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Understanding the Impact of Non-standard Customisations in an 

Engineer-to-Order Context: A Case Study 

Companies operating with an engineer-to-order (ETO) manufacturing strategy 

produce customised solutions for their customers. While they may be able to 

build on a base of existing sub-solutions, e.g. standard product structures, 

modules or parts when engineering a customer-specific solution, they often have 

to create something completely new to satisfy customers’ requirements.  

However, it is not always clear to ETO companies what the costs associated with 

making customer specific solutions are, or which product or project 

characteristics drive costs and in what business processes. Therefore, it is not 

clear to companies if it is actually profitable for them to fulfil all of their 

customers’ requirements. Hence, making it relevant to understand how creating 

non-standard customisations impact project profitability.  

This paper presents a framework for how ETO companies can quantify the 

impact of the complexity associated with non-standard customisations when cost 

data is only available at the project level. The framework is theoretically 

founded; it is based on statistical regression and a definition of a complexity 

index for non-standard customisations. The framework is validated in the context 

of an ETO case company and empirical data is presented. 

Keywords: engineer to order; complexity analysis; Mass Customization; Impact 

analysis; Product Customisation 

1. Introduction 

As customers’ demands and expectations for custom solutions grows, the relevance of 

operating strategies that support product customisations increases. Companies that 

employ an engineer-to-order (ETO) operating strategy are distinguished from those that 

use other strategies, such as make-to-order (MTO) , assemble-to-order (ATO), 

configure-to-order (CTO) or make-to-stock (MTS), by the finalization of the product 

design and specifications after the customer order is placed (Gosling and Naim 2009; 

Haug, Ladeby, and Edwards 2009; Rudberg and Wikner 2004; Hansen 2003). 



 Along the lines of Gosling and Naim (2009), Willner et al. (2016) and Wikner 

and Rudberg (2005), the present study takes the stand that, in an ETO company that 

employs strategies, such as mass customisation (Pine 1993), product platforms (Lehnerd 

and Meyer 2011) and product modularisation (Ulrich and Eppinger 2011), where some 

of the product design and engineering can be based on reuse of standard modules and 

parts. This enables ETO companies to operate in the span between two strategies: CTO  

and ETO.  

The benefits of increased standardisation, in terms of defined standard product 

structures and standard modules, are well documented (Haug, Hvam, and Mortensen 

2013; Hvam, Mortensen, and Riis 2008; Z. Wang et al. 2016; Kasiri et al. 2017). 

However, the downside of standardisation in ETO companies is the reduction of the 

solution space (Forza and Salvador 2008). For ETO companies, this results in reduced 

flexibility to fulfil customer requirements (Haug, Hvam, and Mortensen 2013), thus 

implying a product variety trade-off between market and operational performance as 

indicated by Um et al. (2017).  From a strategic point of view, it is therefore not 

necessarily desirable for ETO companies to employ a strict CTO or mass customisation 

strategy because it would require them to reject some customer orders and, thus, lose 

sales.  The following question should therefore be asked: What is the right balance 

between standard customisation (SC) vs. non-standard customisation (NSC)? Does the 

increased sales actually add value to a company? Or does the added complexity of 

creating the NSCs eat the profit margin? To support this discussion, it is relevant for 

ETO companies to understand the impact of NSCs on operational performance 

(Harbour 2009; Kaydos 1998), e.g. on project profitability. Therefore, the present 

research aims to help ETO companies understand how NSC affects the overall project 

profitability. 



A bottom up/activity-based cost analysis can be used to determine the impact of 

NSC. However, this approach depends on the availability of detailed cost data and the 

distinction between SC and NSC in the cost data collected and measured. While data on 

material costs and routing costs may be available at a module level, other relevant cost 

data, such as engineering costs or project management, may not. ETO companies often 

calculate costs at the total product level (for the entire project), making it difficult to 

clarify which part of the cost is driven by the SC and which is driven by the NSC.  

Thus, the availability of cost data complicates the impact analysis, why an approach is 

needed that utilises cost data at the project level.  

Based on a literature review, this paper presents a framework for how ETO 

companies can analyse the impact of NSC when cost data is only available at the project 

level. The approach is based on statistical cost estimation methods and the definition of 

a complexity index for NSC. The proposed framework is then validated within an ETO 

company that combines project sales of SC and NSC where cost data is represented on 

project level.  

With this knowledge, ETO companies can define the complexity of their 

projects and NSCs, and they can improve their basis for projects decisions making.   

1.1 Standard customisation vs. non-standard customisation in an ETO context 

While there is no generally agreed upon definition of ETO companies in the literature 

(Gosling and Naim 2009), it is widely agreed that the customer order decoupling point 

(CODP) can be used to define the ETO operating strategy relative to other strategies, 

such as MTO, ATO, CTO or MTS (Gosling and Naim 2009; Haug, Ladeby, and 

Edwards 2009; Rudberg and Wikner 2004; Hansen 2003).  

 One of the discussion points in the literature is whether ETO companies cover 

only pure customisation, where a product is engineered from scratch after the customer  



has placed an order, or if a product can be partly based on a configuration of standard 

parts (Gosling and Naim 2009; Willner et al. 2016).  

 Within the traditional ETO CODP, Wikner and Rudberg (2005) define two types 

of CODP along the engineering dimension – ETOED  and adapt-to-order (ATOED). 

Willner et al. (2016) present four types of ETO companies defined by the engineering 

complexity and the number of units sold: Complex ETO, Basic ETO, Repeatable ETO 

and Non-competitive ETO, in order to identify the appropriate level of standardisation 

and design automation for different ETO companies. In this way, they define ETO 

companies in broader terms rather than viewing them as pure customizers. The present 

study adopts the broader definitions of ETO companies, and in line with the types of 

customisations reported by Lampel and Mintzberg (1996) it applies the definitions 

proposed by Hansen (2003) for the engineering/design dimension of CODP. Hansen 

(2003) distinguishes between different customer entry points, as selecting a variant, 

CTO, modify-to-order (MTO) and ETO, where standard products, standard 

parts/modules, a generic product structure or design norms and standards, respectively, 

are defined at the time of customer entry (Figure 1).  

Figure 1. Types of engineering strategies (adopted from Hansen 2003) 

 The present study argues that an ETO company does not necessarily fall into one 

of these engineering dimension categories (CTO, MTO or ETO), but it can operate 

within the range and, even within the same ETO product/project, different CTO, MTO 

and ETO elements can be applied. Using an example of an ETO company that produces 

cement plants, a plant will be partly based on a configuration of standard modules 

chosen to fit the output rate and size (CTO); it will contain parts or modules modified to 

meet the geological conditions of the plant location (MTO) and it may require 

completely new solutions in order to support the customers’ requirements (ETO).  



