that would produce a vector potential that only

had a x or y component, respectively.

For a current source, the “strength” of the source is, in one way of thinking, determined by the

amount of current that is flowing times the length over which that current flows. For a filament

we have that the “source strength” is given by Idℓ. For a surface current the equivalent concept

is Jsds where Js is the surface current density in Amperes/meter and ds is an incremental surface

area. Similarly, for a volumetric current, the equivalent term is Jdv where J is the current density

in Amperes/meter2 and dv is an incremental volume.

Instead of having just a point source, currents can be distributed throughout space. To get the

corresponding vector potentials, we merely have to sum the contributions of the current wherever it

14.3. VECTOR POTENTIALS 355

exists, accounting for the location (displacement from the origin), the orientation, and the amount

of current.

For surface currents, the vector potentials are given by

A(r) = µ

∮

S

Js(r
′)
e−jk|r−r

′|

4π|r − r′|ds
′, (14.32)

F(r) = ǫ

∮

S

Ms(r
′)
e−jk|r−r

′|

4π|r − r′|ds
′, (14.33)

where, as before, r is the observation point, r′ is the location of the source point (i.e., the location

of the currents), and S is the surface over which the current flows.

Equations (14.32) and (14.33) give the vector potentials at an arbitrary observation point r in

three dimensions. The surface S is a surface that exists in the 3D space (such as the surface of

sphere or a cube).

Let us consider the two-dimensional case. We can consider the 2D case as a special case in 3D

in which there is no variation in the z direction. The observation point is a point in the xy plane

specified by the vector ρ. Thus, the magnetic vector potential could be written as

A(ρ) = µ

∮

L

∞∫

z′=−∞

Js(ρ
′)

e−jk
√

|ρ−ρ′|2+z′2

4π
√

|ρ − ρ′|2 + z′2
dz′dℓ′, (14.34)

= µ

∮

L

Js(ρ
′)





∞∫

z′=−∞

e−jk
√

|ρ−ρ′|2+z′2

4π
√

|ρ − ρ′|2 + z′2
dz′



 dℓ′. (14.35)

The term in parentheses can be integrated to obtain

∞∫

z′=−∞

e−jk
√

|ρ−ρ′|2+z′2

4π
√

|ρ − ρ′|2 + z′2
dz′ = −j

4
H

(2)
0 (k|ρ − ρ′|) (14.36)

where H
(2)
0 is the zeroth-order Hankel function of the second kind. This represents a cylindrical

wave radiating from the point ρ′. Similar steps can be done for F and in this way z is eliminated

from the expressions for the vector potentials. We are left with a 2D representation of the fields,

namely,

A(ρ) = −j µ
4

∮

L

J(ρ′)H
(2)
0 (k|ρ − ρ′|)dℓ′, (14.37)

F(ρ) = −j ǫ
4

∮

L

M(ρ′)H
(2)
0 (k|ρ − ρ′|)dℓ′. (14.38)

where the explicit s subscript has been dropped from the currents.

The approximation of the zeroth-order Hankel function of the second kind as the argument ξ
gets large is

H
(2)
0 (kξ) ≈

√

j2

πkξ
e−jkξ. (14.39)

356 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

Now let ξ = |ρ − ρ′| where ρ is large enough that the following approximations are valid:

ξ ≈
{
ρ− ρ′ cosψ for the phase,
ρ for the magnitude.

(14.40)

Thus the Hankel function can be written

H
(2)
0 (k|ρ − ρ′|) ≈

√

j2

πkρ
e−jkρejkρ

′ cosψ. (14.41)

The A vector potential for a 2D problem can thus be written

A(ρ) = −j µ
4

∮

L

J(ρ′)H
(2)
0 (k|ρ − ρ′|)dℓ′, (14.42)

≈ −j µ
4

√

j2

πkρ
e−jkρ

∮

L

J(ρ′)ejkρ
′ cosψdℓ′, (14.43)

= −j µ
4

√

j2

πkρ
e−jkρN2D, (14.44)

where

N2D =

∮

L

J(ρ′)ejkρ
′ cosψdℓ′. (14.45)

Correspondingly, the F vector potential can be written

F(ρ) = −j ǫ
4

∮

L

M(ρ′)H
(2)
0 (k|ρ − ρ′|)dℓ′, (14.46)

≈ −j ǫ
4

√

j2

πkρ
e−jkρ

∮

L

M(ρ′)ejkρ
′ cosψdℓ′, (14.47)

= −j ǫ
4

√

j2

πkρ
e−jkρL2D, (14.48)

where

L2D =

∮

L

M(ρ′)ejkρ
′ cosψdℓ′. (14.49)

Nominally N2D and L2D are functions of ρ. However, within these functions the only thing that

depends on ρ is ψ. The angle ψ only changes for large changes in ρ—incremental changes of ρ

will not affect ψ. Thus, derivatives of N2D or L2D with respect to ρ, φ, or z (i.e., derivatives with

respect to the unprimed coordinates) are zero. The geometry is depicted in Fig. 14.2.

It is convenient to think of the currents, and subsequently N2D and L2D (and ultimately the

potentials), in terms of cylindrical coordinates, i.e.,

J(ρ) = Jρâρ + Jφâφ + Jzâz, (14.50)

M(ρ) = Mρâρ +Mφâφ +Mzâz. (14.51)

14.4. ELECTRIC FIELD IN THE FAR-FIELD 357

φ
φ’

y

x

ρρ’

to observation
point

source
point

ρ−ρ’− −

integration
boundary L

Figure 14.2: Geometry associated with the near-to-far-field transformation in 2D.

Combining the contributions from both A and F, the electric and magnetic fields are given by

E(ρ) = −jω
[

A +
1

k2
∇(∇ · A)

]

− 1

ǫ
∇× F, (14.52)

H(ρ) = −jω
[

F +
1

k2
∇(∇ · F)

]

+
1

µ
∇× A. (14.53)

By plugging (14.44) and (14.48) into (14.52) and (14.53) and performing the various operations

in cylindrical coordinates and discarding any terms that fall off faster than 1/
√
ρ, one can obtain

expressions for the electric and magnetic fields in the far field. (Note that the ∇ operator acts on

the unprimed coordinates and, as mentioned above, N2D and L2D are not considered functions of

the unprimed coordinates.)

14.4 Electric Field in the Far-Field

Following the steps outlined in the previous section, the scattered electric field E
s at the far-field

point ρ can be obtained from the scattered “near” fields using

E
s(ρ) =

√

j

8πk

e−jkρ√
ρ

{âφ (ωµ0N2D · âφ + kL2D · âz) − âz (ωµ0N2D · âz − kL2D · âφ)} ,
(14.54)

where, as stated previously,

N2D =

∮

L

J(ρ′)ejkρ
′ cosψdℓ′, (14.55)

L2D =

∮

L

M(ρ′)ejkρ
′ cosψdℓ′, (14.56)

358 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

L is the closed path of integration, ψ, given by φ − φ′, is the angle between the source point and

observation point, M = −n̂
′ × E, J = n̂

′ × H, and n̂
′ is a unit vector normal to the integra-

tion contour on the same side of the contour as the observation point (i.e., the outward normal).

Unprimed coordinates correspond to the observation point while primed coordinates indicate the

“source” location (i.e., points along the contour).

Let us now restrict consideration to TMz polarization where the non-zero field are Hx, Hy, and

Ez. Since the outward normal is restricted to exist in the xy plane, n̂
′ × H only has a non-zero

component in the z direction while −n̂
′ ×E only has non-zero components in the xy plane. Thus,

for this polarization only the z component of the electric field is non-zero—the φ component of

(14.54) is zero. The electric field can be written

Es
z(ρ) = −

√

j

8πk

e−jkρ√
ρ

∮

L

(ωµ0J(ρ′) · âz − kM(ρ′) · âφ) ejkρ
′ cosψdℓ′. (14.57)

Usually the scattering width is of more interest than the field itself. For TMz polarization the

two-dimensional scattering width is defined to be

σ2D(φ) = lim
|ρ−ρ′|→∞

2πρ
|Es

z(ρ)|2
|Ei

z|2
(14.58)

Noting that ωµ0 = kη0 and plugging (14.57) into (14.58) and normalizing by the wavelength yields

σ2D(φ)

λ
=

1

8π|Ei
z|2

∣
∣
∣
∣
∣
∣

∮

L

{η0J(ρ′) · âz − M(ρ′) · âφ} ejkr
′ cos(φ−φ′)kdℓ′

∣
∣
∣
∣
∣
∣

2

. (14.59)

The term r′ cos(φ−φ′) which appears in the exponent can be written as âρ ·ρ = âρ ·(x′âx+y′ây) =
x′ cosφ + y′ sinφ. This last form is especially useful since φ is fixed by the observation direction

and therefore the sine and cosine functions can be determined outside of any loop (rather than over

and over again as we move along the integration contour).

