
Understanding the Impact of Denial of Service
Attacks on Virtual Machines

Ryan Shea
Simon Fraser University

Burnaby, Canada
Email: ryan shea@sfu.ca

Jiangchuan Liu
Simon Fraser University

Burnaby, Canada
Email: jcliu@cs.sfu.ca

Abstract—Virtualization, which allows multiple Virtual Ma-
chines (VMs) to reside on a single physical machine, has become
an indispensable technology for today’s IT infrastructure. It
is known that the overhead for virtualization affects system
performance; yet it remains largely unknown whether VMs are
more vulnerable to networked Denial of Service (DoS) attacks
than conventional physical machines. A clear understanding here
is obviously critical to such networked virtualization system as
cloud computing platforms.

In this paper, we present an initial study on the performance
of modern virtualization solutions under DoS attacks. We experi-
ment with the full spectrum of modern virtualization techniques,
from paravirtualization, hardware virtualization, to container
virtualization, with a comprehensive set of benchmarks. Our
results reveal severe vulnerability of modern virtualization: even
with relatively light attacks, the file system and memory access
performance of VMs degrades at a much higher rate than their
non-virtualized counterparts, and this is particularly true for
hypervisor-based solutions. We further examine the root causes,
with the goal of enhancing the robustness and security of these
virtualization systems. Inspired by the findings, we implement a
practical modification to the VirtIO drivers in the Linux KVM
package, which effectively mitigates the overhead of a DoS attack
by up to 40%.

I. INTRODUCTION

Virtualization has recently become an indispensable tech-
nology in terms of both academic and industrial applications.
At its core, computer virtualization allows multiple Virtual
Machines (VMs) to reside on a single physical machine. The
applications of this exciting technology are both interesting
and far reaching. A recent survey showed that 90% of or-
ganizations use Virtual Machines in some capacity in their
IT infrastructures [1]. A further 34% of organizations use
virtualization to meet the majority of their server needs [2].
Organizations were quick to uptake this technology due to
promises of increased utilization of resources, increased server
consolidation, and decreased costs [3]. Virtualization is also a
prominent technology allowing the long held dream of utility
computing platforms such as cloud computing to become a
reality. One prominent example is the current market leader
in Cloud Computing Amazon EC2, which utilizes the Xen vir-
tualization systems to provide customers with computational
resources.

With any new technology there are downsides and tradeoffs;
virtualization is no exception to this rule. With the ability
to run multiple different VMs and even different operating
systems at the same time comes the cost of considerable
overhead. This overhead effects all components of the system;
however it has been noted to be especially high in terms
of network performance [4]. Given the inherent overhead of
networking on virtualized systems, it is a surprise to find that

978-1-4673-1298-1/12/$31.00 c�2012 IEEE

very little research has been done to quantify the effect of
networked Denial of Service (DoS) attacks on these systems.

In this paper, we explore the performance of modern
computer virtualization systems under a TCP based Denial
Of Service (DoS) attacks. We devise a representative set
of experiments to examine the performance of some typical
virtualization techniques under TCP-based DoS attacks. By
comparing the performance of virtualized and non-virtualized
systems under a TCP based DoS attack we show that virtual-
ized systems are much more susceptible to networked DoS
attacks than their non-virtualized counter parts. Even with
relatively light attacks, the file system and memory access
performance of hypervisor-based virtualization degrades at
a much higher rate than their non-virtualized counterparts.
Further, while under a DoS attack we show a web server
hosted in a virtualized system can serve 23% fewer request
per second, while our bare-metal server hosted in the same
hardware degrades by only 8%. These observations suggest
that the state-of-the-art virtualization solutions need to be
substantially revisited in this perspective. We further examine
the root causes, with the goal of enhancing the robustness
and security of these virtualization systems. With the data
gained from our experiments, we show that with a few clever
modifications hypervisor-based virtualization systems can be
made much more resistant to networked DoS attacks. We
implement our modifications into a real-world virtualization
system and show we can mitigate the overhead of a DoS attack
by up to 40%.

The rest of the paper is organized as follows. In Section II,
we present an overview of modern virtualization solutions. In
Section III, we overview the DoS attack and its implications
regarding virtual machines. A series of related works are
discussed in Section IV, followed by experimental architecture
and benchmark settings in Sections V and VI, respectively.
We then present and discuss the results in Section VII. In
Section VIII, we use modern performance profiling techniques
to discover the underlying causes of performance degradation.
In Section IX we use the information gained from our profiling
to harden KVM against DoS attacks. Finally in Section X we
further discuss our findings and conclude the paper.

II. OVERVIEW OF VIRTUALIZATION

To thoroughly analyze and compare virtualization tech-
niques under DoS attacks, we need to select representative
samples of virtualization packages, so as to cover the typical
and state-of-the-art solutions. Broadly speaking, all current
virtualization solutions can be classified into three main cate-
gories, which we discuss as follows.

A. Paravirtualization(PVM)
Paravirtualization was one of the first adopted versions of

virtualization and is still widely deployed today. PVM requires
no special hardware to realize virtualization, instead relying on
special kernels and drivers. The kernel will send privileged
system calls and hardware access directly to a hypervisor,
which in turn decides what to do with the request. The use of
special kernels and drivers means a loss of flexibility in terms
of choosing the operating systems. In particular, PVM must
use an OS that can be modified to work with the hypervisor.
Although this does not present a significant problem for such
open-source OSes as Linux, it does create problems with such
proprietary OSes as Microsoft Windows. Yet PVM reduces
the overhead to virtualize privileged operating systems calls,
as special hardware is not needed to intercept them. Typical
PVM solutions include Xen and User Mode Linux.