 In this way, the present study argues that an ETO project/product can contain 

both standard modules/parts as well as modified and completely new modules/parts, i.e. 

SC and NSC, respectively (Figure 2). 

Figure 2. Standard customisation (SC) and Non-standard customisation (NSC) 

2. Impact of Customisation in an ETO Context: A Literature Review  

The impact of product variety or level of product customisation on operational 

performance is a topic that has received some attention in the literature (Squire et al. 

2009; Yee 2005; Zhang, Chen, and Ma 2007; Brunoe and Nielsen 2016; Wan, Evers, 

and Dresner 2012; Berry and Cooper 1999; Park and Okudan Kremer 2015; ElMaraghy 

et al. 2013; Wang et al. 2011). Generally, highlighting the negative impact of product 

variety or the level of customisation, different authors have analysed the performance 

impact of alternative strategies to manage variety or customisation (Um et al. 2017), 

such as mass customisation (Liu, Shah, and Babakus 2012; Kumar, Nottestad, and 

Macklin 2007), product platforms and modularisation (Tu et al. 2004; Aljorephani and 

Elmaraghy 2016; ElMaraghy et al. 2013; Medini 2015), postponement of product 

differentiation (Forza, Salvador, and Trentin 2008; Su et al. 2010; Ngniatedema, Fono, 

and Mbondo 2015) and  postponement of the CODP (Kumar, Nottestad, and Macklin 

2007; Jiang and Geunes 2006).  

 However, the majority of previous studies have explored the impact of product 

variety or level of customizations on operational performance in the context of mass 

producing companies moving towards more customized product portfolio. Only few 

studies have examined the performance impact of ETO companies moving towards  

CTO setup or mass customisation (e.g., Bonev and Hvam 2013; Ulrikkeholm and Hvam 

2014).   



 Bonev and Hvam (2013) define the performance measures that are relevant for 

planning strategic actions for mass customisation operations in an ETO context. They 

highlight the contribution margin relative to revenue as such a measure. Within a mass 

customisation context, Ulrikkeholm and Hvam (2014) analyse the impact of product 

variety at the module level, showing that even with a modular product structure, product 

variety comes at a cost. 

 While many of the previous studies highlighted in this section investigate 

generalizable relationships between product variety/level of customisation and 

operational performance, only a few present tools or frameworks that can help 

companies analyse their own performance or facilitate decision making. Liu et al. 

(2012) help facilitate the decision about which market or environmental conditions are 

appropriate for mass customisation; however, the decision is based on generalised data, 

not on the performance analysis of an individual company. Myrodia and Hvam (2014) 

present a performance analysis method for CTO product portfolios; however, they stay 

at the product line level and they do not assess profitability at the feature/solution level. 

Hu et al. (2008) propose a unified measure of complexity for product variety and 

assembly process that allows for finding the optimal assembly supply chain. Hu et al. 

(2011) further elaborate on how the operations of assembly systems can be used as a 

way to support product variety.  Kumar and Stecke (2007) present and utilise the mass 

customisation and personalisation effectiveness index (MCPEI) to measure the 

effectiveness of a mass customisation and personalisation strategy. 

 Within the context of mass producers moving towards mass customisation, 

Spahi and Hosni (2008) define a model for finding the optimal level of product 

customisation based on a number of strategic goals. They identify a way to determine 

the level of customisation, not in terms of the CODP, but as a measure of how many 



distinct product variants can be produced by combining the product features or the 

module options. While the purpose of their study is comparable to the aims of the 

present study, the context and definition of customisation level make their approach 

difficult to adopt here.  

 Hegde et al. (2005) define and test a statistical regression model for determining 

the optimal level of customisation with respect to the probability of failures. The model 

takes into consideration the product complexity and level of customisation of individual 

design-to-order products. While the overall analysis method is interesting, the measure 

of the level of customisation is not considered appropriate for the current study’s 

analysis. As the level of customisation is measured as the number of design/functional 

parameters set by the customer relative to the total number of parameters (Hegde et al. 

2005). However, in an ETO context, where elements of pure customisation are possible, 

it can be difficult to define the total number of parameters.  

 Based on a literature search of Scopus, with the search terms (profit* OR impact 

OR performance) AND (ETO OR “engineer to order” OR MTO OR “make to order” 

OR “mass customization” OR customiz*), to the best of our knowledge analysis of the 

operational impact on the profitability and cost of NSC complexity in an ETO context 

has not been sufficiently analysed in the literature.  From the reviewed literature, 

statistical regression is identified as a relevant impact analysis tool. However, how the 

distinction between SC and NSC can be represented in this type of regression model 

needs to be further investigated. 

3.  Research Method and Framework Definition 

In order to analyse the impact that creating NSCs in an ETO context has on 

profitability, the present study proposes a three-step framework: Step 1: Identify the 

relevant complexity drivers at the project level and NSC level; Step 2: Define a 



complexity index for NSC and Step 3: Develop impact model. The framework is 

theoretically grounded, and it is based on statistical regression (e.g. Caputo and 

Pelagagge 2008; Brunoe and Nielsen 2012; Wan, Evers, and Dresner 2012; Berry and 

Cooper 1999; Hegde et al. 2005) and the definition of a complexity index (e.g., Bearden 

2003; Budde, Nagler, and Friedli 2015).  In the following sections, the theoretical 

background for the framework will be presented, the basic statistical model of the 

framework will be defined and the individual steps of the framework will be described. 

In order to test the applicability of the framework, a case study in an ETO context is 

presented along with empirical data of the NSC impact. 

3.1 Theoretical background of the framework 

3.1.1 Statistical regression for impact analysis  

To the best of our knowledge, analysis of the operational impact of creating NSCs in an 

ETO context has not been sufficiently addressed in the literature. However, in a mass 

production context, Wan et al. (2012) and Berry and Cooper (1999) use statistical 

regression to analyse the impact of product variety on operational performance.  

Statistical regression is also a well-known tool in quantitative parametric cost 

estimation models, and it has been applied in an ETO context (Caputo and Pelagagge 

2008; Brunoe and Nielsen 2012). Parametric cost estimation methods are function-

based; they identify the relationships between cost and functional parameters/product 

attributes, also referred to as cost drivers, and they can utilise historical data and 

statistical regression to define the exact relationship that is representative of a specific 

product family (Foussier 2006b; Niazi et al. 2006). Thus, statistical regression is seen to 

be an appropriate estimation tool in the early product lifecycles (Stewart, Wyskida, and 

Johannes 1995) or in an ETO context when the detailed design is unavailable (Caputo 



and Pelagagge 2008). These characteristics make it a more suitable approach for the 

purpose of this paper as opposed to a bottom up/activity-based cost analysis, an 

approach that depends on the availability of detailed cost data and a distinction between 

SC and NSC cost data within a project. 

