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Dynamical systems often exhibit the emergence of long-lived coherent sets, which are regions in

state space that keep their geometric integrity to a high extent and thus play an important role in

transport. In this article, we provide a method for extracting coherent sets from possibly sparse

Lagrangian trajectory data. Our method can be seen as an extension of diffusion maps to trajectory

space, and it allows us to construct “dynamical coordinates,” which reveal the intrinsic low-

dimensional organization of the data with respect to transport. The only a priori knowledge about

the dynamics that we require is a locally valid notion of distance, which renders our method highly

suitable for automated data analysis. We show convergence of our method to the analytic transfer

operator framework of coherence in the infinite data limit and illustrate its potential on several two-

and three-dimensional examples as well as real world data. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4971788]

One aspect of the coexistence of regular structures and
chaos in many dynamical systems is the emergence of
coherent sets: If we place a large number of passive trac-
ers in a coherent set at some initial time, then macroscop-
ically they perform a collective motion and stay close
together for a long period of time, while their surround-
ing can mix chaotically. Natural examples are moving
vortices in atmospheric or oceanographic flows. In this
article, we propose a method for extracting coherent sets
from possibly sparse Lagrangian trajectory data. This is
done by constructing a random walk on the data points
that captures both the inherent time-ordering of the data
and the idea of closeness in space, which is at the heart of
coherence. In the rich data limit, we can show equiva-
lence to the well-established functional-analytic frame-
work of coherent sets. One output of our method are
“dynamical coordinates,” which reveal the intrinsic low-
dimensional transport-based organization of the data.

I. INTRODUCTION

The term coherent sets, as used here, was coined in

recent studies.1–3 They are understood to be sets (one at each

time point), in the state space of a flow governed by a possi-

bly non-autonomous (time-variant) system, which keep their

geometric integrity to a high extent, and allow little transport

in and out of themselves. Natural examples are moving vorti-

ces in atmospheric,3,4 oceanographic,5–7 and plasma flows.8

Dynamical systems techniques have been developed for

the qualitative and quantitative study of transport problems.

Most of these are either geometric or transfer operator based

(probabilistic) methods, but topological9 and ergodicity-

based10 methods appeared recently as well. Geometric

approaches are mainly aiming at detecting transport barriers

(Lagrangian coherent structures) and include studying

invariant manifolds, lobe dynamics,11 finite-time material

lines,12 geodesics,13 and surfaces.14 The notions of shape

coherence15 and flux optimizing curves16 are also of geomet-

ric nature. Transfer operator based methods aim at detecting

sets (i.e., full-dimensional objects in contrast to codimension

one transport barriers) and consider almost-invariant17,18 and

coherent sets.1–3 Efforts have been made to compare geomet-

ric and probabilistic methods and understand the connection

between them.19–22

Increasing computational and storage capacities, just as

improving measurement techniques, supply us with large

amounts of data. Even if a tractable computational model is

not available, analysis of these data can reveal much of the

desired properties of the system at hand. Recently, different

approaches emerged that compute coherent sets and coherent

structures based on Lagrangian trajectory data, such as

Global Positioning System (GPS) coordinates from ocean

drifters: Ser-Giacomi et al.23 used graph theoretical tools to

perform a geometric analysis of transport, the works24,25

introduce dynamical distances and clustering to extract

coherent sets as tight bundles of trajectories in space-time,

while Williams et al.26 used a meshfree collocation-based

approach for a transfer operator based classification.

Here, we introduce a method based on Lagrangian tra-

jectory data, which (i) uses only local distances between the

data points and which (ii) can be shown to “converge” to the

analytical transfer operator based framework of Froyland27

in the infinite-data limit; hence, it can be viewed as a natural

extension of the functional analytic framework to the sparse

data case. Moreover, our approach provides dynamical coor-

dinates, which shed light on the connectivity of coherent sets

and reveal how transport is occurring. One key ingredient

here is to use diffusion maps,28–30 which were successfully

applied to extract intrinsic geometrical properties from
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high-dimensional data. The basic idea there is to introduce a

diffusion operator on the data points, whose eigenvectors

will give a good low-dimensional parametrization of the data

set, if this is possible.

This paper is organized as follows. In Section II, we

introduce the analytic transfer operator based framework of

coherent sets. In Section III, we first review the construction

of diffusion maps. This is followed by our main result: The

extension of diffusion maps to trajectory data and Theorem

3, which shows that our method coincides with the analytic

transfer operator approach in the rich data limit. We also dis-

cuss algorithmic aspects and show how to extract coherent

sets. In Ref. 27, Froyland draws a connection between the

analytic transfer operator approach and geometric properties

of coherent sets, which he formalizes in Ref. 21. In Section

IV, we seek direct connections between our data-based

framework and this geometry-oriented construction. Finally,

Section V demonstrates our method for diverse numerical

examples.

In this paper, we denote sets by double-stroke symbols

(e.g., A), matrices whose size is compatible with the data by

upper case bold face symbols (e.g., P), and operators on

(weighted) L2-spaces by calligraphic symbols (e.g., P). k � k
is always the Euclidean norm on R

n, for some n 2 N, unless

stated otherwise.

II. THE ANALYTIC FRAMEWORK FOR COHERENT
SETS

In this section, we quantitatively formalize what we

mean by a coherent set. To this end, we review Froyand’s

analytic framework27 for coherent pairs. In particular, we

make a small simplifying modification to this, which we will

comment on in (d) below.

Let a map U : X ! Y be given, describing the evolution

of states under the dynamics from some initial to some final

time. We assume X;Y � R
d; d 2 N, to be bounded sets.

Consider a pair of sets, A � X at initial and B � Y at final

time. In order for A and B to form a coherent pair, we must

have UA � B. This is however not enough, as Figure 1 read-

ily suggests: If we are to distinguish between sets that keep

their geometric integrity under the dynamics to a high degree

and sets which do not, then we additionally need a robustness

property under small perturbations.

Let Ue : X ! Y denote a small random perturbation of

U. The meaning of this is made precise below, for now, one

may think of Uex as Ux plus some zero-mean noise with vari-

ance e, where e is small. Now, a coherent pair has to satisfy

“UeA � B,” and “U�1
e B � A” in a suitable sense. In partic-

ular, A � X can be part of a coherent pair only if

“U�1
e ðUeAÞ � A.” Note that exactly this is depicted in

Figure 1, if we start at the top left image and proceed coun-

terclockwise: applying forward dynamics, then diffusion,

then the backward dynamics to the points of a coherent set,

most of these points should return to the set.

In formalizing the expression U
�1
e ðUeAÞ � A, random-

ness plays an important role. We define a non-deterministic

dynamical system W : X ! Y by its transition density func-

tion k 2 L2ðX�Y; l� ‘Þ. Here, L2 denotes the usual space
of square-integrable functions in the Lebesgue sense, l is a

probability measure (some reference measure of interest),

and ‘ is the Lebesgue measure. We have for the probability

that Wx 2 S for some Lebesgue-measurable set S that

P½Wx 2 S� ¼
ð

S

kðx; yÞ dy : (1)

In particular, (i) k � 0 almost everywhere; and (ii)
Ð
kð�; yÞdy ¼ 1, the constant one function (If the range of an

integral is not specified, then it is meant to be the whole

domain of the integrand.). From (1), we can compute that if

Wx ¼ Uex :¼ Uxþ ffiffi
e

p
g, where e > 0, and g is a random var-

iable with density h with respect to ‘, then kðx; yÞ
¼ hðe�1=2ðUx� yÞÞ.

We introduce the forward operator F : L2ðX; lÞ !
L2ðY; ‘Þ associated with W, by F f ¼

Ð
kðx; �Þf ðxÞdlðxÞ. The

operator F describes how an ensemble of states, which has

distribution f ðxÞdlðxÞ, is mapped by the dynamics; i.e., F f

is the distribution (given as a density with respect to ‘) of the
ensemble after it has been mapped state-by-state byW.

It is not necessary for the initial distribution to be sta-

tionary; thus, we normalize our transfer operator (We call

every operator, transporting some object (a distribution, or

an observable) by the dynamics, a transfer operator.). Let

q� :¼ F1 be the image density of a constant 1 function on

FIG. 1. Coherent pairs are robust under

small perturbations. Top left: two sets

at initial time. Bottom left: the image

of these two sets under the dynamics.

