
Proceedings of the 2000 Winter Simulation Conference 
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds. 
 
 
 

UNDERSTANDING THE IMPACT OF EQUIPMENT AND PROCESS 
CHANGES WITH A HETEROGENEOUS SEMICONDUCTOR  

MANUFACTURING SIMULATION ENVIRONMENT 
 
 

Jeffrey W. Herrmann 
Brian F. Conaghan 

Laurent Henn-Lecordier 
Praveen Mellacheruvu 
Manh-Quan Nguyen 

Gary W. Rubloff 
Rock Z. Shi 

 
Institute for Systems Research 

University of Maryland 
College Park, MD 20742, U.S.A. 

 
 

ABSTRACT  
 
Simulation models are useful to predict and understand the 
impact of changes to a manufacturing system.  Typical 
factory simulation models include the parts being 
manufactured in the factory and the people and resources 
processing and handling the parts.  However, these models 
do not include equipment or process details, which can 
affect operational performance such as cycle time and 
inventory.  Separate models are used to evaluate processes 
and equipment.  Thus, it is difficult to evaluate the 
operational impact of equipment or process changes.  
However, this information could help factory managers 
and manufacturing process engineers make better decisions 
when changing processes or selecting equipment 
configurations.  This paper describes a heterogeneous 
simulation environment for understanding how equipment 
and process changes affect the performance of a wafer 
fabrication facility.  This integrated tool incorporates 
response surface models that describe process behavior, 
operational and optimization models of equipment 
behavior, and a discrete-event simulation model of factory 
operations.  Thus, the tool can measure how process 
changes and equipment configuration changes change the 
system performance.  We have applied this tool to a 
specific wafer fab problem.  
 
1 INTRODUCTION 
 
Understanding the operational impact of equipment and 
process changes typically requires the expertise of multiple 
engineers and analysts.  Each person uses different models 
to evaluate some segment of the entire manufacturing 
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system.  Thus, significant time and effort is needed to 
gather information to help factory managers and 
manufacturing process engineers make better decisions 
when changing processes or selecting equipment 
configurations. 

For instance, experimental approaches to optimizing 
and controlling manufacturing processes by changing the 
process parameters has been very successful (see, for 
example, Stefani et al. 1996).   However, process engineers 
often focus on the process itself and may find it difficult to 
consider how process parameter changes affect the overall 
manufacturing system performance.  One significant 
impact of changing process parameters is a change to the 
time that a process requires, which affects the total lot 
processing time (the time needed to process all of the 
wafers).  If the process (or a sequence of processes) is 
performed by a cluster tool, which can process multiple 
wafers simultaneously, then the impact of the process 
change on the total lot processing time may be very 
complex (see, for instance, Herrmann et al. 1999).  
However, process engineers usually develop response 
surface models (RSMs) for process rate (like etch rate or 
deposition rate).  Although a higher rate should reduce the 
total lot processing time, the quantitative relationship is 
often complex, involving the consequences not only of the 
process, but also the overhead associated with startup and 
ending of the process cycle in the tool.  Thus, a small 
change to the process time may change the total lot 
processing time drastically, or it may not.  Process 
�improvements� that significantly increase the total lot 
process time and reduce a tool�s capacity (especially if that 
tool is a bottleneck tool) can seriously degrade 
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manufacturing system performance by increasing cycle 
time and decreasing maximum throughput. 

Consider the following, somewhat exaggerated, 
scenario.  A process engineer wants to modify a particular 
semiconductor manufacturing process in order to improve 
process performance.  Changing the process parameter 
values (or recipe) will change the process performance in 
various ways.  If the change affects the time needed to 
perform the process, the process engineer must determine 
if the change will affect the equipment�s ability to satisfy 
its throughput requirements (wafers processed per day).  
Thus, the process engineer calculates the modified process 
time and gives that value to an industrial engineer, who 
then determines whether the process change is acceptable.  
The industrial engineer uses a capacity planning model to 
determine, if the proposed process change did occur, 
whether the equipment�s utilization would remain at an 
acceptable level, since a very high utilization can cause 
excessive delays.  Such a utilization constraint, although 
practical, is a myopic way to avoid potential problems, 
since it does not consider benefits that could occur in other 
parts of the factory.  Also, the process engineer faces a 
delay while the industrial engineer does the capacity 
analysis.  Furthermore, the declaration that a process 
change is unacceptable does not give the process engineer 
feedback needed to find a change that satisfies everyone�s 
requirements. 