3.1.2 Complexity quantification and measure 

In cost estimation regression models, specific product features or measures are defined 

as cost drivers (independent variables). In the case of a pressure vessel, these could 

include: vessel volume, external surface size and weight. Because the present study 

focuses on NSCs in an ETO context, thus indicating a large variation in the types of 

solutions and complexity, it is difficult to define product measures or features that are 

represented as key cost drivers over the full spectra of solutions. Therefore, a common 

measure or cost driver must be defined that can represent the complexity of the different 

NSCs in the statistical regression model.   

To overcome this obstacle, the study explored complexity measures and 

complexity index theory (Bearden 2003), because complexity is generally understood to 

impact operational performance (Park and Okudan Kremer 2015). The complexity 

index was introduced by Bearden (2003) as a broad representation of a system in order 

to compare and assess the risk related to complex satellite projects. By defining a 

complexity index, Bearden (2003) is able to compare the complexity of different 

satellite projects and define development time and cost as a direct function of project 

complexity.  

 Bearden (2003) presents a three-step process for defining a complexity index: 

(1) identify the parameters that drive complexity, (2) quantify the identified parameters 

and (3) combine the parameters into an aggregate complexity index. Filippazzo (2006) 



utilises the complexity index theory to develop a parametric time and cost estimation 

model for satellites. Banazadeh and Jafari (2012) have developed a heuristic 

complexity-based method for cost estimation of aerospace systems. Budde et al. (2015) 

define a complexity index for improved decision-making between different design 

alternatives. They apply steps similar to those proposed by Bearden (2003); however, 

they provide concrete tools that can be used to analyse interdependency and assign 

complexity values to the complexity drivers. Ramani and Venkatraman (1991) define a 

complexity index for improved decision making and utilise stepwise regression analysis 

to identify significant independent variables to be included in the index.  

While there is no generally accepted definition of complexity (Park and Okudan 

Kremer 2015), many researchers have contributed to defining measures for complexity 

(Sun et al. 2015; Summers and Shah 2010; Suh 2005). Samy and ElMaraghy (2010) 

define a general complexity measure for product assembly that addresses complexity at 

the product level based on a summation of the complexity of individual parts. 

Grabenstetter and Usher (2013) define a complexity equation, including a number of 

complexity drivers, to determine job complexity in an ETO environment for due-date 

estimation using statistical regression to prove the significance of the included 

complexity drivers. The present study does not attempt to define a generalizable 

complexity measure, which is why an in-depth review will not be presented. As the 

definition and measures of complexity are highly related to context (Samy and 

ElMaraghy 2010), the present study proposes an NSC complexity measure, specific to 

the organisation being analysed, based on the complexity index theory (Bearden 2003; 

Budde, Nagler, and Friedli 2015).  

3.2 Statistical regression model 

The present study proposes the use of statistical regression to identify the impact of 



NSC, in combination with the definition of a complexity index, as a measure of NSC 

complexity. A basic regression model can be defined as expressed in Equation (1):  𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽0 + 𝛽𝛽1 ∗ ∑ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛0       (1) 

Where Xproject is the project performance or cost measure, CNSC is the complexity 

measure of an individual NSC in the project and n is the number of NSCs in the project.  

 However, this model does not take into consideration that other project-related 

complexity drivers can influence project costs or performance (e.g. the complexity of 

the standard solution, process or organisational complexity drivers). Thus, there is a 

need to moderate the model with project-related complexity drivers, as seen below in 

Equation (2):  𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝐶𝐶1 + 𝛽𝛽2 ∗ 𝑃𝑃𝐶𝐶2 + ⋯ . .𝛽𝛽𝑥𝑥 ∗ 𝑃𝑃𝐶𝐶𝑥𝑥 +  𝛽𝛽𝑥𝑥+1 ∗ ∑ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛0  (2) 

Where PCx is the project complexity drivers. 

 The regression model presented in Equation (2) is considered to be the basic 

model that represents the logic of the framework presented in the present study. 

However, the later statistical analysis may reveal that certain variables have a non-linear 

contribution or they may prove to be insignificant. This will be discussed in Section 3.4 

(Step 3 of the framework). 

 By defining Equation (2), the complexity of NSC is considered to be a variable 

in the overall complexity of an ETO project, and project performance is defined as a 

function of the project complexity.  

3.3 Framework Step 1: Identify the relevant complexity drivers at the project 

and NSC levels  

The purpose of this step is to identify the ETO project/product features or variables that 

drive complexity and, thus, impact operational performance i.e. to identify complexity 



drivers, sometimes referred to as complexity factors (Vogel and Lasch 2016). As 

indicated in the previous section, complexity drivers at both the project level and the 

NSC level should be identified.  

Identification of complexity drivers is a complex process in itself and a research 

area well covered in the literature (e.g., Vogel and Lasch 2016; Budde, Nagler, and 

Friedli 2015). In this process, the present study will therefore merely refer to previous 

research studies that have proved useful. It is recommend to identify the complexity 

drivers based on stakeholder interviews with process experts (Vogel and Lasch 2016; 

Budde, Nagler, and Friedli 2015) across functions in order to obtain a cross-

organisational perspective. Asking the question; what factor that drive complexity and 

cost in projects? Three dimensions should be considered when identifying complexity 

drivers: product, process and organisational complexity (Wilson and Perumal 2009). 

Quantity, diversity and the interrelationship of elements in the product design are some 

generally accepted product complexity drivers  that can be considered (Park and 

Okudan Kremer 2015). While the present study is based on the understanding that 

complexity drivers are highly context-related, we have found inspiration from previous 

research studies. Toward that end, several studies have been useful. Grabenstetter and 

Usher (2013) highlight a number of complexity factors relevant to the ETO context and 

Myrodia & Hvam (2015) and Vogel and Lasch (2016) present a literature review of the 

complexity factors/drivers relevant to manufacturing companies.  

3.4 Step 2: Define a complexity index for NSC 

The complexity of NSCs in an ETO product is defined as the sum of the complexity of 

individual NSCs as indicated in the definition of the statistical model (Section 3.2), in 

line with the complexity definition by Samy and ElMaraghy (2010). Therefore, the 

purpose of this step is to define a complexity index for a specific NSC. The complexity 



drivers at the NSC level identified in the first step should be evaluated in terms of their 

appropriateness for inclusion in the complexity index. Thus, different considerations 

should be taken into account: (1) data availability in the early quotation phase 

(Grabenstetter and Usher 2013), (2) the correlation between drivers (Bearden 2003; 

Budde, Nagler, and Friedli 2015) and (3) applicability across all NSC (meaning that 

solution-specific features should not be included).  For the complexity drivers that are 

discrete variables, a complexity value is assigned based on choices, e.g. size may be a 

continuous parameter represented by a number of parts, in which case there is no need 

to assign a value. However, to determine the parameter in the early quotation phase, a 

discrete parameter could be more appropriate (for example, size represented by a part, a 

unit or a module). In this case, a complexity value must be assigned to each choice for 

inclusion in the complexity index.  

