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ABSTRACT 

UNDERSTANDING THE IMPACTS OF AMMONIA FIBER EXPANSION (AFEX™) 

PRETREATMENT AND DENSIFICATION ON DENSIFIED PRODUCTS QUALITY 

AND BIOPRODUCTS YIELD THROUGH ENZYMATIC HYDROLYSIS AND FAST 

PYROLYSIS 

VIJAY SUNDARAM 

2017 

Lignocellulosic biomass poses significant challenges during handling, 

transportation, and storage due to its low bulk density. Densification involves conversion 

of the low bulk density biomass into a highly compacted product which helps in 

improving the handling, transporting, and storage obstacles associated with biomass 

logistics. Besides the logistical challenges, the recalcitrant nature of the lignocellulosic 

biomass makes it even more challenging during the enzymatic hydrolysis. The 

carbohydrate components, cellulose and hemicellulose are not readily accessible by the 

enzymes during the hydrolysis process due to the presence of lignin. Pretreatment is the 

process to convert the native recalcitrant biomass in the form, which is effective to 

enzymatic hydrolysis. Numerous pretreatment technologies have been extensively 

studied on different lignocellulosic biomass using physical, chemical, and biological 

methods. Ammonia Fiber Expansion (AFEX™) is a promising pretreatment method, 

which involves treating the biomass with liquid ammonia at moderate temperature and 

pressure. The impacts of AFEX™ pretreatment include cellulose decrystallization, 

hemicellulose hydrolyzation, and lignin depolymerization. Due to these alterations, the 
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cellulose and hemicellulose components can be easily accessed by the enzymes during 

the hydrolysis step, resulting in increased sugar yields.  

To address the logistical issues faced by the large-scale biorefineries, a concept 

called “Regional biomass processing depots” (RBPD) was developed. RBPDs involve 

procuring, pretreating, and densifying low density lignocellulosic feedstocks on a 

distributed scale to minimize the logistical challenges and carbon footprint. To make the 

RBPDs successful, it is imperative to understand the impacts of different preprocessing 

operations on the physical qualities of the densified products and the product yields. The 

increased lignin availability after AFEX™ pretreatment helps in better binding of the 

fibers during the densification process to produce well compacted products. Although, 

the densification produces compacted products, it is imperative to examine the effects of 

densification on the biomass conversion process. Hence, this study was designed to study 

the impacts of AFEX™ pretreatment and densification on the densified products quality 

and the product yields from the densified products. The lignocellulosic biomass corn 

stover, prairie cord grass, and switchgrass were selected for this research. The objectives 

of this research are: to understand the compression behavior of the AFEX™ pretreated 

biomass, to study the impacts of AFEX™ pretreatment and densification on the physical 

qualities of the densified products and sugars yields through enzymatic hydrolysis, and to 

understand the impacts of AFEX™ pretreatment and densification on the fast pyrolysis 

behavior. Five different researches were conducted and the brief summary of the 

individual studies is given below:  

The objective of the first study was to understand the effect of (AFEX™) 

pretreatment on the compression behavior of selected lignocellulosic biomass. Size 
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reduced (2, 4, and 8 mm) untreated and AFEX™ pretreated samples were moisture 

adjusted (8, 12, 16, and 20% wb) and were compressed using a single pelleting unit. 

AFEX™ pretreated corn stover with moisture content of 20% at screen size of 2 mm 

produced pellets with 21% higher unit density compared to untreated corn stover pellets. 

AFEX™ pretreated prairie cord grass and switchgrass with 20% moisture content at a 

screen size of 2 mm produced pellets having 25% and 21% higher unit density. The 

decrease in hammer mill screen size and the increase in moisture content and applied 

pressure increased the pellet unit density. Data obtained from the compression 

experiments were fitted with different compaction models. The Kawakita and Ludde 

model exhibited high degree of accuracy in all the samples. The constant value ‘1/b’ in 

Kawakita and Ludde model represents the yield strength of the compacts, and the results 

showed that the AFEX™ pretreatment made the biomass easier to compress. Lower 

values of yield strength were obtained at high moisture content signifying that AFEX™ 

pretreated biomass at high moisture content leads to onset of deformation at relatively 

low pressure.   

The second study was intended to study the effects of AFEX™ pretreatment, 

feedstock moisture content, hammer mill screen size, compressive load on sugar recovery 

from corn stover, prairie cord grass, and switchgrass. Pellets were produced using a 

single pelleting unit from untreated and AFEX™ pretreated biomass. Then the pellets 

were subjected to enzymatic hydrolysis to determine the glucose and xylose yields. A 

significant increase in the glucose and the xylose recoveries was noted in all the 

feedstocks after AFEX™ pretreatment. Statistical analysis showed that only the screen 

size was significant (p<0.05) in controlling the sugar yields whereas compressive load 



xxiii 

 

and feedstocks moisture content were not (p>0.05) in the case of untreated feedstocks and 

for the AFEX pretreated feedstocks all the selected factors were not significant (p>0.05). 