For TMz polarization the unit vector normal to the integration path is restricted to lie in the xy
plane, i.e., n̂′ = n′

xâx + n′
yây where (n′2

x + n′2
y)

1/2 = 1. Thus, the electric current J is given by

J = n̂
′ × H =

∣
∣
∣
∣
∣
∣

âx ây âz

n′
x n′

y 0
Hx Hy 0

∣
∣
∣
∣
∣
∣

= âz(n
′
xHy − n′

yHx). (14.60)

The dot product of âz and J yields

J · âz = n′
xHy − n′

yHx. (14.61)

The magnetic current is given by

M = −n̂
′ × E =

∣
∣
∣
∣
∣
∣

âx ây âz

n′
x n′

y 0
0 0 Ez

∣
∣
∣
∣
∣
∣

= −(âxn
′
yEz − âyn

′
xEz) (14.62)

14.4. ELECTRIC FIELD IN THE FAR-FIELD 359

✲
x = m′∆x

✻
y = n′∆y

(0, 0) (Lx∆x, 0)

(Lx∆x, Ly∆y)(0, Ly∆y)

Side L4

❄
n̂
′ = −ây

Side L3
✲̂n
′ = âx

Side L2

✻̂n
′ = ây

Side L1
✛n̂

′ = −âx

Figure 14.3: Depiction of integration boundary for near-to-far-field transformation in the FDTD

grid.

The dot product of âφ and M yields

M · âφ = −âx · âφn′
yEz + ây · âφn′

xEz = (n′
y sinφ+ n′

x cosφ)Ez (14.63)

Incorporating (14.61) and (14.63) into (14.59) yields a general expression for the scattering

width:

σ2D(φ)

λ
=

1

8π|Ei
z|2

∣
∣
∣
∣
∣
∣

∮

L

{
η0(n

′
xHy − n′

yHx) − (n′
y sinφ+ n′

x cosφ)Ez
}
ejkr

′ cos(φ−φ′)kdℓ′

∣
∣
∣
∣
∣
∣

2

.

(14.64)

We now want to specialize this equation to a rectangular box which is typical of the integration

boundary which would be employed in an FDTD simulation.

Assume the integration boundary corresponds to the dashed box shown in Fig. 14.3. The width

of this rectangle is Lx∆x and the height is Ly∆y. In an FDTD grid there are Lx + 1 samples of

the fields along the top and bottom (i.e., spanning the width) and Ly + 1 total samples along the

left and right (i.e., spanning the height). The integration over the closed path L consists of the

integration over the four sides of this box, i.e., L = L1 + L2 + L3 + L4. Using this geometry, the

quantities needed to perform each integral are presented in the following two tables.

n̂
′

J · âz M · âφ
Side L1 n′

x = −1 n′
y = 0 −Hy − cosφEz

Side L2 n′
x = 0 n′

y = 1 −Hx sinφEz

Side L3 n′
x = 1 n′

y = 0 Hy cosφEz

Side L4 n′
x = 0 n′

y = −1 Hx − sinφEz

360 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

φ′ ρ′ âρ · ρ′

Side L1 π/2 n′∆y n′∆y sinφ

Side L2 tan−1(Ly/m
′)

√

(m′∆x)2 + (Ly∆y)2 m′∆x cosφ+ Ly∆y sinφ

Side L3 tan−1(n′/Lx)
√

(Lx∆x)2 + (n′∆y)2 Lx∆x cosφ+ n′∆y sinφ

Side L4 0 m′∆x cosφ m′∆y

Note that in the second table the value n′ represents the vertical displacement along Side L1 or

L3. It varies between 0 and Ly and should not be confused with the outward normal n̂
′ and its

components n′
x and n′

y.

Assume that the spatial step sizes are equal so that ∆x = ∆y = δ. Further assume that the

problem has be discretized using Nλ points per wavelength so that the wavenumber can be written

k = 2π/λ = 2π/(Nλδ). Combining all together, the scattering width is given by

σ2D(φ)

λ
=

1

8π|Ei
z|2

∣
∣
∣
∣
∣
∣

Lx∫

m′=0

{

[η0Hx(m
′, 0) + sinφEz(m

′, 0)] e
j 2π

Nλ
m′ cosφ

− [η0Hx(m
′, Ly) + sinφEz(m

′, Ly)] e
j 2π

Nλ
(m′ cosφ+Ly sinφ)

} 2π

Nλ

dm′

+

Ly∫

n′=0

{

− [η0Hy(0, n
′) − cosφEz(0, n

′)] e
j 2π

Nλ
n′ sinφ

+ [η0Hy(Lx, n
′) − cosφEz(Lx, n

′)] e
j 2π

Nλ
(Lx cosφ+n′ sinφ)

} 2π

Nλ

dn′
∣
∣
∣
∣

2

(14.65)

Again we note that the integration variable for the second integral is n′ which corresponds to

displacement along the vertical sides. The fields in this expression are phasor (frequency-domain)

quantities and hence are complex. Although this equation may look rather messy, as described

in the next two sections, the phasors can be obtained rather simply with a running DFT and the

integration can be calculated with a sum.

Because of the staggered nature of the FDTD grid, the electric and magnetic fields will not

be collocated on the integration boundary—they will be offset in both space and time. A spatial

average of either the electric or magnetic field will have to be performed to obtain the fields at

the proper location. In the past, a simple arithmetic average was typically used to account for the

spatial offsets. However, as will discussed, one can do better by using a harmonic average in space.

For the temporal offset, a simple phase correction can be used to collocate the fields in time.

14.5 Simpson’s Composite Integration

Assume we wish to integrate the function f(x) over the interval 0 ≤ x ≤ L where L is an even

integer. The integral can be obtained using Simpson’s composite integration as follows

L∫

0

f(x)dx ≈ 1

3



f(0) + 2

L/2−1
∑

m=1

f(2m) + 4

L/2
∑

m=1

f(2m− 1) + f(L)



 (14.66)

14.6. COLLOCATING THE ELECTRIC AND MAGNETIC FIELDS: THE GEOMETRIC MEAN361

integration boundary

in
te

g
ra

ti
o

n
 b

o
u

n
d

ar
y

Ez(m,n)
q

Ez(m,n)
q

Hy
q+1/2

(m−1,n) Hy
q+1/2

(m,n)

Hx
q+1/2

(m,n−1)

Hx
q+1/2

(m,n)
xz

y

Figure 14.4: Depiction of a TMz grid showing the integration boundary. The boundary is assumed

to be aligned with electric-field nodes. The expanded views show the offset of the magnetic-field

nodes from the boundary.

Note that this approximation requires a total of L + 1 samples of the function (so we need an

odd number of samples). Using Simpson’s approximation yields quite a bit of additional accuracy

over what would be obtained using a straight Riemann sum and it costs essentially nothing (it just

requires slightly more bookkeeping).

14.6 Collocating the Electric and Magnetic Fields: The Geo-

metric Mean

Figure 14.4 depicts an integration boundary in a TMz grid. The boundary is assumed to be aligned

with the electric-field nodes, i.e., theEz nodes. The expanded views show a portion of the boundary

along the right side and the bottom. The field notation employs superscripts to indicate time

steps while spatial indices are given as arguments within parentheses. Half-step spatial offsets

are implicitly understood. Thus, the nodes in space-time and the corresponding notation are

H(q−1/2)∆t

x (m∆x, [n+ 1/2]∆y) = Hq−1/2
x (m,n), (14.67)

H(q−1/2)∆t

y ([m+ 1/2]∆x, n∆y) = Hq−1/2
y (m,n), (14.68)

Eq∆t

z (m∆x, n∆y) = Eq
z(m,n), (14.69)

where ∆x and ∆y are the spatial steps in the x and y directions, respectively, and ∆t is the temporal

step. The index q indicates the temporal step and we assume it varies between 1 and NT which is

the total number of time-steps.

Near-to-far-field (NTFF) transforms require that the fields be defined over a single surface

and use the same phase reference. For harmonic fields, the temporal offset can be easily ac-

counted for with a phase factor. Assume the magnetic fields have been recorded at times of

362 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

q = 1/2, 3/2, 5/2, . . . while the electric field has been recorded at times of q = 1, 2, 3, . . . For

the harmonic transforms of interest here, the time-domain near-fields are Fourier transformed to

the frequency domain. For example, the harmonic electric field on the boundary is given by

Êk
z (m,n) = F [Eq

z(m,n)] , (14.70)

=
1

NT

∑

q=〈NT 〉
Eq
z(m,n)e

−jk 2π
NT

q
. (14.71)

where F is the discrete Fourier transform. For situations where the entire spectrum is not of inter-

est, typically a running discrete Fourier transform will be used only at the particular frequencies

of interest. A frequency is specified by the index k which varies between zero (dc) and NT − 1.

Regardless of the implementation used, the resulting spectral terms Êk
z will be the same.

The time-domain series Eq
z(m,n) can be obtained from Êk

z (m,n) via

Eq
z(m,n) =

∑

k=〈NT 〉
Êk
z (m,n)e

jk 2π
NT

q
. (14.72)

Because of the temporal offset between the electric and magnetic fields, the desired field is actually

E
q−1/2
z (m,n), thus, plugging q − 1/2 into (14.72) yields

Eq−1/2
z (m,n) =

∑

k=〈NT 〉

(

Êk
z (m,n)e

−jk π
NT

)

e
jk 2π

NT
q
. (14.73)

In practice one calculates Êk
z (m,n) and the spectral representation of the magnetic fields in the

same way, i.e., as in (14.71). Then one multiplies Êk
z (m,n) by exp(−jkπ/NT) to account for the

temporal offset.