Complexity drivers can now be combined into a complexity index. This may be 

as simple as adding the values for the included complexity drivers together or more 

complicated equations with an individual weighting of the drivers. The definition of the 

complexity index is very dependent on stakeholder input, and it may be defined as an 

iterative process to define a complexity index that gives an appropriate representation of 

the solution complexity. It is recommended to define the complexity index in 

workshops with key stakeholders. And in these test the complexity index values on a 

number of NSC with a variation in complexity, to ensure that the index represents and 

differentiate the complexity appropriately.   

The complexity index should be normalised relative to the minimum and 

maximum value to arrive at a complexity index expressed as a percentage, ranging 

between 0 and 1. By doing so, the gap between projects with no NSC and projects with 

a few low complexity NSCs is closed.   



3.5 Step 3: Develop impact model 

The purpose of Step 3 is to analyze the impact of the identified complexity drivers on 

the relevant operational performance indicators using multiple regression analysis. The 

basic regression model was defined in Section 3.2 and presented in Equation (2). In this 

step, the model best representing the available data set is identified in order to analyse 

the impact (Grabenstetter and Usher 2013) of the NSC complexity on operational 

performance. First, the project level complexity drivers must be evaluated for their 

appropriateness of being included in the model. The same considerations apply, as to 

the NSC level complexity drivers. Then, the data set for the statistical regression must 

be prepared by: (1) assigning complexity values to all the included complexity drivers, 

(2) calculating the complexity indexes for all NSCs, (3) checking for missing or faulty 

data and (4) checking the dependent variables for inter-correlation (Foussier 2006a). 

Statistical regression can now be conducted on the dataset for relevant 

dependent and independent variables. Different models can be tested, and insignificant 

dependent variables can be reduced from the model to identify the most appropriate 

model (Stewart, Wyskida, and Johannes 1995; Ramani and Venkatraman 1991). From 

the final regression model, the complexity drivers that actually have a significant impact 

on the performance indicators can be identified and the impact can be quantified.   

4. The Case Study 

Nilpeter A/S is a family-owned Danish manufacturing company that produces 

customised printing presses for label and package materials (Figure 3).  

Figure 3. Nilpeter label press. Build of modules each with an individual print 

technology or  processing step. 

 The company currently has a number of different product lines to support 

different markets, different printing technologies and different end-customer industries. 



The product families are very modular at a high level (see Figure 3), with one print 

technology or processing step per module, meaning that customers can configure their 

printing press with different print technologies. However, many customisations are 

made at a lower product level, that is, customisations of the individual printing modules. 

At the lower product level, there is less modularity, and customisations are more 

dependent on engineering development.  

 Nilpeter has a sales catalogue with standard modules and units from which 

standard customisations can be made. Within the standard solution, the company has a 

basic press (a minimum configuration) and offers standard add-on/optional solutions. 

This represent the CTO part of the company’s offerings. Customers can further request 

non-standard solutions, which require engineering involvement. In this way, the printing 

press is customized with a combination of SC and NSC and thus representing both CTO 

and ETO solutions see Figure 4. 

Figure 4. The case company's modular product structure, each lable press is build up 

from basis modules, Optional add-on modules and Non-standard modules. 

 Nilpeter’s customers need flexibility in their printing presses to support multiple 

label customers with a variety of printing needs. The highly customised solutions are 

one of the company’s key competitive advantages in the market; therefore, 

customisation is a strategic decision. While the flexibility in Nilpeter’s solution space is 

not something the company is willing to compromise, it still aims at being more 

efficient in providing customised solutions. Nilpeter is aware that catering to specific 

customer needs adds complexity costs to the organisation, product assortment and 

supply chain. However, the exact impact of making NSCs is not known. While the 

company experiences a high variance in its project profitability, it cannot immediately 

detect the relationship between NSCs and profitability because the complexity of these 



can vary significantly, just as the complexity in the configuration of the standard 

solution can vary. In order to improve its cost estimation of NCSs, and facilitate the 

discussions of certain projects should be rejected the company needs to be able to define 

the complexity of the projects as well as understand the concrete impact on the 

organisation’s profitability.  

The company measures cost on a project level (e.g. cost of the engineering 

hours, final assembly costs, test costs and installation costs). The only cost that is 

calculated on a part or module basis is the material and routing cost. This makes it 

difficult to distinguish between the cost of non-standard and standard solutions; thus, it 

complicates the cost and impacts analysis of supplying NSCs to its customers. This 

highlights why an alternative to a bottom-up cost analysis method is needed. 

In this case study, all projects for one product line were analysed, including all 

the supplied NSCs related to the projects. This entailed a total of 68 projects and 238 

NSCs. The following sections will describe the findings from applying the proposed 

framework at the case company. 

4.1 Step 1: Identify the complexity drivers at the project and NSC levels  

To obtain a cross-organisational perspective of complexity drivers, a total of eight semi-

structured interviews were conducted across the organisation with representatives from 

the Finance, Sales, Order Handling, Engineering, Production and After Sales 

departments. With the ETO relevant complexity drivers as defined by Grabenstetter and 

Usher (2013) in mind, the interviews revealed a number of complexity drivers. Some 

had emphasis from across the organisation e.g. late changes to customer requirements. 

Other drivers were more department-specific, such as communication between 

employees in the Engineering Department and the Original Equipment Manufacturer 

(OEM) suppliers regarding OEM part specifications. Table 1 presents a summary of the 



complexity drivers identified during the interviews, both on project level and on NSC 

level. The complexity driver discussed in the literature by Grabenstetter and Usher 

(2013) are used as an inspiration – a reference is provided for each of the complexity 

drivers identified in the case company.  

Table 1. Complexity drivers at the project and NSC levels 

 4.2 Step 2: Define a complexity index for NSC 

The complexity drivers at the NSC level identified in the first step were evaluated in 

terms of their appropriateness for inclusion in the complexity index, as discussed in 

Section 3.4. Comments for disregarded drivers are mentioned in Table 1. This led to 

including four drivers in the complexity index for the NSCs: size of NSC, integration 

level, solution type and maturity.  