These results indicate that the larger screen size AFEX™ pretreated samples can be 

densified to increase the bulk density of the feedstocks without affecting the sugar yields.  

The blending effects of the AFEX™ pretreated corn stover and switchgrass was 

investigated in third study. AFEX™ pretreated corn stover and switchgrass were blended 

(25:75, 50:50 and 75:25 percent on dry weight) and compressed at different applied 

pressures. The impacts of blending ratio, screen size, and compressive pressure were 

studied on pellet unit density, pellet hardness, specific energy consumption for pellets and 

on the sugar yields. A single pelleting unit was employed the pellets produced from 

AFEX™ pretreated samples reached their maximum pellet unit densities at an applied 

pressure of 94.8 MPa. The pellets produced from the small screen size sample at a higher 

applied pressure required more force to break. Besides, blend with higher proportion of 

AFEX™ pretreated corn stover produced harder pellets (711 N). Specific energy 

consumption for the pellets production varied from 11.4 to 57.9 kW h t−1, and due to low 

bulk density of switchgrass, blends with a higher proportion of switchgrass consumed 

more energy. Pelleting and biomass blending had no significant effects on sugar yields of 

the AFEX™ pretreated corn stover and switchgrass samples.  

The effects of AFEX™ pretreatment, moisture content (5,10, and 15 % wb), 

particle size (2, 4, and 8 mm), and extrusion temperature (75, 100, and 125 °C) on pellet 

bulk density, pellet hardness, and sugar recovery from corn stover, prairie cord grass, and 

switchgrass were investigated in the fourth study. Pellets were produced using a 

laboratory-scale extruder. AFEX™ pretreatment increased the pellet bulk density for all 



xxiv 

 

the biomass. Maximum pellet hardness of 2342.8, 2424.3, and 1298.6 N was recorded for 

AFEX™ pretreated corn stover, prairie cord grass, and switchgrass, respectively. Glucose 

and xylose yields of AFEX™ pellets were not affected by the extruder barrel temperature 

and the screen size. The results obtained showed that low temperature and large particle 

size biomass can be employed for AFEX™ pretreated biomass without compromising 

sugar yields. 

The fifth study was intended to study the effects of AFEX™ pretreatment and 

densification on the fast pyrolysis product yields. Untreated and AFEX™ pretreated 

feedstocks were moisture adjusted and were densified using a single screw extruder and 

ComPAKco densification technique. Results of the thermogravimetric analysis showed 

the decrease in the decomposition temperature of the all the feedstocks after AFEX™ 

pretreatment indicating the increase in thermal stability. Loose and densified feedstocks 

were subjected to fast pyrolysis in a lab scale reactor and the bio-char and bio-oil yields 

were recorded. Bio-char obtained from the AFEX™ pretreated feedstocks exhibited 

increased bulk and particle density compared to the untreated feedstocks. The properties 

of the bio-oil were statistically similar for the untreated, AFEX™ pretreated, and 

AFEX™ pretreated densified feedstocks. Based on the bio-char and bio-oil yields, the 

AFEX™ pretreated feedstocks and the densified AFEX™ pretreated feedstocks exhibited 

similar behavior. Hence, it can be concluded that densifying the AFEX™ pretreated 

feedstocks could be a viable option in the biomass processing depots to reduce the 

transportation costs and the logistical impediments without affecting the product yields.  
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1. Need for alternate energy sources  

Dependence on the petroleum products imports threatens the United States 

security, economy, and the environment (Greene et al., 2004). In the year 2015, more 

than 80 percent of the primary energy consumed in the United States was derived from 

the fossil fuels (USEIA, 2015). Transportation accounts for 26 percent of total U.S. 

greenhouse gas emissions and the emissions are due to the combustion of fossil fuels 

(USEPA, 2016). Fossil fuel based energy production is associated with a multitude of 

challenges including unsustainable nature, environmental pollution, global climate 

change, etc. Due to the finite fossil fuel resources, increasing energy demands, and 

increasing crude oil prices, the United States should make a transition from fossil fuel 

based development towards sustainable and alternate fuels based economy.  