The spatial offset is slightly more problematic than the temporal offset. As shown in Fig. 14.4,

the integration boundary can be aligned with only one of the fields. The magnetic field tangential

to the integration boundary is found from the nodes that are a spatial half-step to either side of the

boundary.

To obtain the magnetic field on the boundary, the traditional approach has been to use a spatial

average of the nodes to either side of the boundary. For example, along the right side of the

boundary, the harmonic magnetic field would be given by

Ĥk
y (m,n) =

1

2
F
[
Hq−1/2
y (m− 1, n) +Hq−1/2

y (m,n)
]
. (14.74)

Because of this spatial average, Ĥy(m,n) and Êz(m,n) are assumed to be collocated and, with the

temporal phase correction, can be used to determine the equivalent currents over the integration

boundary (which are then used in the NTFF transform itself).

Unfortunately the arithmetic mean used in (14.74) introduces errors. To illustrate this, assume

a harmonic plane wave is propagating in the grid. The temporal frequency ω is 2πk′/NT where k′

is an integer constant and, as before, NT is the total number of time-steps in a simulation. The y
component of the magnetic field is given by

Hq−1/2
y (m,n) = cos

(

ω

[

q − 1

2

]

∆t − ξ

)

, (14.75)

=
e
j
“

k′ 2π
NT

[q− 1
2
]∆t+ξ

”

+ e
−j

“

k′ 2π
NT

[q− 1
2
]∆t+ξ

”

2
, (14.76)

14.6. COLLOCATING THE ELECTRIC AND MAGNETIC FIELDS: THE GEOMETRIC MEAN363

where ξ = βx(m + 1/2)∆x + βyn∆y, and βx and βy are the x and y components of the wave

vector, respectively. Taking the discrete Fourier transform of (14.76), i.e.,

Ĥk
y (m,n) =

1

NT

∑

q=〈NT 〉
Hq−1/2
y (m,n)e

−jk 2π
NT

(q− 1
2), (14.77)

one notes that the sum yields zero when k is anything other than k′ or NT − k′. The values of k
that yield non-zero correspond to the positive and negative frequency of the continuous world and,

like the continuous world, the corresponding spectral values are complex conjugates. Without loss

of generality, we will continue the discussion in terms of the spectral component corresponding to

the positive frequency, i.e.,

Ĥk′

y (m,n) =
1

2
exp(−j[βx(m+ 1/2)∆x + βyn∆y]). (14.78)

(Note that since the time-domain functions are real-valued, in practice one does not need to calcu-

late the transform at any of the negative frequencies. They are merely the complex conjugates of

the values at the positive frequencies.)

Because the Fourier transform is a linear operator, using (14.76) in (14.74) yields

Ĥk′

y (m,n)= e−jβyn∆y
e−jβx(m− 1

2)∆x + e−jβx(m+ 1
2)∆x

4
, (14.79)

=
1

2
e−j(βxm∆x+βyn∆y) cos

(
βx∆x

2

)

. (14.80)

The exact expression for the magnetic field on the integration boundary is exp(−j[βxm∆x +
βyn∆y])/2. Thus, the cosine term represents an error—one which vanishes only in the limit as

the spatial-step size goes to zero.

Instead of taking the Fourier transform of the average of the time-domain fields, let us take the

Fourier transform of the fields to either side of the boundary. We define the transforms as

Ĥ+
y (m,n) = F

[
Hq−1/2
y (m,n)

]
, (14.81)

Ĥ−
y (m,n) = F

[
Hq−1/2
y (m− 1, n)

]
. (14.82)

Still assuming a single harmonic plane wave, for the “positive frequency” corresponding to k = k′,
Ĥ+
y (m,n) and Ĥ−

y (m,n) are given by

Ĥ+
y (m,n) =

1

2
e−j(βx(m+1/2)∆x+βyn∆y), (14.83)

Ĥ−
y (m,n) =

1

2
e−j(βx(m−1/2)∆x+βyn∆y). (14.84)

Were one to calculate the arithmetic mean of Ĥ+
y (m,n) and Ĥ−

y (m,n), the result would be the

same as given in (14.80). However, consider the geometric mean (where the geometric mean of a
and b is

√
ab) of Ĥ+

y (m,n) and Ĥ−
y (m,n):

Ĥk′

y (m,n) =
(

Ĥ+
y (m,n)Ĥ−

y (m,n)
)1/2

, (14.85)

=
1

2
e−j(βxm∆x+βyn∆y). (14.86)

364 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

This is precisely the correct answer. There is no error introduced by the geometric mean. A note

of caution: when calculating the square root of these complex quantities, one must ensure that

the proper branch cut is selected. Thus, when Ĥ+
y (m,n) and Ĥ−

y (m,n) have phases near ±π the

geometric mean should also have a phase near ±π rather than near zero.

In practice, at any given frequency there will be an angular spectrum of wave vectors present

and hence any averaging, whether geometric or arithmetic, will introduce some errors. However,

for a single wave vector the geometric mean is exact and it has been our experience that the ge-

ometric mean provides superior results for nearly all discretizations and scattering angles. The

following section demonstration the use of the geometric mean in several scenarios.

14.7 NTFF Transformations Using the Gemoetric Mean

14.7.1 Double-Slit Radiation

To demonstrate the difference between the arithmetic and geometric mean, we begin by consider-

ing the radiation from a double-slit aperture in a perfect electrical-conductor (PEC) screen which is

illuminated by a normally incident pulsed plane wave. TMz polarization is assumed. As shown in

Fig. 14.5(a), in this case the boundary over which the fields are measured is three-sided and exists

on only one side of the screen.

Given the fields over the three-sided boundary, one then assumes the fields “interior” to this

boundary (i.e., the region which includes the slits) are zero while the fields exterior to the boundary

are unchanged. To account for the discontinuity in the fields across the integration boundary,

surface currents must be present. Since the fields are zero within the boundary, one can replace the

actual interior with anything without affecting the exterior fields. One thus assumes that the slits are

not present—that the PEC plane is unbroken. The surface currents over the three-sided boundary

are now radiating in the presence of an infinite plane. The far-field radiation can be calculated with

a three-sided integral where one uses the Green’s function for a source above an infinite plane.

This, equivalently, from image theory, is simply the radiation from the original (measured) current

and the image of the current. Both the measured current and the image current are radiating in free

space. In this way the three-sided boundary can be replaced with a closed four-sided boundary as

shown in Fig. 14.5(b). The corresponding currents over this surface, i.e., the measured currents

over half the boundary and the image currents over the other half, are transformed to the far field.

The incident field is introduced over a total-field/scattered-field (TFSF) boundary which only

exists to the left side of the screen. The grid is terminated with an eight-cell perfectly matched

layer (PML).

The right side of the integration surface is D cells away from the PEC screen. The length of

the right side of the integration boundary is held fixed at 75 cells. In principle, the location of

the integration boundary should make no difference to the far-fields. However, when using the

arithmetic mean, the far-fields are sensitive to the boundary location, i.e., sensitive to the value of

D. Note that were a single component of the field integrated over the aperture, as advocated by

[1], averaging is not an issue. However, that approach is restricted to screens which are planar

and there are no inhomogeneities present other than the screen. The approach we advocate can

accommodate any screen or scatterer geometry provided it can be contained within the integration

boundary. Nevertheless, we will employ the aperture-based approach as a reference solution.

14.7. NTFF TRANSFORMATIONS USING THE GEMOETRIC MEAN 365

xz

y

T
F

S
F

 b
o

u
n

d
ar

y

in
teg

ratio
n

 b
o

u
n

d
ary

D∆x

φ

P
E

C
P

E
C

P
E

C

(a)

xz

y

in
teg

ratio
n

 b
o

u
n

d
ary

Ez

Hy

Hx

image
Ez=−Ez

Hy
image=Hy

Hx
image=−Hx

image
fields

measured
fields

D∆xD∆x

(b)

Figure 14.5: (a) Geometry of the double-slit experiment. A pulsed plane wave is introduced via a

TFSF boundary on the left side of the screen. The field are recorded over the three-sided integration

boundary to the left of the screen. (b) Image theory is used to create a four-sided closed surface

over which the currents are transformed to the far-field. The dashed line corresponds to the location

where the PEC plane had been.

366 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

The simulation uses “slits” which are 15 cells wide. The PEC between the slits is 30 cells

wide. The excitation is a Ricker wavelet discretized such that there are 30 cells per wavelength at

the most energetic frequency. The simulation is run at the 2D Courant limit (1/
√

2) for 1024 time

steps.

Figure 14.6(a) shows the far-field radiation pattern which is obtained using the arithmetic mean.