Bottom right: the images of 100 ran-

dom test points (taken in the respective

sets at initial time) under the dynamics,

perturbed by a small additive random

noise. Top right: preimages of the per-

turbed image points under the dynam-

ics, which reveal that the black set and

its image under the dynamics form a

coherent pair, whereas the grey set and

its image do not.
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X, defining a measure � through d�ðyÞ ¼ q�ðyÞdy. The nor-

malized forward operator T : L2ðX; lÞ ! L2ðY; �Þ is then

defined as

T f ¼ F1ð Þ�1F f ¼
ð
k x; �ð Þ
q� �ð Þ

f xð Þdl xð Þ ; (2)

and its adjoint T 	 : L2ðY; �Þ ! L2ðX; lÞ turns out to be

T 	g ¼
ð
k �; yð Þ
q� yð Þ

g yð Þ d� yð Þ ¼
ð

k �; yð Þg yð Þ dy ; (3)

i.e., hT f ; gi� ¼ hf ; T 	gil for every f 2 L2ðX; lÞ; g 2 L2

ðY; �Þ, where h�; �il and h�; �i� are the usual inner products in
the respective spaces. Note that T 1 ¼ 1, which just encodes

the fact that the initial reference distribution l is mapped

onto the final distribution � by the dynamics. Now, if T is

associated with Ue, then A and B being a coherent pair reads

as T 1A � 1B, where 1S denotes the indicator function of S,

i.e., 1SðxÞ ¼ 1 if x 2 S, and 0 otherwise. Note that this

approximation can be made quantitative, since 1
lðAÞ

hT 1A; 1Bi� is the probability that a l-distributed initial state

from A gets mapped by W into B. Furthermore, T 	 is the

forward operator of the time-reversed dynamics (see

Appendix A.1 in the supplementary material for a short

proof).

Froyland27 extracts coherent pairs from the left and right

singular vectors of T for dominant singular values. Right

singular vectors of T are eigenvectors of T 	T . Moreover,

T 	T is the transfer operator of the “forward-backward sys-

tem.” Here, the “backward system” denotes the time-

reversed forward system, and the forward system is

described by the forward operator T . Coherent sets are those

sets which are hard to exit under the forward-backward

dynamics, i.e., hT 	T 1A
lðAÞ ; 1Ail � 1, which is the probability

that the forward-backward system ends up in A, provided it

started there. This statement is a quantitative version of

“U�1
e ðUeAÞ � A.” Thus, the method described in Ref. 27 is

a spectral clustering31,32 of the forward-backward system.

A few remarks are in order:

(a) We see from (2) and (3) that

T 	T f zð Þ ¼
ð

f xð Þ
ð
k z; yð Þk x; yð Þ

q� yð Þ
dy

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:j x;zð Þ

dl xð Þ : (4)

The kernel j is trivially symmetric, but also doubly sto-

chastic:
Ð
jðx; �Þ dlðxÞ ¼

Ð
jð�; zÞ dlðzÞ ¼ 1. Symmetry

of j implies that the forward-backward process is

reversible with respect to l.

(b) If W ¼ U is the deterministic dynamics, the forward

operators F and T are often called the Perron–

Frobenius operator.33 In this case, we denote the nor-

malized forward operator by P. Note that here the

kernel kðx; yÞ ¼ dðUx� yÞ is only formally an L2

function, where d is the Dirac distribution, satisfying

d(u) ¼ 0 for u 6¼ 0, and
Ð
dðuÞdu ¼ 1. By (3) we have

P	gðyÞ ¼ gðUyÞ, which is called the Koopman

operator. We will denote the formal Koopman operator

by U, given by UgðxÞ ¼ gðUxÞ, to decouple its defini-

tion from the function spaces in consideration.

However, it always holds true that if U is considered as

an operator from L2ðY; �Þ to L2ðX; lÞ, where l and �
are arbitrary measures such that U is well-defined, then

the adjoint of the Koopman operator, U*, is the

Perron–Frobenius operator P describing the dynamical

transport of l-densities to �-densities. That is, hPf ; gi�
¼ hf ;Ugil for all f 2 L2ðX; lÞ; g 2 L2ðY; �Þ.

(c) We will also consider W ¼ Ue ¼ Uþ ffiffi
e

p
g, where g is

a standard normally distributed random variable. The

distribution of g is cut off at some specific distance

from the mean, such that we can work on bounded sets.

This might necessitate the enlargement of Y, which we

tacitly assume has been done, and denote the result by

Y again. This implies

k x; yð Þ ¼
1

Ze
exp �e�1kUx� yk2

� �

¼:
1

Ze
ke Ux; yð Þ

with Ze being a normalizing constant, independent of x,

and k � k being the Euclidean norm on R
d. The noisy

dynamics W is given by two steps (first apply U, then

add noise), and hence the associated forward operator

is a concatenation of the forward operators of the

two components: T ¼ DeP. Here, P : L2ðX; lÞ !
L2ðY; �UÞ is the normalized Perron–Frobenius opera-

tor, where �U is the image of the distribution l under

U. The diffusion operator De : L
2ðY; �UÞ ! L2ðY; �Þ

is the normalized forward operator of the noise, where

� is the image of �U under the noise. If we denote q�,

the density of � with respect to ‘, i.e., d�ðxÞ ¼ q�ðxÞdx,
then

Def xð Þ ¼ 1

Zeq� xð Þ

ð

ke x; yð Þf yð Þd�U yð Þ :

The evaluation chain can now be represented as

T : L2ðX; lÞ!P L2ðY; �UÞ!
De

L2ðY; �Þ :

For later reference, we also define the formal diffusion

operator De (i.e., without the spaces it acts on) by

Def ðxÞ ¼ 1
Ze

Ð
keðx; yÞf ðyÞ dy, and note that formally,

due to the symmetry of the kernel ke, we have

hDef ; gi� ¼ hf ;Degi�U . Hence, viewed as an operator

between the right spaces, De ¼ D	
e .

(d) In Froyland’s construction,27 T is the forward operator

associated with a process where a small diffusion is

applied both before and after the deterministic dynam-

ics takes place (In our setting, this would mean

Uex ¼ Uðxþ ffiffi
e

p
g1Þ þ

ffiffi
e

p
g2, where g1; g2 are indepen-

dent random variables.). This ensures that both the sets

A and B are geometrically nice (cf. Figure 1). This

can be circumvented as follows. If one would like to

have coherence at several time instances, it is natural

to average the operators T 	T for all the different time

instances and compute the dominant eigenfunctions of

the resulting operator.21,34
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To make this precise, let for arbitrary time instances

s 
 t the forward operator T s;t correspond to the deter-

ministic dynamics from s to t, plus random noise scaled

by a parameter e (as above). Given a set of final time

instances, IT :¼ ft0;…; tT�1g, at which we would like

to find coherent sets (now tuples, instead of pairs), one

can consider the dominant eigenfunctions of

1

T

X

t2IT
T 	

t0;t
T t0;t: (5)

Note that t0 2 IT in (5); hence, we automatically

account for the geometrical smoothness of the sets at

initial time too. Since we will adopt this construction

in the current work, it suffices to take T as the forward

operator associated with the deterministic forward

dynamics plus some small diffusion (at final time). Our

data-based construction in Section III B is going to

approximate the operator (5).

(e) So far, the choice of the small random perturbation

(diffusion) which we apply to the dynamics was arbi-

trary. In practice, choosing the size of this perturbation

does not have to be obvious. In Ref. 21, Froyland

hence developed an “e-free” version of the notion of

coherent pairs. In fact, he derives a first order perturba-

tion expansion for e ! 0 for the construction from (d).

We summarize this for coherent pairs, i.e., where only

two time instances are involved, say, s and t, s < t.

Note that then T s;s ¼ DePs;s ¼ De corresponds to only

diffusion, since Ps;s ¼ Id, the identity. Froyland shows

that if the deterministic dynamics is volume-preserving

for every time, and the noise has zero mean and covari-

ance equal to the identity matrix, then

T 	
s;sT s;sþT 	

s;tT s;t ¼ Idþ e

2
DþP	

DPð Þþo eð Þ ; (6)

where D denotes the Laplace operator on X, and o(e)

means some function such that o(e)/e ! 0 as e ! 0.