Consider also the problem of selecting equipment 
configurations for a semiconductor wafer fab. A cluster 
tool has integrated processing modules linked 
mechanically.  Typical cluster tools include load locks, 
process modules, and a wafer handler.  A cluster tool can 
process multiple wafers simultaneously.  Sequential cluster 
tools integrate a sequence of processes, while other tools 
have two or more identical modules that are used in 
parallel.  Hybrid configuration are also possible. Unlike 
single-process tools, the complex behavior of a cluster tool 
makes analyzing the throughput of different configurations 
a difficult task.  Adding a second chamber to a tool does 
not automatically halve the total lot processing time (or 
double the tool capacity).  Understanding the impact of 
different tool configurations requires an integrated model 
that can describe both the tool behavior and the factory 
behavior. 

This paper describes a heterogeneous simulation 
environment (HSE) that integrates a variety of simulation 
and analytical models of the manufacturing system and its 
components.  Specifically, the HSE incorporates response 
surface models that describe process behavior, operational 
and optimization models of equipment behavior, and a 
discrete-event simulation model of factory operations.  The 
HSE can measure how process changes, equipment 
configuration changes, and tool scheduling changes affect 
the manufacturing system performance. 
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Figure 1 shows the functional flow of the HSE.  The 

HSE Administrator coordinates the user interface and 
actions of the analyst with three types of models: process 
models, tool models, and a factory model.  The user can 
modify the parameters of any model, and the Administrator 
updates the other models as needed.  Thus, the HSE and 
the component models, which represent a range of domain-
specific knowledge, allow the user to accomplish modeling 
and analysis tasks that would otherwise require multiple 
individuals (and more time) to perform. 
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Figure 1:  HSE Functional Flow 

Figure 2 illustrates some of the relationships between 
the models that compose the HSE in our application 
(described more in Sections 2, 3, and 4).  Note that the 
HSE includes a variety of continuous and discrete-event 
models.  Our HSE framework allows us to replace any 
model by another model of the same process or tool.  For 
example, we could replace a process RSM by a dynamic 
process simulation. 

 

Factory Model
(discrete event

simulation)

Step Time (min) # tools
�
TiN PVD liner 1.5 2
Via 1 W CVD fill 2.4 3
CMP 1.9 2
Clean 0.8 2
Oxide 2 CVD 2.3 3
P/R apply 0.7 1
Litho 3.5 3
P/R remove 0.7 1
TiN PVD liner 1.5 2
Via 2 W CVD fill 3.2 3
CMP 2.1 2
Clean 0.8 2
Oxide 3 CVD 2.9 3
P/R apply 0.7 1
Litho 3.2 2
�

TiN PVD cluster tool
# process chambers 2
Scheduling algorithm push
OD time 15 sec
Robot move time 6 sec

W CVD cluster tool
# process chambers 3
Scheduling algorithm pull
OD time 12 sec
Robot move time 5 sec

TiN PVD
Thickness 30 nm
Pressure 80 torr
Power 600 W
Pumpdown time 2.5 min

Via2 W CVD
Thickness 270 nm
Pressure 80 torr
Temperature 470 C
Pumpdown time 2 min

Oxide 3 CVD
Thickness 30 nm
Pressure 80 torr
Power 500 W
Pumpdown time 1.9 min
OD time 9.6 sec
Robot move time 4.5 sec
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TiN PVD
Cluster
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Figure 2:  HSE Model Integration 
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The remainder of this paper is organized as follows: 
Section 2 describes the problem domain.  Section 3 
discusses the different models that we created for the 
individual components of the factory. Section 4 describes 
the heterogeneous simulation environment that integrates 
the models and supports analysis tools.  Section 5 
concludes the paper. 