The pattern is symmetric about zero degrees which corresponds to the direction normal to the

screen. The radiation pattern is calculated using

1

λ
lim
ρ→∞

[

2πρ
|Êz(φ)|2

|Êi
z|2

]

(14.87)

where φ is the scattering angle, ρ is the distance from the slits, Êz(φ) is the field radiated in the φ
direction, and Êi

z is the complex amplitude of the incident plane wave at the frequency of interest.

Results are shown for a frequency corresponding to 10.0566 cells per wavelength. Figure 14.6(a)

shows the pattern when D is either 5, 6, or 7 cells.

Note that there are significant differences in the central peak depending on the displacement D
between the right-side integration boundary and the PEC screen. Figure 14.6(b) shows an expanded

view of the pattern in the neighborhood of the peak. As can be seen, displacing the integration

boundary by two cells causes a change in the peak of approximately 9 percent. The results as a

function of displacement are nearly periodic, e.g., displacements of 5 and 15 cells (not shown)

yield nearly the same results as do displacements of 6 and 16 cells, and so on. (The period of

10 cells is a consequence of examining a frequency corresponding to approximately 10 cells per

wavelength.) Also shown as plus signs in Fig. 14.6(b) are the results obtained when the transform

uses the electric field (i.e., the equivalent magnetic current) over the aperture. No averaging is

involved in this case. The aperture-based results are seen to agree well with the arithmetic-mean

results when the displacement D is 5 cells. Unfortunately one does not know a priori that this

agreement will exist nor does this displacement provide similar agreement for other frequencies.

On the other hand, when using the geometric mean, there is almost no variation in the radiation

pattern as the integration boundary is displaced. Figure 14.6(c) shows the same results as presented

in Fig. 14.6(b) except now the geometric mean of the harmonic fields is used to obtain the magnetic

fields on the integration boundary. The variation between these peaks is less than 0.022, i.e., a

reduction in variation by a factor of approximately 270. This demonstrates that, unlike with the

arithmetic mean, the location of the integration boundary is effectively irrelevant when using the

GM-NTFF transform.

Naturally, at finer discretizations, the difference between the geometric mean and the arithmetic

mean are less dramatic, but the geometric mean consistently performs better than the arithmetic

mean.

(Simpson’s rule was used for all integrations except for the integration of the aperture fields

where a Riemann sum was used.)

14.7.2 Scattering from a Circular Cylinder

Consider scattering from a PEC circular cylinder under TMz polarization as shown in Fig. 14.7.

The Dey-Mittra scheme is employed to help reduce the effects of staircasing [2]. The cylinder has

eight cells along its radius. A pulsed plane wave which travels in the x direction is introduced via

14.7. NTFF TRANSFORMATIONS USING THE GEMOETRIC MEAN 367

0 15 30 45 60 75 90

Scattering Angle φ [degrees]

0

10

20

30

40

50

60

70

R
ad

ia
ti

o
n
 P

at
te

rn

D = 5 cells
D = 6 cells
D = 7 cells

expanded view

(a)

-2 -1 0 1 2

Scattering Angle φ [degrees]

45

50

55

60

65

R
ad

ia
ti

o
n
 P

at
te

rn

D = 5 cells
D = 6 cells
D = 7 cells
Aperture-Based

(b)

-2 -1 0 1 2

Scattering Angle φ [degrees]

45

50

55

60

65

R
ad

ia
ti

o
n
 P

at
te

rn

D = 5 cells
D = 6 cells
D = 7 cells
Aperture-Based

(c)

Figure 14.6: (a) Radiation from the double slit for angles between −5 and 90 degrees (the pattern

is symmetric about zero degrees). Results are shown for boundary displacements D of 5, 6, and

7 cells. The arithmetic mean is used. (b) Expanded view of the central peak using the arithmetic

mean. Also shown are the fields obtained when a single field component is recorded over the

aperture and transformed to the far field. (c) Same as (b) except the geometric mean is used. The

variation of the fields caused by the displacement of the boundary is now essentially negligible.

368 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

x

y

z

 incident

plane wave

circular scatterer

radius = 8

TFSF
boundary

integration
boundary

Figure 14.7: Geometry of the circular PEC cylinder.

a TFSF boundary. The simulation is run 512 time steps. Because the Dey-Mittra scheme is used,

the Courant number was reduced to approximately 35 percent of the 2D limit in order to ensure

stability [3].

Figure 14.8 shows the wavelength-normalized scattering width of the cylinder as a function of

scattering angle obtained using the series solution for a circular cylinder [4], the arithmetic-mean

NTFF transform, and the GM-NTFF transform. (The normalized scattering width is the same as

the radiation pattern given in (14.87) where ρ is now taken to be the distance from the center of the

cylinder.) The discretization is such that there are 9.92526 cells per wavelength at the frequency

being considered here. One should keep in mind that the discretization of the cylinder introduces

some errors and hence the “exact” solution for a circular cylinder is not truly exact for the scatterer

present in the simulation. Therefore, the reference solution does not provide a perfect way with

which to judge the solutions. Nevertheless, one hopes that the FDTD scatterer, when employing

the Dey-Mittra scheme, is a close approximation to a true circular scatterer and thus the exact

solution from the continuous world provides a reasonable basis for comparison.

The difference between the solutions in Fig. 14.8 are seen to be relatively small. Figure 14.9

shows a plot of the magnitude of the difference between the exact solution and the FDTD-based

solutions. Although there are angles where the arithmetic mean performs better than the geometric

mean, in general the geometric mean is better. The integrated error for angles between 0 and π is

0.6936 for the arithmetic mean and 0.3221, i.e., the error is reduced by more than a factor of two

by using the geometric mean.

14.7.3 Scattering from a Strongly Forward-Scattering Sphere

Finally, consider scattering from a dielectric sphere, depicted in Fig. 14.10, which has a relative

permittivity ǫr of 1.21. Such a sphere was considered in [5] and can also be found in Sec. 8.7 of

14.7. NTFF TRANSFORMATIONS USING THE GEMOETRIC MEAN 369

0 15 30 45 60 75 90 105 120 135 150 165 180

Scattering Angle φ [degrees]

1

10
S

ca
tt

er
in

g
 W

id
th

 σ
2

D
/λ

Exact
Arithmetic Mean
Geometric Mean

Figure 14.8: Scattering width of a circular cylinder. The radius is eight cells and the frequency

corresponds to 9.92526 cells per wavelength.

0 15 30 45 60 75 90 105 120 135 150 165 180

Scattering Angle φ [degrees]

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

M
ag

n
it

u
d

e

Arithmetic Mean
Geometric Mean

Figure 14.9: Magnitude of the difference between the FDTD-based solutions and the nominally

exact solution.

370 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

y

x

z

Hi=Hy ay
^

Ei=Ez az
^

ki=kx ax
^

φ

i

i

i

Figure 14.10: Geometry of the dielectric sphere. The relative permittivity ǫr is 1.21. This incident

field is polarized in the z direction and travels in the x direction. The equatorial angle φ is in the

xy-plane with φ = 0 corresponding to the +x direction.

[6]. In this case the transformation traditionally entails finding the tangential fields over the six

sides of a cuboid which bounds the sphere. The sphere is discretized such that there are 60 cells

along the radius. A staircase representation is used (where a node is simply either inside or outside

the sphere). The simulation is run at 95 percent of the 3D Courant limit (0.95/
√

3) for 2048 time

steps. The grid is terminated with an eight-cell perfectly-matched layer.

Figure 14.11 shows the normalized scattering cross section as a function of the equatorial angle

φ. The frequency corresponds to 20.06 cells per wavelength. The exact solution was obtained via

the Mie series (see, e.g., [7]). As was the case in 2D, both the arithmetic and geometric mean

perform reasonably well, but the geometric mean is generally more accurate than the arithmetic

mean. In Fig. 14.11 visible errors are only present near the back-scattering direction of φ = 180
degrees. Note that there is a large difference, approximately five orders of magnitude, between the

scattering in the forward and backward directions.

In order to improve the results in the back-scattering direction Li et al. [5] advocated calculating

the transformation using the five faces other than the forward-scattering face. Figure 14.12 shows

the normalized backscattering cross section versus wavelength (expressed in terms of number of

cells per wavelength) calculated using the arithmetic mean. The normalized cross section is given

by

1

λ2
lim
r→∞

[

4πr2 |Êz(θ, φ)|2

|Êi
z|2

]

(14.88)

where r is the distance from the center of the sphere, θ is the azimuthal angle and φ is the equatorial

angle. For backscatter, θ is π/2 and φ is π.

The NTFF transform results shown in Fig. 14.12 were calculated using either the fields over

all six faces of the integration boundary or the fields over the five faces advocated by Li et al. The

results in this figure correspond to those shown in Fig. 1(b) of [5] for the sphere with a radius

of 3 µm. (However, for the sake of generality, here the results are plotted in terms of unitless

quantities.) Note that the six-sided arithmetic-mean results presented here are better than those

14.7. NTFF TRANSFORMATIONS USING THE GEMOETRIC MEAN 371

0 15 30 45 60 75 90 105 120 135 150 165 180

Equatorial angle φ [degrees]

0.0001

0.001

0.01

0.1

1

10

100

1000

N
o
rm

al
iz

ed
 c

ro
ss

 s
ec

ti
o
n
 σ

/λ
2

Exact
Arithmetic mean
Geometric mean

Figure 14.11: Scattering cross section of a dielectric sphere versus the equatorial angle φ. The

sphere is discretized with 60 cells along the radius and the frequency used here corresponds to

20.06 cells per wavelength.