Equation (6) follows from Froyland’s result if we take

two differences into account: (i) we take e as the vari-

ance of the noise, and not the standard deviation, as he

does, and (ii) we apply noise only after the dynamic

evolution, and not before and after. Equation (6) holds

pointwise in x, if the operators therein are applied to a

sufficiently smooth function f. Froyland calls ðDþ
P	

DPÞ the dynamic Laplacian, and its eigenfunctions

yield coherent pairs. We give a data-based version of

(6) at the end of Section III B. In Section IV, we further

elaborate on data-based approximations of the dynamic

Laplacian.

III. DIFFUSION IN TRAJECTORY SPACE

A. Diffusion maps

To set the stage, we give a brief review of the method of

diffusion maps. For details and the proofs of the statements

presented in this section, we refer to Ref. 28 and the referen-

ces therein.

The goal of diffusion maps is to learn global geometric

information from point-cloud data by imposing local geo-

metric information only. Suppose that we have m data points

xi 2 R
n which are i.i.d. realizations of random variables dis-

tributed according to an unknown density q on a likewise

unknown submanifold M � R
n of dimension dimM ¼ d.

We assume throughout that M is compact and C1 and

q 2 C3ðMÞ. The idea behind diffusion maps is that the

Euclidean distance in R
n is a good local approximation for

distances in M. Now, a Markov chain is constructed on the

data points by the following procedure: With slight abuse of

notation, fix a rotation-invariant kernel

ke xi; xj
� �

¼ h
kxi � xjk2

e

� �

: (7)

Here, e > 0 is a scale parameter and we will always choose

hðxÞ ¼ cr expð�xÞ1x
r with some cutoff radius r and the

constant cr chosen such that
Ð
hðkxk2Þdx ¼ 1. We will com-

ment more on the choice of e and r below, but in practice we

choose r large enough such that the second moment
Ð
hðkxkÞx21dx � 1=2 up to reasonable precision. This is in

order to have an explicit factor 1
4
in (11). For our work here,

the exact value of this factor is irrelevant; we assume in our

theoretical considerations that the second moment of h is 1
2
.

Now, we let

keðxiÞ ¼
Xm

j¼1

keðxi; xjÞ

and form the new kernel

k að Þ
e xi; xj
� �

¼ ke xi; xj
� �

ke xið Þake xjð Þa ;

for some a 2 [0, 1]. Finally, the transition matrix Pe;a of the

Markov chain is constructed by row-normalising k
ðaÞ
e

Pe;a i; jð Þ :¼ k
að Þ
e xi; xj
� �

d
að Þ
e xið Þ

; d að Þ
e xið Þ ¼

Xm

j¼1

k að Þ
e xi; xj
� �

: (8)

In the limit m ! 1 of infinite data, the strong law of large

numbers ensures that all discrete sums converge almost

surely to integrals over q. In particular, for f : M ! R

lim
m!1

1

m

Xm

j¼1

ke x; xj
� �

f xjð Þ ¼
ð

M

ke x; yð Þf yð Þq yð Þdy : (9)

The matrix Pe,a only exists on the data points, but using the

kernel function h it is straightforward to extend the kernel

pe;aðx; xjÞ ¼ k
ðaÞ
e ðx; xjÞ=dðaÞe ðxÞ to all x 2 R

d. We now define

the operator Pe,a by

Pe;af ðxÞ :¼ lim
m!1

Xm

j¼1

pe;aðx; xjÞf ðxjÞ; (10)

and let Le;a ¼ e�1ðPe;a � IdÞ be the corresponding generator.

The pointwise error in (10) for finite m is of order

Oðe�d=4m�1=2Þ.35,36 Coifman and Lafon28 showed that
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lim
e!0

Le;af ¼
D fq1�a
� �

4q1�a
� D q1�a

� �

4q1�a
f (11)

holds uniformly on the space spanned by the first K eigen-

functions of D, for any fixed K > 0. Here, D ¼ div � grad is

the (negative semi-definite) Laplace-Beltrami operator on

M. In particular, for a ¼ 1 one has lime!0 Le;1f ¼ 1
4
Df . The

additional factor 1
4
can be eliminated by rescaling the sec-

ond moment of h. In other words, the random walk gener-

ated by Pe;1 on the data points converges to Brownian

motion on M as m ! 1 and e ! 0. The method now pro-

ceeds by analysing the dominant spectrum of Pe,1. The

number K of leading non-trivial eigenvalues is an estima-

tor of the dimension of M, and the corresponding eigen-

functions ni, which converge in probability to those of D

for m ! 1 and e ! 0, are good global intrinsic coordi-

nates on M. The ni are the so-called diffusion maps since

they provide a map xi 7!ðn1ðxiÞ;…; nKðxiÞÞ from M to the

embedding space E ¼ spanfn1;…; nKg. Figure 2 gives an

example.

B. Forward-backward diffusion maps

Let us recast the diffusion operators from Section II (c)

to our current setting, by defining

Def ¼
1

ed=2

ð

M

ke �; yð Þf yð Þdy; Def ¼
De qfð Þ
Deq

: (12)

Further, for a matrix A 2 R
m�m, let Af ðxiÞ :¼P

jAði; jÞf ðxjÞ,
and Af :¼ðAf ðx1Þ;…;Af ðxmÞÞ.

In order to make contact with the forward-backward

dynamics developed in Section II, we will need a

forward-backward version of diffusion maps. To mini-

mize technical difficulties, we present this in Lemma 1

below for the case where M has no boundary. If M does

have a boundary, then all the statements below hold uni-

formly on the set Me of points with distance at least ec

from the boundary for a fixed 0 < c < 1
2
, while for points

in M nMe the presence of first-order derivatives in

Taylor expansions of (12) results in slightly worse asymp-

totics.28 Note that M nMe is a set of measure OðecÞ, so
this only has a mild effect.

Lemma 1: For q-distributed data points fxigmi¼1 on M �
R

n and Pe;0 as in (8), let us define the forward-backward dif-

fusion matrix

Be ¼ ðbeðxi; xjÞÞmi;j¼1 ¼ ðdiagðPT
e;01ÞÞ

�1PT
e;0Pe;0 ; (13)

with diag(v) denoting the diagonal matrix with entries given

by vector v on the diagonal. By extending the kernel be from

the data points to R
d analogously as described after (9), we

define the operator Be : L
2ðRn; lÞ ! L2ðRn; lÞ, where

dlðxÞ ¼ qðxÞdx, by

Bef ðxÞ :¼ lim
m!1

Xm

j¼1

beðx; xjÞf ðxjÞ ; (14)

and denote its adjoint in L2ðRn; lÞ by B	
e . Let M have no

boundary and let f be bounded on M. Then, we have the fol-

lowing properties:

(i) Be1 ¼ 1 and Be1 ¼ 1.

(ii) jBef ðxiÞ � Bef ðxiÞj ¼ Oðe�d=4m�1=2Þ.
(iii) Bef ¼ DeDef þOðe2Þ uniformly on M. As a conse-

quence, Be is almost self-adjoint: jBef ðxÞ � B	
e f ðxÞj ¼

Oðe2Þ uniformly on M.

(iv) Be is almost symmetric: kBe � BT
e k 
 Oðe2Þ þ O

ðe�d=4m�1=2Þ for any compatible matrix norm k � k.
(v) If Deq ¼ q, then Bef ¼ DeDef .

(vi) If, additionally, f 2 C3ðMÞ, then lime!0
1
e

Bef � f Þð
¼ 1

2
q�1r � qrfð Þ holds pointwise onM.

Proof. See the supplementary material. �

Property (vi) shows that in the small e limit, Bef approxi-

mates the action of the q-weighted Laplace-Beltrami operator

on M.35 Note the following two special cases of property

(vi):

(a) If q � const is the uniform distribution, then

lime!0
1
e

Bef � f Þ ¼ 1
2
Df

�
.

(b) If q ¼ e–V with some potential energy function V :

X ! R, then lime!0
1
e

Bef � f Þ ¼ 1
2

Df �rV � rfð Þ
�

.

