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ABSTRACT

Mobile network operators have a significant interest in the
performance of streaming video on their networks because
network dynamics directly influence the Quality of Experi-
ence (QoE). However, unlike video service providers, net-
work operators are not privy to the client- or server-side
logs typically used to measure key video performance met-
rics, such as user engagement. To address this limitation,
this paper presents the first large-scale study characterizing
the impact of cellular network performance on mobile video
user engagement from the perspective of a network operator.
Our study on a month-long anonymized data set from a ma-
jor cellular network makes two main contributions. First, we
quantify the effect that 31 different network factors have on
user behavior in mobile video. Our results provide network
operators direct guidance on how to improve user engage-
ment — for example, improving mean signal-to-interference
ratio by 1 dB reduces the likelihood of video abandonment
by 2%. Second, we model the complex relationships between
these factors and video abandonment, enabling operators to
monitor mobile video user engagement in real-time. Our
model can predict whether a user completely downloads a
video with more than 87% accuracy by observing only the
initial 10 seconds of video streaming sessions. Moreover, our
model achieves significantly better accuracy than prior mod-
els that require client- or server-side logs, yet we only use
standard radio network statistics and/or TCP/IP headers
available to network operators.

Categories and Subject Descriptors

C.2.3 [Computer System Organization]: computer com-
munication networks—network operations; C.4 [Performance
of Systems]: measurement techniques, performance attributes
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1. INTRODUCTION
Online video services such as YouTube, Netflix, and Hulu

are very popular on mobile networks. It has been estimated
that video currently makes up more than half of all mo-
bile data traffic and will grow by a factor of 16 by 2017 [5].
Therefore, it is crucial for mobile network operators to mon-
itor the user experience, or Quality of Experience (QoE), of
video streaming and understand how network characteristics
and performance influence it.

Unfortunately, prior approaches for monitoring and un-
derstanding the user experience of video streaming are in-
sufficient for mobile network operators. Recent seminal
work [7–9, 15] investigated how video streaming quality in-
fluences important user engagement metrics, such as video
abandonment rate. However, these studies rely on client-side
instrumentation to measure video quality metrics such as
buffering, startup delay, and bitrate. This instrumentation
is not available to network operators, so the ability to mea-
sure user engagement using only network-side measurements
is crucial from their perspective. Other work used network
traffic analysis to study video streaming volume and aban-
donment rates in wired [12, 14] and wireless networks [10].
However, these techniques use deep-packet-inspection to ex-
tract information beyond TCP/IP headers, which requires
significant computational resources to employ at the scale of
network carriers and can pose privacy problems in practice.
Moreover, these studies did not provide insight into how
network characteristics and performance influence abandon-
ment rates.

To redress these limitations, this paper presents the first
large-scale study to characterize video streaming perfor-
mance in cellular networks and its impact on user engage-
ment. Our study is based on month-long anonymized data
sets collected from the core network and radio access net-
work of a tier-1 cellular network in the United States. We
analyze 27 terabytes of video streaming traffic from nearly
half a million users in this data set. Our analysis makes two
main contributions.

First, to the best of our knowledge, our analysis is the first
to quantify the impact that network characteristics have on
mobile video user engagement in the wild. We quantify the
effect that 31 different cellular network factors have on video
abandonment rate and video skip (e.g., fast forward) rate.
In particular, we quantify user engagement by labeling video
streaming sessions in our data set as completed/abandoned
and skipped/non-skipped, and then evaluate the extent
to which core network and radio network factors correlate
with abandonment rate and skip rate. These factors include
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TCP flow throughput, flow duration, handover rate, signal
strength, and the physical location’s land cover type. Our
results provide network operators insights and direct guid-
ance on how to improve user engagement. For example,
improving mean signal-to-interference ratio by 1 dB reduces
the likelihood of video abandonment by 2%. Moreover, re-
ducing the load in a cell sector by 10 active users reduces the
likelihood of video abandonment by 7%. Through these in-
sights, network operators can identify and prioritize network
factors that have the most impact on user engagement.

Second, we are the first to show how a network operator
can monitor mobile video user engagement using only stan-
dard radio network statistics and/or TCP/IP flow records, a
necessity for continuous monitoring at scale and for mitigat-
ing privacy concerns. Moreover, we show that our approach
can predict video abandonment very early in a video session,
which can help future networks decide which users to opti-
mize performance for (e.g., using LTE self-organizing net-
works [1]). Specifically, we model the complex relationships
between network factors and video abandonment. We find
that the C4.5/M5P algorithm with bootstrap aggregation
can build decision/regression tree models that accurately
predict video abandonment. Our results show that it can
predict whether a video streaming session is abandoned or
skipped with more than 87% accuracy by observing only
the initial 10 seconds. Our model achieves significantly bet-
ter accuracy than prior models that require video service
provider logs [7,8], while only using standard radio network
statistics and/or TCP/IP headers readily available to net-
work operators.
Paper Organization: The rest of this paper is organized
as follows. In Section 2, we present a brief background and
details of the data collection process. Section 3 presents
the characterization of video mobile video streaming per-
formance and its impact on user engagement. We develop
a machine learning model for user engagement and present
the results in Section 4. Section 5 reviews related work and
the paper is concluded in Section 6 with an outlook to our
future work.

2. DATA
To study mobile video streaming performance, we col-

lected anonymized flow-level logs from a tier-1 cellular net-
work in the United States. Next, we first provide a brief
background of video streaming in cellular networks, descrip-
tion of our data collection methodology, and some high-level
statistics of the collected data set.