Application of lignocellulosic biomass for the biofuels production offers a 

renewable alternative (Kumar et al., 2008) and according to the U.S. department of 

energy, generating power and fuels from biomass resources will have economic benefits 

including trade deficit reduction and new employment creation (USDOE, 2016). Biomass 

can be defined as any organic matter available on a renewable basis including, 

agricultural crops, trees, animal wastes, municipal wastes, grasses, etc. (Perlack et al., 

2011). The utilization of biomass to generate energy is termed as ‘Bioenergy’ and the 

resultant products can be used as a direct fuel or can be converted into liquids and gases 

(biofuels). Currently, we use first generation biofuels, produced from feedstocks that 

have been traditionally used as food. Due to the increasing food price and food vs. fuel 

debates, the focus has been shifted towards the second and third generation biofuels. 
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Second generation biofuels could be the viable resource to achieve the target of 36 billion 

gallons of renewable fuels by the year 2022 (Sissine, 2007). Second generation biofuels 

are produced from processing of cellulose present in the lignocellulosic materials like 

agricultural residues (corn stover, wheat straw, rice hulls, etc.), forest residues (roots, 

twigs, leaves, etc.), municipal residues (kitchen wastes, yard trimmings, paper products, 

etc.) and sustainable biomass (switchgrass, prairie cord grass, jatropha, etc.). The 

utilization of lignocellulosic biomass for the energy production does not compete with the 

food production besides developing the rural economy (Nanda et al., 2015). 

1.2. Lignocellulosic biomass  

Lignocellulosic biomass covers a wide range of plants that is composed of 

cellulose, hemicellulose, and lignin. Due to its plentiful availability and renewable nature, 

lignocellulosic biomass have attracted much attention to produce fuels and chemicals 

(Binder and Raines, 2009). Biofuels production from lignocellulosic biomass are favored 

due to its high energy density, easy to transport and store, and its compatibility with the 

existing fuel combustion in the vehicles (Eranki, 2012). Lignocellulosic biomass can be 

converted into biofuels via biochemical and thermochemical conversion process. In 

biochemical conversion process, the lignocellulosic biomass will be hydrolyzed to 

convert the carbohydrate fractions into simple sugars. Fermentation is the subsequent 

process to convert the simple sugars into fuels and chemicals (Balan, 2012). In 

thermochemical conversion process, the lignocellulosic biomass will be subjected to 

pyrolysis or gasification to yield syngas, which in turn will be converted into fuels via 

Fischer-Tropsch process or by a biological conversion (Balan, 2014).  
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1.3. Lignocellulosic biomass and its challenges 

In the United States, the most common biofuel is ‘Ethanol’ produced from 

fermentation of biomass rich in carbohydrates (Tromly, 2001). Bioethanol production 

from fermentation of plant biomass has been well studied and various conditions like 

enzymes activity, range, genetics, etc. were optimized (Rabinovitch-Deere, 2013). 

Although lignocellulosic biomass appears to be the feasible alternative, the challenges 

involved in the conversion of biomass into biofuels must be resolved. Miao et al (2012) 

indicated that the primary challenge in biomass logistics involves transporting huge 

volumes of low bulk density materials in an effective and efficient manner. Developing 

uniform format solid feedstock is important for the consistent feedstock supply for the 

bioenergy production (Hess et al., 2009). Densification process is one way to increase the 

bulk density of the biomass, which involves conversion of loose biomass into regular 

shape products like pellets, briquettes, and cubes (Kambo and Dutta, 2014). Besides the 

logistical issues, overcoming the recalcitrance of the lignocellulosic biomass is an another 

uphill task in biofuels production. The components of the lignocellulosic biomass 

cellulose, hemicellulose, and lignin) are arranged in a complex pattern to protect against 

the microbial attack. Hence, it poses significant challenges during the enzymatic 

hydrolysis process. Different pretreatment methods have been studied extensively to 

break the recalcitrance of the lignocellulosic biomass for low cost ethanol production. 

Table 1.1 shows the summary of different pretreatment technologies. Lignocellulosic 

biomass pretreatment is vital to improve the enzyme accessibility to the carbohydrate 

fractions, thus increasing the product yields and reducing the costs (Himmel et al., 2007).  
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Pretreatment has an impact on the overall process, including the feedstock 

handling, conversion process, and in downstream processing (Yang and Wyman, 2007). 

On the other hand, lignin alternation during the densification process could impact the 

biomass reactivity to enzymatic hydrolysis (Rijal et al., 2012). Hence, it becomes 

imperative to examine whether the pretreatment and densification impacts are valuable or 

detrimental to the biofuel production. This entire research work is based on the concept 

of investigating the impacts of pretreatment and densification on the biofuel product 

yields.  