372 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

20 25 30 35 40

Cells per wavelength

0.01

0.1

1

N
o
rm

al
iz

ed
 b

ac
k
sc

at
te

ri
n
g
 c

ro
ss

 s
ec

ti
o
n
 σ

b
/λ

2
Exact
Arithmetic, 6-sided transform

Arithmetic, 5-sided transform

Figure 14.12: Backscatter from a sphere with ǫr = 1.21 versus the wavelength (expressed in terms

of number of cells). The FDTD transformations are calculated using the arithmetic mean and either

a five- or six-sided transformation boundary.

presented in [5]. We were able to duplicate the results presented in [5] by not applying a temporal

phase-correction factor (or, similarly, by applying a correction factor which is twice the factor

given here). Nevertheless, the recommendation of Li et al. is true that the five-sided computation

is better than the six-sided one for calculating the backscattering when using the arithmetic mean.

However, for directions other than backscatter or for other sizes, one does not know a priori if a

face should or should not be discarded.

Figure 14.13 is the same as Fig. 14.12 except the transformation is done using the GM-NTFF

transform. In this case discarding data from the forward-scattering face actually slightly degrades

the quality of the transform. Thus, when using the geometric mean there is no need to discard data.

One can use it confidently for all scattering angles and all sizes.

To summarize, unlike the traditional arithmetic mean, for a single harmonic plane wave the

geometric mean accounts for the spatial offset of the fields in a way that is exact. In practice,

where a spectrum of wave vectors are present, the geometric mean typically performs significantly

better than the arithmetic mean. The geometric mean is much less sensitive to the integration-

boundary location than is the arithmetic mean. For strongly forward-scattering objects, the use

of the geometric mean obviates the need to discard the fields over the forward face (as has been

advocated previously) when calculating the backscatter. The geometric mean does entail a slight

increase in computational cost because for each node along the integration boundary a DFT must

be calculated for three fields instead of two. However, this cost is typically minor compared to the

14.7. NTFF TRANSFORMATIONS USING THE GEMOETRIC MEAN 373

20 25 30 35 40

Cells per wavelength

0.001

0.01

0.1

1

N
o
rm

al
iz

ed
 b

ac
k
sc

at
te

ri
n
g
 c

ro
ss

 s
ec

ti
o
n
 σ

b
/λ

2

Exact
Geometric, 6-sided

Geometric, 5-sided transform

Figure 14.13: Backscatter from a sphere with ǫr = 1.21 versus the wavelength (expressed in terms

of number of cells). The transformations use the geometric mean and the fields over either five or

six faces of the integration boundary.

374 CHAPTER 14. NEAR-TO-FAR-FIELD TRANSFORMATION

overall simulation cost.

Appendix A

Construction of Fourth-Order Central

Differences

Assuming a uniform spacing of δ between sample points, we seek an approximation of the deriva-

tive of a function at x0 which falls midway between two sample point. Taking the Taylor series

expansion of the function at the four sample points nearest to x0 yields

f

(

x0 +
3δ

2

)

= f(x0) +
3δ

2
f ′(x0) +

1

2!

(
3δ

2

)2

f ′′(x0) +
1

3!

(
3δ

2

)3

f ′′′(x0) + . . . , (A.1)

f

(

x0 +
δ

2

)

= f(x0) +
δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) +
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (A.2)

f

(

x0 −
δ

2

)

= f(x0) −
δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′(x0) −
1

3!

(
δ

2

)3

f ′′′(x0) + . . . , (A.3)

f

(

x0 −
3δ

2

)

= f(x0) −
3δ

2
f ′(x0) +

1

2!

(
3δ

2

)2

f ′′(x0) −
1

3!

(
3δ

2

)3

f ′′′(x0) + . . . (A.4)

Subtracting (A.3) from (A.2) and (A.4) from (A.1) yields

f

(

x0 +
δ

2

)

− f

(

x0 −
δ

2

)

= δf ′(x0) +
2

3!

(
δ

2

)3

f ′′′(x0) + . . . (A.5)

f

(

x0 +
3δ

2

)

− f

(

x0 −
3δ

2

)

= 3δf ′(x0) +
2

3!

(
3δ

2

)3

f ′′′(x0) + . . . (A.6)

The goal now is to eliminate the term containing f ′′′(x0). This can be accomplished by multiplying

(A.5) by 27 and then subtracting (A.6). The result is

27f

(

x0 +
δ

2

)

− 27f

(

x0 −
δ

2

)

− f

(

x0 +
3δ

2

)

+ f

(

x0 −
3δ

2

)

= 24δf ′(x0) +O(δ5). (A.7)

Solving for f ′(x0) yields

df(x)

dx

∣
∣
∣
∣
x=x0

=
9

8

f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)

δ
− 1

24

f
(
x0 + 3δ

2

)
− f

(
x0 − 3δ

2

)

δ
+O(δ4). (A.8)

A.375

A.376 APPENDIX A. CONSTRUCTION OF FOURTH-ORDER CENTRAL DIFFERENCES

The first term on the right-hand side is the contribution from the sample points nearest x0 and the

second term is the contribution from the next nearest points. The highest-order term not shown is

fourth-order in terms of δ.

Appendix B

Generating a Waterfall Plot and Animation

Assume we are interested in plotting multiple snapshots of one-dimensional data. A waterfall plot

displays all the snapshots in a single image where each snapshot is offset slightly from the next.

On the other hand, animations display one image at a time, but cycle through the images quickly

enough so that one can clearly visualize the temporal behavior of the field. Animations are a

wonderful way to ascertain what is happening in an FDTD simulation but, since there is no way to

put an animation on a piece of paper, waterfall plots also have a great deal of utility.

We begin by discussing waterfall plots. First, the data from the individual frames must be

loaded into Matlab. The m-file for a function to accomplish this is shown in Program B.1. This

function, readOneD(), reads each frame and stores the data into a matrix—each row of which

corresponds to one frame. readOneD() takes a single argument corresponding to the base name

of the frames. For example, issuing the command z = readOneD(’sim’); would create a

matrix z where the first row corresponded to the data in file sim.0, the second row to the data in

file sim.1, and so on.

Note that there is a waterfall() function built into Matlab. One could use that to display

the data by issuing the command waterfall(z). However, the built-in command is arguably

overkill. Its hidden-line removal and colorization slow the rendering and do not necessarily aide in

the visualization of the data.

The plot shown in Fig. 3.9 did not use Matlab’s waterfall() function. Instead, it was

generated using a function called simpleWaterfall() whose m-file is shown in Program

B.2. This command takes three arguments. The first is the matrix which would be created by

readOneD(), the second is the vertical offset between successive plots, and the third is a vertical

scale factor.

Given these two m-files, Fig. B.2 was generated using the following commands:

z = readOneD(’sim’);
simpleWaterfall(z, 1, 1.9) % vertical offset = 1, scale factor = 1.9
xlabel(’Space [spatial index]’)
ylabel(’Time [frame number]’)

Program B.1 readOneD.m Matlab code to read one-dimensional data from a series of frames.

B.377

B.378 APPENDIX B. GENERATING A WATERFALL PLOT AND ANIMATION

1 function z = readOneD(basename)
2 %readOneD(BASENAME) Read 1D data from a series of frames.

3 % [Z, dataLength, nFrames] = readOneD(BASENAME) Data

4 % is read from a series of data files all which have

5 % the common base name given by the string BASENAME,

6 % then a dot, then a frame index (generally starting

7 % with zero). Each frame corresponds to one row of Z.

8

9 % read the first frame and establish length of data

10 nFrames = 0;
11 filename = sprintf(’%s.%d’, basename, nFrames);
12 nFrames = nFrames + 1;
13 if exist(filename, ’file’)
14 z = dlmread(filename, ’\n’);
15 dataLength = length(z);
16 else
17 return;
18 end
19

20 % loop through other frames and break out of loop

21 % when next frame does not exist

22 while 1
23 filename = sprintf(’%s.%d’,basename,nFrames);
24 nFrames = nFrames + 1;
25 if exist(filename, ’file’)
26 zTmp = dlmread(filename, ’\n’);
27 if length(zTmp) ˜= dataLength % check length matches

28 error(’Frames have different sizes.’)
29 break;
30 end
31 z = [z zTmp]; % append new data to z

32 else
33 break;
34 end
35 end
36

37 % reshape z to appropriate dimensions

38 z = reshape(z, dataLength, nFrames - 1);
39 z = z’;
40

41 return;

Program B.2 simpleWaterfall.m Matlab function to generate a simple waterfall plot.

B.379

1 function simpleWaterfall(z, offset, scale)
2 %simpleWaterfall Waterfall plot from offset x-y plots.