 
2 APPLICATION 
 
Although our approach can be applied to other problems, we 
have implemented a HSE for a specific �tungsten plug 
subfactory� that fills tungsten vias (interconnects) on 
semiconductor devices.  This subfactory is just one part of a 
typical semiconductor wafer fab.   The subfactory includes 
wet clean, liner deposition, and tungsten (W) deposition.  
The liner deposition step includes titanium physical vapor 
deposition (Ti PVD) and titanium nitride physical vapor 
deposition (TiN PVD).  The tungsten deposition is a 
chemical vapor deposition process (W CVD).  A simple wet 
clean tool performs the first process.  A cluster tool performs 
the Ti and TiN deposition processes.  A second cluster tool 
performs the W CVD process.  Each cluster tool also has a 
chamber that performs an orient-and-degas step.  

We have chosen to investigate a factory with cluster 
tools because semiconductor manufacturers are increasingly 
using cluster tools.  Annual sales of cluster tools is projected 
to increase from $11.2 billion in 1997 to $21.9 billion in 
2000 (Semiconductor Business News 1998). 

Many workers have developed and described 
simulation models of semiconductor manufacturing 
facilities.  Because there are too many to list here, we will 
just mention, as an example, the FabTime Wafer Fab Cycle 
Time bibliography available at <http://www.Fab 
Time.com/CTBiblio.htm>. 

Unlike single-process tools, the complex behavior of a 
cluster tool makes it a difficult task to determine the 
relationship between process changes and manufacturing 
throughput.  There are simulation models that describe 
cluster tool behavior.  See, for instance, LeBaron and Pool 
(1994), Mauer and Schelasin (1994), Atherton et al. 
(1990), Schruben (1999), Wood (1994). These tools are 
very useful for evaluating the performance of a specific 
tool operating under specific conditions.  Most discrete 
event simulation models do not, however, yield insight into 
how process changes affect cluster tool performance, since 
they take fixed values for each process step without 
describing the relationship between process parameters and 
process step times. 

Herrmann et al. (1999) have shown that integrating a 
process model with a cluster tool simulation can help an 
engineer determine if a process change will significantly 
increase the processing time of a lot (a batch of wafers).  
Their results reveal how the total lot processing time 
depends upon process parameters, and their analysis tools 
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provide a mechanism to assess this sensitivity both 
qualitatively and quantitatively. 

Pichler et al. (1999) describe an integrated 
environment for the simulation of VLSI fabrication 
processes, with a focus on semiconductor device design., 
and how the processes determine device structure and 
performance  It does integrate a variety of process 
simulation tools, but not for evaluating the impact of 
process changes or tool configurations and algorithms on 
manufacturing metrics and their tradeoffs against 
performance. 

 
3 MODELS 
 
The heterogeneous simulation environment incorporates 
response surface models that describe process dynamics, 
optimization models of equipment behavior, and a discrete-
event simulation model of factory operations.  The 
following sections describe these models in more detail. 
 
3.1 Process Models 
 
In semiconductor manufacturing, as in other manufacturing 
environments, a manufacturing process is governed by 
multiple process parameters.  When executing the process, the 
operator (or the computer controlling the process) sets the 
process parameters to prescribed settings so that the process 
will run effectively and efficiently.  Determining good settings 
involves many tradeoffs between such things as product 
quality, product performance, consumables cost, and nominal 
processing time.  Often it is necessary to change the process 
parameter settings to improve process performance, to 
enhance yield through improved  compatibility with other 
process steps (i.e. process integration), to restore process 
performance after a disturbance, or to shift technology design 
points in accordance with scaling toward more aggressive 
technology nodes or intermediate steps between nodes. 

When attempting to determine new settings, a process 
engineer may conduct a set of experiments to evaluate how 
the process parameters affect the process performance.  Each 
experiment may require one or more lots processed under a 
specific combination of parameter values.  In theory, an 
engineer could conduct an experiment for every possible 
combination of parameter values.  Since there may exist a 
large number of possible combinations, however, in practice 
the engineer selects a small subset of the combinations and 
runs these experiments. Then, using statistical software (like 
ECHIP), the engineer can construct a response surface 
model (RSM) that fits the experimental results.  The RSM is 
an empirical (often quadratic) mathematical formula that 
relates process performance to the process parameter values. 
(For more information on designing experiments and 
forming RSMs, see Box & Draper 1987.)  The RSM gives 
the engineer guidance into how the process parameters affect 
the process performance.  The engineer can then select the 
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new process parameter settings that best meet the process 
performance goals. 