1.4. Pretreatment of lignocellulosic biomass  

Lignocellulosic feedstocks are complex structured and made up of three major 

components, namely cellulose, hemicellulose, and lignin (Lange, 2007). Cellulose and 

hemicellulose make up two-thirds of cell wall dry matter and these components are 

polysaccharides that can be hydrolyzed to simple sugars and then can be fermented to 

produce ethanol. Lignin acts as a support to the cell structure embedding cellulose and 

hemicellulose. Fig.1.1 shows the structure of lignocellulosic biomass and the need for 

pretreatment. To convert the sugar components (cellulose and hemicellulose) of the 

lignocellulosic biomass into fuel and chemicals, the deconstruction of complex chemical 

structure is vital. The process involving the conversion of the native form of 

lignocellulosic biomass, which is recalcitrant to enzymatic hydrolysis into a form which 

is effective for enzymatic conversion is referred as “pretreatment in bioprocessing 

engineering” (Lynd et al., 2002). The main aim of the pretreatment is to deconstruct the 

structure of lignocellulosic biomass, thus preparing the carbohydrate components in a 

form that can be easily accessed by the microorganisms during enzymatic hydrolysis.  
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Lignocellulosic biomass pretreatment methods include physical, chemical, 

biological methods and various combinations thereof (Harmsen et al., 2010). Numerous 

pretreatment technologies have been studied to improve the production efficiencies and 

to reduce the cost involved in the production of cellulosic biofuel production (Lynd et al., 

2008).  

1.5. Ammonia Fiber Expansion (AFEX™) pretreatment 

Ammonia fiber expansion (AFEX™) is a promising method to pretreat 

agricultural materials for bioenergy production and the method involves treating the 

lignocellulosic biomass with liquid ammonia under mild temperature (70-200°C) and 

pressure (100-400 psi) for a specific time (Bals et al., 2010). Swelling of cellulose fibers 

occurs, followed by the explosion when the pressure is rapidly released (Dale, 1986). 

This explosion results in several physical and chemical alterations in the structure of 

biomass. Some of the alterations include cellulose decrystallization, partial 

depolymerization of hemicellulose, cleavage of lignin-carbohydrate complex (LCC), and 

surface area increase due to structural disruption. Chundawat et al (2007) studied the 

effect of AFEX™ pretreatment on the enzymatic digestibility of corn stover. FTIR results 

confirmed the cleavage of lignin–carbohydrate complex (LCC) for AFEX™-treated 

fractions and spectroscopy results showed the extraction of cleaved-lignin phenolic 

fragments and other extractives to the biomass surface. Balan et al (2009) described the 

mechanisms involved in the AFEX pretreatment process.  

•  Ammonia added to the reactor penetrates the lignocellulosic biomass and 

reacts with the water present in the biomass to form ammonium hydroxide.  
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•  The formation of hydroxide ion catalyzes various thermochemical reactions 

inside the biomass structure.  

•  As a result of the thermochemical reactions, the compounds lignin and 

hemicellulose will be extracted and redeposited on the surface of the biomass 

cell wall.  

•  These alterations in the lignocellulosic biomass structure enhances the 

accessibility of cellulose for the enzymes during the hydrolysis process.  

Fig.1.2 shows the AFEX™ pretreatment reactor setup. AFEX™ pretreatment 

proved to increase the sugar yields of different lignocellulosic biomass due to the 

retention of sugar components. Lau et al (2009) reported preservation of plant 

carbohydrates when the corn stover was subjected to AFEX™ pretreatment.  Biersbach et 

al (2015) showed the significant improvement in the ethanol yields from corn stover, 

prairie cord grass, and switchgrass pretreated through AFEX™. Alizadeh et al (2005) 

reported a 2.5 times increase in ethanol yield after the switchgrass was subjected to 

AFEX™ pretreatment. Similarly, Teymouri et al (2005) reported an increase in ethanol 

yield of 2.3 times after the corn stover was pretreated through AFEX™. Besides 

increasing the sugar yields a pretreatment, which alters the lignocellulosic biomass 

structure and mobilizes the lignin to the biomass surface can be potentially employed to 

densify the biomass without any external binders (Balan, 2014). During the AFEX™ 

pretreatment, the lignin is mobilized to the biomass surface which acts as a natural binder 

during the densification process.  
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1.6. Biomass densification  

Bulk density of the lignocellulosic feedstocks ranges from 80-100 kg m-3 for 

agricultural straws and 150-200 kg m-3 for woody biomass (Sokhansanj and Fenton, 

2006; Mitchell et al., 2007). Due to its low bulk density, lignocellulosic biomass poses 

significant challenges in handling, transportation, and storage. It also presents challenges 

in coal co-firing and reduces burning efficiencies (Tumuluru et al., 2010). Moisture 

content also plays a vital role in determining the heating value of the biomass and less 

moisture content feedstocks are preferable for the biofuel production. Hence, it is 

important to convert the lower bulk density lignocellulosic feedstocks to the higher 

density products with less moisture content to overcome the logistical issues and to make 

the biofuel production economical.   

Biomass densification is one of the promising options to overcome the limitations 

associated with the biomass logistics (Tumuluru et al., 2010). Densification involves 

application of pressure to the biomass, thus making the loose biomass into a highly 

compacted product. As a result of the densification, the compacted products will be easy 

to handle, transport, and store. Increase in the bulk density of the biomass not only 

reduces the space required for transportation and logistical costs, but also increases the 

energy density of the products. Besides, the densification also reduces the fines produced 

making the environment safe for the workers. Different researches have been carried out 

to understand the mechanisms involved in the biomass densification process. Rumpf 

(1962) explained the possible mechanisms involved in the densification process. The 

author divided the densification process into five different stages which are as follows:  
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1. The attraction force causes the solid particles to adhere to each other. The 

attractive force may be an electrostatic or magnetic force in nature.  