3 % simpleWaterfall(Z, OFFSET, SCALE) Plots each row of z

4 % where successive plots are offset from each other by

5 % OFFSET and each plot is scaled vertically by SCALE.

6

7 hold off % release any previous plot

8 plot(scale * z(1, :)) % plot the first row

9 hold on % hold the plot

10

11 for i = 2:size(z, 1) % plot the remaining rows

12 plot(scale * z(i, :) + offset * (i - 1))
13 end
14

15 hold off % release the plot

16

17 return

A function to generate an animation of one-dimensional data sets is shown in Program B.3.

There are multiple ways to accomplish this goal and thus one should keep in mind that Program

B.3 is not necessarily the best approach for a particular situation. The function in Program B.3

is called oneDmovie() and it takes three arguments: the base name of the snapshots, and the

minimum and maximum values of the vertical axis. The function uses a loop, starting in line

25, to read each of the snapshots. Each snapshot is plotted and the plot recorded as a frame of a

Matlab “movie” (see the Matlab command movie() for further details). The oneDmovie()
function returns an array of movie frames. As an example, assume the base name is “sim” and

the user wants the plots to range from −1.0 to 1.0. The following commands would display the

animation 10 times (the second argument to the movie() command controls how often the movie

is repeated):

reel = oneDmovie(’sim’,-1,1);
movie(reel,10)

An alternative implementation might read all the data first, as was done with the waterfall plot, and

then determine the “global” minimum and maximum values from the data itself. This would free

the user from specify those value as oneDmovie() currently requires. Such an implementation

is left to the interested reader.

Program B.3 oneDmovie.m Matlab function which can be used to generate an animation for

multiple one-dimensional data sets. For further information on Matlab movies, see the Matlab

command movie.

1 function reel = oneDmovie(basename, y_min, y_max)
2 % oneDmovie Create a movie from data file with a common base

3 % name which contain 1D data.

B.380 APPENDIX B. GENERATING A WATERFALL PLOT AND ANIMATION

4 %

5 % basename = common base name of all files

6 % y_min = minimum value used for all frames

7 % y_max = maximum value used for all frames

8 %

9 % reel = movie which can be played with a command such as:

10 % movie(reel, 10)

11 % This would play the movie 10 times. To control the frame

12 % rate, add a third argument specifying the desired rate.

13

14 % open the first frame (i.e., first data file).

15 frame = 1;
16 filename = sprintf(’%s.%d’, basename, frame);
17 fid = fopen(filename, ’rt’);
18

19 % to work around rendering bug under Mac OS X see:

20 % <www.mathworks.com/support/solutions/

21 % data/1-VW0GM.html?solution=1-VW0GM>

22 figure; set(gcf, ’Renderer’, ’zbuffer’);
23

24 % provided fid is not -1, there is another file to process

25 while fid ˜= -1
26 data=fscanf(fid, ’%f’); % read the data

27 plot(data) % plot the data

28 axis([0 length(data) y_min y_max]) % scale axes appropriately

29 reel(frame) = getframe; % capture the frame for the movie

30

31 % construct the next file name and try to open it

32 frame = frame + 1;
33 filename = sprintf(’%s.%d’, basename, frame);
34 fid = fopen(filename, ’rb’);
35 end
36

37 return

Appendix C

Rendering and Animating Two-Dimensional

Data

The function shown below is Matlab code that can be used to generate a movie from a sequence

of binary (raw) files. The files (or frames) are assumed to be named such that they share a com-

mon base name then have a dot followed by a frame number. Here the frame number is assumed

to start at zero. The function can have one, two, or three arguments. This first argument is the

base name, the second is the value which is used to normalize all the data, and the third argument

specifies the number of decades of data to display. Here the absolute value of the data is plotted

in a color-mapped imaged. Logarithmic (base 10) scaling is used so that the value which is nor-

malized to unity will correspond to zero on the color scale and the smallest normalized value will

correspond, on the color scale, to the negative of the number of decades (e.g., if the number of

decades were three, the smallest value would correspond to −3). This smallest normalized value

actually corresponds to a normalized value of 10−d where d is the number of decades. Thus the

(normalized) values shown in the output varying from 10−d to 1. The default normalization and

number of decades are 1 and 3, respectively.

Program C.1 raw2movie.m Matlab function to generate a movie given a sequence of raw files.

1 function reel = raw2movie(basename, z_norm, decades)
2 % raw2movie Creates a movie from "raw" files with a common base

3 % name.

4 %

5 % The absolute value of the data is used together with

6 % logarithmic scaling. The user may specify one, two, or

7 % three arguments.

8 % raw2movie(basename, z_norm, decades) or

9 % raw2movie(basename, z_norm) or

10 % raw2movie(basename):

11 % basename = common base name for all files

12 % z_norm = value used to normalize all frames, typically this

13 % would be the maximum value for all the frames.

C.381

C.382 APPENDIX C. RENDERING AND ANIMATING TWO-DIMENSIONAL DATA

14 % Default value is 1.

15 % decades = decades to be used in the display. The normalized

16 % data is assumed to vary between 1.0 and 10ˆ(-decades)

17 % so that after taking the log (base 10), the values

18 % vary between 0 and -decades. Default value is 3.

19 %

20 % return value:

21 % reel = movie which can be played with a command such as:

22 % movie(reel, 10)

23 % pcolor() is used to generate the frames.

24 %

25 % raw file format:

26 % The raw files are assumed to consist of all floats (in

27 % binary format). The first two elements specify the horizontal

28 % and vertical dimensions. Then the data itself is given in

29 % English book-reading order, i.e., from the upper left corner

30 % of the image and then scanned left to right. The frame number

31 % is assumed to start at zero.

32

33 % set defaults if we have less than three arguments

34 if nargin < 3, decades = 3; end
35 if nargin < 2, z_norm = 1.0; end
36

37 % open the first frame

38 frame = 0;
39 filename = sprintf(’%s.%d’, basename, frame);
40 fid = fopen(filename, ’rb’);
41

42 if fid == -1
43 error([’raw2movie: initial frame not found: ’, filename])
44 end
45

46 % to work around rendering bug under Mac OS X implementation.

47 figure; set(gcf, ’Renderer’, ’zbuffer’);
48

49 % provided fid is not -1, there is another file to process

50 while fid ˜= -1
51 size_x = fread(fid, 1, ’single’);
52 size_y = fread(fid, 1, ’single’);
53

54 data = flipud(transpose(...
55 reshape(...
56 fread(fid, size_x * size_y, ’single’), size_x, size_y)...
57));
58

59 % plot the data

60 if decades ˜= 0

C.383

61 pcolor(log10(abs((data + realmin) / z_norm)))
62 shading flat
63 axis equal
64 axis([1 size_x 1 size_y])
65 caxis([-decades 0])
66 colorbar
67 else
68 pcolor(abs((data + realmin) / z_norm))
69 shading flat
70 axis equal
71 axis([1 size_x 1 size_y])
72 caxis([0 1])
73 colorbar
74 end
75

76 % capture the frame for the movie (Matlab wants index to start

77 % at 1, not zero, hence the addition of one to the frame)

78 reel(frame + 1) = getframe;
79

80 % construct the next file name and try to open it

81 frame = frame + 1;
82 filename = sprintf(’%s.%d’, basename, frame);
83 fid = fopen(filename,’ rb’);
84

85 end

C.384 APPENDIX C. RENDERING AND ANIMATING TWO-DIMENSIONAL DATA

Appendix D

Notation

c speed of light in free space

Nfreq index of spectral component corresponding to a frequency with discretization Nλ

Nλ number of points per wavelength for a given frequency

(the wavelength is the one pertaining to propagation in free space)

NL number of points per skin depth (L for loss)

NP number of points per wavelength at peak frequency of a Ricker wavelet

NT number of time steps in a simulation

Sc Courant number (c∆t/∆x in one dimension)

st Temporal shift operator

sx Spatial shift operator (in the x direction)

D.385

D.386 APPENDIX D. NOTATION

Appendix E

PostScript Primer

E.1 Introduction

PostScript was developed by Adobe Systems Incorporated and is both a page-description language

and a programming language. Unlike a JPEG or GIF file which says what each pixel in an image

should be, PostScript is “vector based” and thus a PostScript file specifies graphic primitives, such

as lines and arcs. There primitives are described by various PostScript commands. The quality of

the image described by a PostScript file will depend on the output device. For example, a laser

printer with 1200 dots per inch will draw a better curved line than would a laser printer with 300

dots per inch (although both will typically produce very good output).

The goal here is to show how one can easily generate PostScript files which convey informa-

tion about an FDTD simulation. Thus we are more interested in the page-description aspects of

PostScript rather than its programming capabilities. (There is a wonderful book and Web site by

Bill Casselman that describe PostScript extremely well while illustrating a host of mathematical

concepts. The book is entitled Mathematical Illustrations: A Manual of Geometry and PostScript

which you can find at www.math.ubc.ca/∼cass/graphics/manual/. It is well worth

checking out.)