2.1 Cellular Network Background
A typical UMTS cellular network, shown in Figure 1, can

be visualized as consisting of two major components: Ra-
dio Access Network (RAN) and Core Network (CN). RAN
consists of NodeBs and Radio Network Controllers (RNCs).
Each NodeB has multiple antennas, where each antenna cor-
responds to a different cell sector. A user via user equip-
ment (UE) connects to an active set of one or more cell
sectors in the RAN. The UE periodically selects a primary
or serving cell among the active set based on their signal
strength information. From the active set, only the primary
cell actually transmits downlink data to the UE. The traffic
generated by a UE is sent to the corresponding NodeB by
cell sectors. Each RNC controls and exchanges traffic with
multiple NodeBs, each of which serves many users in its cov-
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Figure 1: Cellular network architecture

erage area. RNCs manage control signaling such as Radio
Access Bearer (RAB) assignments, transmission scheduling,
and handovers. Each UE negotiates allocation of radio re-
sources with the RAN based on a wide range of factors, such
as available radio resources and signal strength [6].

CN consists of Serving GPRS Support Nodes (SGSNs)
facing the user and Gateway GPRS Support Nodes (GGSNs)
facing the Internet and other external networks. RNCs send
traffic from NodeBs to SGSNs, which then send it to GGSNs.
GGSNs eventually send traffic to external networks, such as
the Internet. For data connections, the IP layer of a UE
is peered with the IP layer of GGSNs in the form of tun-
nels known as Packet Data Protocol (PDP) contexts. These
tunnels, implemented as GPRS Tunneling Protocol (GTP)
tunnels, carry IP packets between the UEs and their peer-
ing GGSNs. From the perspective of an external network
such as the Internet, a GGSN connecting CN to the Inter-
net appears just like an IP router and the UEs that connect
through the GGSN appear as IP hosts behind the router.

2.2 Data Collection and Pre-processing
For our study, we simultaneously collected two

anonymized data sets from the RAN and CN of a
tier-1 cellular network in the United States. Our data
collection covers a major metropolitan area in the Western
United States over the duration of one month in 2012.
The RAN data set is collected at the RNCs and contains
event-driven signaling information such as current active
set, RAB state, handovers, bitrate, signal strength, and
RRC requests from users and corresponding responses
from the network. The CN data set is collected from the
Gn interfaces between SGSNs and GGSNs, and contains
flow-level information of video streaming traffic such as
server IP and port, client IP and port, flow duration, TCP
flags, anonymized user identifier (IMSI), and anonymized
device identifier (IMEI). These fields require only TCP/IP
or GTP level information, which is efficiently collected [22].

In order to determine the ground-truth of video aban-
donment, we also collected the following HTTP-level in-
formation: URL, host, user agent, content type, content
length, and byte-range request from clients and response
from servers. Large scale monitoring tools often do not col-
lect HTTP information because it requires processing hun-
dreds of bytes of text beyond the 40-byte TCP/IP header.
Thus, it is important that day-to-day monitoring does not
require its collection at scale. All device and user identifiers
(e.g., IMSI, IMEI) in our data sets are anonymized to pro-
tect privacy without affecting the usefulness of our analysis.

368



The data sets do not permit the reversal of the anonymiza-
tion or re-identification of users.

To minimize the confounding factors that different content
providers (live vs. video-on-demand), connectivity (cellu-
lar vs. cable), and device type (mobile vs. desktop) could
have on our network-centric analysis, we chose to focus on
the most popular video service provider in our cellular net-
work data set. This provider (anonymized for business con-
fidentiality) serves user generated content on demand, and
according to a recent study [10], it serves over 37% of all
video objects. This provider streams videos using progres-
sive download with byte-range requests, which is the most
common protocol currently in use. We believe the conclu-
sions we draw in this paper apply to 9 of the 14 most popular
mobile video content providers as they use the same proto-
col [10]. Previous work found the top providers that use this
protocol behave similarly in wired networks [19].

Since our collected data contains traffic records for all
types of content, we first need to separate video streaming
traffic from the rest. Towards this end, we use the HTTP
host and content-type headers to separate the video stream-
ing traffic from other TCP/IP traffic. We can also separate
video traffic based only on the server IP and port, since all
video streaming traffic is served by a known block of CDN
cache servers.

A video is progressively downloaded in one or multiple
HTTP byte-range requests, which represent different por-
tions of the video [10]. Figure 2 illustrates a video stream-
ing session that involves multiple HTTP byte-range server
response flows. The x-axis represents time, which starts
with the first HTTP byte-range server response flow. The
y-axis represents byte-range of the video file with maximum
value same as the video file size, which is highlighted by the
horizontal broken line. Consequently, each gray rectangle
represents a distinct HTTP byte-range server response flow.
Note that flows may have different byte-range lengths and
durations, they may be overlapping, and there may be time
gaps between consecutive flows.

For the purpose of our analysis, we group HTTP flows
into video sessions based on a unique ID that is the same in
the URLs of each video session. In practice, we found that
we can group flows into sessions without any HTTP infor-
mation. In particular, by looking for a change in the server
IP to determine when a new video session for a user starts,
we can detect session starts correctly with 98% accuracy.
This is because videos are served from a CDN and different
videos are likely served from different cache servers. Even
if all videos were served from a single server, we found that
we can still detect session starts with 97% accuracy using a
simple decision tree classifier trained on the size of and inter-
arrival time gap between HTTP flows. (We omit details due
to space constraints.) Thus, we conclude that TCP/IP in-
formation would be sufficient to detect and group HTTP
flows into video sessions.

2.3 Video Traffic Statistics
Next we present some details of our collected data set

such as aggregate statistics, container types, encoding bi-
trates, and video player types. Overall, our data set consists
of more than 27 terabytes worth of video streaming traffic,
from more than 37 million flows, from almost half a million
users over the course of one month.
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Figure 2: Illustration of a video streaming session.
Gray rectangles represent distinct flows in a session.