2. The presence of water or moisture during the compression process produces 

cohesive forces between the particles. With the increase in applied pressure, 

the interfacial space between the particles is filled with the liquid. During this 

stage, the particles will experience the force of attraction, surface tension, and 

capillary forces.  

3. Viscous binders and thin adsorption layers provide bonds that are immobile 

and forms strong bonds between the particles. The area of adsorption contact 

increases when the solid particles are subjected to high pressure.  

4. Solid bridges formation in this stage determines the strength of the compacted 

products. The strength of the compacts can be attributed to the crystallization 

of dissolved substances, melting and hardening of binders, sintering, and 

chemical reactions at high temperatures.  

5. Mechanical interlocking of particles may occur during the agitation and 

compression of fibrous, flat-shaped and bulk biomass particles. Interlocking 

plays a minor role to the strength of the compacted products.  

Mani et al (2002) hypothesized the three different stages involved in the 

densification process and are as follows:  

1. With the application of pressure particles rearrange themselves to form a 

closely packed mass. During this stage, most of the particles retain their 

properties and the energy dissipation will be due to the inter-particle and 

particle-to-wall friction. 
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2. During the second stage, particles undergo plastic and elastic deformation 

with the increase in applied pressure. These deformations increase the inter-

particle contact promoting bonding of particles through van der Waal’s and 

electrostatic forces.  

3. In the third and final stage, reduction in the volume of the biomass continue 

until the biomass approach the true density. The particles cannot regain their 

position at the end of this stage.  

Traditional densification methods include baling, pelletization, extrusion, and 

briquetting and the respective densified products are called as bales, pellets, extrudates, 

and briquettes. It is important to produce the densified biomass with higher quality in 

order to have better logistics and ease of handling. The quality of the densified biomass 

includes unit density, bulk density, durability, hardness, calorific value, etc. The quality 

of the densified products depends on various factors like feedstock particle size, 

temperature, moisture content of the feedstock, chemical constituents of the feedstock, 

applied load, die geometry, etc. It is vital to optimize the factors to produce quality 

densified products. Abundant studies have been carried out to study the factors affecting 

the quality of the densified products (Tumuluru, 2014; Hoover et al., 2014; Shaw, 2008; 

Adapa et al., 2013).  

1.7. Regional biomass processing depots 

Bringing low bulk density biomass from the agricultural fields to the biorefineries 

makes the biomass transportation expensive. This will also increase the number of trips 

from the fields to the biorefineries producing more carbon emissions. To make the 

biomass logistics economical and to reduce the carbon emissions, biomass feedstocks 
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should come from the fields situated around 50 miles radius to the biorefineries (Broeren, 

2011). The researchers at the Michigan State University (MSU) proposed the concept 

called ‘Regional Biomass Processing Depots’ (RBPD) to overcome the concerns 

associated with biomass logistics. Fig.1.3 shows the concept of regional biomass 

processing depots. Conventional biorefining involves collecting and preprocessing the 

biomass at the front end of biorefineries. This method requires huge storage space and 

higher transportation costs due to the low bulk density of the lignocellulosic biomass. In 

contrasts, RBPDs involves collection and preprocessing of biomass from the fields to 

produce uniform densified product suitable to handle, transport, and store with the 

conventional systems. Eranki and Dale (2011) showed that RBPDs yield same total 

energy and produces 3.7% greenhouse gas emission lesser than the conventional 

biorefining.  

To make RBPD concept successful, adequate amount of research works are 

needed to develop the economical and robust processing technologies (Hess et al., 2009). 

Preprocessing operations involves feedstock collection, size reduction, pretreatment, and 

densification. To make the RBPD effective, it is vital to optimize the preprocessing 

conditions to produce the quality densified products suitable for cheaper logistics and 

cost effective biofuel production. Several studies have been carried out to optimize the 

preprocessing parameters on densified products qualities and sugar yields. Hoover et al 

(2014) studied the impacts of AFEX™ pretreatment and pelleting variables on the 

physical properties and sugar yields from corn stover. Durability of the pellets produced 

in the study was >97.5% which exceeds the standard durability (97.5%) set for handling 

and transportation of pellets. Die speed and grind size did not influence the sugar yields 
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of the corn stover and the authors concluded that the AFEX pretreatment in combination 

with pelleting may be helpful to solve the issues associated with biomass logistics. 