B. Hardware Virtual Machine (HVM)
HVM is the lowest level of virtualization, which requires

special hardware capabilities to trap privileged calls from guest
domains. It allows a machine to be fully virtualized without
the need for any special operating systems or drivers on the
guest system. The guest simply interacts with hardware drivers
unaware that it is running in a VM and actually communicating
with an emulated interface. Most modern CPUs are built
with HVM capabilities, often called virtualization extensions.
Examples include AMD’s AMD-V and Intel’s VT-X. They
detect if a guest VM tries to make a privileged call to a system
resource, such as sending on the network interface card. The
hardware intercepts this call and sends it to a hypervisor which
decides how to handle the call. This creates great flexibility for
the guest since practically any OS can be run in these VMs. It
has been noticed however that HVMs can also have the highest
virtualization overhead and as such may not always be the best
choice for a particular situation [4][5]. Yet paravirtualization
I/O drivers can alleviate such overhead; one example of a
paravirtualization driver package is the open source VirtIO [6].
Representative Virtualization solutions that are HVM include
VMware Server, KVM, and Virtual-Box.

C. Container Virtualization
Container Virtualization, also know as OS-level virtual-

ization, creates multiple secure containers to run different
applications in. It is based on the intuition that a server
administrator may wish to isolate different applications for
security or performance reasons while maintaining the same
OS across each container. Container virtualization allows a
user to share a single kernel between multiple containers
and have them securely use computer resources with minimal
interference from others containers. It has been shown to
have the lowest overhead among all the existing virtualization
techniques [4]. This superiority however comes at the price of
much less flexibility as compared to other solutions. In short,
the user cannot mix different operating systems, e.g., a Debian
Squeeze and an Open Solaris. Typical container virtualization
implementations include OpenVZ, Linux-VServer and Solaris
Zones.

It is important to note that Hardware Virtualization and
Paravirtualization both use a Hypervisor to interact with the

underlying hardware, whereas Container Virtualization does
not. This distinction is crucial because the hypervisor acting
as a gatekeeper to the underlying hardware generally improves
performance isolation between guests on a host. However
it has been noted that the hypervisor can also introduce
measurable overhead [7].

In our experiments, we chose Xen, KVM and OpenVZ to
be evaluated under DoS attacks. We believe this choice is
representative for the following two reasons. First, they are all
open-source with publicly available documents and with cross-
platform implementations. We can run their packages on the
same platform without changing OS or computer hardware.
This makes a fair comparison possible and the results repro-
ducible. Second, all of them have been widely used in real-
world production environments for server consolidation and
Cloud Computing. As mentioned previously, Xen has been
used heavily to provide Cloud Computing functionality, for
example in Amazon EC2; KVM has been used by Ubuntu
Enterprise Cloud and Eucalyptus Cloud Service [8]; OpenVZ
is a popular choice in offering Virtual Private Server(VPS)
containers to the public.

III. OVERVIEW OF DENIAL OF SERVICE (DOS)
Denial of Service (DoS) attacks are attempts by an non-

legitimate user to degrade or deny resources to legitimate
users. There are many different forms of DoS attacks. In this
paper, we will focus on networked DoS, the most common
threat against modern IT infrastructure. In particular, we
examine the TCP SYN flood attack against a target machine,
which is one of the most common attacks on the Internet today
and is notoriously difficult to filter out before it reaches the end
system. As we will show later, however, that our findings are
indeed general and not simply confined to TCP SYN flood. In
this section, we first give a brief discussion on the TCP SYN
flood attack and its potential threat to virtual machines.

A. TCP SYN Flood
The Transmission Control Protocol (TCP) is one of the

foundations of the global Internet. TCP provides reliable in-
order delivery of whatever data the users wish to send. When
TCP was initially developed, the Internet remained a small
private collection of computers and security issues inherent in
the protocol were of little concern. As such some features of
TCP can be exploited to perform DoS attacks.

The TCP SYN flood is one of the simplest and most com-
mon attacks seen on the Internet. This attack takes advantage
of the amount of resources that have to be allocated by a
server in order to perform a 3-way handshake. An attacker
tries to overload a victim with so many connection requests
that it will not be able to respond to legitimate requests. This
is done through sending many TCP SYN packets to the victim.
The victim allocates buffers for each new TCP connection and
transmits a SYN-ACK in response to the connection request.
The attacker has no intention of opening a connection, so it
does not respond to the SYN-ACK [9]. Flooding based attacks
can also exhaust other resources of the system such as CPU
time.

B. TCP DoS Mitigation Strategy
Many defenses have been proposed to combat the TCP

SYN flood. The simplest is to use a firewall to limit the

number of TCP SYN packets allowed from a single source.
However, many attacks use multiple hosts or employ address
spoofing. The case where multiple hosts are involved in an
attack is often called a Distributed Denial of Service attack
(DDoS). More complex solutions have met with a better level
of success and are usually deployed either in the network
or on the end host. Network-based solutions include firewall
proxies, which only forward the connection request after the
client side ACK is received [9]. In particular Hop Count
filtering, inspects the packet’s TTL field and drops suspected
spoofed packets. It has been reported that this technique can
achieve up to 90% detection rate [10][11]. End point solutions
include SYN cookies and SYN caches, both of which have
been widely deployed. SYN caches work by allocating the
minimum amount of data required when a SYN packet arrives,
only allocating full state when the Client’s ACK arrives [12].
SYN cookies allocate no state at all until the client’s ACK
arrives. To do this, the connection’s states are encoded into
the TCP SYN-ACK packet’s sequence number; on receipt of
the ACK, the state can be recreated based on the ACK’s header
information [13].

Since virtual machines interact with the network through
their virtual interfaces in much the same way that physical
machines interact with the network, many of the considerations
and defenses for DoS attacks mentioned above apply to
virtualized systems. However, it is well known that current
hypervisor-based virtualization can experience high overhead
while using their I/O devices such as the network interface.
Since DoS attacks attempt to exhaust resources on a targeted
server, the stresses on the network interface would amplify the
virtualization overhead and thus become even more effective at
degrading the target. This will be demonstrated by our experi-
mental results, even though such preventive strategies as SYN
cookies and caches have been enabled in our experiments.