Our data set mostly contains standard definition video
streaming streaming traffic. Figure 3(a) shows the distri-
bution of video streaming traffic with respect to container
types. The most common container types [3] are: (1) 3GP
(3GPP file format), (2) MPEG-4, (3) FLV (Flash), (4)
WebM, and (5) MP2T (MPEG transport stream). We ob-
serve that a vast majority, almost 70%, of video streaming
traffic uses the 3GPP container type – followed by MPEG-
4 and Flash container types as distant 2nd and 3rd most
popular, respectively. Only a small fraction, less than 2%,
of the video streaming traffic belongs to containers types
used for live content. We exclude these from our analysis
since our focus is on video-on-demand streaming. Further
analysis of video encoding bitrate showed that a majority
of video streaming traffic belongs to lower bitrates, which
correspond to 144/240p video resolution. 240p is the most
commonly used video resolution. Only a small fraction of
video streaming traffic belongs to higher video resolutions.
For example, less than 5% video streaming traffic belongs to
high definition (HD) 720p content.

Short duration videos account for most of the streaming
traffic in our data set. In Figure 3(b), we plot the cumulative
distribution function (CDF) of video duration. We observe
that more than 70% videos are less than 5 minutes long and
only 10% videos are longer than 15 minutes. This type of
skewed distribution is expected for content providers that
serve user generated content [10].

Users employ only a few distinct video players to play
video content in our data set. We plot the CDF of users
across video player types (reverse-sorted with respect to frac-
tion of users) in Figure 3(c). We identify video player types
using the available user agent information [23, 24], which
enables us to differentiate among video players on differ-
ent hardware models, operating system versions, and web
browsers. Our data set contains several dozen distinct video
player types whose distribution is highly skewed, i.e., a small
fraction of video player types account for most users in our
data set. Specifically, top-5 player types account for approx-
imately 80% users in our data set and they represent both
iOS- and Android-based devices.

2.4 Quantifying User Engagement
As a first step towards analyzing user engagement, we

discuss two ways to quantify it: discrete and continuous.
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Figure 3: Distributions of container type, video duration, and video player type
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Figure 4: Examples of video streaming session classes. Y-axis limits are set to the video sizes.

Discrete quantification of user engagement. For
discrete quantification, we first use a nominal variable that
represents the following classes: completed and abandoned.
The completed class represents video streaming sessions in
which the download process reaches the end-point. The
abandoned class represents video streaming sessions in which
the download process is abandoned before reaching the end-
point. In our data set, 21.2% sessions belong to the com-

pleted class and 78.8% sessions belong to the abandoned

class. Since users tend to skip videos when streaming gets
stuck, we also use a nominal variable that represents the
following classes: skipped and non-skipped. The skipped

class represents video streaming sessions in which the down-
load process includes at least one seek-forward between the
start-point and the last byte downloaded. The non-skipped
class represents video streaming sessions in which the down-
load process does not include seek-forward between the
start-point and the last byte downloaded. In our data set,
33.9% sessions belong to the skipped class and 66.1% ses-
sions belong to the non-skipped class. Combining the afore-
mentioned user engagement classification schemes, we can
define the following four non-overlapping classes: (1) com-

pleted, non-skipped, (2) abandoned, non-skipped, (3)
completed, skipped, and (4) abandoned, skipped. In our
data set, 17.6% sessions belong to the completed, non-

skipped class, 48.5% sessions belong to the abandoned,

non-skipped class, 3.6% sessions belong to the completed,

skipped class, and 30.3% sessions belong to the abandoned,
skipped class. Figure 4 illustrates examples of video stream-
ing sessions for the four user engagement classes. As men-
tioned earlier and observable in Figure 4, sessions generally
consist of more than one flow. On average, a video stream-
ing session in our data set consists of 11 flows, where earlier
flows tend to be larger than the following flows. This trend

is because video players tend to aggressively download larger
chunks to fill up the available buffer during the initial buffer-
ing phase of a video streaming session [19]. The download
rate in this initial phase is limited by the end-to-end avail-
able bandwidth. Afterwards in the steady state phase, the
remaining video is generally downloaded in multiple smaller
flows. The download rate in this phase depends on the video
encoding rate and the playback progress.

Continuous quantification of user engagement. For
continuous quantification, we use a continuous variable (∈
[0,1]) representing the fraction of video download comple-
tion. Figure 5 shows the CDF of video download comple-
tion. Comparing videos of different durations, as expected
we observe that shorter videos achieve higher download com-
pletion than longer videos [16]. For aggregate distribution,
almost 15% of video streaming sessions are abandoned with
less than 5% download completion. However, after the 5%
completion mark, the distribution is fairly uniform until the
80% completion mark. The initial modality in the distri-
bution indicates abandonment that is likely either because
users tend to sample videos [7] or due to longer join times [9].
The later modality in the distribution (excluding the 100%
completion mark) indicates abandonment that is likely ei-
ther because users lose interest in the content (e.g., due
to video closing credits) or because shorter videos achieve
higher download completion due to aggressive initial buffer-
ing.

We note that our definitions of user engagement detect
abandonment and skips only during the download phase of
a video. We cannot detect a video abandonment or skip if
these events occur after a video has downloaded completely
(e.g., due to lack of user interest). However, network opera-
tors are typically not interested in those events because they
are unlikely to be influenced by network factors.
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Table 1: CN (top) and RAN (bottom) features. i denotes the flow index of a session with N flows.
Feature Description

Flow volume (Bi) The number of bytes transferred during the ith flow. (Summary stats)

Flow duration (ti) The duration (in seconds) from the SYN packet to the last packet in the ith flow. (Summary stats)

Flow TCP throughput (Ti) The ratio of flow volume to flow duration in the ith flow, in KB/s. (Summary stats)

Flow inter-arrival time (Ii) Time (in seconds) between the end of the ith flow and the start of the i + 1th flow. (Summary stats)

Flow flags FINi and RSTi respectively denote the number of packets with TCP-Finish (no more data from sender
indicating completion) and TCP-Reset (reset the connection indicating some unexpected error) flags set in

the ith flow. Based on the direction of packet transfer, we distinguish between client-to-server (c→s) and
server-to-client (s→c) flags. (Summary stats)

Largest flow volume (Bj) The largest flow volume among all flow volumes, where j denotes the index of this flow.