Based on information obtained from the conducted interviews and feedback 

from stakeholders, the complexity drivers were weighted and then divided into relevant 

sub-factors (e.g., size of the NSC was divided into part, sub-assembly, unit or full 

module)  The sub-factors were assigned to all previously supplied NSCs relevant to the 

projects in the dataset (a total of 238 NSCs). Because all the complexity drivers were 

categorical, the complexity was quantified and a value was assigned to each sub-factor, 

ranging from 1 to 10.  This process was conducted in a number of iterations to identify 

the most appropriate complexity index to differentiate and represent the complexity of 

different types of NSCs.  The final complexity driver weighting and complexity values 

are presented in Table 1, and are represented by the following formula: 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = 2 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑆𝑆 𝑁𝑁𝑆𝑆𝐶𝐶 + 4 ∗ 𝐼𝐼𝐼𝐼𝑡𝑡𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑆𝑆𝑜𝑜𝐼𝐼 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿 + 𝑀𝑀𝐼𝐼𝑡𝑡𝑀𝑀𝐼𝐼𝑆𝑆𝑡𝑡𝑀𝑀 ∗ 𝑆𝑆𝑜𝑜𝐿𝐿𝑀𝑀𝑡𝑡𝑆𝑆𝑜𝑜𝐼𝐼 𝑡𝑡𝑀𝑀𝑡𝑡𝑆𝑆  (3) 

Where: Size of the NSC = {4,5,6,7}, Integration Level = {1,6,10}, Maturity = {5,2,1},

Solution type = {1,4,7,10}.    

 With the defined complexity index, minimum and maximum complexity values 



are 13 and 104 that can be assigned to the NSC. This was normalised to values 

expressed as a percentage ranging between 0 and 1.  

4.3 Step 3: Develop impact model 

A multiple regression equations was defined that included both the complexity index for 

NSCs and the moderating factors of the general project complexity, as identified in Step 

1 (Table 1). Similar to the NSC level complexity drivers, the project level drivers were 

evaluated in terms of inter-correlation, data availability at the time of the quotation and 

data availability for the historical dataset. Comments about the disregarded drivers are 

presented in Table 1. Evaluation led to disregarding two factors, leaving the following 

factors in the regression equation: Size (S), Level of standard configuration (LSC), 

Basic solution/Product line maturity (BM), Add-on solution maturity (AM) and the 

Complexity of NSC (CNSC): 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑆𝑆 + 𝛽𝛽2 ∗ 𝐿𝐿𝑆𝑆𝐶𝐶 + 𝛽𝛽3 ∗ 𝐵𝐵𝑀𝑀 + 𝛽𝛽4 ∗ 𝐴𝐴𝑀𝑀 +  𝛽𝛽5 ∗ ∑ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛0   (4) 

The setup regression equation was then statistically analysed using: project 

profit (relative contribution margin [%]) as the dependent variable.  A number of 

different regression models were tested to determine the optimal model, and the model 

was reduced to exclude the insignificant independent variables. The statistical results 

for the final model are presented in Table 2. To maintain the company’s confidentiality, 

the intercept in model 1 has been blanked.   

Table 2. Regression Model Results 

4.5 Case results  

The model is significant and is able to reject the 0-hypothesis (i.e. that NSC have no 

impact the profitability). Generally, all the insignificant independent variables were 

reduced from the model, except in the case of sqrt (NSC), where the variable was not 



directly insignificant and where the overall quality of the model was higher if included. 

 The complexity drivers that proved to be significant were: Size (S), Basic 

solution/Product line maturity (BM) and Complexity of NSC (CNSC).  𝑃𝑃𝐼𝐼𝑜𝑜𝑜𝑜𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽0 + 𝛽𝛽1 ∗ ln (𝑆𝑆) + 𝛽𝛽3 ∗ ln (𝐵𝐵𝑀𝑀)−  𝛽𝛽5 ∗ �∑ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛0   (5) 

 The dependent variables that were insignificant and removed from the model 

were: Level of standard configuration (LSC) and Add-on solution maturity (AM); 

however, in the interviews with stakeholders these were considered to be important 

complexity drivers. This may indicate that the measures applied for these were 

inappropriate and could be improved to show a significant impact.  

 Impact of NSCs on profit  

Model 1 shows that NSCs have a negative impact on a project’s profit. This is in line 

with the expected results, as preliminary studies in the company showed that many 

NSCs are sold at prices that barely cover their material costs. With values for  ∑ 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛0  

ranging between 0 and 7 in the analysed projects, the statistical results show a profit 

impact of NSCs ranging between -0% and –3%.  

4.6 Case Model Test 

To ensure that the produced regression model developed based on the framework 

actually improves predictions of profitability a test was performed using three ETO 

projects at the company. All three projects were conducted in parallel or after the 

analysis presented above, and are therefore not part of the data set the model was 

developed based on. The characteristics of the three test projects are presented in Table 

3.  

 



 Test Project 1. Test Project 2. Test Project 3. 

Customer Destination Croatia Spain Australia 

Number of modules (Size) 30 15 30 

Basic Maturity (BM) 70 71 72 

Number of different NSCs 2 3 0 

Normalized complexity index 0,59341 0,8022 0 

 

Table 3. The characteristics of the three test projects 

The predicted project profit by the regression model was compared with the companies 

own pre-calculation as well as the actual realized profit. The case company does pre-

calculations of project profit based on standard sales prices and cost prices on all 

standard modules and services. For NSCs sales the cost prices are estimated by expert 

experience and thus the profitability depends on the accuracy of these estimations. The 

results are presented in Figure 5 show that the accuracy of the method profitability 

predictions is better than the case companies current method in two out of three projects 

with an absolute error average of 3% against and 9,7%. 

 



Figure 5. Regression Model test with three test projects 

5. Discussion 

It is not always clear to ETO companies what the costs associated with making 

customer specific solutions are, and therefore not always clear if it is actually profitable. 

Hence, making it relevant to understand how creating NSC impacts the overall project 

profitability. While a bottom-up costing approach would be the most accurate approach 

to analyse the impact of making NSC, this is not always possible because of data 

availability; it would require the company to clearly distinguish their cost data on a 

module /part level. ETO companies often calculate cost at the project level, making it 

difficult to clarify which part of the cost is driven by the SC and which is driven by the 

NSC.  

The use of the proposed framework in an ETO case company confirmed that a 

bottom-up costing approach to analyse the impact of NSCs is not always useful in terms 

of data availability.  However, historical data at the project level was available, so the 

alternative statistical regression approach presented in the present study is viable. 