PostScript is a Forth-like language in that it uses what is known as postfix notation. If you have

used an RPN (reverse Polish notation) calculator, you are familiar with postfix notation. You put

arguments onto a “stack” and then select an operation which “pops” the arguments from the stack

and operates on them. For example, to add 3 and 12 you would enter the following:

3
<ENTER>
12
+

When 3 is typed on the keypad, it is placed at the top of the stack. It is pushed onto the next stack

location by hitting the ENTER key. When 12 is typed, it is put at the top of the stack. Hitting the

plus sign tells the calculator you want to add the top two numbers on the stack, i.e., the 3 and 12.

These numbers are popped (i.e., taken) from the stack, and the result of the addition (15) is placed

at the top of the stack.

Lecture notes by John Schneider. postscript-primer.tex

E.387

E.388 APPENDIX E. POSTSCRIPT PRIMER

The PostScript language is much like this. Arguments are given before the operations. Giv-

ing arguments before operations facilitates the construction of simple interpreters. PostScript in-

terpreters typically have the task of translating the commands in a PostScript file to some form

of viewable graphics. For example, there are PostScript printers which translate (interpret) a

PostScript file into a printed page. Most computers have PostScript interpreters which permit

the graphics described in a PostScript file to be displayed on the screen. There are free PostScript

interpreters available via the Web (you should do a search for GhostScript if you are in need of an

interpreter).

E.2 The PostScript File

A file which contains PostScript commands, which we will call a PostScript file, is a plain ASCII

file which must start with “%!PS”. These characters are often referred to as a “magic word.”

Magic words appear at the start of many computer files and identify the contents of the file. This

%!PS magic word identifies the contents of the file as PostScript to the interpreter. (The names of

PostScript file often end with the suffix .ps, but the interpreter does not care what the file name

is.) The last command in a PostScript file is typically showpage. This command essentially tells

the interpreter that all the commands have been given and the page (or screen image or whatever)

should be rendered.

What comes between %!PS and showpage are the commands which specify how the page

should appear. Before exploring some of these commands it is important to know that a PostScript

interpreter, by default, thinks in terms of units of “points” which are not points in the geometric

sense, but rather 1/72 of an inch. Points are a traditional unit used in the printing industry (thus a

“12-point font” is one for which a typical capital letter is 12/72 of an inch high). A default “page”

is 8.5 by 11 inches and thus 612 by 792 points. The origin is the lower left corner of the page.

E.3 PostScript Basic Commands

The PostScript command moveto takes two arguments: the x and y coordinates to which the

current point should be moved. You can think of the current point as akin to the point where the tip

of a pen is moved. To define a line we can give the command lineto. lineto also takes two

arguments: the x and y coordinates of the point to which the line should be drawn. In PostScript,

after issuing the lineto command we have merely defined the path of the line—we have not

actually drawn anything yet. You can think of this as the pen having drawn the line in invisible ink.

We have to issue one more command to make the line visible, the stroke command.

A complete PostScript file (which we will identify as a “Program”) which draws a line from

the point (100, 200) to the point (300, 600) is shown in Program E.1.

Program E.1 PostScript commands to draw a single tilted line.

%!PS
100 200 moveto

E.3. POSTSCRIPT BASIC COMMANDS E.389

(0,0)

(0,796)

(612,0)

(612,796)

Figure E.1: Simple line rendered by the PostScript commands giving in Program E.1 and E.2. The

surrounding box and corner labels have been added for the sake of clarity.

300 600 lineto
stroke
showpage

The image drawn by these commands is shown in Fig. E.1. The surrounding border and coordinate

labels have been added for clarity. The only thing which would actually be rendered is the tilted

line shown within the border.

Instead of using the command lineto to specify the point to which we want the line to

be drawn, the command rlineto can be used where now the arguments specify the relative

movement from the current point (hence the “r” for relative). The arguments of rlineto specify

the relative displacement from the current point. In the commands in Program E.1, the line which

was drawn went 200 points in the x direction and 400 points in the y direction from the starting

point. Thus instead of writing 300 600 lineto, one could obtain the same result using 200
400 rlineto. PostScript does not care about whitespace and the percent sign is used to indicate

the start of a comment (the interpreter ignores everything from the percent sign to the end of the

line). Thus, another file which would also yield the output shown in Fig. E.1 is shown in Program

E.2. (The magic word must appear by itself on the first line of the file.)

Program E.2 PostScript commands to draw a single tilted line. Here the rlineto command is

used. The resulting image is identical to the one produced by Progam E.1 and is shown in Fig. E.1.

E.390 APPENDIX E. POSTSCRIPT PRIMER

%!PS
% tilted line using the rlineto command
100 200 moveto 300 600 lineto stroke showpage

When creating graphics it is often convenient to redefine the origin of the coordinate system to

a point which is more natural to the object being drawn. PostScript allows us to translate the origin

to any point on the page using the translate command. This command also takes two argu-

ments corresponding to the point in the current coordinate system where the new origin should be

located. For example, let us assume we want to think in terms of both positive and negative coor-

dinates. Therefore we wish to place the origin in the middle of the page. This can be accomplished

with the command 306 396 translate. The PostScript commands shown in Program E.3

demonstrate the use of the translate command.

Program E.3 PostScript commands which first translate the origin to the center of the page and

then draw four lines which “radiate away” from the origin. The corner labels show the corner

coordinates after the translation of the origin to the center of the page.

%!PS
306 398 translate % translate origin to center of page
100 100 moveto 50 50 rlineto stroke
-100 100 moveto -50 50 rlineto stroke
-100 -100 moveto -50 -50 rlineto stroke
100 -100 moveto 50 -50 rlineto stroke
showpage

Program E.3 yields the results shown in Fig. E.2.

As you might imagine, thinking in terms of units of points (1/72 of an inch) is not always

convenient. PostScript allows us to scale the dimensions by any desired value using the scale
command. In fact, one can use a different scale factor in both the x and the y directions and thus

scale takes two arguments. However, we will stick to using equal scaling in both directions.

In the previous example, all the locations were specified in terms of multiples of 50. Therefore

it might make sense to scale the dimensions by a factor of 50 (in both the x and y direction). This

scaling should be done after the translation of the origin. We might anticipate that the commands

shown in Program E.4 would render the same output as shown in Fig. E.2.

Program E.4 PostScript file where the units are scaled by a factor of 50 in both the x and y
dimensions.

E.3. POSTSCRIPT BASIC COMMANDS E.391

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure E.2: Output rendered by Program E.3 which translates the origin to the center of the page.

This output is also produced by Program E.5 and Program E.6.

%!PS
306 398 translate
50 50 scale % scale units in x and y direction by 50
2 2 moveto 1 1 rlineto stroke
-2 2 moveto -1 1 rlineto stroke
-2 -2 moveto -1 -1 rlineto stroke
2 -2 moveto 1 -1 rlineto stroke
showpage

However this file yields the output shown in Fig. E.3. Note that the lines which radiate from origin

are now much thicker. In fact, they are 50 times thicker than they were in the previous image. By

default, a line in PostScript has a thickness of unity i.e., one point. The scale command scaled

the line thickness along with all the other dimensions so that now the line thickness is 50 points.

Although we have only given integer dimensions so far, as far as PostScript is concerned all

values are actually real numbers (i.e., floating-point numbers). We can control the line thickness

with the setlinewidth command which takes a single argument. If we want the line thickness

still to be one point, the line thickness should be set to the inverse of the scale factor, i.e., 1/50 =
0.02. Also, it is worth noting that the stroke command does not have to be given after each drawing

command. We just have to ensure that it is given before the end of the file (or before the line style

changes to something else). Thus, a PostScript file which scales the dimensions by 50 and produces

the same output as shown in Fig. E.2 is shown in Program E.4

E.392 APPENDIX E. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure E.3: Output rendered by Program E.4 which scales the units by 50.

Program E.5 PostScript file where the units are scaled by a factor of 50 and the line thickness is

corrected to account for this scaling. Note that a single stroke command is given.

%!PS
306 398 translate
50 50 scale
0.02 setlinewidth % correct line thickness to account for scaling
2 2 moveto 1 1 rlineto
-2 2 moveto -1 1 rlineto
-2 -2 moveto -1 -1 rlineto
2 -2 moveto 1 -1 rlineto stroke
showpage

PostScript permits the use of named variables and, as we shall see, named procedures. This

is accomplished using the def command which takes, essentially, two arguments: the first being

the literal string which is the variable or procedure name and the second being the value or proce-

dure (where the procedure would be enclosed in braces). A literal string is a backslash character

followed by the string. For example, the following sets the variable scalefactor to 50:

/scalefactor 50 def

After issuing this command, we can use scalefactor in place of 50 everywhere in the file.

The PostScript language includes a number of mathematical functions. One can add using

add, subtract using sub, multiply using mul, and divide using div. Each of these functions

E.3. POSTSCRIPT BASIC COMMANDS E.393

takes two arguments consistent with an RPN calculator. To calculate the inverse of 50, one could

issue the following command:

1 50 div

This places 1 on the stack, then 50, and then divides the two. The result, 0.02, remains at the top

of the stack.