Largest flow duration (tj) The duration of the jth flow.

Largest flow TCP throughput (Tj) The throughput of the jth flow.

Largest flow flags FINj and RSTj respectively denote the number of packets with TCP-Finish and TCP-Reset flags set in the

jth flow. We distinguish between c→s and s→c flags.

Number of flows (N) The total number of flows in a session.

Session volume (B) The sum of all flow volumes in a session.

Session duration (t) The sum of all flow durations in a session. t =
∑N

i=1
ti.

Session TCP throughput (T) The average throughput of a session. T =
∑N

i=1
Bi /

∑N
i=1

ti.

Session inter-arrival time (I) The sum of all flow inter-arrival times (in seconds) in a session

Session flags (FIN and RST) respectively denote the number of packets with TCP-Finish and TCP-Reset flags set in a
session. We distinguish between c→s and s→c flags.

# soft handovers (HS) This handover occurs when a cell is added or removed from the active set [25]. (Session- and cell-level)

# inter-frequency handovers (HIF ) This type of handover occurs when a UE switches to cell sector of the same or different NodeB with
different operating frequency [25]. (Session- and cell-level)

# IRAT handovers (HRAT ) This type of handover occurs when a UE switches between different radio access technologies (e.g.,
UMTS and GPRS) [25]. (Session- and cell-level)

# RRC failure events A RRC failure event is logged when a request by a user to allocate more radio resources is denied by the
respective RNC due to network overload or other issues [21]. (Session- and cell-level)

# admission control failures These events occur when a user cannot finish the admission control procedure often due to lack of available
capacity. (Session- and cell-level)

Received signal code power RSCP is the RF energy of the downlink signal obtained after the correlation and descrambling process [25].
It is usually measured in dBm. (Summary stats)

Signal energy to interference This ratio (Ec/Io) denotes the ratio of the received energy to the interference level of the downlink common
pilot channel [25]. It is usually measured in dB. (Summary stats)

Received signal strength RSSI takes into account both RSCP and Ec/Io [25]. It is usually measured in dBm. It is defined as: RSSI
= RSCP - Ec/Io. (Summary stats)

Size of active set (SAS) The number of unique cell sectors in the active set. (Summary stats)

Radio access bearer state Our measurement apparatus distinguishes among 84 different RAB states. RAB state encodes encodes
information about RRC state (e.g., FACH shared channel vs. DCH dedicated channel), RAB type (e.g.,
interactive vs. streaming), and maximum data rate. Since a session may have multiple RAB states over
time, we use the most common state for session-level and top-3 most common states for cell-level features.

Uplink RLC throughput (TU ) The uplink data rate for UE in the DCH state (in kbps). (Session- and cell-level summary stats)

Downlink RLC throughput (TD) The downlink data rate for UE in the DCH state (in kbps). (Session- and cell-level summary stats)

# Users in DCH state (UDCH) Users served by the representative cell over a window of 1 hour.

Frequency The operating frequency of the representative cell.

Landcover A nominal variable that defines the geographical terrain of a cell. 2006 National Land Cover Database
contains the 16-class geographical terrain categorization of the United States at a spatial resolution of 30
meters [2, 13]. The categories include developed-open space, developed-high intensity, perennial ice/snow,
deciduous forest, open water, etc. We extract the top-3 most common landcover categories in terms of spatial
area within 1 km of the representative cell.

Elevation Elevation of a cell is extracted from the National Elevation Dataset (NED) at a spatial resolution of 30
meters [4]. We use average elevation of the representative cell as a feature.

3. ANALYSIS OF NETWORK FACTORS
Our main goal is to understand the influence of network

factors on user engagement. Towards this end, this section
presents an in-depth analysis of the relationships between
network factors and video abandonment.

We first itemize a wide range of factors that can poten-
tially impact or be influenced by mobile video user engage-
ment. We compile a comprehensive list of features from the
information available in both CN and RAN data sets. It

is noteworthy that while features extracted from the RAN
data set are only applicable for cellular networks, features
extracted from the CN data set are applicable for other kinds
of wired and wireless networks as well. Table 1 summarizes
the features.

Core Network (CN) features. For each video streaming
session, we can extract CN features for individual flows and
the whole session (labeled as Flow and Session features in
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the top half of Table 1, respectively). Since sessions may
have different number of flows, we compute the following
statistical measures to summarize the flow-level features for
whole sessions: mean, standard deviation, minimum, max-
imum, 25th percentile, median (50th percentile), and 75th

percentile. Hence each flow-level feature listed in Table 1
(labeled with “Summary stats”) represents 7 summary val-
ues. We also extract these features for the largest flow (in
terms of byte volume) of a video streaming session, as a
single flow typically dominates each video session.

Radio Access Network (RAN) features. For each
video streaming session, we also extract RAN features for
the user and the cell sectors that service the user during
the session. The RAN features are described in the bottom
half of Table 1. For session-level features, the RAN data
set records belonging to a user can be identified using the
combination of IMSI and session start and end timestamp
information. For cell-level features, however, the selection
criterion of the representative cell for a session is not obvi-
ous because the active set and the primary cell may change
between the start and end of a session. Towards this end, we
select the most common cell sector (in terms of number of
records) to be the representative cell for a session. For each
session, cell-level features are computed for all users served
by the representative cell in the time window at the session
start. Features in Table 1 labeled with “Session- and cell-
level” indicate features that we compute both a session-level
value and cell-level value, as defined above. For example, for
# soft handovers, we compute one feature as the number of
soft handovers for the user during the session, and another
as the number of soft handovers for all users in the rep-
resentative cell of that session. For features that can hold
multiple values during a session (e.g., RSSI), we compute
the same 7 summary statistic values listed above for flow
features. These features are labeled with “Summary stats”
in Table 1.