Up to a factor 1
2
, this is the infinitesimal generator of

the diffusion process given by the stochastic differen-

tial equation dxt ¼ �rVðxtÞdtþ
ffiffiffi

2
p

dwt, where wt is a

standard Wiener process (Brownian motion). Note that

q is the invariant distribution of this process.

FIG. 2. Diffusion map example. Left: m ¼ 10.000 data points sampled from a rectangular strip embedded in R
3. The sampling density is non-uniform and

decreases with distance from the origin. Color according to n1. Middle: Diffusion map embedding for a ¼ 0. Right: Diffusion map embedding for a ¼ 1.
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Remark 2 (Limiting kernel): Note that (14) can be writ-

ten as

Bef ðxÞ ¼
ð

b1e ðx; yÞqðyÞf ðyÞdy ; (15)

with the m-independent limiting kernel

b1e x; yð Þ ¼
1

d1e xð Þ
1

ed

ð
ke x; zð Þke z; yð Þ

q2e zð Þ q zð Þdz; (16)

where we introduced the shorthands

qe xð Þ :¼ Deq xð Þ; d1e xð Þ ¼ 1

ed=2

ð
ke x; yð Þ
qe yð Þ

q yð Þdy: (17)

One can think of qe as the best way to represent q with the

kernel functions ke(x, y), and of d1e as the best way to repre-

sent 1. If qe ¼ q holds, then d1e ¼ 1, and b1e ðx; yÞ reduces to
a symmetric, doubly stochastic kernel quite similar to j; cf.

(4). Intuitively, this observation will allow us to connect our

diffusion maps construction below to the analytic framework

of coherence, introduced in Section II.

C. Space-time diffusion maps

1. General setting

In this section, we combine the geometric ideas of diffu-

sion maps with dynamics. Let Us;t : Xs ! Xt for s; t 2 R be

the unknown, possibly non-autonomous flow map from

Xs � R
d to Xt � R

d; s; t 2 R. The data set we have at our

disposal consists of m trajectories evaluated at T 2 N time

slices It ¼ ft0;…; tT�1g. To simplify notation, we set

Ut :¼ Ut0;t. That is, we have access to the data set

X ¼ fxit :¼ Utx
i : i ¼ 1;…;m; t 2 Itg;

with initial points xi 2 X that we assume to be i.i.d. realiza-

tions of random variables distributed according to the distri-

bution q0. We call qt the distribution of the points xit at time

t. At every timeslice t 2 It, we can construct diffusion map

matrices Pe,a,t and a forward-backward diffusion matrix Be,t

via (13) by using the m data points fUtx
igmi¼1. Then,

Be;tði; jÞ ¼ be;tðUtx
i;Utx

jÞ, where

be;t x; yð Þ ¼
1

de;t xð Þ
Xm

i¼1

ke x;Utx
i

� �

ke Utx
i; y

� �

ke;t Utxið Þ2
;

de;t xð Þ :¼
Xm

i¼1

ke x;Utx
i

� �

ke;t Utxið Þ ; (18)

and ke;tðUtx
iÞ :¼ P

j keðUtx
i;Utx

jÞ. Now we construct a

Markov chain on the trajectories by specifying the following

Spacetime Diffusion Map transition matrix Qe 2 R
m�m

Qe i; jð Þ ¼ 1

T

X

t2It
Be;t i; jð Þ ¼ 1

T

X

t2It
be;t Utx

i;Utx
j

� �

: (19)

We will show in Theorem 3 below that (19) is a data-based

version of the time-averaged forward-backward transfer

operators from (5). The transition matrix (19) describes

jumps between trajectories in the following manner: Starting

at trajectory i, first one of the timeslices It is selected uni-

formly at random. Then, the forward-backward diffusion

map transition matrix (13) at the selected timeslice is used to

jump to a new trajectory j.

2. Connection to coherence

The connection between the transition probabilities pre-

scribed by (19) and the notion of coherence is now intui-

tively clear: Coherent sets are tight bundles of trajectories.

That is, if there is a subset Ib ¼ {i1,…, ib} of trajectories

such that kUtx
i � Utx

jk is small for all i, j 2 Ib and all t 2 It,

we would like to see these trajectories as a part of a coherent

set. For such a tight bundle of trajectories, all transition prob-

abilities assigned by Qe between i, j 2 Ib will be large, and

we should be able to identify Ib by clustering Qe.

Our main result is the following theorem, which links the

transition matrixQe with the analytical coherence framework.

Theorem 3:With Qe as in (19), we have for fixed e > 0

lim
m!1

Qef xið Þ ¼ 1

T

X

t2It
P	

tD	
e;tDe;tPtf xið Þ þ O e2ð Þ; (20)

where De;tf :¼ DeðfqtÞ=Deqt, cf (12). Convergence in (20)

is a.s. as m ! 1. The pointwise error for finite m is

Oðe�d=4m�1=2Þ.
Proof. The full proof can be found in the supplementary

material. The idea, though, can be sketched with Figure 3 as

follows.

Let us think of the values of the function f in the data

points xi as statistical weights. The collection of these

weighted point measures approximates the distribution fq0.

Fixing a time slice t, if we assign the weights f(xi) to the

points xit, respectively, they will approximate the distribution

ðPtf Þqt. Application of the matrix Be,t to this latter data vec-

tor redistributes the statistical weights like diffusion. Pulling

back the new statistical weights to the data points at initial

time (the new weight of each data point xit is assigned to xi)

approximates the application of P	
t . �

Theorem 3 says that in the data-rich limit, we are

approximating the very analytical object that was designed

to identify coherent pairs (tuples). In particular, the dominant

FIG. 3. To implement “forward-diffuse-backward,” we start at xj at time t0,

then push the statistical weight of this data point, f(xj), along the jth trajectory

(shown in blue) to the data point x
j
t, then use Be,t to redistribute the weights

between the data points (this is diffusion, shown in red), and finally transport

the new weights along the ith trajectory back to initial time, to arrive at xi.
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eigenfunctions fN1;…;NKg of Qe approximate those of the

operator 1
T

P

t2It P
	
tD	

e;tDe;tPt and have thus a significance for

the dynamical system Ut, which is similar to the significance

of the diffusion map eigenfunctions {n1,…, nK} of Pe,a for

the purely geometrical problem. In fact, {N1,…, NK} encode

both dynamical and geometrical properties, and for this rea-

son we call them spacetime diffusion maps.

A few comments are in order:

(a) Although the operator T 	T is symmetric (self-adjoint)

and stochastic, Qe is merely stochastic by construction.

It is, however, by Lemma 1 (iv), Oðe2Þ close to a sym-

metric matrix, and this estimate is getting better as m

! 1, cf. (20). In all our numerical studies, the domi-

nant spectrum of Qe was real-valued.

(b) The break of symmetry of Qe comes from the row-

normalization by de,t in (18). As discussed in Remark

2, de,t is our best approximation of the constant one

function, hence the more the data are available, the

closer we get to this normalization not having any

effect.

(c) Formally, we can apply our method and construct the

space-time diffusion matrix Qe also, if the trajectories

are generated by non-deterministic dynamics. In this

case, Utx is a random variable for any fixed x, and the

Koopman operator of this dynamics is defined by

UtgðxÞ :¼ E½f ðUtxÞ�, where the expectation E½�� is

taken with respect to the law of Utx. Nevertheless,

coherent sets can still be extracted from the dominant

eigenmodes of T 	
t T t,

3,37 where T t is the (normalized)

forward operator associated with the non-deterministic

dynamics Ut. We study non-deterministic dynamics in

a future publication.

Remark 4 (A data-based dynamic Laplacian): Suppose

that the dynamics U is a diffeomorphism (a differentiable,

everywhere invertible map, with a differentiable inverse),

e.g., the solution of an ODE. Then, P	
tPt ¼ Id (This is a con-

sequence of Corollary 3.2.1 in Ref. 33, by noting that the

operator P therein plays the role of our F .), and using prop-

erty (vi) of Lemma 1 it can be readily seen that

lim
m!1

Qef xið Þ ¼ Idþ e

2

1

T

X

t2It
P	

t DqtPtf xið Þ þ O e2ð Þ; (21)

with the q-weighted Laplacian Dqf :¼ q�1r � ðqrf Þ. In

other words, the operator Le ¼ e�1ðQe � IÞ, with I being the

identity matrix matching the size of the data, is a data-based

approximation of the operator 1
2T

P

t2It P
	
t DqtPt, which can

be seen as a generalization of the dynamic Laplacian intro-

duced in Ref. 21 for non-uniform densities q.