IV. RELATED WORKS

There have been many performance analyses performed
on different applications and scenarios in virtualized sys-
tems [14][15][16]. In 2007, researchers from the University
of Michigan and HP conducted a performance evaluation
comparing different virtualization techniques for use in server
consolidation [4]. They compared Xen, a hypervisor-based
paravirtualization technique, and OpenVZ, a container-based
virtualization technique. The results showed that OpenVZ had
better performance and lower overhead than Xen.

Soltesz et al. [7] compared Xen and Linux VServer
in terms of performance and architectural design. Matthews
et al. [17] tested HVM, PVM and Container Virtualization
for performance isolation. They found that HVM has better
performance isolation, followed closely by PVM, and that
container-based solutions provide the least isolation.

Recently, Ostermann et al. [18] conducted a performance
analysis on Amazon EC2 to determine its suitability for high
performance scientific computing. They found that the use
of virtualization can impose significant performance penalties
on many scientific computing applications. The impact of
virtualization on network performance in Amazon EC2 was
evaluated in [19]. It showed that, due to virtualization, users
often experience bandwidth and delay instability.

Fig. 1: Network Setup and Traffic Flow

Despite these pioneer works on quantifying the overhead
and performance of virtualization under various environments,
to our knowledge, the performance of virtualization under
networked DoS attacks remains largely unexplored.

V. EXPERIMENTAL ARCHITECTURE

To evaluate each virtualization technique, we created a small
scale yet representative test network and system in our lab.
We chose to create our custom test system instead of using
rented resources from a cloud provider for several reasons.
The first is that cloud providers such as Amazon EC2 have
specific rules regulating security testing on their systems. To
our knowledge all large cloud providers specifically list DoS
testing as a non-permissible activity. Second, using our own
custom system is the only way to ensure hardware resources
remain constant across several different tests. Finally, no
cloud provider provides its users with direct access to the
Virtual Machine host, making some measurements impossible
to perform. We now give a detailed description of the hardware
and software used in our tests.

A. Physical Hardware and Operating System
We used a modern mid-range PC with an Intel Core 2

Q9500 quad core processor running at 2.83 Ghz. We enabled
Intel VT-X in the bios as it is required for Hardware Virtual
Machines (HVM) support. The PC was equipped with 4 GB
of 1333 MHZ DDR-3 SDRAM and a 320 GB 7200 RPM hard
drive with 16MB cache. The network interface is a 1000 Mb/s
Broadcom Ethernet adapter attached to the PCI-E bus.

The host and the guests all used Debian Squeeze as their
operating system. The kernel version remained constant at
2.6.35-5-amd64 across all tests. Since Xen and OpenVZ re-
quire special kernel patches, we used 2.6.35-5-Xen and 2.6.35-
5-OpenVZ for those tests. In all tests, we use the amd64
version of the kernel and packages.

B. Network Setup
To emulate a DDoS attack against our servers, we employed

the network configuration shown in the Figure 1. The figure
also shows traffic flows for our benchmarks. All machines
on the network are attached directly to a Linksys 1000Mb/s
SOHO switch. The attack emulator has been configured to
have a link rate of only 10Mb/s using the ethtool con-
figuration tool. The client emulator used in our experiments
was a dual core Pentium D PC, which created clients for our
comprehensive benchmarking. The gateway is the default route
for any host outside this directly connected subnet. When

we simulate an attack, the gateway is configured to drop
forwarded packets. Dropping these packets makes it appear as
though they have been forwarded to an external network from
the perspective of the virtual machine host. If the gateway
were not present, many gratuitous ARP requests would have
been created by the virtual machine host, as it searches for
a route to deliver the packets to the external network. Our
choice to place the Client Emulator and Attack Emulator inside
the gateway may seem unintuitive. However this is done for
the following reason: To ensure the accuracy of our tests we
must only allow the DoS attack to degrade the virtual machine
host and not other network components. Also large networks
which perform load-balancing or traffic filtering, often have
different routes for received and transmitted data, making it
not uncommon to find similar network setups in practice.

C. Emulating a Denial Of Service Attack
The DDoS attack simulated for our experiments is the

standard TCP SYN flood. Our choice of this attack was
motivated by the fact that it is one of the most common
DoS attacks seen on the Internet today. It is also notoriously
hard to be filtered out from legitimate traffic. Yet most of our
observations and conclusions are general, not simply confined
to TCP SYN flood. In our experiments, we assume that a
100Mb/s distributed SYN flood is being performed on our
network and we have successfully filtered out 90% of the
attack. A total of 10Mb/s of attack TCP SYN traffic has
bypassed the detection and reached the end host. We believe
this is a reasonable setting as no existing solutions have been
shown to effectively filter out all attack traffic without greatly
effecting legitimate clients [10]. On the end host, we have
enabled the SYN cookies defense and, by default, the Linux
Kernels use the SYN Cache defense.

To generate the actual attack, we used the open source
hping3 tool. The tool allows us to create arbitrary packets
with which to flood a target host. We set hping3 to create
TCP SYN packets and randomly selected the source addresses.
We target an open port on the target machine. In the case of
our synthetic benchmark, it is the SSH port 22 and in our
comprehensive benchmarks, it is Apache2 running on port 80.
The DoS traffic originates from our attack emulator, which
can be seen in Figure 1.

D. Virtualization Setup
As explained earlier, we have chosen Xen, OpenVZ, and

KVM in our experiments for their open-source nature and their
extensive deployment in the real-world. We now describe the
system setup of these virtualization solutions.

1) Xen System Setup: We installed the Xen 4.0 Paravirtu-
alization Hypervisor on our test system following closely the
Debian guide. To configure networking we created a bridged
adapter and attached our primary interface and Xen’s virtual
interfaces to it. Xen virtual machines received an IP address
from the DHCP running on our gateway. For disk interface,
we used Xen’s LVM features as we already had LVM running
on our host machine. To install a base system into the image,
we used the utility xen-tools, which automates the install
procedure. We set the number of virtual CPUs (VCPU) to 4
and the amount of RAM to 2048 MB. The virtual machine
host ran the 2.6.35-5-Xen kernel.