To better understand the relationship between features
and user engagement, we plot the abandonment rate distri-
butions of prominent features in Figure 6. The abandon-
ment rate is defined as the fraction of sessions in the data
set that are abandoned. The shaded areas represent the 95%
confidence interval [26]. The horizontal line in each plot de-
notes the average abandonment rate. Figure 6 suggests the
following implications:

Abandoned sessions are shorter. Although this result is ex-
pected, we find that each measure of session length provides
unique information. Figure 6(a) shows sessions shorter than
15 seconds are significantly more likely to be abandoned.
The sharp inflection point may be due to automated failure
of sessions that do not complete the initial buffering phase.
Similarly, Figure 6(b) shows a sharp drop in abandonment
rate for sessions with average flow duration longer than 1-
3 seconds. Figures 6(c) and 6(d), both measures of flow
count, show that sessions with more flows are less likely to
be abandoned. Thus, each of these features provides infor-
mation useful for detecting abandonment.

Network load increases the abandonment rate. Despite the
low bitrate of video streams relative to the capacity of a cell
(∼500 kbps vs. 3-14 Mbps), we find there is a nearly lin-
ear relationship between various measures of RAN load and
abandonment rate. For example, Figure 6(e) shows that the
abandonment rate goes up by roughly 7% for each 10 active
users in a sector, even though these resources are scheduled
in a proportional fair manner every 2 ms [6]. This load re-
lationship can also be seen in Figure 6(f), which shows that
abandonment rate is highest during the peak load hours of
the day and much lower during the off-peak hours. This ef-
fect can be explained by Figure 6(g), which shows that the
abandonment rate begins to grow when aggregate cell uplink
throughput is just 50 kbps, significantly less than the cell ca-
pacity. This is likely because even small amounts of uplink
traffic can cause interference, and Figure 6(h) shows that
abandonment rate decreases by 2% for each dB increase in
the signal-to-interference ratio (Ec/Io). Furthermore, Fig-
ures 6(i) and 6(j) show that the abandonment rate increases
as RSSI and RSCP increase, contrary to the general belief
that higher received power means a better user experience.
These Ec/Io, RSSI, and RSCP results strongly suggest that
users with higher received power also experience more in-
terference. Hence, user engagement in our data set is more
limited by interference rather than poor coverage. In sum-
mary, these results suggest that measures a cellular operator
takes to reduce per-sector load and interference will improve
user engagement in a roughly linear manner.

Handovers increase the abandonment rate. Another impor-
tant question for operators is whether cell handovers disrupt
the user experience. Our results suggest that all handover
types are correlated with a decrease in user engagement.
Figure 6(k) shows that cells with soft handovers, which
are“make-before-break”handovers, have significantly higher
abandonment rates. This result is supported by Figure 6(l),
which shows increase abandonment rates for non-integral
mean active set values (i.e., sessions that incurred active set
additions or deletions during soft handovers). These effects
may be partially due to the RRC signalling required for han-
dover. Figure 6(m) shows that when RRC signalling errors
occur, abandonment rate increases as well.

Higher throughput does not always mean lower abandon-
ment. Although measured throughput is often used as a
proxy for network quality (e.g., [14]), our results suggest
higher average throughput does not always indicate lower
abandonment. Figures 6(n) and 6(o) show that abandon-
ment rate decreases as average TCP and RLC throughput
increases up to a point. However, the abandonment rate is
lowest at TCP throughput equal to the steady state stream-
ing rate, and it grows for higher throughput values. This
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(g) Cell RLC uplink throughput
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Figure 6: Abandonment rate distributions. Shaded areas represent the 95% confidence interval.
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Figure 7: Skip rate distributions. Shaded areas represent the 95% confidence interval.

pattern is because early abandonment, while the video is
still in the non-rate-limited buffering phase, actually results
in higher average throughput than watching a video through
the rate-limited steady state phase.

In Figure 7, we plot the skip rate distributions of promi-
nent features. The skip rate is defined as the fraction of
sessions in the data set that are skipped. Due to space con-
straints, we only plot the skip rate curves for features that
have different trends than the respective abandonment rate
curves. The shaded areas represent the 95% confidence in-
terval [26]. The horizontal line in these plots denotes the
average skip rate.

We note that skip rate has a direct relationship with max-
imum flow inter-arrival time (Figure 7(a)) and number of
flows (Figure 7(b)). This is likely because skips result in
more flows and larger gaps between them. Skip rate peaks
at session and flow durations of just a few seconds (Figures
7(c) and 7(d)), suggesting that users chose to skip early in a
session, either due to network issues or lack of interest. Fig-
ure 7(e) shows larger RST flag count correlated with higher
skip rate likely because skips cause connection resets. These
contrasting patterns imply that it is more challenging to
measure both skips and abandonment than a single engage-
ment metric.

4. MODELING USER ENGAGEMENT
In this section, we develop models to accurately predict

user engagement using only standard radio network statis-
tics and/or TCP/IP header information.

4.1 Background and Problem Statement
Network operators would like to predict user engagement

for three main applications. First, directly estimating these
metrics from network traffic requires cost-prohibitive col-
lection of sensitive data (requiring deep-packet-inspection)
beyond TCP/IP headers. Thus, cost and privacy concerns
would be alleviated with a model that accurately predicts
these engagement metrics using only standard radio network

statistics and/or TCP/IP header information that is already
collected. A simple and efficient model would be able to
monitor video engagement metrics over an entire network in
real-time to facilitate trending and alarming applications.
Second, self-organizing networks [1] (SON) enable mobile
networks to adapt resource allocation dynamically. Thus,
the ability to accurately predict video abandonment early
in a video session can help guide SONs to provide more
resources to the most vulnerable sessions. Third, an in-
terpretable model that relates network factors to user en-
gagement metrics can help network operators in prioritizing
infrastructure upgrades by identifying the combination of
factors that need to be adjusted for improving engagement.

Our goal is to jointly use the available features to accu-
rately model both nominal and continuous measures of user
engagement (defined in Section 2). Moreover, we want our
models to make the prediction decisions as early as possi-
ble in a video session. Therefore, we define the modeling
problem as follows: given the feature set computed over the
initial τ seconds (τ ≤ t) of a video session, predict the user
engagement metric.