D. Clustering with space-time diffusion maps

A consequence of Theorem 3 is that we may compute

sets which are coherent for all times t 2 It by searching for a

subset Ib ¼ {i1,…, ib} of trajectories which is metastable

under Qe. This reduces the problem of computing coherent

sets, which involves both geometry and dynamics, to the

problem of clustering a graph. In this article, we use spectral

clustering31,32 on Qe to solve this problem, since

(i) spectral clustering can identify metastable sets,38,39

and

(ii) eigenvectors of a diffusion maps transition matrix yield

good coordinates to the intrinsic geometry of the data

set; cf Figure 2. We will see in Section V that the eigen-

vectors ofQe give natural “transport coordinates.”

Alternative clustering methods, e.g., to save computa-

tional time, are of course possible and deserve further explo-

ration, see for example, Ref. 40. Any spectral clustering

algorithm proceeds in the following three steps:

1. For some not too large N, compute the N largest eigenval-

ues ki of Qe. Identify K such that kK – kKþ1 is large (this

is known as spectral gap).

2. Compute the K largest eigenfunctions N1,…, NK.

3. Postprocessing: Extract K clusters C1,…, CK from (N1 ¼ 1
is the constant function.) N2,…, NK.

The justification for this approach is that a spectral gap

after K dominant eigenvalues indicates K metastable sets

and that the eigenfunctions N2,…, NK are almost constant on

the metastable sets.38,39 A number of different algorithms

exist, depending on how the postprocessing step is handled,

and whether hard or soft clusters are being sought. For exam-

ple, the algorithms by Shi and Malik41 and Ng et al.42 com-

pute K hard clusters which form a full partition of the state

space V ¼ {1,…, m} of Qe by performing k-means on N2,…,

NK. We do the same in this paper (We normalize the Ni such

that kNik2 ¼ 1.), mostly for reasons of simplicity and ease of

implementation. However, we note that enforcing a full par-

tition into metastable sets is often too strict. In some cases, it

might be desirable to use fuzzy membership functions

instead. We refer the reader to the Refs. 43–45 for more

information.

Remark 5 (Frame-independence): The eigenfunctions

N1,…, NK are purely functions of the Euclidean distances

kxi � xjk between Lagrangian observers. Since these are

independent under a possibly time-dependent affine-linear

transformation with orthogonal linear part, the values of the

eigenfunctions in the data points are also independent of the

transformation. Thus, the algorithm is independent of the

frame of reference, i.e., objective.

E. Algorithmic aspects

We describe an algorithm for extracting coherent sets

from data, which we assume to be given as a d � m � T

array of mT time-ordered data points in R
d. The algorithm

has two stages:

1. Compute Qe. The computational cost of this is dominated

by the m2T distance computations between the mT data

points. In practice, for any given point xi only the distan-

ces to points within the cutoff radius r, that is, only distan-

ces that satisfy kxi � xjk2 
 re, need to be computed and

stored. This is a typical nearest neighbor search prob-

lem,46 and an efficient implementation is readily available

in many software packages.
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Besides the distance computations, the only other compu-

tationally expensive task is the T sparse matrix multiplica-

tions that are needed to compute the matrices Be,t. The

cost for this can be estimated as47 Oðb2mTÞ in the best

and Oðbm2TÞ in the worst case, where b is the typical

number of nonzero elements in any row of Pe,0,t. In many

practical cases, one can avoid this cost by computing a

simplified version of Qe, e.g.,

~Qe ¼
1

T

X

t2It
Pe;a;t; (22)

which requires no matrix multiplication. If a ¼ 1/2 is cho-

sen, then Qe and ~Q2e agree up to first order in e for large

m. This can be seen from comparing (11) for a ¼ 1/2 with

Lemma 1 (vi). If the densities qt are uniform for all t 2 It,

then there will be no difference at all between Qe and
~Q2e. In our numerical experiments, Qe and ~Q2e always

produced very similar results. We provide a Matlab code

computing ~Qe in the supplementary material.

2. Run the spectral clustering algorithm. This requires the

computation of the leading eigenvectors of Qe, which has

a complexity of OðmÞ for sparse matrices.48 We do not

discuss large-scale spectral clustering in here, since we

have shown that our method “converges” to the analytical

method in the data-rich limit. In that case other, Galerkin

projection-based methods, are available, see Refs. 3, 26,

34, 37, and 49 for an overview of methods. For more

information about fast spectral clustering algorithms, we

refer to Refs. 50–52.

1. Choice of parameters

The cutoff radius r is used to tune the shape of the kernel

function h. For diffusion maps, r should be smaller then the

scalar curvature of M, which determines the length scale at

which M no longer looks locally flat.35 However, the scalar

curvature is typically not known. We will choose r ¼ 2,

which corresponds to a cutoff at expð�rÞ � 0:1. In general, r

should be chosen such that expð�rÞ is small; thus, the cutoff

discards only insignificant interaction. We found that

increasing r resulted in heavier computations due to the

reduced sparsity of Qe, while having no significant effect on

the results. The sparsity of a matrix A is the number of non-

zero entries of A divided by the total number of entries.

How should one choose e for a given amount of data,

that is, for a given m? There are two error terms present in

(20), a variance term scaling as Oðe�d=4m�1=2Þ and a bias

term scaling as Oðe2Þ. This represents a trade-off: If e is

reduced then the bias is decreased but the variance is

increased. Qe inherits this behavior from diffusion maps. The

optimal choice of e for diffusion maps was found to be36

e ¼ C Mð Þ
m1= 3þd=2ð Þ : (23)

Here, CðMÞ is an unknown constant that depends on the

manifold M. Equation (23) tells us that if twice the amount

of data is available, then we can reduce e by a factor of

2�1=ð3þd=2Þ. In practice, there are two good indicators for

choosing e: (i) One could choose e such that the sparsity of

Qe is between 1% and 5% (typically used values for sparse

matrices), (ii) one may compute the dominant spectrum of

Le ¼ e�1ðQe � IÞ (see Remark 4) for different e, and choose

e based on minimal sensitivity of the eigenvalues, see

Section V for more details.

2. Missing data

Many real-world data sets are incomplete. For example,

not all of the data points fUtx
igt2It of any given trajectory

might be available, but only some of them. Our algorithm can

handle this naturally. We adopt the following convention:

Whenever the distance kUtx
i � Utx

jk cannot be computed

because, e.g., Utx
i is missing, we set kUtx

i � Utx
jk ¼ 1. This

convention is easily implemented and leads to the i-th row of

Be,t being equal to dij. Hence, from the point of view of the

Markov chain induced by Qe, a missing data point Utx
i means

that at the time slice t, the Markov chain cannot leave or jump

to trajectory i. It is a natural treatment if one does not want to

make additional assumptions about the trajectories: if there is

at some time instance no data to assess the proximity of two

trajectories, then this time instance does not contribute to

direct jump probabilities inQe between these trajectories.

IV. IS THERE AN e-FREE CONSTRUCTION?

As already noted in Section II (e), the parameter e is in

general artificial, and it is not immediate what are natural

choices for it. Also, one could apply noise that is not

Gaussian. We recall Equation (6), which provides a perturba-

tion expansion21 in e if the dynamics U is a volume-

preserving diffeomorphism

T 	T f xð Þ ¼ f xð Þ þ e

2
P	

DPf xð Þ þ o eð Þ (24)

for f 2 C3ðMÞ. Equation (24) also holds if the noise is not

Gaussian, but has mean zero and covariance matrix I. This

result allows us to extract coherent sets from the eigenfunc-

tions of the dynamic Laplacian, which is an e-free operator.

In Remark 4, we extended this result to the non-volume-

preserving case, where the Laplace operator has to be replaced

by the q-Laplacian Dq ¼ q�1r � ðqrÞ. Can one obtain a

purely data-based e-free construction that mimics the

dynamic Laplacian? Remark 4 readily suggests to take

lime!0
1
e
Qe � IÞ
�

. Note, however, that e 7!keðx; yÞ is for x 6¼ y

an infinitely smooth function, with its derivatives of any order

being zero at e ¼ 0. This renders the e-derivatives of Qe of

any order also zero. This holds true if the kernel base function

h in (7) is replaced by any compactly supported function.