The literature review generally revealed statistical regression analysis as an 

appropriate tool for impact analysis (e.g., Caputo and Pelagagge 2008; Brunoe and 

Nielsen 2012; Wan et al. 2012; Berry and Cooper 1999); it was used to analyse the 

relations between product variety or level of customization and operational 

performance. However, from the literature, it was not clear how the distinction between 

SC and NSC could be represented in the statistical regression model or how the 

complexity variation in the solution space of NSC could be captured. The present study 

contributes to the literature by illustrating how ETO companies can define a context-

specific complexity index (e.g., Bearden 2003; Budde, Nagler, and Friedli 2015) for 

NSCs and apply this as an independent variable in statistical regression and the 



definition of a complexity index 

To further validate the framework, the developed regression model based on the 

proposed framework in the article was tested in its effectiveness of predicting project 

profitability. Based on three test- projects the profit rate predicted by the regression 

model was compared to the realized project profit and to the company’s current pre-

calculation approach – where the estimations of the NSC are determined by experts 

within the company. The results showed improved profit predictability with the 

developed regression model; with an absolute average error of 3% compared to 9,7%. 

For one test project is the error of the model predicted profit higher than the companies 

pre-calculation. However, with an absolute average error of only 3% the regression 

model is considered to be effective in predicting project profitability and thus the 

presented framework is considered to be a valid approach.   

The case company has expressed the relevance of the framework for the analysis 

of NSC impact and for comparing the complexity of different NSC with the defined 

complexity index. This should enable the company in improving the profitability of the 

projects executed by the company – by having an increased ability to analyse the impact 

of responding to highly specialized customer requirements with NSCs. 

The quality of the regression model and the complexity index is highly 

dependent on the identification of relevant complexity drivers. This highlights the 

importance of finding the most relevant complexity drivers both on project and NSC 

levels. In this study it is recommended to increase the chance of success that the 

complexity drivers are founded in literature, as well as, based expert opinions. 

The case company Nilpeter A/S is considered to be a representative example of 

an ETO company working in the span between CTO and ETO, with a solution mix of 

standard, modified modules/parts and pure customisations. The limitation of single case 



validation can affect the validity and reliability of research findings as single case 

studies may lead to findings that are too narrow in their application (Eisenhardt 1989). 

However, for the present study, single case validation is considered sufficient for 

putting forth a theoretically founded framework, since the study does not attempt to 

define a generalizable complexity measure or a generalizable relationship between 

NSCs and operational performance. 

6. Conclusion 

The present study proposes a theory-grounded framework to analyse the impact of 

NSCs on operational performance in an ETO context. The framework is based on 

statistical regression (Stewart, Wyskida, and Johannes 1995) of historical performance 

data as an alternative to a data-extensive bottom-up cost analysis, where a cost 

differentiation between SC costs and NSC costs would be required. A definition of a 

complexity index (Bearden 2003; Budde, Nagler, and Friedli 2015) for NSCs is utilised 

to create a measure that can comprehend the solution space of NSCs in an ETO context 

and represent the complexity in a statistical regression model.  

The framework was validated in the context of an ETO case company that 

manufactures printing presses for labelling, and empirical data was presented. The 

impact of 238 NSCs in 68 projects on one performance indicator (project profit), was 

analysed. The statistical case results showed that NSCs will reduce profit by 0–3%. 

While the statistical case results are not generalizable, they are in line the findings 

reported in previous research, in the sense that an increase in the customisation level has 

a negative impact on operational performance (Squire et al. 2009; Ulrikkeholm and 

Hvam 2014; Park and Okudan Kremer 2015). A test of the case specific estimation 

model on three projects showed improved profit predictability compared to the case 

company’s current estimation approach. 



The framework presented in the article highlights the impact of NSCs on 

relevant performance indicators; thus, it provides ETO companies with quantitative 

input to their discussions about NSCs orders acceptance and how to price them to make 

up for the expected cost increase and profit loss. Thus, the improved knowledge can 

facilitate better decision making, higher project profit and profit predictability. 

Furthermore, the definition of an NSC complexity index will give ETO companies a 

comparable measure they can use to capture the span of the NSC solution space and the 

related complexity.  

Future research in this area would include further validation of the framework in 

ETO companies in different industries to ensure the applicability and availability of the 

data and, moreover to test the method on a variety of different performance indicators.  

References 

Aljorephani, Sufian K., and Hoda A. Elmaraghy. 2016. “Impact of Product Platform 

and Market Demand on Manufacturing System Performance and Production Cost.” 

Procedia CIRP 52. Elsevier B.V.: 74–79. doi:10.1016/j.procir.2016.07.068. 

Banazadeh, A., and M. H. Jafari. 2012. “A Heuristic Complexity-Based Method for 

Cost Estimation of Aerospace Systems.” Proceedings of the Institution of 

Mechanical Engineers, Part G: Journal of Aerospace Engineering 227 (11): 1685–

1700. doi:10.1177/0954410012461987. 

Bearden, David A. 2003. “A Complexity-Based Risk Assessment of Low-Cost 

Planetary Missions: When Is a Mission Too Fast and Too Cheap?” Acta 

Astronautica 52 (2–6): 371–79. doi:10.1016/S0094-5765(02)00177-7. 

Berry, William L., and Martha C. Cooper. 1999. “Manufacturing Flexibility: Methods 

for Measuring the Impact of Product Variety on Performance in Process 

Industries.” Journal of Operations Management 17 (2): 163–78. 



doi:10.1016/S0272-6963(98)00033-3. 

Bonev, Martin, and Lars Hvam. 2013. “Performance Measures for Mass Customization 

Strategies in an ETO Environment.” In Proceedings of the 20th EurOMA 

Conference. Dublin: European Operations Management Association. 

Brunoe, Thomas Ditlev, and Kjeld Nielsen. 2016. “Complexity Management in Mass 

Customization SMEs.” Procedia CIRP 51: 38–43. 

doi:10.1016/j.procir.2016.05.099. 

Brunoe, Thomas Ditlev, and Peter Nielsen. 2012. “A Case of Cost Estimation in an 

Engineer-to-Order Company Moving towards Mass Customisation.” International 

Journal of Mass Customisation 4 (3–4): 239–54. 

doi:10.1504/IJMASSC.2012.047400. 

Budde, Lukas, Oliver Nagler, and Thomas Friedli. 2015. “A Method to Set up a 

Complexity Index to Improve Decision-Making Performance.” Procedia CIRP 36. 

Elsevier B.V.: 53–58. doi:10.1016/j.procir.2015.01.052. 

Caputo, Antonio C., and Pacifico M. Pelagagge. 2008. “Parametric and Neural Methods 

for Cost Estimation of Process Vessels.” International Journal of Production 

Economics 112 (2): 934–54. doi:10.1016/j.ijpe.2007.08.002. 