4.2 Proposed Approach
As we observed in Section 3, many network features are

not independent of each other and the relationships among
them can be non-linear. Therefore, modeling user engage-
ment given all available features is a non-trivial prediction
task. Furthermore, our modeling approach should answer
pertinent questions such as: Which features are more useful
for prediction? How many features do we need to reap a
substantial accuracy gain?

To address these challenges, we use a machine learning
approach for modeling the complex relationships between
network features and user engagement metrics. The choice
of learning algorithm is crucial to successfully modeling fea-
ture interdependence and non-linearity. After some pilot
experiments, we found that decision tree algorithms with
bootstrap aggregation (or bagging) [27] work well for both
nominal (classification) and continuous (regression) user en-
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gagement metrics. Other commonly used Bayes and lin-
ear regression algorithms were outperformed by the decision
tree algorithms in our pilot experiments. Decision trees do
not require feature independence assumption and can han-
dle non-linearities by employing multiple splits/breaks for
each feature. Furthermore, decision tree models comprise
of simple if-then-else branches, which can process data ef-
ficiently. For our experiments, we used C4.5 decision tree
algorithm [17] and M5P regression tree algorithm [18].

4.3 Experimental Setup
We evaluate the effectiveness of classification models in

terms of the following standard Receiver Operating Char-
acteristic (ROC) metrics [11]: (1) True Positives (TP), (2)
True Negatives (TN), (3) False Positives (FP), and (4) False
Negatives (FN). We summarize the classification results in
terms of the following ROC metrics: True positive rate

= |TP|
|TP|+|FN|

, False positive rate = |FP|
|FP|+|TN|

, and Accu-

racy = |TP|+|TN|
|TP|+|TN|+|FP|+|FN|

. We also plot the standard ROC

threshold curves in our evaluation. An ideal ROC threshold
curve approaches the top-left corner corresponding to 100%
true positive rate and 0% false alarm rate. The Area Under
Curve (AUC ∈ [0, 1]) metric summarizes the classification
effectiveness of an ROC threshold curve, where the AUC
values approaching 1 indicate better accuracy. Besides, we
evaluate the effectiveness of regression models in terms of the
standard root-mean-square error (RMSE ∈ [0, 1]) metric.

To avoid class imbalance and over-fitting during model
training, we use k-fold cross-validation with class resampling
[27]. In our pilot experiments, different values of k yielded
very similar results. All experimental results reported in this
paper are presented for k = 10. Furthermore, we evaluate
the feature sets on varying initial time window sizes: τ = t
(i.e., use all available data), τ ≤ 60 seconds, and τ ≤ 10
seconds. We expect the classification accuracy to degrade
for smaller initial time windows.

We separately evaluate the core network feature set (ab-
breviated as CN), the radio network feature set (abbrevi-
ated asRAN), and the combined feature set (abbreviated as
All). The radio network and core network features are sepa-
rately grouped because they require different types of instru-
mentation. Recall from Section 2, measuring radio network
features requires instrumentation at RNCs and measuring
core network features requires instrumentation at Gn inter-
faces in a cellular network.

4.4 Evaluation
Our experimental results demonstrate that the proposed

machine learning model can predict both video abandon-
ment and skips with high accuracy using only the initial 10
seconds of a session, while meeting the constraints of net-
work operators. We find that although some features are
more useful than the rest for prediction, using all available
features results in significant accuracy gain as compared to
using only a few top features. Moreover, our decision and re-
gression tree models are interpretable; they inform us about
the relative usefulness of features by ordering them at dif-
ferent tree levels and we can understand the specific set of
network conditions that impact user engagement by follow-
ing each path in the tree. Many of these conditions can be
influenced by a network operator, and thus provide guidance
on how to improve user engagement in different situations.

Table 2: Accuracy of 4-way classification
Feature completed abandoned completed abandoned

Set non-ski. non-ski. skipped skipped Avg.
(%) (%) (%) (%) (%)

τ = t

CN 72.0 78.4 76.2 73.4 75.0
RAN 64.1 53.7 73.2 55.7 61.7
All 73.1 77.8 77.4 74.4 75.7

τ ≤ 60 seconds

CN 69.5 62.7 63.8 64.6 65.2
RAN 62.6 47.8 58.5 57.0 56.5
All 70.4 63.7 65.7 65.4 66.3

τ ≤ 10 seconds

CN 69.5 59.6 63.3 65.3 64.4
RAN 60.5 46.6 59.0 57.4 55.9
All 69.6 60.7 64.9 65.5 65.2

Next we present detailed results for both classification and
regression. For classification, we build decision tree models
to predict both individual classes and their combinations.
For individual classes, we train the decision tree algorithm
for 4-way classification. By combining classes, we change
the granularity at which the model predicts user engage-
ment. We use the following two class pairs: completed

vs. abandoned and completed, non-skipped vs. rest. For
combined classes, we train the decision tree algorithm for
2-way classification. Naturally, we expect better accuracy
for 2-way classification than 4-way classification because the
model is trained at a coarser granularity.