It seems like something went wrong here. As it turns

out, we cannot exchange the limits m ! 1 and e ! 0.

Lemma 1 (ii) already indicates this: the Oðe�d=4m�1=2Þ esti-
mate diverges as e ! 0 for finite m. One can mimic (24) by

finite data, but statements like Qe ¼ Iþ eLe þOðe2Þ only

hold for e > e(m), where e(m) ! 0 as m ! 1.

So far, we chose the exponential kernel base function

hðxÞ ¼ cr expð�xÞ1x
r for our computations, since it gives
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rise to explicit diffusion operators (see Lemma S.1 in the

supplementary material). It turns out this choice is not neces-

sary for (11), and thus (21), to hold. In Ref. 35, it was shown

that (11) can be established with virtually any kernel base

function h : Rþ ! R, it merely has to satisfy some mild

conditions, including sufficient smoothness, boundedness,

and having a compact support. Observe now that the choice

hðxÞ ¼ x�a=2 with a > 0 would lead to keðx; yÞ ¼ ea=2

kx� yk�a
, and when we compute Pe,a with this kernel the e

a=2

factor cancels due to the row normalization in (8), apparently

leading to Pe,a being e-independent. But hðxÞ ¼ x�a=2 is nei-

ther bounded nor compact, and hence we must introduce cutoff

and saturation values, i.e., hðxÞ ¼ minfhmax; x
�a=21x
rg (actu-

ally, a mollified version of this, such that h 2 C2ðRþÞ). This
reintroduces the e-dependence of Pe,a via

Pe;aði; jÞ 6¼ 0 () kxi � xjk2 
 er ;

which essentially means that we trade in the “noise variance”

parameter e for a “proximity” parameter er. Due to computa-

tional reasons, one introduces such a cutoff parameter in

practice anyway, since a large data set would render manipu-

lation with fully occupied matrices impossible. But the mes-

sage here is that such a parameter is actually necessary for

mathematical reasons: in order for e�1ðPe;a � IÞ to converge

to the scaled Laplace operator, as in (11), the proximity

parameter must be scaled to 0 as m ! 1, such that

medþ4= logm ! 1, cf. Theorem 3 in Ref. 35.

Remark 6: In contrast to our approach (first compute a

graph Laplacian for every time slice, then perform temporal

averaging), the approach in Ref. 25 computes a dynamical

distance rij in R
dT by performing a temporal average of the

Euclidean distance first. Using the inverse dynamical distan-

ces r�1
ij as weights, they construct a single graph Laplacian

and perform spectral clustering with it. These weights would

correspond to a kernel base function hðxÞ ¼ x�1=2 in our case

(note that we insert the squared Euclidean distances into h).

Their method uses a cutoff parameter as well. The main dif-

ference to our method is that they perform time-averaging

before setting up the graph Laplacian, and these two opera-

tions do not commute. At first glance, the cost for computing

the m2 distances in R
dT required for the method in Ref. 25 is

exactly equal to the cost of computing the Tm2 distances in

R
d that we require. However, for modest values of d we can

use kd-trees to solve the e-nearest neighbour problem much

more efficiently, and this is not possible in Ref. 25 since RdT

is too high-dimensional. Thus in practice, our method will be

significantly cheaper for modest values of d.

Froyland and Padberg-Gehle24 used a fuzzy c-means

clustering method on the dynamical distances directly.

Hereby, their dynamical distances are squared Euclidean dis-

tances between the trajectories embedded into the high-

dimensional space RdT , where d is the data dimension and T

is the number of time slices.

V. NUMERICAL EXAMPLES

Most of the calculations in this section can be

reproduced with the interactive R application available at

https://github.com/ralfbanisch/shiny-diffusion-maps, which

includes many of the datasets we discuss.

A. Double gyre flow

We consider the non-autonomous system34

_x ¼ �pA sin pf t; xð Þð Þcos pyð Þ
_y ¼ pA cos pf t; xð Þð Þsin pyð Þ

df

dx
t; xð Þ;

(25)

where f ðt; xÞ ¼ a sinðxtÞx2 þ ð1� 2a sinðxtÞÞx. We fix the

parameter values A ¼ 0.25, a ¼ 0.25, and x ¼ 2p. The sys-

tem preserves the Lebesgue measure on X ¼ ½0; 2� � ½0; 1�.
Equation (25) describes two counter-rotating gyres next to

each other (the left one rotates clockwise), with the vertical

boundary between the gyres oscillating periodically. The

period of revolution of the gyres varies with the distance

from the “center,” and is, on average, about 5 time units.

First, we consider a data-rich case. We simulate 20 000

trajectories, with initial states from a 200 � 100 grid of X,

with position information obtained every 0.1 time instances

from initial time 0 to final time 20. Thus, d ¼ 2, m ¼ 20 000,

and T ¼ 201.

We construct the space-time diffusion matrix ~Qe for var-

ious values of e and show the dominant spectrum of Le ¼
e�1ð ~Qe � IÞ in Figure 4.

We can identify a gap after three eigenvalues and expect

to find K ¼ 3 coherent sets. Extracting three clusters yields

for every e the coherent sets shown in Figure 5.

We observe an interesting “bifurcation” in the 2-clustering

of the 2nd eigenvector N2, when decreasing e. Figure 6 shows

the eigenvectors and corresponding 2-clusterings for e ¼ 0.004

and e ¼ 0.0002.

For the smaller diffusion value, one of the gyres gets

separated from the rest of phase space to yield the most

coherent splitting. For the larger diffusion, however, the

separation is along the stable manifold of the hyperbolic

periodic orbit on the {y ¼ 0} boundary of X. This latter case

has been observed on different occasions both with transfer

operator based methods and Lagrangian drifter-based techni-

ques.24,34 The transition between the clusters for changing e

FIG. 4. Scaled eigenvalues of the space-time diffusion matrix.
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has been reported for almost invariant sets in Ref. 34, p. 199.

The reason for this bifurcation is the following. If no diffusion

is present, the central parts of the two gyres (from now on

“gyre cores”) are regular regions of the flow (invariant tori of

the time-1 flow map, cf. Ref. 34, Figure 9.1), and hence they

are perfectly coherent. Meanwhile, convective transport

between the regions {x 
 1} and {x � 1} occurs along the

unstable manifold of the periodic orbit on {y ¼ 1}, which,

close to {y ¼ 0}, meanders back and forth between the two

regions. Thus, if convective transport dominates diffusion, the

gyre cores are the most coherent sets. However, if we increase

diffusion, trajectories can leave the gyre cores. Note that there

is also diffusive transport across the separatrix {x ¼ 1}, but it

is less than transport across the gyre core boundaries, because

these latter boundaries are longer than the separatrix (this we

can see with the naked eye). Hence, if e is large enough that

diffusive transport dominates convective transport, the “left-

right” separation of X reveals the most coherent sets. Of

course, if diffusion is that large, there is less determinism in

the fate of the single trajectories. A hard clustering of the

complete state space might not be sensible, and a soft cluster-

ing shall be used instead.24 We remark that for, e.g., metasta-

bility analysis of molecular dynamics, where diffusion plays a

decisive role, the concept of “soft membership” in dynamical

coarse graining is well established.53

While the computational cost of Galerkin projection

methods26,34 decreases with decreasing number of basis

functions (which, in general leads to increased numerical

diffusion), the computational effort of our method decreases

with decreasing e, since less points are Oð ffiffi
e

p Þ-close to each

other, and this sparsifies Qe. While for e ¼ 0.004 around

11% of the entries of ~Qe are nonzero, for e ¼ 0.0002 the

fraction of nonzeros is 0.6%.

Looking for additional coherent sets, we cluster the

eigenvector data into 4 clusters, shown in Figure 7. In the

large-diffusion case, we find the gyre cores along with the

left-right separation according to the stable manifold as

coherent sets. In the small-diffusion case, we find further

subdivision of the regular region. The interested reader may

compare this result with that in Ref. 54.