2) OpenVZ System Setup: We installed the OpenVZ
container-based virtualization package from the Debian repos-
itory using its guide. We configured our container using the
Debian Squeeze template. The container was given access to
2048 MB of main memory and complete access to the 4
CPU processing cores. Like the Xen setup, network access
was provided to the container by bridging the container
virtual Ethernet interface to our physical interface. The virtual
machine host ran the 2.6.35-5-OpenVZ kernel.

3) KVM System Setup: KVM is relatively simple to install
since it only requires a kernel module instead of a special
patched kernel. We used KVM version 0.12.5 compiled from
the official source repository. We manually installed an in-
stance of Debian Squeeze from a mounted CD image into the
KVM virtual machine. Once again the virtual machine was
given access to all 4 processor cores as well as 2048 MB
of memory. The disk interface was configured as a flat file
on the physical host’s file system. Networking was configured
once again as a bridge between the virtual machine’s interface
and the system’s physical NIC. To enable the best network
performance, we configured KVM to use the VirtIO network
drivers [6]. Debian kernel 2.6.35-5-amd64 was used in the
virtual machine to stay consistent with the other tests.

4) Non-Virtualized ‘Vanilla‘ System Setup: Finally, as the
baseline for comparison, we had a Vanilla setup with no
virtualization running, i.e., the system has direct access to
the hardware. The same drivers, packages and kernel were
used as in the previous setup. This configuration enabled us
to calculate the minimal amount of performance degradation
that our system can experience.

VI. BENCHMARK SETUP

We have chosen a broad set of synthetic benchmarks and
a single comprehensive benchmark to evaluate the impact
of DoS attacks on different components; specifically CPU,
Network, Memory, and File System performance under normal
and attack conditions.

A. CPU Benchmark

We chose the SysBench CPU test to measure the CPU
performance, which is well known and regularly used for
gauging raw CPU performance.

It continues to calculate prime numbers until a threshold
chosen by the user is reached and the results are presented
as the total time to calculate the primes. We chose to find all
primes less than 100,000 and assigned 4 threads, so that each
of our 4 cores would be involved in the benchmark. We then
recorded the total amount of time it took to find the primes in
the first 100,000 integers.

B. Memory Benchmark

For memory benchmarking, we chose the SysBench mem-
ory bandwidth test. It allocates a segment of either global or
thread local memory and performs read or write operations
on it, outputting the total time taken as well as the memory
bandwidth in MB/s. In our experiments, we assign a single
thread to perform a 20GB read of main memory.

TCP DoS UDP Flood
System 10Mb/s 100Mb/s 10Mb/s 100Mb/s
KVM ˜102% ˜205% ˜64% ˜272%
Xen ˜98% ˜187% ˜46% ˜145%

OpenVZ ˜8% ˜100% ˜1% ˜1%
Vanilla ˜6% ˜90% ˜1% ˜1%

TABLE I: CPU Usage While Under Attack – System Idle

C. File System Benchmark
The file system performance was tested using the SysBench

’fileio’ test, which creates a specified set of files on the disk
and performs read and write operations on them. For our
experiments, we created 2 GB worth of files and performed
random read and write operations on the files. We assign 16
threads each attempting to perform random blocking read or
write operations. The results are given as MB/s.

D. Network Benchmark
To test network performance we use Iperf, which at-

tempts to find the maximum TCP or UDP bandwidth(in Mb/s)
between two network hosts. In our experiments, the client
emulator in our network was chosen as the server and TCP
was used as the protocol. We run each test for the default time
setting of 10 seconds.

E. Comprehensive Benchmark - Web Application
To further understand the overall system performance, we

have devised a comprehensive benchmark based on a simple 2-
tier Web Server and Database. We used the Debian repositories
to install the Apache 2.2 Web Server and the MySQL Server
5.1. To create a web application representative of a real-world
service, we installed the RuBBoS bulletin board benchmark.
We chose the PHP version of the RuBBoS and installed the
necessary Apache extensions for PHP. We then installed the
RuBBoS data into our MySQL database.

Although RuBBoS comes with its own client simulator, we
used the Apache benchmark instead. The latter has been more
commonly used for web server stress testing. Although the
RuBBoS simulator can perform tests specific to RuBBoS, we
only require maximum request rate, which are more straight
forward to extract with the Apache Benchmark.

We ran the Apache Benchmark against the RuBBoS website
in each of the test setups. We simulated 200 clients requesting
the latest forum topics page. By using this page, the web server
must perform a single SQL query and render the PHP page
for each user request. We then used the Apache benchmark
to calculate how long it takes to service 500,000 requests.
Figure 1 shows the network configuration and the traffic flows
during this experiment.

VII. EXPERIMENTAL RESULTS

A. CPU Usage During DoS
We first measure the impact of DoS traffic on CPU usage

while the system is idle. To provide a target for the TCP DoS,
we ran a Secure Shell(SSH) server and configured it to listen
to port 22. For KVM, OpenVZ and Vanilla, the measurements
were performed using the Linux top command. Since Xen
is not compatible with the standard Linux top command, we
used the xentop command to measure the CPU usage. We ran
each system under both 10 Mb/s and 100 Mb/s TCP SYN

floods. We also included the CPU usage from a 10 Mb/s and
100 Mb/s UDP flood. The results are given in Table I.

Under a 10Mb/s TCP DoS, the hypervisors in both KVM
and Xen consume the CPU time of an entire core simply
delivering SYN packets to the VM and returning SYN-ACKs
to the network. OpenVZ and Vanilla, on the other hand, use
only between 6-8% of CPU time on a core to service the
same attack. If we increase the attack rate to 100Mb/s, all
systems increase their CPU usage; however both Xen and
KVM consume nearly half of the systems total CPU resources
simply processing the attack traffic. As we increase the attack
traffic rate, the corresponding increase in CPU usage indicates
that the systems will continue to degrade as it is exposed to
higher attack rates.