For 4-way classification, we observe that the core network
feature set outperforms the radio network feature set. Com-
bining the core and radio network feature sets improves the
average accuracy. In Table 2, we observe the best average
accuracy of 75.7% for the combined feature set at τ = t
seconds. In practice, improvement in accuracy means that
fewer sessions need to be measured before the network oper-
ator can be confident that a real change in user engagement
has occurred and an alarm can be raised. For a cell sec-
tor serving only a handful of users simultaneously, this can
mean a significant reduction in time to detection of issues
since video sessions may not be frequent. For the combined
feature set, ROC threshold curves are plotted in Figure 8(a).
The ordering of ROC curves conforms with the class-wise ac-
curacy results in Table 2. The best operating accuracy of
77.8% is observed for abandoned, non-skipped class, which
corresponds to 95.5% AUC. As expected, in Table 2 we ob-
serve that the average accuracy degrades for smaller values
of τ . We observe the best average accuracy of 65.2% for the
combined feature set at τ ≤ 10 seconds, representing more
than 10% accuracy reduction as compared to τ = t seconds.
Since operators may only be interested in predicting video

abandonment, it is also important to build models to ac-
curately predict completed vs. abandoned and completed,

non-skipped vs. rest class pairs (instead of all four classes).
These class pairs compare the scenarios when users ei-
ther abandon or skip the video streaming session. Table
3 presents the classification results for these two class pairs.
As expected, we observe significant improvement in accu-
racy for both class pairs as compared to 4-way classification
due to reduced number of classes. Moreover, we observe
that the average accuracy suffers only minor degradation
(less than 5%) as τ is reduced. For completed vs. aban-

doned class pair, we observe the best average accuracy of
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Figure 8: ROC threshold plots for various class pairs

Table 3: Accuracy of completed vs. abandoned and
completed, non-skipped vs. rest classification
Feature comp. abandoned Avg. completed, rest Avg.

Set non-ski.

(%) (%) (%) (%) (%) (%)

τ = t

CN 80.5 85.9 83.2 77.2 92.3 88.5
RAN 73.9 77.9 75.9 71.9 88.8 84.5
All 80.5 86.5 83.5 76.9 92.4 88.5

τ ≤ 60 seconds

CN 79.5 82.1 80.8 78.0 91.5 88.1
RAN 74.1 78.4 76.3 72.7 88.4 84.4
All 78.8 82.6 80.7 77.6 91.4 88.0

τ ≤ 10 seconds

CN 79.6 80.7 80.1 77.1 90.7 87.3
RAN 74.2 78.9 76.5 73.2 89.2 85.1
All 77.8 82.1 79.9 76.6 90.7 87.2

83.5% for the combined feature set at τ = t seconds. For
the combined feature set, the ROC threshold curve is plot-
ted in Figure 8(b), which corresponds to 93.4% AUC. For
completed, non-skipped vs. rest class pair, we observe
the best average accuracy of 88.5% for the combined feature
set at τ = t seconds. For the combined feature set, the ROC
threshold curve is plotted in Figure 8(c), which corresponds
to 95.1% AUC.

For regression, we build regression tree models to pre-
dict video download completion. Overall, we observe simi-
lar patterns across feature sets and varying initial window
sizes for regression results as observed for classification re-
sults earlier. Table 4 presents the results of M5P regression
tree algorithm and a simple linear regression algorithm. We
note that M5P regression tree algorithm consistently out-
performs the simple linear regression algorithm, indicating
that M5P can successfully capture the non-linear dependen-
cies between features and video download completion that
are not modeled by the simple linear regression algorithm.
RMSE is lower for larger τ values, and All feature set has
the lowest RMSE as compared to individual CN and RAN
feature sets. We observe the best RMSE of 0.14 for τ = t
and All feature set.

4.5 Discussion
How many features to use? Our evaluation highlighted
that using all features together results in better classifica-
tion/regression accuracy than using their subsets. To sys-
tematically analyze the utility of adding features to the clas-
sification/regression model, we plot accuracy versus feature

Table 4: Root-mean-square error of regression
Feature Set Linear Regression M5P Regression Tree

τ = t

CN 0.25 0.15
RAN 0.30 0.27
All 0.23 0.14

τ ≤ 60 seconds

CN 0.27 0.18
RAN 0.36 0.34
All 0.24 0.17

τ ≤ 10 seconds

CN 0.29 0.22
RAN 0.37 0.34
All 0.28 0.21

1 5 10 25 50 100
50

60

70

80

90

Feature Set Size (%)

A
c
c
u
ra

c
y
 (

%
)

Without Bagging

With Bagging

Figure 9: Accuracy vs. feature set size for completed

vs. abandoned classification

set size for completed vs. abandoned classification in Fig-
ure 9. Towards this end, we iteratively rank the feature
set using the following greedy approach: for kth iteration,
we evaluate the accuracy gain of the model by separately
adding candidate features and selecting the k + 1th feature
which provides the best accuracy. The top features are re-
lated to session size and TCP throughput which we believe
are correlated with user engagement, as sufficient through-
put is required for video streaming and abandonment results
in low volume sessions. The plot shows that a few top fea-
tures provide most of the accuracy gain. However, the gains
in accuracy we achieve from including 5% to 100% of fea-
tures are not diminishing. Thus, it makes sense to use all
available features because the computational overheads of
feature extraction and testing for additional features is low
(in order of milliseconds).
Actionable insights. The decision/regression tree models
also provide actionable insights. The pruned versions of the
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Figure 10: Pruned decision and regression tree models for τ ≤ 10 seconds using All feature set. The tuples
below leaf nodes represent (error%,population size%).

decision tree model for completed vs. abandoned class pair
and the regression tree model for video download completion
are plotted in Figures 10(a) and (b), respectively. The tuples
below the rectangular leaf nodes represent their error and
population size. Due to space constraints, we only plot the
tree models for τ ≤ 10 seconds which are useful for network
operators to predict user engagement by observing only the
initial 10 seconds of video streaming sessions.

From the model, network operators can identify network
factors that may have the most impact on user engagement
and make decisions to prioritize certain infrastructure up-
grades. The features at the higher levels of a tree tend to
have more distinguishing power and account for more pop-

ulation size than lower level features. The root node is ses-
sion duration for Figure 10(a) and largest flow volume in
Figure 10(b). However, it is noteworthy that the ordering
of network factors in Figure 10 does not strictly determine
their importance. First, trees shown in Figure 10 represent
one of many candidate tree models generated during bag-
ging – other candidate trees have different feature ordering.
Second, these features are not independent – session dura-
tion and maximum flow volume (top two features in Figure
10(a)) jointly account for session throughput and largest flow
throughput to some extent.