Eisenhardt, K. M. 1989. “Building Theories from Case Study Research.” Academy of 

Management Review 14 (4). Academy of Management: 532–50. 

doi:10.5465/AMR.1989.4308385. 

ElMaraghy, H., G. Schuh, W. ElMaraghy, Schönsleben Piller, F., M. P., Tseng, and A. 

Bernard. 2013. “Product Variety Management.” CIRP Annals - Manufacturing 

Technology 62 (2): 629–652. doi:10.1016/j.cirp.2011.05.004. 

Filippazzo, Giancarlo. 2006. “A Complexity Based Satellite Subsystem Cost and Time 

Estimating Parametric Model.” In Space 2006. Reston, Virigina: American 



Institute of Aeronautics and Astronautics. doi:10.2514/6.2006-7214. 

Forza, C., and F. Salvador. 2008. “Application Support to Product Variety 

Management.” International Journal of Production Research 46 (3). Taylor & 

Francis Group: 817–36. doi:10.1080/00207540600818278. 

Forza, Cipriano, Fabrizio Salvador, and Alessio Trentin. 2008. “Form Postponement 

Effects on Operational Performance: A Typological Theory.” International 

Journal of Operations & Production Management 28 (11): 1067–94. 

doi:10.1108/01443570810910197. 

Foussier, Pierre. 2006a. From Product Description to Cost : A Practical Approach 

Volume 2: Building a Specific Model. Springer. 

———. 2006b. From Product Description to Cost: A Practical Approach Volume 1: 

The Parametric Approach. doi:10.1017/CBO9781107415324.004. 

Gosling, Jonathan, and Mohamed M. Naim. 2009. “Engineer-to-Order Supply Chain 

Management: A Literature Review and Research Agenda.” International Journal 

of Production Economics 122 (2): 741–54. doi:10.1016/j.ijpe.2009.07.002. 

Grabenstetter, Douglas H., and John M. Usher. 2013. “Determining Job Complexity in 

an Engineer to Order Environment for Due Date Estimation Using a Proposed 

Framework.” International Journal of Production Research 51 (19). Routledge: 

5728–40. doi:10.1080/00207543.2013.787169. 

Hansen, Benjamin Loer. 2003. “Development of Industrial Variant Specification 

Systems.” Technical University of Denmark. 

Harbour, JL. 2009. “The Basics of Performance Measurement.” Crc Press, 2009. 

Haug, Anders, Lars Hvam, and Niels henrik Mortensen. 2013. “Reducing Variety in 

Product Solution Spaces of Engineer-to-Order Companies: The Case of Novenco 

A/S.” International Journal of Product Development. 



Haug, Anders, Klaes Ladeby, and Kasper Edwards. 2009. “From Engineer to Order to 

Mass Customization.” Management Research News 32 (7): 633–44. 

doi:10.1108/01409170910965233. 

Hegde, Vishwanath G., Sunder Kekre, Surendra Rajiv, and Pandu R. Tadikamalla. 

2005. “Customization : Impact on Product and Process Performance.” Production 

and Operations Management 14 (4): 388–99. doi:10.1111/j.1937-

5956.2005.tb00228.x. 

Hu, S. J., X. Zhu, H. Wang, and Y. Koren. 2008. “Product Variety and Manufacturing 

Complexity in Assembly Systems and Supply Chains.” CIRP Annals - 

Manufacturing Technology 57 (1): 45–48. doi:10.1016/j.cirp.2008.03.138. 

Hu, S.J., J. Ko, L. Weyand, H.A. ElMaraghy, T.K. Lien, Y. Koren, H. Bley, G. 

Chryssolouris, N. Nasr, and M. Shpitalni. 2011. “Assembly System Design and 

Operations for Product Variety.” CIRP Annals 60 (2): 715–33. 

doi:10.1016/j.cirp.2011.05.004. 

Hvam, Lars, N.H Mortensen, and J Riis. 2008. Product Customization. Springer Berlin 

Heidelberg. 

Jiang, Li, and Joseph Geunes. 2006. “Impact of Introducing Make-to-Order Options in a 

Make-to-Stock Environment.” European Journal of Operational Research 174 (2): 

724–43. doi:10.1016/j.ejor.2004.11.026. 

Kasiri, Leila Agha, Kenny Teoh Guan Cheng, Murali Sambasivan, and Samsinar Md. 

Sidin. 2017. “Integration of Standardization and Customization: Impact on Service 

Quality, Customer Satisfaction, and Loyalty.” Journal of Retailing and Consumer 

Services 35 (March): 91–97. doi:10.1016/j.jretconser.2016.11.007. 

Kaydos, W. 1998. “Operational Performance Measurement: Increasing Total 

Productivity.” CRC press. 



Kumar, Ashok, and Kathryn E. Stecke. 2007. “Measuring the Effectiveness of a Mass 

Customization and Personalization Strategy: A Market- and Organizational-

Capability-Based Index.” International Journal of Flexible Manufacturing Systems 

19 (4): 548–69. doi:10.1007/s10696-008-9047-7. 

Kumar, Sameer, Daniel a. Nottestad, and John F. Macklin. 2007. “A Profit And Loss 

Analysis For Make-To-Order Versus Make-To-Stock Policy—a Supply Chain 

Case Study.” The Engineering Economist 52 (2): 141–56. 

doi:10.1080/00137910701328953. 

Lehnerd, Alvin P., and Marc H. Meyer. 2011. The Power of Product Platforms. Reprint 

ed. Free Press. 

Liu, Gensheng (Jason), Rachna Shah, and Emin Babakus. 2012. “When to Mass 

Customize: The Impact of Environmental Uncertainty*.” Decision Sciences 

Journal of Innovative Education 43 (5): 851–87. doi:10.1111/j.1540-

5915.2012.00374.x. 

Medini, Khaled. 2015. “Modularity and Variety Spinoffs: A Supply Chain Planning 

Perspective.” International Journal of Industrial Engineering : Theory 

Applications and Practice 22 (6): 753–68.  

Myrodia, Anna, and Lars Hvam. 2014. “Managing Variety in Configure-to-Order 

Products -An Operational Method -.” International Journal of Industrial 

Engineering and Management 5 (4): 195–206. 

Myrodia, Anna, and Lars Hvam. 2015. “Identification of Complexity Cost Factors in 

Manufacturing Companies.” Proceedings of the 22nd Euroma Conference. 

Ngniatedema, Thomas, Louis Aimé Fono, and Georges Dieudonné Mbondo. 2015. “A 

Delayed Product Customization Cost Model with Supplier Delivery Performance.” 

European Journal of Operational Research 243 (1): 109–19. 



doi:10.1016/j.ejor.2014.11.017. 