For the subfactory, we constructed response surface 
models (RSMs) for the relevant processes.  These simple 
formulas relate process performance measures to the 
process parameters.  Specifically we have constructed 
RSMs for Ti PVD, TiN PVD, and W CVD. 

For Ti PVD, a collaborator sent to us experimental 
data from a process demonstration that was intended to 
analyze the sputtering-induced damage to metal-semi-
conductor field-effect transistor (MESFET).  From this 
data we constructed an interaction RSM.  For TiN PVD, 
we constructed a RSM from experimental results reported 
by Hui et al. (1997).  The experimenters deposited TiN by 
Ion Metal Plasma (IMP) PVD for sub 0.25 µm technology. 

For the W CVD process, we used an RSM that was 
based on data collected by Stefani et al. (1996). The 
deposition rate RSM has the following four process 
parameters: reactor pressure, deposition temperature, the 
mole fraction of WF6, and the mole fraction of H2.  The 
output is the average deposition rate (Å/sec).  The process 
is a H2 reduction of WF6, run in an Applied Materials 
Centura reactor, preceded by a short SiH4 and WF6 nuclea-
tion step that deposits a 400 Å seed layer.  We have chosen 
to investigate this simplified process model initially.   

Private communication with Stefani confirmed that the 
process parameters in his model refer to the steady-state 
growth of W by the hydrogen reduction process involving 
H2 and WF6, and the formation of the initial seed layer by a 
SiH4/WF6 process was present as well.  The seed layer is 
illustrative of the fact that real processes entail overhead of 
several kinds, which add to total process time but not 
directly through the chemical process behavior.  Other 
examples are the times involved in establishing proper 
deposition conditions (e.g., pumpdown, gas inlet, heating) 
and in recovering from them after the deposition is 
complete (e.g., cooling, pumpdown, venting).  In future 
work we will be considering more complex models which 
incorporate these additional effects to determine lot 
processing time and throughput. 

Specifically, for the Stefani model, let DR be the 
actual deposition rate in Å per second, P the reactor 
pressure in torr, and T the deposition temperature in 
degrees Kelvin.  Then the RSM DR(P, T) can be expressed 
as follows (the mole fractions were set to their median 
values used in the experiments): 
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3.2 Equipment Models 
 
Although researchers have developed techniques for 
analyzing the behavior of simple cluster tools, our research 
required the development of new cluster tool models.  
Herrmann et al. (1999) describe these models in detail, 
which we summarize here. 

To calculate the total time for a cluster tool to process 
a wafer lot, the cluster tool model includes the process 
RSM(s) for the process modules on the tool, together with 
a scheduling model for the entire tool.  The total lot 
processing time in a cluster tool is a function of the lot size, 
the tool configuration, the wafer handler move times, and 
the individual process times.  The process times are 
functions of the process parameters, which change the 
achievable process rate and thus the time required.  For 
simplicity we have assumed that the deposition process 
time D = Th/DR, where Th equals the deposition thickness, 
and DR is the deposition rate, which is a function of the 
process parameters (as described in Section 2.1). This 
simple model neglects subtleties like the nucleation (seed 
layer) step and equipment overhead before and after the 
deposition occurs.  Ideally we would like to have the 
deposition process separated into each of these components 
as separate RSMs, but this is not easy to do with real 
experiments.  For example, there is no way to measure the 
seed layer deposition thickness independent of bulk 
thickness since the processes are done sequentially in the 
same chamber without breaking vacuum. 

We have developed four cluster tool models, all 
implemented as Java programs and compiled into 
executables.  The simplest approach uses a network model 
for a specified sequence of wafer handler moves.  We also 
have two simulation models.  The first simulation model 
uses a push dispatching rule to select the next wafer handler 
move, and the second uses a pull dispatching rule to select 
the next move.  The last model is an optimization procedure 
that can find the best sequence of wafer handler moves.  The 
models require the following input data: the tool 
configuration (the number of stages and the number of 
chambers at each stage), the number of wafers in a lot, the 
wafer handler move time, the process time at each stage, and 
the tool overhead time.  For more information about the 
optimization procedure, see Herrmann and Nguyen (2000). 