Though our focus is on TCP SYN attack, we have also
devised a UDP flood to determine if TCP was the culprit for
the massive CPU usage experienced by the virtual machines.
To create the UDP flood, we once again used hping3 with
10Mb/s and 100Mb/s of UDP traffic targeted the system. To
further simplify the test we did not randomize the source
address and the packets contained no data. By not randomizing
the source address we can determine if it is the cause of the
CPU overhead. As can be seen from Table I, the high CPU
usage is present for both KVM and Xen in the UDP case
as well, suggesting that this happens whenever the hypervisor
experiences a data stream that contains small packets at a high
rate. We also tested ICMP and plain IP packets and found that
any small packets sent at a high rate reaching the end system
leads to a similar phenomena. Other researchers have taken
notice of this overhead during processing packets and have
managed to reduce the CPU usage by 29% [20]. Even with
this reduction, however, DoS attacks against hypervisor-based
virtual machines still generate substantially more CPU usage
than their counterparts.

Next, we benchmark our systems under a 10Mb/s TCP DoS
to quantify the performance degradation experienced by the
systems.

B. Synthetic Benchmarks Results
For each test, we ran each benchmark 4 times and calculated

the mean. To ensure our results are statistically significant, we
also calculated the standard deviation for each measurement
and display it as error bars on our graphs. To quantify per-
formance degradation, we calculate percentage change from
baseline to attack conditions.

1) Result CPU Benchmark: The SysBench Prime bench-
mark is given in Figure 2a and a lower completion time is
better in this case. We can see that in the non DoS case all
virtualization techniques perform within 5% of each other.
This is not surprising, since VM CPU scheduling is quite
similar to OS process scheduling.

However we can see from the CPU benchmark that even
a small 10Mb/s DoS has a significant effect on the CPU
performance of both KVM and Xen. KVM suffers from a
massive 35.8% increase in completion time; Xen also suffers a
large increase at 31.6%. For both Xen and KVM this increase
is due to the amount of time the hypervisor spends on the
CPU servicing the attack packets. OpenVZ and Vanilla fared
much better, both with a small but still measurable amount of
performance degradation of 7.5% and 5.5%, respectively.

 0

 10

 20

 30

 40

 50

 60

 70

KVM
Xen

O
penVZ

Vanilla

C
o
m

p
le

tio
n
 T

im
e
(S

e
co

n
d
s)

Baseline
DoS

(a) CPU Prime

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

KVM
Xen

O
penVZ

Vanilla

M
e
m

o
ry

 R
e
a
d
 B

a
n
d
w

id
th

(M
B

/s
) Baseline

DoS

(b) Memory Read

 0

 1

 2

 3

 4

 5

 6

KVM
Xen

O
penVZ

Vanilla

F
ile

 S
ys

te
m

 B
a
n
d
w

id
th

(M
B

/s
) Baseline

DoS

(c) File I/O Random Access

 0

 100

 200

 300

 400

 500

 600

 700

 800

KVM
Xen

O
penVZ

Vanilla

N
e
tw

o
rk

 B
a
n
d
w

id
th

(M
b
/s

)

Baseline
DoS

(d) Iperf Network

Fig. 2: Synthetic CPU, Memory, File System and Iperf Benchmark Result

2) Result Memory Benchmark: The memory benchmark
results shown in Figure 2b are intriguing, as there is a wide
variation in the base line performance. In this particular
benchmark, Xen fared by far the worst, being over 12x slower
than our Vanilla system setup. KVM fared much better than
Xen but still only managed less than half of the memory read
speed of Vanilla or OpenVZ.

Under the TCP DoS, all setups showed a measurable
slowdown in performance, with Vanilla, OpenVZ and Xen
having all approximately 7% performance degradation. KVM,
on the other hand, experienced a slowdown of 19.4%. In KVM,
the hypervisor must map a memory access request from the
guests memory address to the corresponding physical address
on the host machine. We conjecture that the hypervisor is busy
servicing I/O request created by the DoS packets. With this,
the memory requests must wait longer to be mapped to the
correct physical address. This delay manifests itself in the
large performance degradation experienced by KVM in this
test.

3) Results I/O benchmark: The synthetic benchmark results
for the SysBench I/O test are given in Figure 2c. Although
there is a significant difference in base line performances
in this test, it is hard to make a direct comparison, due
to the nature of disk benchmarking. For example, Xen and
OpenVZ showed significantly faster performance than the
others tested. However, the physical location on the disk where
the 2 GB of files are allocated can make a large difference in
bandwidth and seek time. For this reasons, we will refrain from
comparing system’s baseline performance on this benchmark
and instead focus on the performance loss during a DoS.

Under the DoS conditions, OpenVZ and Vanilla degradation
was within the deviation, indicating very little degradation.
On the other hand, both KVM and Xen lose considerable
performance. Xen suffered from 18.0% lower random access
to its file system. KVM lost the most performance, which is
24.5%. We believe that Xen and KVM’s performance loss is
likely due to the hypervisor delaying disk access and instead
favoring to deliver attack packets to the virtual machine.

4) Result Network Benchmark: The Iperf results are given
in Figure 2d. The Iperf benchmark measures maximum trans-
fer rate between two hosts. The maximum transfer rate base
line is almost identical for all systems.

Under TCP DoS attack, the IPerf results showed no sig-
nificant drop in the throughput of Xen, OpenVZ or Vanilla
systems. KVM however loses a massive 42.2% of performance
for a total of 272 Mb/s less throughput. This is somewhat
surprising considering the attack only creates 10Mb/s of TCP
SYN packets, which can stimulate the KVM VM to produce
at most 10Mb/s of SYN-ACK packets. This means KVM is
experiencing a total of 20Mb/s extra traffic over the baseline.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

KVM
Xen

O
penVZ

Vanilla

R
e
q
u
e
st

s
S

e
rv

ic
e
d
 P

e
r

S
e
co

n
d Baseline

DoS

Fig. 3: Web Application Benchmark Result

The loss of bandwidth however, is several times this extra
traffic; in section IX we will show this phenomena is related
to a high number of interrupt requests.