The program shown in Program E.6 uses the def and div commands and is arguably a bit

cleaner and better self-documenting than the one shown in Program E.5. Program E.6 also pro-

duces the output shown in Fig. E.2.

Program E.6 PostScript file which uses the def command to define a scale-factor which is set

to 50. The inverse of the scale-factor is obtained by using the div command to divide 1 by the

scale-factor.

%!PS
306 398 translate
% define "scalefactor" to be 50
/scalefactor 50 def
% scale x and y directions by the scale factor
scalefactor scalefactor scale
% set line width to inverse of the scale factor
1 scalefactor div setlinewidth
2 2 moveto 1 1 rlineto
-2 2 moveto -1 1 rlineto
-2 -2 moveto -1 -1 rlineto
2 -2 moveto 1 -1 rlineto stroke
showpage

The arc command takes five arguments: the x and y location of the center of the arc, the

radius of the arc, and the angles (in degrees) at which the arc starts and stops. For example, the

following command would draw a complete circle of radius 0.5 about the point (2, 2):

2 2 0.5 0 360 arc stroke

Let us assume we wish to draw several circles, each of radius 0.5. We only wish to change the

center of the circle. Rather than specifying the arc command each time with all its five arguments,

we can use the def command to make the program more compact. Consider the program shown

in Program E.7. Here the def command is used to say that the literal circle is equivalent to

0.5 0 360 arc stroke, i.e., three of the arguments are given to the arc command—one

just has to provide the two missing arguments which are the x and y location of the center of the

circle. The output produced by this program is shown in Fig. E.4.

E.394 APPENDIX E. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure E.4: Output rendered by Program E.7.

Program E.7 PostScript file which renders the output shown in Fig. E.4.

%!PS
306 398 translate
/scalefactor 50 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/circle {0.5 0 360 arc stroke} def
2 2 circle
-2 2 circle
-2 -2 circle
2 -2 circle
showpage

In addition to stroke-ing a path, PostScript allows paths to be fill-ed using the fill com-

mand. So, instead of drawing a line around the perimeter of the circles shown in Fig. E.4, one can

obtain filled circles by issuing the fill command instead of the stroke command. Program

E.8 and the corresponding output shown in Fig. E.5 illustrate this.

Program E.8 PostScript file which defines a stroke-ed and fill-ed circle. The corresponding

output is shown in Fig. E.5.

E.3. POSTSCRIPT BASIC COMMANDS E.395

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure E.5: Output rendered by Program E.8.

%!PS
306 398 translate
/scalefactor 50 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/circle {0.5 0 360 arc stroke} def
/circlef {0.5 0 360 arc fill} def
2 2 circlef
-2 2 circle
-2 -2 circlef
2 -2 circle
showpage

The PostScript commands we have considered are shown in Table E.1.

Instead of using an editor to write a PostScript file directly, we can use another program to

generate the PostScript file for us. Specifically, let us consider a C program which generates a

PostScript file. This program is supposed to demonstrate how one could use PostScript to display

a particular aspect of an FDTD grid. For example, let us assume we are using a TMz grid which

is 21 cells by 21 cells. There is a PEC cylinder with a radius of 5 which is centered in the grid.

We know that the Ez nodes which fall within the cylinder should be set to zero and this zeroing

operation would be done with a for-loop. However, precisely which nodes are being set to zero?

The code shown in Program E.9 could be incorporated into an FDTD program. This code produces

the PostScript output file grid.ps which renders the image shown in Fig. E.6. The first several

lines of the file grid.ps are shown in Fragment E.10.

E.396 APPENDIX E. POSTSCRIPT PRIMER

Command Description

x y moveto move current point to (x, y)
x y lineto draw a line from current point to (x, y)
δx δy rlineto from current point draw a line over δx and up δy
x y translate translate the origin to the point (x, y)
sx sy scale scale x and y coordinates by sx and sy
stroke “apply ink” to a previously defined path

fill fill the interior of a previously defined path

w setlinewidth set the line width to w
d1 d2 div calculate d1/d2; result is placed at top of stack

xc yc r a1 a2 arc draw an arc of radius r centered at (xc, yc)
starting at angle a1 and ending at angle a2 (degrees)

/literal {definition} def define the literal string to have the given definition;

braces are needed if the definition contains any whitespace

Table E.1: An assortment of PostScript commands and their arguments.

Program E.9 C program which generates a PostScript file. The file draws either a cross or a filled

circle depending on whether a node is outside or inside a circular boundary, respectively. The

rendered image is shown in Fig. E.6.

1 /* C program to generate a PostScript file which draws a cross

2 * if a point is outside of a circular boundary and draws a

3 * filled circle if the point is inside the boundary.

4 */

5

6 #include <stdio.h>
7 #include <math.h>
8

9 int is_inside_pec(double x, double y);
10

11 int main() {
12 int m, n;
13

14 FILE *out;
15

16 out = fopen("grid.ps","w"); // output file is "grid.ps"

17

18 /* header material for PostScript file */

19 fprintf(out,"%%!PS\n"
20 "306 396 translate\n"
21 "/scalefactor 20 def\n"
22 "scalefactor scalefactor scale\n"
23 "1 scalefactor div setlinewidth\n"

E.3. POSTSCRIPT BASIC COMMANDS E.397

24 "/cross {moveto\n"
25 " -.2 0 rmoveto .4 0 rlineto\n"
26 " -.2 -.2 rmoveto 0 .4 rlineto stroke} def\n"
27 "/circle {.2 0 360 arc fill} def\n"
28);
29

30 for (m=-10; m<=10; m++)
31 for (n=-10; n<=10; n++)
32 if (is_inside_pec(m,n)) {
33 fprintf(out,"%d %d circle\n",m,n);
34 } else {
35 fprintf(out,"%d %d cross\n",m,n);
36 }
37

38 fprintf(out,"showpage\n");
39

40 return 0;
41 }
42

43 /* Function returns 1 if point (x,y) is inside a circle (or on

44 * the perimeter of circle) and returns 0 otherwise.

45 */

46 int is_inside_pec(double x, double y) {
47 double radius = 5.0;
48

49 return x*x + y*y <= radius*radius;
50 }

Fragment E.10 First several lines of the file grid.ps which is produced by Program E.9.

%!PS
306 396 translate
/scalefactor 20 def
scalefactor scalefactor scale
1 scalefactor div setlinewidth
/cross {moveto

-.2 0 rmoveto .4 0 rlineto
-.2 -.2 rmoveto 0 .4 rlineto stroke} def

/circle {.2 0 360 arc fill} def
-10 -10 cross
-10 -9 cross
-10 -8 cross
-10 -7 cross

E.398 APPENDIX E. POSTSCRIPT PRIMER

(-306,-398)

(-306,398)

(306,-398)

(306,398)

Figure E.6: Grid depiction rendered by the file grid.ps which is produced by Program E.9.

Crosses corresponds to nodes which are outside a circular boundary of radius 5. Filled circles

correspond to nodes inside the boundary (or identically on the perimeter of the boundary).

E.3. POSTSCRIPT BASIC COMMANDS E.399

-10 -6 cross
.
.
.

400 APPENDIX E. POSTSCRIPT PRIMER

Index

1Dadditive.c, 49

1DbareBones.c, 41

1Ddielectric.c, 60

1Dlossy.c, 67

1Dmatched.c, 70

1Dtfsf.c, 58

calloc(), 74

Courant number

definition, 38

local variation, 64

dispersion, 64

gcc

linking, 100

object code, 100

preprocessor output, 75

macros, 75–78

make, 101

makedepend, 101

memory allocation, 73–74

oneThird.c, 8

pointers, 73

rootTest.c, 11

struct, see structures

structures, 78

update equation

one-dimensional, 37–38

waterfall plot, 52, B.377

401

402 INDEX

Bibliography

[1] D. Sullivan and J. L. Young. Far-field time-domain calculation from aperture radiators using

the FDTD method. IEEE Transactions on Antennas and Propagation, 49(3):464–469, March

2001.

[2] S. Dey and R. Mittra. A locally conformal finite-difference time-domain (FDTD) algorithm

for modeling three-dimensional perfectly conducting objects. IEEE Microwave Guided Wave

Letters, 7(9):273–275, September 1997.

[3] S. Benkler, N. Chavannes, and N. Kuster. A new 3-D conformal PEC FDTD scheme with user-

defined geometric precision and derived stability criterion. to appear in IEEE Transactions on

Antennas and Propagation, 54(6), 2006.

[4] C. A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, New York, 1989.

[5] X. Li, A. Taflove, and V. Backman. Modified FDTD near-to-far-field transformation for im-

proved backscattering calculation of strongly forward-scattering objects. IEEE Antennas and

Wireless Propagation Letters, 4:35–38, 2005.

[6] A. Taflove and S. Hagness. Computational Electrodynamics: The Finite-Difference Time-

Domain Method, 3 ed. Artech House, Boston, MA, 2005.

[7] A. Ishimaru. Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice Hall,

Englewood Cliffs, New Jersey, 1991.

403