 
3.3 Factory Model 
 
For modeling factory operations, we used Factory 
Explorer, a commercial discrete-event simulation 
software available from Wright, Williams, and Kelly 
(WWK).  The basic factory model consists of a set of 
Microsoft Excel worksheets that describe the products, the 
resources, and the sequences of processes that the products 
must follow.  The simulation software converts these 
factory model spreadsheets into a special file format, runs 
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the discrete event simulation engine, collects data about the 
system performance, and generates the results as text files 
and Microsoft Excel worksheets.  In our work, the most 
important performance measure is the average cycle time 
of a lot through the factory.  We plan to measure cost 
functions in the future. 

The model of the subfactory under consideration 
includes one product, produced as multi-wafer lots , and 
three tool groups (wet clean, liner deposition, tungsten 
deposition). The wet clean is assumed to comprise a single 
time needed for dip cleaning.  The simulation model is a 
stochastic model and has a random arrival process.  Other 
types of randomness could be included. 

Because of the re-entrant nature of semiconductor 
manufacturing, each wafer lot visits the subfactory of order 
five times, once for each layer of interconnects.  Our 
subfactory model includes an artificial step that represents 
the time that the lot spends undergoing other processes 
between visits to our subfactory.  With each visit to our 
subfactory, the processes are somewhat different, reflecting 
the fact that the interconnect layer thickness varies with 
which layer in being manufactured. 

 
4 IMPLEMENTATION 
 
The heterogeneous simulation environment (HSE) 
integrates the diverse simulation and analytical models 
described above. This section describes details of our 
implementation.  A key feature of the HSE is its ability to 
execute models that exist as different types of software.  As 
explained below, the HSE provides a single user interface, 
which the analyst uses to modify any input data, including 
the values of process parameters, equipment 
configurations, and factory data.  Using the HSE, the 
analyst can predict system performance and estimate how 
the system performance is sensitive to any of these input 
data.  To perform this analysis, the HSE executes each 
model in turn so that the output from one model can be 
used in the input for the next model.  Finally, the factory 
simulation model delivers estimates of system 
performance.  Thus, the HSE can measure how process 
changes and equipment configuration changes affect 
manufacturing system performance. 
 
4.1 Model Integration 
 
The HSE includes the Administrator, the enhanced factory 
model, and the cluster tool evaluation models.  The 
Administrator communicates with the models and provides 
the user interface (see Figure 3).  It is written using the 
Delphi programming language, running in the Windows 
operating system. 

The enhanced factory model is an Excel workbook 
that contains multiple, inter-related worksheets.  These 
include all of the spreadsheets needed for the basic factory 
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model.  One of the additional sheets supports the user 
interface and lists all of the input variables and the default 
values.  Others implement the process RSMs and contain 
the necessary input data, formulas, and output data.  The 
cluster tool evaluation models are implemented as 
described in Section 3.2. The analyst can select which 
cluster tool evaluation model should be used: the fixed 
sequence, the push dispatching rule, the pull dispatching 
rull, or the optimization program. 

 

 
Figure 3:  HSE Interface 

 
Through the Administrator�s user interface, the analyst 

can view and update any of the input variable values.  The 
Administrator retrieves and stores the values in the 
enhanced factory model.  When the analyst modifies any 
input data, the Administrator tells the spreadsheets to 
recalculate, executes the selected cluster tool evaluation 
model (for each layer), and updates the basic factory model 
with the results. 
 
4.2 Analysis Tools 
 
Through the user interface, the analyst can tell the 
Administrator to predict system performance or to estimate 
how the system performance is sensitive to a specified 
input variable. 

To predict system performance, the Administrator 
prompts the user to enter a number of parameters that 
control the simulation: the number of replications, the 
length (in time) of each replication, and the confidence 
interval required.  The Administrator calls the Factory 
Explorer simulation engine and passes the required 
parameters.  The Factory Explorer simulation engine 
performs the desired simulation runs and creates an output 
file with the system performance in each run.  The 
Administrator reads this output file and calculates the 
desired confidence interval for the average cycle time.  
This result is shown to the analyst.  Certainly, other 
performance measures could be collected, but the average 
cycle time is the most important in our application. 
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To estimate how the system performance is sensitive 
to the input variable that the user has selected, the 
Administrator prompts the user to enter a number of 
parameters that control the gradient estimation: the number 
of replications, the length (in time) of each replication, the 
confidence interval required, and the step size.  For a 
variable whose initial value is v, the analyst can specify a 
fixed step size c or a relative step size r.   