C. Comprehensive Benchmark Results - Web Application
From the previous synthetic benchmarks, it is clear that

hypervisor-based virtualization techniques are more suscepti-
ble to performance degradation under DoS attacks. Although
synthetic benchmarks are excellent at pinpointing performance
bottlenecks, we further examine a more complex scenario to
gauge the effect these attacks have on a real-world web system.

To perform our benchmark we first find the maximum
throughput of each system. We express the maximum through-
put as maximum number of requests serviced per second,
which can be seen in Figure 3. OpenVZ suffers a measurable
9.3% decrease in throughput when compared to Vanilla. How-
ever both KVM and Xen have significantly lower performance
in the base line than both OpenVZ and Vanilla. Xen can
service 41.2% fewer requests per second. KVM is the slowest,
servicing 48.0% fewer request per second than our non-
virtualized Vanilla system.

As expected, under DoS conditions, all systems experienced
measurable performance degradation. Vanilla was the least
susceptible falling by 7.2%, followed by OpenVZ at 11.4%.
Xen suffered a 20.0% performance degradation and KVM lost
23.4%. When the systems are under attack, KVM and Xen
provided nearly 50% less throughput than the Vanilla host
provided while using the same amount of system resources.

VIII. A CLOSER LOOK: CAUSES OF DEGRADATION

In order to better understand the causes of the performance
degradation that we have found, we take a closer look at these
hypervisor-based virtualization systems. To accomplish this,
we use hardware performance counters to measure interrupt
requests (IRQs), processor cache activity, and CPU context
switch events. Our goal is to compare the frequency of
these events on virtualized and non-virtualized systems under
denial of service attacks. With this information, we made
modifications to the virtualization software in order to improve
performance of the virtualized system under a DoS attack.

Vanilla KVM
LLC References 206,835,021 1,292,316,729

LLC Misses 11,486,718 36,060,083
Context Switches 956 708,335

IRQs/Second 8,500 37,000
TABLE II: Performance Metrics Under DoS – System Idle

A. KVM Profiling

KVM was chosen as our representative hypervisor-based
virtualization system in these tests, for several reasons. The
first is that KVM runs on the unmodified Linux kernel, and is
compatible with the standard performance profiling tools; Xen
on the other hand, has a specialized kernel and therefore may
have compatibility problems with these tools. Also, because
KVM does not require a modified kernel, it is easier to modify
the hypervisor and drivers. Second, KVM supports the VirtIO
drivers, a para-virtualization package intended to be standard
across various virtualization techniques, including Xen. By
using VirtIO, any driver changes that are required in order
to enhance performance will be easier to adapt to different
virtualization systems.

To collect the system level information, we used perf,
a performance analysis tool for Linux. It uses built-in Linux
kernel support and hardware performance counters to measure
system-wide or process-level events. To collect the data,
we disabled all non-operating system processes on our test
system, effectively creating an idle state. The systems operated
under the same specifications previously described. We then
configured perf to track system wide events on all cores and
collected our data during a 10Mb/s random source SYN flood
DoS attack. To get an accurate reading we sampled the system
performance 5 times, for 10 seconds each time and calculated
the mean and standard deviation for each of our metrics. We
then used the perf top command to obtain the current
system statistics, in particular, IRQs per second.

As can be seen in Table II, the samples show considerable
difference in these metrics between the Vanilla system and
KVM. In terms of LLC(last level cache) performance, KVM
while under attack is considerably less efficient with the use
of its LLC. KVM references its cache over 6 times more
than the Vanilla system. In terms of last level cache misses,
KVM is over 3 times worse. The number of cache misses
and cache references is not surprising considering how much
extra memory copying is required to deliver a packet from the
network interface to its final destination in the KVM virtual
machine.

Context switches also provided some interesting insights
into the differences between virtualized and non virtualized
systems. The Vanilla system, during our 10 seconds of mea-
surements, had 956 context switches only, compared to a stag-
gering 708,335 with KVM, an increase of over 700 times. This
massive difference can be explained by how these two systems
handle network packets. In the Vanilla system, services to
the network stack and the driver domain are often handled
by the same kernel process. Because of this, there are much
fewer context switches as the same process is responsible
for both actions. KVM however is in a strikingly different
situation, in which a packet and its response must traverse
multiple processes in order to be serviced. This is because
when the packet is received on the physical device, it is copied

Fig. 4: KVM Network Architecture and Modifications

by the host machines kernel into the memory space of the
virtual machine; the virtual machine is then notified of the
incoming packet and it is scheduled to run on the processor;
the virtual machine delivers the packet to its network stack
where a response SYN-ACK is generated and sent on its
virtual interface; the host kernels process then collects the
packet from the virtual machine and delivers it to the network.
All these extra steps, when applied to each packet, contribute
to the sheer number of context switches we observed. Figure 4
illustrates the path a received packet must traverse and the
figure also shows a performance modifications we will discuss
in the next section.

The final metric we looked at was interrupt requests. When
under attack the Vanilla system generated approximately 8,500
interrupt requests per second. The KVM hypervisor generated
over 4 times more requests, at approximately 37,000 interrupt
requests per second. The interrupt requests are used by KVM
to notify the virtual machine when it has new packets and
also to notify the kernel when there are new packets to be
sent. The TCP SYN flood results in a large number of small
packets being sent and received by the virtual machine, which
results in the large number of requests we observed.

IX. REDUCING DOS OVERHEAD KVM
Based on what we learned from our profiling of KVM, we

decided to modify the VirtIO drivers in KVM to reduce the
number of interrupt requests produced during a DoS attack,
with the goal of improving the overall CPU performance
of our virtualized system. We focused on interrupt requests
specifically because they are a clear cause of context switches
and ultimately affect cache efficiency as well.