FIG. 5. (a) Result of 3-clustering the double gyre trajectory data, shown at initial time (t ¼ 0; 1st time slice). (b) The same clustering half a period before final

time (t ¼ 19.5; 196th time slice). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4971788.1]

FIG. 6. (a) Second eigenfunction N2 of ~Qe for e ¼ 0.0002 at initial time t ¼ 0. (b) N2 for e ¼ 0.004 (right) at initial time. (c) Corresponding 2-clustering for e

¼ 0.0002. (d) The clustering for e ¼ 0.004. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4971788.2][URL: http://dx.doi.org/10.1063/1.4971788.3]
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We turn now to a sparse, incomplete data case; cf also

Ref. 24. We take our previous data set, and pick m ¼ 500 tra-

jectories randomly, and discard the rest. Then, we destroy

80% of the remaining data, by setting randomly (both in

time and space) entries to NaN (“Not a Number” in Matlab).

To balance the sparsified neighborhoods due to the loss of

data, we set e ¼ 0.01. Then, we assemble the space-time dif-

fusion matrix and carry out the clustering of its eigenvectors

for 2 and 3 clusters, respectively. The results are shown in

Figure 8.

There, the original 2- and 3-clusterings in the large dif-

fusion case are overlayed by the clustering of the sparse

incomplete data. We observe an excellent agreement; note

that in some cases even the filaments of the one cluster

reaching well into the other are correctly identified.

B. Bickley jet

We consider a perturbed Bickley jet as described in Ref.

4. This is an idealized zonal jet approximation in a band

around a fixed latitude, assuming incompressibility, on

which three traveling Rossby waves are superimposed. The

dynamics is given by ð _x; _yÞ ¼ ð� @W
@y ;

@W
@x Þ, with stream func-

tion Wðt; x; yÞ ¼ �U0Ltanhðy=LÞ þ U0L sech
2ðy=LÞP3

n¼1 An

cos ðknðx� cntÞÞ. The constants are chosen as in Section 4 in

Ref. 4, the length unit is Mm (1Mm ¼ 106m), the time unit

is days. In particular, we set kn ¼ 2 n/re with re ¼ 6.371, U0

¼ 5.414, and L ¼ 1.77. The phase speeds cn of the Rossby

waves are c1 ¼ 0.1446U0, c2 ¼ 0.2053U0, c3 ¼ 0.4561U0,

their amplitudes A1 ¼ 0.075, A2 ¼ 0.4, and A3 ¼ 0.3. The

system is usually considered on a state space which is peri-

odic in the x coordinate with period pre; we will, however,

not make any use of this knowledge in our computations.

The Bickley jet has been analysed with the graph clus-

tering method in Ref. 25, but with different Rossby

amplitudes. We summarize the results of our method for the

parameters used in Ref. 25 in the supplementary material.

We advect m ¼ 12 000 particles with initial conditions at

t0 ¼ 0 on a uniform grid inside the domain [0, 20] � [�3, 3].

We save the positions of the particles at the T ¼ 401 time

frames It ¼ {0, 0.1,…, 40}, during which each particle traver-

ses the cylinder 5 times. With these data as input, we com-

pute Qe according to (19). The dominant spectrum of

Le ¼ e�1ðQe � IÞ for different values of e is shown in Figure 9
on the left. The kn for n 
 9 are stable for 0.01 
 e 
 0.05. We

choose e ¼ 0.02, yielding a sparsity of 4.5%. The unifying fea-

tures of the spectra are large spectral gaps after the 2nd, 3rd,

and 9th eigenvalue, which indicates that clusterings with K ¼
2, 3 or 9 are all possible. The eigenfunctions N2, N3, and N4 are

shown in Figure 10 on the right at time t ¼ 20. Clearly, N2 and

N3 pick out the meandering jet stream region in the middle,

which constitutes the strongest dynamical boundary in this sys-

tem, and the six vortices. N4 distinguishes between two of the

six vortices, and {N5,…, N9} distinguish between the others.

The clustering for K ¼ 9 is shown in Figure 10 on the

left at times t ¼ 5, t ¼ 20, and t ¼ 35. The long and narrow

cluster in the jet stream region stays perfectly coherent for

the whole time interval, while the six clusters in the vortex

region lose some mass. This is in perfect agreement with the

eigenvalue structure in Figure 9. For K ¼ 3, the six clusters

in the vortex region merge with the corresponding back-

ground cluster. A movie showing the full time evolution can

be found in the supplementary material. In Figure 9 on the

right, the m ¼ 12 000 trajectories are embedded as points in

span{N2, N4, N5} and coloured according to the clustering in

Figure 10. This embedding highlights the connectivity struc-

ture of the clusters.

Note that we only use the Euclidean metric as input; no

information about the global cylindrical geometry of the

state space is given. The fact that our method extracts the jet

stream region clearly shows that it learns the cylindrical

FIG. 7. Result of 4-clustering the dou-

ble gyre trajectory data, shown at ini-

tial time (t ¼ 0; 1st time slice). Left: e

¼ 0.0005, right: e ¼ 0.004.

FIG. 8. Results for the sparse incomplete data set, compared with the results of the full data case from before. In the sparse case, 97.5% of the previous trajec-

tories are discarded, and 80% of the remaining data are destroyed. The sparse incomplete data clusters are represented by the colors cyan and magenta (2-clus-

tering, left figure), and cyan, magenta, and orange (3-clustering, right figure), respectively.

035804-11 R. Banisch and P. Koltai Chaos 27, 035804 (2017)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-004791
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-004791


geometry and highlights dynamical features that are encoded

in the time-ordering of the data. A purely geometrical, heu-

ristic method based on the Euclidean metric alone will

always struggle to identify the long, narrow, and meandering

clusters that we find in the data.

C. Ocean drifter data set

To test our method on real world data, we consider a

dataset of ocean drifters from the Global Ocean Drifter

Program available at AOML/NOAA Drifter Data Assembly

Center (http://www.aoml.noaa.gov/envids/gld/). We focus

on the years 2005–2009 and restrict to those drifters that

have a minimum lifespan of one year within this timespan.

We record the position of these 2267 drifters every month,

i.e., our trajectories have 60 time frames. This is the same

dataset that has been studied in Ref. 24.

The drifter data are sparse: The average lifetime of a

drifter is only 23 months, and there are also gaps in observa-

tions where a drifter location failed to be recorded. On aver-

age, only 38% of the drifters are available at any given time

instant. The dataset is also extremely sparse spatially, with

only 2267 drifters covering the global ocean, and it serves

therefore as a good test case for our method. Since the

drifters are located on the Earth surface, it is natural to use a

metric adapted to the sphere to compute distances between

them, such as the cosine distance used in Ref. 24, or the

angular distance. However, we want to emphasize here that

no information about the spherical geometry of the state

space is necessary, so we simply consider the drifters as data

points in R
3 and take the Euclidean metric in R

3. Hereby,

we scale all distances such that the radius of the Earth is

equal to one. Results for all three distances are very similar.

To set e, we compute Qe for a range of values for e, and

the result is shown in Figure 11 on the left. Because the data

are so sparse, the spectra show some variation with changing

e. For 0.05 
 e 
 0.2, they are reasonably close, indicating

an optimal balance between the variance and bias terms in

(21). We choose e ¼ 0.1, which leads to a sparsity of Qe of

18%. There is no clear spectral gap in the data, so we choose

K ¼ 5, as did the authors in Ref. 24. The resulting clusters

are shown in Figure 12. To display as much information as

possible, we divide the full time span into the four time inter-

vals Jan 2005–Mar 2006, Apr 2006–Jun 2007, Jul 2007–Sep

2008, and Oct 2008–Dec 2009. For every time interval, we

plot all drifter locations in a single plot and color-code time

in each of the plots by color saturation (the darker the color,

the “later” the drifter location). A movie showing all 60

frames can be found in the supplementary material.

The five clusters we find may be described broadly as

the Northern Pacific, the Southern Pacific, the Northern

Atlantic, the Southern Atlantic together with the Indian

Ocean, and the Arctic Ocean. Boundaries between clusters

are in locations where continents and islands form bottle-

necks (for example, the boundary between the green and pur-

ple cluster is a line between Great Britain and Iceland) and at

the equator. In Figure 11 on the right, we show the embed-

ding of the 2267 drifters produced by N2 and N3. We see that

N2 separates the Arctic and Northern Atlantic from the rest,

while N3 distinguishes between the Northern Pacific, the

Southern Pacific, and the Southern Atlantic/Indian Ocean.