Sundaram and Muthukumarappan (2016) studied the impacts of AFEX™ pretreatment 

and extrusion pelleting on the pellet physical properties and fermentable sugar yields of 

corn stover, prairie cord grass, and switchgrass. Glucose and xylose yields were not 

affected by the extruder barrel temperature and hammer mill screen size for the 

feedstocks. The authors concluded that, AFEX™ pretreated feedstocks can be pelleted 

using a single screw extruder at low barrel temperature and even large particle size 

feedstocks can be densified without compromising sugar yields. Eranki and Dale (2011) 

emphasized that RBPDs can be configured to supply the feedstocks in the form best 

suitable for biochemical and thermochemical conversion process. This research was 

intended to understand the impacts of AFEX™ pretreatment and densification on the 

densified products qualities and products yield through biochemical and thermochemical 

conversion process.    
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1.8. Objectives  

The principal objective of this research was to understand the impact of ammonia 

fiber expansion (AFEX™) pretreatment and densification on the pellet properties, sugar 

yields, bio-oil, and bio-char yields from corn stover, prairie cord grass, and switchgrass. 

The specific objectives of the research were examined and presented as a chapter from 2 

to 5. Following are the detailed objectives of the research:  

1. To study the impact of AFEX™ pretreatment and densification variables (applied 

pressure, biomass moisture content, hammer mill screen size) on the compression 

behavior of corn stover, prairie cord grass and switchgrass.  

2. To study the impact of AFEX™ pretreatment and densification variables (applied 

pressure, biomass moisture content, hammer mill screen size) on sugar yields of 

corn stover, prairie cord grass, and switchgrass. 

3. To understand the influence of AFEX™ pretreated corn stover and switch grass 

blending on the compaction characteristics and sugar yields of the pellets 

4. To study the impacts of AFEX™ pretreatment and extrusion pelleting on pellet 

physical properties and sugar recovery from corn stover, prairie cord grass, and 

switchgrass. 

5. To understand the impacts of AFEX™ pretreatment and densification on the fast 

pyrolysis of corn stover, prairie cord grass, and switchgrass.  
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Fig. 1.1. Significance of lignocellulosic biomass pretreatment (USDOE, 2007) 
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Fig. 1.2. Ammonia fiber expansion reactor (Balan et al., 2009). 
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Fig. 1.3. Concept of regional biomass processing depots (Hess et al., 2009). 
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Table 1.1. Summary of different lignocellulosic biomass pretreatment methods (Healey et al., 2015) 

Pretreatment Summary Advantages Drawbacks 

Grinding and 

milling  

Size reduction of the biomass to increase 

the surface area 

•  No toxic compounds generated 

•  No chemicals required 

•  Energy intensive operation 

•  No alterations in the complex 

chemical structure remains the 

same 

Concentrated 

acid  

Reaction of biomass with concentrated 

hydrochloric or sulfuric acids. 

•  Low inhibitory product 

formation under low temperature 

conditions  

•  Complete biomass hydrolysis 

•  High cost of acid 

•  High cost of corrosive-resistant 

reactor  

•  Production of inhibitory 

compounds  

Dilute acid  

Reaction of biomass with dilute acid at 

high temperature to solubilize 

hemicellulose 

•  Low acid concentration required 

(<1%) 

•  Short reaction times 

•  Degradation of sugar and loss  

•  Phenolics release  

Alkaline 
Cleaves linkages within lignin and 

between the hemicellulose and lignin 

•  Low pressure and temperature  

•  Mobilizes the lignin to the cell 

wall surface 

•  Requires neutralization  

•  Low recovery 

Organosolv 

Reaction of biomass with organic or 

aqueous organic solvent mixture and with 

inorganic catalysts  

•  Partial hydrolyzed cellulose  

•  Recovery of hydrolyzed 

hemicellulose  

•  High temperature  

•  Expensive organic solvents  

Steam explosion  
Reaction of biomass with steam at high 

temperature (up to 240°C) 

•  Hemicellulose solubilization and 

reduced cellulose crystallinity  

•  No chemicals required  

•  Short reaction time 

•  Partial destruction of xylan 

fraction 

•  Inhibitory compounds 

generation  

Autohydrolysis 
Reaction of biomass with hot water or 

saturated steam 

•  No chemicals required  

•  Low environmental pollution  

•  High pressure and temperature 

•  Degradation of sugars at high 

temperature 
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2. EFFECT OF AMMONIA FIBER EXPANSION (AFEX™) PRETREATMENT 

ON COMPRESSION BEHAVIOR OF CORN STOVER, PRAIRIE CORD 

GRASS AND SWITCHGRASS 

2.1. Abstract 

Understanding the fundamental mechanisms involved in densification of bulky 

lignocellulosic feedstocks is imperative. This study was carried out to understand the 

effect of ammonia fiber expansion (AFEX™) pretreatment on the compression behavior 

of corn stover, prairie cord grass, and switchgrass. Samples were ground using three 

different hammer mill screen sizes (2, 4, and 8 mm) and were subjected to AFEX™ 

pretreatment. Untreated and AFEX™ pretreated samples were moisture adjusted to four 

levels (8, 12, 16, and 20% wb) and were compressed using a single pelleting unit. 