A. Modifying KVM and VirtIO
As mentioned above, in KVM an interrupt request is gen-

erated whenever packets need to be sent from the host to the
virtual machine, or from the virtual machine to the host. The
KVM VirtIO drivers contain an option to bundle packets with
a single interrupt for sending, but receiving lacks this feature.
In our efforts to reduce the number of interrupts, we modified
the VirtIO drivers to create a mechanism that bundles together
several received packets with a single interrupt. To accomplish
this, we examined the VirtIO driver and modified how KVM
notifies the virtual machine that there is a packet to be
received. When the packet rate is high, instead of immediately
notifying the virtual machine that it has received a packet,
the KVM hypervisor sets a timer. When the timer expires,
the virtual machine is notified of the initial packet, and every
other packet that has arrived during the length of the timer.
Figure 4 shows the KVM architecture and our modification.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 0.05 0.1 0.15 0.2

In
te

rr
u
p
t
R

e
q
u
e
st

s
P

e
r

S
e
co

n
d

Buffer Time in ms

 1 2 3 4 5

Buffer Time in ms

TCP-SYN Flood
UDP Flood

(a) Reduction in IRQs per second

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2

C
P

U
 U

sa
g
e
 %

Buffer Time in ms

 1 2 3 4 5

Buffer Time in ms

TCP-SYN Flood
UDP Flood

(b) Reduction in CPU

Fig. 5: Reduction in Interrupts and CPU Overhead

To make our modifications adaptive, they only become active
when there is a high packet rate. To detect the packet rate,
we keep a simple counter of the number of received packets
and check it every second to see if the VM passes a certain
threshold of packets per second; if the threshold is passed than
the modifications are enabled; if the threshold is not reached
we revert to the original VirtIO drivers. We applied the same
technique to the sending queue as well. For our tests, we
assume that a ’high’ packet rate threshold of 10,000 packets
per second; however this is adjustable based on the application.
Next, we experiment with the length of the timer, or how long
to buffer the packets before generating an interrupt request.

B. Modification results

Using the same network and system specifications de-
scribed in our previous experiments, we tested the effect
that increasing the buffer time of our modified VirtIO driver
had on interrupt requests per second and CPU usage. We
tested candidate buffer times from 0 milliseconds up to 5
milliseconds. For each candidate buffer time, we measured the
IRQs per second and CPU usage of our system while under
a 10Mb/s TCP random source SYN flood and a 10Mb/s UDP
flood. The results for IRQs per second are shown in Figure 5a,
and the results for CPU usage are shown in Figure 5b. As can
be seen, when we increase the buffer time, we see a decrease
in both interrupts and CPU usage. Moreover, the interrupts and
CPU usage show a very similar pattern of decrease, and have
an R2 value of over 0.97 when plotted against one another
in a linear regression, for both TCP and UDP floods. This
confirms that interrupts are closely related to CPU usage in
KVM under attack conditions, and that decreasing interrupts
will meet our goal of increasing CPU performance. UDP
shows a very similar result, once again confirming that high
CPU usage is tied to high packet rate and small packet size.
From our results it is clear that any amount of buffering time
improves CPU performance, but that the improvement levels
off after a certain point. We chose a buffer time of 0.5 ms for
the rest of our experiments, which is a reasonable amount of
delay and results in considerably lower CPU overhead. It is
important to note that the delay choice affects both sending
and receiving; therefore the round trip time of packet and its
response can be delayed by at most 1 ms based on our choice.

Taking our modified VirtIO driver with the buffer time
at 0.5 ms, we re-ran the profiling tests and compared this
modified KVM to the original KVM. As Table III shows
our modifications considerably reduced all of our metrics.
There was a 47% decrease in cache references, and a 23%

KVM Mod-KVM
LLC References 1,292,316,729 684,267,176

LLC Misses 36,060,083 27,684,718
Context Switches 708,335 422,471

IRQs/Second 37,000 25,500

TABLE III: Performance Metrics Under DoS – VirtIO Modifications

 0

 10

 20

 30

 40

 50

CPU Prim
e

M
em

ory Bandwidth

Iperf Bandwidth

FileIO
 Random

W
eb Server

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n
 %

KVM
Mod-KVM

Fig. 6: Improvement In Performance with 0.5 ms Buffer Time

decrease in cache misses. This decrease occurs because the
virtual machine is now using its cache more efficiently by
processing more packets sequentially. Our modifications also
reduced the number of context switches over 40% compared
to the unmodified KVM, again because more packets are being
processed at once.

We also re-ran the benchmarks from our previous exper-
iment on our modified KVM virtual machine, again with
the buffer time set to 0.5 ms. In Figure 6, we compare
the performance degradation experienced by both KVM and
our modified KVM under a DoS attack. Performance on all
benchmarks was significantly improved by our modifications.
In the CPU benchmark, our modifications reduces performance
degradation from 35.8% to 19.0%; memory bandwidth no
longer degrades by 19.4%, but instead by 11.8%. The modified
drivers had the biggest impact on network bandwidth causing
performance degradation to drop from 42.2% to less than 1%,
effectively alleviating the problem; the file system benchmark
improved from a degradation of 24.5% to 13.3%.

The modified KVM appeared to have the least improvement
on the web server benchmark, improving from 23.4% degra-
dation to 18.8%. However, a surprising result is found when
we compare the actual number of connections per second: our
modified KVM has a pre-attack baseline of 1,926 connections
per second, whereas the original KVM has only 1,654 con-
nections per second. This represents a considerable increase
of 16.4% more connections per second. This is because our
adaptive modifications to the VirtIO driver are activated even
under the baseline conditions, meaning that combined traffic of
the 200 simulated clients is greater than the threshold (10,000
packets per second). Therefore, while performance degradation

only decreases by a small margin with our modified KVM, the
absolute number of requests per second is much higher than for
the original KVM, in both the baseline and attack situations.
With this improvement, KVM is now faster in this test than
even Xen was in terms of both baseline and attack conditions.
These surprising improvements to the baseline indicate that
our modifications may have applications to situations beyond
DoS attacks. Current version of our source code is available
at www.sfu.ca/⇠rws1/mod-kvm/.