If the user selects a fixed step size, then the 
Administrator performs the following steps: the 
Administrator reduces the variable value to v-c, tells the 
spreadsheets to recalculate, executes the selected cluster 
tool evaluation model (for each layer), updates the basic 
factory model with the results, calls the Factory Explorer 
simulation engine, and passes the required parameters.  
After the simulation has created the output file, the 
Administrator collects the system performance for that 
point.  Then, the Administrator repeats the process after 
increasing the variable value to v+c.  Then, the 
Administrator can use the results of the second set of 
simulation runs to calculate a confidence interval for the 
gradient. 

If the user selects a relative step size, the 
Administrator performs the same set of steps.  However, 
instead of subtracting and then adding c to the initial value, 
the Administrator reduces the variable value to (1-r)v and 
then increases the original variable value to (1+r)v.  This 
finite differences gradient estimation technique is 
described more completely in Mellacheruvu et al. (2000). 

For example, the analyst can determine how the 
average lot cycle time is sensitive to the orient-degas (OD) 
processing time.  (Recall that both cluster tools perform 
this step.)  Using a ten percent relative step size, the 
Administrator can determine a 97.5% confidence interval 
for the gradient, which is [0.013, 0.017]. 

 
5 SUMMARY AND CONCLUSIONS 
 
The HSE integrates a diverse set of simulation and 
analytical models. An important feature of the HSE is its 
ability to execute models that exist as different types of 
software.  The HSE provides a single user interface 
through which the analyst can modify any input data, 
including the values of process parameters, equipment 
configurations, and factory data.  The HSE can predict 
system performance and estimate how the system 
performance is sensitive to any input variable.  Thus, the 
HSE allows the analyst to understand how process changes 
and equipment configuration changes affect the 
manufacturing system performance. 

These results yield important benefits.  First, they 
demonstrate that, with analysis tools that extend factory 
simulation models by incorporating process RSMs and 
equipment models, a process engineer changing the 
process parameters can quickly determine if the proposed 
149
change will significantly increase the average cycle time.  
If so, it would be prudent to consider a less drastic change.  
Moreover, the process engineer can understand the system-
level impact without requiring any of the industrial 
engineer�s time.  Second, a manager considering whether 
to purchase a piece of equipment can determine what 
impact different configurations of the new equipment will 
have.  Third, the industrial engineer can collaborate with 
the process engineer to see whether changing the 
scheduling algorithms on a cluster tool would affect system 
performance. 

This new approach, which has not previously been 
explored, provides a vehicle for direct feedback of 
manufacturing metrics to  process engineers involved in 
process alterations or tuning.  Additionally, the range of 
possible process recipes that yield acceptable cycle time 
performance can be identified. 

This type of tool will help process engineers 
understand how process changes affect the system 
performance. With these results, process engineers can 
develop better processes, equipment purchasers can make 
better procurement decisions, and fab managers can 
improve factory performance. 

Heterogeneous simulation environments offer great 
potential, since they allow an analyst to create more 
accurate models of complex, inherently heterogeneous 
systems by reusing existing models that are implemented 
in different ways.  The alternative is to build a large, 
complex simulation model either as a monolithic model or 
as a hierarchical model using a single software solution. 
Scaling the current HSE to a much larger set of processes 
and models is certainly possible, though it would require 
significant effort.  These difficulties clearly show the need 
for more research into developing a more flexible 
integration environment to support heterogeneous 
simulations. 

We plan on enhancing the simulation by adding 
additional process models to get a broader picture of 
factory performance.  In addition we are develop 
optimization routines to select the set of equipment that 
minimizes average cycle time while satisfying throughput 
and budget constraints.  Finally, we are developing more 
general simulation environments that can interact with 
other types of factory simulation models so that we can 
study a broader range of factories. 
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