Niazi, Adnan, Jian S. Dai, Stavroula Balabani, and Lakmal Seneviratne. 2006. “Product 

Cost Estimation: Technique Classification and Methodology Review.” Journal of 

Manufacturing Science and Engineering 128 (2): 563. doi:10.1115/1.2137750. 

Park, Kijung, and Gül E. Okudan Kremer. 2015. “Assessment of Static Complexity in 

Design and Manufacturing of a Product Family and Its Impact on Manufacturing 

Performance.” International Journal of Production Economics 169. Elsevier: 215–

32. doi:10.1016/j.ijpe.2015.07.036. 

Pine, B. Joseph. 1993. Mass Customization: The New Frontier in Business Competition. 

Harvard Business Press. 

Ramani, S., and R. Venkatraman. 1991. “Complexity Index as a Base for Decision 

Making Whether to Introduce NC or Conventional Machines.” International 

Journal of Production Economics 23 (1–3): 187–96. doi:10.1016/0925-

5273(91)90061-W. 

Rudberg, M, and J Wikner. 2004. “Mass Customization in Terms of the Customer Order 

Decoupling Point.” Production Planning & Control. 

http://www.tandfonline.com/doi/abs/10.1080/0953728042000238764. 

Samy, S. N., and H. ElMaraghy. 2010. “A Model for Measuring Products Assembly 

Complexity.” International Journal of Computer Integrated Manufacturing 23 

(11): 1015–27. doi:10.1080/0951192X.2010.511652. 

Spahi, Sami, and Yasser Hosni. 2008. “Optimising the Degree of Customisation for 

Products in Mass Customisation Systems.” International Journal of Mass 

Customisation, December. Inderscience Publishers. 

Squire, Brian, Steve Brown, Jeff Readman, and John Bessant. 2009. “The Impact of 

Mass Customisation on Manufacturing Trade-Offs.” Production and Operations 



Management 15 (1): 10–21. doi:10.1111/j.1937-5956.2006.tb00032.x. 

Stewart, Rodney D., Richard M. Wyskida, and James D Johannes. 1995. Cost 

Estimator’s Reference Manual. 2nd ed. 

Su, Jack C.P., Yih-Long Chang, Mark Ferguson, and Johnny C. Ho. 2010. “The Impact 

of Delayed Differentiation in Make-to-Order Environments.” International Journal 

of Production Research 48 (19): 5809–29. doi:10.1080/00207540903241970. 

Suh, Nam P. 2005. “Complexity in Engineering.” CIRP Annals - Manufacturing 

Technology 54 (2): 46–63. doi:10.1016/S0007-8506(07)60019-5. 

Summers, Joshua D., and Jami J. Shah. 2010. “Mechanical Engineering Design 

Complexity Metrics: Size, Coupling, and Solvability.” Journal of Mechanical 

Design 132 (2): 21004. doi:10.1115/1.4000759. 

Sun, Can, Hans Ehm, Stefan Heilmayer, and Thomas Rose. 2015. “A System 

Framework for Complexity Measurement and Evaluation on the Example of 

Supply Chain.” In BUSTECH 2015 : The Fifth International Conference on 

Business Intelligence and Technology, 15–19. 

Tu, Qiang, Mark A. Vonderembse, T. S. Ragu-Nathan, and Bhanu Ragu-Nathan. 2004. 

“Measuring Modularity-Based Manufacturing Practices and Their Impact on Mass 

Customization Capability: A Customer-Driven Perspective.” Decision Sciences 35 

(2): 147–68. doi:10.1111/j.00117315.2004.02663.x. 

Ulrich, Karl T., and Steven D. Eppinger. 2011. Product Design and Development, 5th 

Edition: Karl T. Ulrich, Steven D. Eppinger. 5th ed. McGraw-Hill Education. 

Ulrikkeholm, JB, and L Hvam. 2014. “The Cost of Customising: Assessing the 

Performance of a Modular Product Programme.” International Journal of Product 

Development 19 (4): 214–230. 

Um, Juneho, Andrew Lyons, Hugo K.S. Lam, T. C.E. Cheng, and Carine Dominguez-



Pery. 2017. “Product Variety Management and Supply Chain Performance: A 

Capability Perspective on Their Relationships and Competitiveness Implications.” 

International Journal of Production Economics 187 (January). Elsevier B.V.: 15–

26. doi:10.1016/j.ijpe.2017.02.005. 

Vogel, Wolfgang, and Rainer Lasch. 2016. “Complexity Drivers in Manufacturing 

Companies: A Literature Review.” Logistics Research 9 (1): 25. 

doi:10.1007/s12159-016-0152-9. 

Wan, Xiang, Philip T. Evers, and Martin E. Dresner. 2012. “Too Much of a Good 

Thing: The Impact of Product Variety on Operations and Sales Performance.” 

Journal of Operations Management 30 (4). Elsevier B.V.: 316–24. 

doi:10.1016/j.jom.2011.12.002. 

Wang, He, Xiaowei Zhu, Hui Wang, S. Jack Hu, Zhongqin Lin, and Guanlong Chen. 

2011. “Multi-Objective Optimization of Product Variety and Manufacturing 

Complexity in Mixed-Model Assembly Systems.” Journal of Manufacturing 

Systems 30 (1): 16–27. doi:10.1016/j.jmsy.2011.03.002. 

Wang, Zhiqiang, Min Zhang, Hongyi Sun, and Guilong Zhu. 2016. “Effects of 

Standardization and Innovation on Mass Customization: An Empirical 

Investigation.” Technovation 48–49 (February): 79–86. 

doi:10.1016/j.technovation.2016.01.003. 

Wikner, J, and M Rudberg. 2005. “Integrating Production and Engineering Perspectives 

on the Customer Order Decoupling Point.” International Journal of Operations & 

Production Management 25(7): 623-641. 

Willner, Olga, Daryl Powell, Markus Gerschberger, and Paul Schönsleben. 2016. 

“Exploring the Archetypes of Engineer-to-Order: An Empirical Analysis.” 

International Journal of Operations & Production Management 36 (3): 242–64. 



doi:10.1108/IJOPM-07-2014-0339. 

Wilson, Stephen A., and Andrei Perumal. 2009. Waging War on Complexity Costs. 1 

edition. McGraw-Hill Education. 

Yee, S.-T. 2005. “Impact Analysis of Customized Demand Information Sharing on 

Supply Chain Performance.” International Journal of Production Research 43 

(16): 3353–73. doi:10.1080/00207540500095779. 

Zhang, Xiang, Rongqiu Chen, and Yubo Ma. 2007. “An Empirical Examination of 

Response Time, Product Variety and Firm Performance.” International Journal of 

Production Research 45 (14): 3135–50. doi:10.1080/00207540600786707. 

 