X. CONCLUSION AND FURTHER DISCUSSIONS

Despite the fact that modern virtualization has many at-
tractive features, it is clear from our experiments that it is
more vulnerable under TCP SYN DoS attack. In particular,
although it has been known that virtualization entails higher
overhead than traditional systems, our results suggest that even
a light DoS attack can aggravate this overhead considerably.
The combination of virtualization overhead and performance
degradation in a DoS attack can lead to a 50% decrease in Web
Server performance when compared to the non-virtualized
Vanilla system using the same amount of resources. The
performance implications of larger DoS attacks have yet to be
quantified. We have preformed some preliminary experiments
and it appears that, at higher DoS rates, hypervisor-based VMs
may actually become unresponsive to the network.

Although defenses such as SYN-cookies and SYN-caches
have been very effective at fortifying non-virtualized systems,
we showed through our experiments that these measures do not
provide adequate protection for VMs. It is also important to
note that even though the deployment of anti IP address spoof-
ing technology such as ingress filtering (BCP 38) has reached
the majority of autonomous systems, it is still estimated that
up to 22.2% of autonomous systems allow spoofing1; this gap
in deployment means this form of attack continues to be a real
threat to VMs. SYN-proxies are another technology that may
provide an effective mitigation strategy for VMs, however due
to the effectiveness of endpoint defenses for non-virtualized
systems there are currently many networks on which this
technology is not deployed.

As shown in Table I, any high packet rate with low packet
size traffic pattern can cause performance issues for KVM
and Xen. It remains to be discovered what effects similar
non-DoS traffic have on real-world clouds such as the Xen-
based Amazon EC2. Our initial trials using UDP Voice Over
IP (VOIP) traffic indicate degradation will likely occur. As
noted previously, our modifications to KVM actually greatly
improved the baseline performance of KVM in our compre-
hensive benchmark. It is likely many different applications
with high packet rates could benefit as well: examples include
VOIP and DNS.

Recently hardware designers have also taken notice of the
inherent overhead of virtualized networking and have produced
some products to help alleviate the overhead. In particular,
Single Root I/O Virtualization (SR-IOV) replicates certain
hardware on the network card to provide each VM with more
direct access to the device. This technology has been shown
to offer a increase in throughput when run against paravir-
tualization drivers such as VirtIO [21]. The same research

1October 2011 estimate from the MIT Spoofer Project http://spoofer.csail.
mit.edu/

however, indicates that CPU overhead of processing small
packets remains largely unchanged. So although a future work
should explore specialized hardware devices, it remains to be
discovered whether they will remove a significant amount of
the CPU overhead while the system is under attack.

Finally, it should be noted that in the global Internet, a 10
Mb/s SYN flood is considered rather small; however both the
KVM and Xen hypervisors used the CPU time of an entire
core, simply servicing that level of attack. When compared to
OpenVZ and Vanilla, which used only 6% of a single core to
serve the same attack, it becomes clear that hypervisor-based
virtualization is significantly more expensive to use on systems
exposed to DoS traffic.

REFERENCES

[1] CDW, “Cdw’s server virtualization life cycle report, january 2010.”
[2] C. Newsroom, “Commvault releases results of annual end-user virtual-

ization survey emphasizing the need for modern approach to protecting
managing virtual server environments.”

[3] W. Vogels, “Beyond server consolidation,” Queue, vol. 6, pp. 20–26,
January 2008.

[4] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin, “Performance
evaluation of virtualization technologies for server consolidation,” HP
Labs Tec. Report, 2007.

[5] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,”
in 2010 12th IEEE International Conference on High Performance
Computing and Communications, 2010, pp. 273–280.

[6] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, pp. 95–103, July 2008.

[7] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, March 2007.

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proc. of the 2009 9th IEEE/ACM CCGRID, 2009.

[9] W. Eddy, “Rfc 4987: Tcp syn flooding attacks and common mitigations,”
2007.

[10] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic
using hop-count filtering,” IEEE/ACM Trans. Netw., pp. 40–53, February
2007.

[11] C. Jin, H. Wang, and K. Shin, “Hop-count filtering: an effective defense
against spoofed ddos traffic,” in Proc. of the 10th ACM conference on
Computer and communications security, 2003, pp. 30–41.

[12] W. Eddy, “Defenses against tcp syn flooding attacks,” Cisco Internet
Protocol Journal, vol. 8, no. 4, pp. 2–16, 2006.

[13] D. Bernstein, “Syn cookies,” 1996.
[14] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931–945, 2011.

[15] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies,” Cloud Computing, pp. 20–38, 2010.

[16] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. Wasserman, and N. Wright, “Performance analysis of high perfor-
mance computing applications on the amazon web services cloud,” in
2nd IEEE International Conference on Cloud Computing Technology
and Science, 2010, pp. 159–168.

[17] J. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in Proc. of the 2007
Workshop on Experimental Computer Science, 2007.

[18] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” Cloud Computing, pp. 115–131, 2010.

[19] G. Wang and T. Ng, “The impact of virtualization on network perfor-
mance of amazon ec2 data center,” in INFOCOM, 2010 Proc. IEEE,
2010, pp. 1–9.

[20] J.-W. Jang, E. Seo, H. Jo, and J.-S. Kim, “A low-overhead networking
mechanism for virtualized high-performance computing systems,” The
Journal of Supercomputing, pp. 1–26.

[21] J. Liu, “Evaluating standard-based self-virtualizing devices: A perfor-
mance study on 10 gbe nics with sr-iov support,” in Proc. of IPDPS
2010.