The paths from the root node to leaves represent the
equivalent rule sets, which inform network operators of the
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interdependence among multiple features. For the regres-
sion tree in Figure 10(b), if largest flow volume is ≤ 0.6 MB
and largest flow duration is ≤ 5.3 seconds then video down-
load completion prediction is 17.4%. In contrast, if largest
flow volume is ≤ 0.6 MB and largest flow duration is > 5.3
seconds then video download completion prediction is in-
creased to 49.2%. Moreover, for the decision tree in Figure
10(a), if session duration > 5.9 seconds and maximum flow
volume is ≤ 90 KB after the first 10 seconds then our model
predicts that the video session will be abandoned with 19%
error probability.

A network operator can influence many network factors
to improve user engagement. The feature splits in Figure 10
provide network operators actionable insights for this pur-
pose. For example, the decision tree predicts a session to be
abandoned if cell DCH user count is larger than a threshold
under certain conditions. Most cellular network users are
covered by multiple cell sectors, and handover algorithms
use signal quality and sector load to determine which sector
each user should receive data from. The thresholds used for
handover are typically fixed at a single global value. How-
ever, the feature splits in Figure 10(a) suggest that the net-
work operator can tolerate a higher cell sector load threshold
for sessions with higher throughput variance than sessions
with lower throughput variance (24 vs. 13 users occupying
DCH channels).
Limitations. Below, we discuss the limitations of our anal-
ysis and results. First, our results are based on traces
from a single video service provider that uses progressive
download with byte-range requests. Therefore, our findings
may not be representative of video service providers that
use other streaming methods. Second, our user engagement
model cannot differentiate between video abandonment due
to network-related issues and due to lack of user interest.
Distinguishing between these two cases requires either client-
or server-side information, which is not available to network
operators.

5. RELATED WORK
Prior related studies can be categorized based on whether

they use network-side or user-side instrumentation.

5.1 Network-side Instrumentation
Our study builds upon previous work by Gill et al. [14],

Finamore et al. [12], and Erman et al. [10]. Each of these
studies characterized the abandonment rate of video stream-
ing sessions by collecting passive network traces at a campus
edge network, 5 different wired edge locations, and a cellular
network, respectively. To estimate video quality, these stud-
ies use deep-packet-inspection techniques (e.g., [20]) to un-
derstand the video provider protocol. Our finding that 77%
of video sessions are not completely streamed is closest to Fi-
namore’s result (80%), whereas Gill and Erman found lower
abandonment rates (50% and 60%, respectively). All these
results indicate that abandonment rates are high. Based on
the ratio of download rate to encoding bitrate of video, Gill
et al. concluded that approximately 20% of the video stream-
ing sessions were interrupted due to poor performance. How-
ever, we find that average throughput is not always a good
indicator of abandonment rate.

Our work makes two significant contributions on top of
these studies. First, in order to measure abandonment, previ-
ous studies relied on deep-packet-inspection to extract infor-

mation beyond TCP/IP headers, which requires prohibitive
computational resources to employ at the scale of network
carriers and can pose privacy problems in practice. Our work
demonstrates that we can accurately measure abandonment
without such information. Second, these studies did not pro-
vide insight into how network characteristics and perfor-
mance impact abandonment rates. Our study is the first
to examine the relationship between mobile network factors
and user engagement and the first to provide guidance on
how operators can reduce video abandonment.

5.2 Client-side Instrumentation
In [19], Rao et al. conducted an active measurement study

of video streaming traffic from YouTube and Netflix. They
proposed models to express various properties of completed
and interrupted video streaming traffic as a function of the
video parameters. However, the authors did not study user
engagement because this work is based on active measure-
ment data.

Dobrian et al. conducted a large scale, passive, user-side
study to understand the impact of video streaming quality
on user engagement [9]. They used video player instrumen-
tation to quantify video streaming quality metrics such as
join time, buffering ratio, average bitrate, rendering quality,
and rate of buffering. Their analysis showed that buffering
ratio has the largest impact on user engagement for non-live
content and average bitrate significantly impacts user en-
gagement for live content. Krishnan and Sitaraman also con-
ducted a large scale, passive, user-side study to understand
the impact of video streaming quality on user engagement
[15]. They quantified the impact of video streaming quality
metrics on user engagement using quasi-experimental de-
signs. In [7, 8], Balachandran et al. developed a QoE model
using various user-side video quality metrics. Specifically,
they developed a decision tree based machine learning model
to predict the extent of the video watched by users. For the
two-class problem (completed vs. interrupted/abandoned),
their trained model achieved up to 70% accuracy which pro-
gressively decreases as the number of classes is increased.

While these studies analyzed user engagement using data
collected via video player instrumentation, our work fo-
cuses on characterizing and modeling user engagement us-
ing network-side measurements. Modeling user engagement
using network-side data is particularly important for net-
work operators because they do not have access to video
player instrumentation data. Interestingly, our model based
on network-side data can predict whether a user completely
downloads a video with more than 87% accuracy, which is
significantly better than the client-side model developed by
Balachandran et al. Furthermore, since our model does not
require client-side instrumentation, it can be used by any
network operator, not just the video content provider.

6. CONCLUSIONS
This paper represents the first characterization of mobile

video streaming performance and models its impact on user
engagement from the perspective of network operators. We
observed that many network features exhibit strong corre-
lation with abandonment rate and skip rate. Our proposed
model achieved more than 87% accuracy by observing only
the initial 10 seconds of video streaming sessions. Overall, we
conclude that the proposed model based on standard radio
network statistics and/or TCP/IP header information can
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be successfully used by network operators to predict video
abandonment. Our model is useful for network operators to
continuously monitor at scale to proactively mitigate the
factors that can adversely impact user engagement.

In future, we plan to evaluate our proposed model on other
types of networks (e.g., DSL, WiFi). Recall from our eval-
uations that the core network feature set alone can provide
most of the accuracy gain. Towards this end, we can reuse
the core network feature set, which is not specific to cellular
network infrastructure.
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