We can also infer connectivity patterns from this plot. Note

that there is no connection between the red, the yellow, and

the purple clusters, showing that none of the drifters passed

trough the Bering Strait and the Indonesian Archipelago,

respectively. A few isolated data points hint at a possible

FIG. 10. (a) Bickley jet, clusters at

times t ¼ 5, t ¼ 20, and t ¼ 35, for K

¼ 9. (b) Eigenfunctions N2, N3, and N4

at t ¼ 20. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4971788.4]

FIG. 9. Bickley jet, eigenvalues (left)

and embedding using the eigenfunc-

tions N2, N4 and N5 (right).
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connection between the blue and green clusters; this could

be due to the vicinity of drifters across the Panama Strait.

The main difference to the result of Froyland and

Padberg-Gehle24 is that we do not separate the Indian Ocean

from the Southern Atlantic, but instead separate the Arctic

from the Northern Atlantic. A possible explanation for this is

that fuzzy clustering, used by them, has a tendency to pro-

duce clusters of similar size, and although this is equally true

for the k-means algorithm we use, we measure size in terms

of the geometry given by the diffusion coordinates N1,…,

NK. As a result, we do produce clusters of different sizes as

long as their dynamical separation is strong.

We note that the Southern Atlantic, the Southern

Pacific, and the Indian Ocean are dynamically well con-

nected through the Antarctic Circumpolar Current; this can

be seen by the substantial overlap between the blue and yel-

low clusters close to the Antarctic. As a result, drifters in this

region are difficult to classify. By contrast, the Arctic is well

separated from the Northern Atlantic, and the Arctic drifters

are actually only available for the last 30 of the 60 months.

D. The ABC-flow

As a last, three-dimensional example, we consider the

steady Arnold–Beltrami–Childress flow (short: ABC flow),55

generated by the ODE

_x ¼ A sinðzÞ þ C cosðyÞ
_y ¼ B sinðxÞ þ A cosðzÞ
_z ¼ C sinðyÞ þ B cosðxÞ;

on X ¼ ½0; 2p�3 (with periodic boundary conditions), with

the “usual” set of parameters, A ¼
ffiffiffi
3

p
; B ¼

ffiffiffi

2
p

, and C ¼ 1.

This autonomous system with this set of parameters yields

six three-dimensional vortices, which are invariant under the

dynamics.19,56,57 Thus, they are also coherent sets. The tra-

jectory data we use consist of initial states building a 40 �
40 � 40 uniform grid of X, integrated on a time window of

length 40, and sampled uniformly in time every 0.2 time

instances. Thus, d ¼ 3, m ¼ 64 000, and T ¼ 201.

We build the space-time diffusion map transition

matrix ~Qe for e ¼ 0.02 and extract 7 clusters from its six

FIG. 11. Ocean drifter data. Left:

Eigenvalues for different e. Right:

Embedding using the eigenfunctions

N2 and N3 for e ¼ 0.1 with coloring

according to the clusters Figure 12

(red: Northern Pacific, blue: Southern

Pacific, Yellow: Southern Atlantic/

Indian Ocean, green: Northern

Atlantic, and purple: Arctic).

FIG. 12. Ocean drifter data, clusters. Color saturation is proportional to time in the respective 15 month time window. (a) (Top left) Jan 2005–Mar 2006. (b)

(Top right) Apr 2006–Jun 2007. (c) (Bottom left) Jul 2007–Sep 2008. (d) (Bottom right) Oct 2008–Dec 2009. (Multimedia view) [URL: http://dx.doi.org/

10.1063/1.4971788.5]
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subdominant eigenvectors. The spectrum of ~Qe does not

show a clear spectral gap after six eigenvalues for any values

of e. This is because on the considered time interval, parts of

the respective vortices are also coherent. Coherent sets in

the ABC flow have been studied before,25 with very similar

results.

Figure 13 shows the clusters that indicate the six invari-

ant vortices. Note that the vortices in this autonomous sys-

tem do not move in space; hence, the clusters look the same

at every time slice. The right-hand side of Figure 13 shows

the boundaries of the clusters computed by using the data

points from all time slices.

Figure 14 shows the embedding of the data by three dif-

ferent eigenvectors, respectively. Note that the star-shaped

geometry indicates that transport between the vortices can only

occur through the “transition region” between the vortices.

This was similar in the Bickley jet example, but with more

than one single transition region. However, for the ocean

drifters, the topology of continents and ocean basins resulted in

a quite different dynamical connectivity pattern; cf Figure 11.

VI. CONCLUSION

In this article, we provided a data-driven method for the

detection of coherent sets. Our main result is Theorem 3,

which establishes a connection between our method and the

“forward-diffuse-backward” transfer operator T 	T studied

within the analytical framework of coherence.27 This allows

us to give meaning to the dominant eigenfunctions Ni of Qe,

which represent our main computational output: They are

approximations of the respective eigenfunctions of a time-

averaged version of T 	T . We use the Ni in two ways: (i) To

detect coherent sets via spectral clustering and (ii) as

“dynamical coordinates,” which can be used to reveal the

intrinsic low-dimensional organization of the trajectory data,

such as the connectivity structure between clusters.

Coherent sets do not have to have crisp boundaries, e.g.,

in the form of some transport barriers. One can enlarge or

reduce these sets, by potentially taking small fluctuations in

the amount of transport between the set and its surrounding

into account. Moreover, in the case of sparse data, or where

the underlying dynamics has a stochastic component, “hard”

assignment of trajectories to coherent sets may not even

make sense. In these situations, a “soft,” fuzzy assignment

seems to be more appropriate.24 In future work on non-

deterministic systems, we shall analyze this thoroughly.

We based our method on diffusion maps, but we expect

that the techniques presented herein can be used to analyze

other methods based on the construction of similarity graphs

between trajectories in a similar manner. However, we found

that using diffusion maps has several important advantages:

• The diffusion kernel function hðxÞ ¼ expð�xÞ1x
r is

numerically very well behaved.
• We need very little a priori knowledge about the system

at hand. In fact, we only need a distance function k � k

FIG. 13. Left: the six coherent vortices extracted by a 7-clustering of the eigenvectors, using the data points at final time. The seventh cluster, the region

between the vortices, is not shown. Right: the boundary of the same six coherent data point sets, computed by Matlab’s boundary function.

FIG. 14. Eigenvector-embedding of

the data into R
3 (left: N2, N3, and N4;

right: N2, N5, and N6), with colors

identical to those of the clusters in

Figure 13.
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which is a good approximation of the actual intrinsic dis-

tance locally. No knowledge about invariant measures, the

global geometry of the state space, or a good set of basis

functions is assumed. In all of our numerical examples, we

just used the Euclidean distance, even though the state

spaces considered included spherical and toroidal

geometries.
• Only a single scale parameter e needs to be tuned, and we

provided criteria for doing so.

These properties indicate that space-time diffusion maps

are well suited as an analysis tool for trajectory data gener-

ated from a “black box” dynamical system. Our numerical

experiments suggest robust results even for very sparse and

incomplete data.

There are further three possible directions to extend this

research. First, one could consider stochastic dynamics. The

transfer operator framework used here incorporates this case

but the pointwise assertions of Theorem 3 will have to be

replaced by suitable local averages due to the noise in the

dynamics. Second, one could consider noisy, incomplete,

and even corrupted observations. For example, the data

might be of the form yt ¼ Oxt þ gt, where xt is the true state

of the system, O is some linear operator, and gt is additive

noise. There is evidence that diffusion maps are robust under

additive noise,28 but if observations are incomplete then

Euclidean distances between observations will not represent

distances between the underlying states even locally, and

one has to resort to other techniques. Third, one could ana-

lyze the time-scales on which coherent sets stay coherent by

considering the variation of the eigenvalues of the spacetime

diffusion map matrix Qe in dependence of the time interval

in consideration.7

SUPPLEMENTARY MATERIAL

See supplementary material for the proofs of Lemma 1

and Theorem 3, matlab pseudocode for the computation of

Qe, and results for the Bickley jet with the parameters used

in Ref. 25.
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