Physical properties comprising bulk density, particle density of the samples and unit 

density of pellets were determined for each combination. AFEX™ pretreated corn stover 

with moisture content of 20% at screen size of 2 mm produced pellets with 21% higher 

unit density compared to untreated corn stover pellets. AFEX™ pretreated prairie cord 

grass and switchgrass with 20% moisture content at a screen size of 2 mm produced 

pellets having 25% and 21% higher unit density. The decrease in hammer mill screen size 

and the increase in moisture content and applied pressure increased the pellet unit 

density. Data obtained from the compression experiments were fitted with different 

compaction models viz. Jones, Walker, and Kawakita and Ludde. The Kawakita and 

Ludde model exhibited high degree of accuracy (R2 – 0.99 and 1.00) in all the samples. 

The constant value ‘1/b’ in Kawakita and Ludde model represents the yield strength of 

the compacts, and the lower 1/b values were obtained for AFEX™ pretreated samples 



18 

 

compared to untreated samples. This implies the impact of pretreatment, which in turn 

made the biomass easier to compress. Lower values of yield strength were obtained at 

high moisture content (16–20% wb) signifying that AFEX™ pretreated biomass at high 

moisture content leads to onset of deformation at relatively low pressure to produce 

highly compacted pellets. 

2.2. Introduction 

The supply of sustainable and economical energy is a primary concern for many 

nations. One alternative solution is to make use of abundantly available renewable 

lignocellulosic materials to produce biofuels. According to studies, there are 

approximately 1.3 billion tons of biomass available annually from both harvested 

agricultural lands and forests in the United States (U.S. Department of Energy, 2011). 

Furthermore, the production of biofuels from lignocellulosic materials may lead to a 

reduced dependency on fossil fuels and lower greenhouse gas emissions (Degenstein et 

al., 2013 and McKendry, 2002). Developing technologies to produce cost effective 

biofuels are a key challenge and biofuels production from lignocellulosic feedstocks 

poses several impediments. 

One of the limitations of employing lignocellulosic feedstocks for biofuel 

production is its low bulk density. It leads to handling, storage, and transportation issues 

that can directly dictate the cost of the feedstock leading to high production cost (Hoover 

et al., 2014). To maintain an economic and sustainable feedstock supply to the 

biorefineries, the compaction of low bulk density biomass is crucial (Adapa et al., 2010). 

Besides, understanding the biomass compaction mechanisms will aid in the design of 

energy efficient compaction equipment, reducing the production cost, and increasing the 
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quality of compacted products (Mani et al., 2004a). Theerarattananoon et al (2011) stated 

that the densification of biomass feedstocks can assist in increasing the bulk density, 

reducing the transportation costs, improving the storability, and creating better 

environment to handle the feedstocks using existing grain handling equipments. The 

quality of the densified feedstocks depends on the feedstock characteristics (moisture 

content, chemical composition, particle size, etc.) and process variables (temperature, 

pressure retention time, etc.). 

The lignocellulosic biomass structure is composed of a highly complex matrix of 

cellulose, hemicellulose, and lignin. These components are interlinked by ether, ester, 

carbon–carbon, and hydrogen bonds (Faulon and Carlson, 1994). Among these 

components, lignin allows the particles to stick together during the densification process. 

Lignin softening will take place when the biomass is compacted under high temperature 

and pressure exhibiting thermosetting properties (van Dam et al., 2004). Kaliyan and 

Morey (2010) studied the significance of natural binders (lignin and protein) present in 

corn stover and switchgrass at a microscopic level. Solid bridges were formed when the 

natural binders were subjected to melting and cooling. The study concluded that the 

activation of natural binders by regulating moisture and temperature is vital to produce 

durable densified products. 

The interlinkage between the components makes the feedstock recalcitrant and 

several physical, chemical, physicochemical, and biological pretreatment methods have 

been extensively studied to alter this complex structure (Brodeur et al., 2011). 

Sokhansanj et al (2005) implied that the recalcitrant structure of lignocellulosic biomass 

should be altered to activate the natural binders to enhance the densification process, and 
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this can be achieved by the application of pretreatment. Adapa et al (2010) attributed the 

enhancement in the compact density of canola, oat, and wheat straw to the melting and 

depolymerization of lignin during steam explosion pretreatment. 

Ammonia fiber expansion (AFEX™) is a promising technology for pretreating 

agricultural residues for bioenergy production (Bals et al., 2010a). The method 

encompasses treating biomass with anhydrous ammonia in a high pressure Parr reactor 

for a short residence time before explosively releasing the pressure (Dale, 1986). This 

instantaneous drop in pressure results in solubilization and redeposition of lignin 

components on the biomass surface after ammonia is evaporated (Dale, 1986 and 

Chundawat et al., 2011). AFEX™ pretreatment involves treating biomass with liquid 

ammonia at a moderate temperature (80–150 °C) and pressure (200–400 psi) in an 

enclosed stainless steel reactor for a short residence time (5–30 min) before releasing the 

pressure (Bals et al., 2010a). This rapid drop in pressure results in physical disruption of 

the biomass structure; thus, exposing the cellulose and hemicellulose fibers (Dale, 1986, 

Balan et al., 2009, Chundawat et al., 2011 and Kumar et al., 2009). The important 

impacts of this pretreatment include cellulose decrystallization, hemicellulose 

hydrolyzation, and lignin depolymerization (Bals et al., 2010b and Chundawat et al., 

2011). Campbell et al (2013) investigated the packed bed AFEX™ reactor for 

pretreatment of corn stover and wheat straw. Durable pellets were formed from AFEX™ 

pretreated corn stover and wheat straw without any external binding agents. The lignin in 

the biomass acts a natural binding agent in sticking the fibers together during the 

densification process. The results of the study showed that the pelleting operations can be 

made efficient after biomass is subjected to AFEX™ pretreatment. Hoover et al (2014) 
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studied the impact of the AFEX™ pretreatment and pelleting variables on pellet quality 

and sugar yield of corn stover. The results of the study showed that the pelleting of 

AFEX™ pretreated biomass produced pellets with durability of more than 97.5%. 

Mani et al (2003) emphasized the requirement of research works on compression 

characteristics of different biomass to develop a cost effective compaction process. It is 

imperative to understand how the pretreated biomass behave during densification. The 

objective of the work is to study the impact of AFEX™ pretreatment and the effect of 

three variables, namely biomass moisture content, applied pressure, and hammer mill 

screen size on the responses namely bulk density, particle density, and pellet unit density. 

The feedstocks selected were corn stover, prairie cord grass, and switchgrass and a single 

pelleting unit was employed for pelleting. In addition, the results obtained experimentally 

were rigorously tested using three different compaction models, namely Walker (1923), 

Jones (1960), and Kawakita and Ludde (1971) to examine the compression characteristics 

of the untreated and AFEX™ pretreated biomass feedstocks such as corn stover, prairie 

cord grass, and switchgrass. 

2.3. Materials and methods 

2.3.1. Feedstock preparation 

The feedstocks corn stover (2008), prairie cord grass, and switchgrass (2009) 

obtained from local farms in Brookings, South Dakota were ground with three different 

screen opening sizes viz. 2, 4 (Hammer Mill, Thomas Wiley Laboratory Mill, 

Swedesboro, NJ) and 8 mm (Speed King, Winona Attrition Mill Co., Winona, MN). The 

ground materials were sealed in plastic bags and sent to the biomass conversion research 
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laboratory (BCRL, Michigan State University, MI) for AFEX™ pretreatment. The 

pretreatment conditions were optimized individually for each feedstock based on the 

recalcitrant nature of lignocellulosic biomass (Balan et al., 2009) by BCRL. The key 

variables employed during the AFEX™ process were pretreatment time, ammonia–

biomass ratio, temperature, and feedstock moisture content. The AFEX™ pretreatment 

conditions used for different feedstocks are given in Table 2.1. The pretreated materials 

were sealed in plastic bags and stored in a refrigerator at 4 °C until further use. 

2.3.2. Moisture conditioning  

The moisture content of the samples was determined using ASABE Standards 

(2006) standard and was reported in percent wet basis. The initial moisture content of the 

stored untreated feedstocks varied from 4% to 8%, and for the AFEX™ pretreated 

feedstocks the moisture content varied from 5% to 8% on a wet basis. Moisture content 

was varied at four different levels (8, 12, 16, and 20% on wet basis) and the selection of 

moisture content range was based on Kaliyan and Morey (2009) study. In their study, the 

authors optimized the conditions to produce durable briquettes from corn stover and 

switchgrass by varying the moisture content from 8% to 20%. To achieve the desired 

moisture levels, a calculated quantity of water was added to the samples in a plastic 

container, and the contents were tumbled manually. Moisture adjusted samples were 

stored in sealed plastic bags at 4 °C overnight, and the samples were brought to room 

temperature prior to the beginning of experiments. 
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2.3.3. Compression test using single pelleting unit 

To study the compression performance of the AFEX™ pretreated and untreated 

biomass grinds, tests were carried out in a single pelleting unit (Mani et al., 2002, Tabil 

and Sokhansanj, 1996 and Tabil and Sokhansanj, 1997). The unit consists of a piston and 

cylinder assembly with a base plate resting on the platform. The piston was connected to 

the crosshead of the texture analyzer (TA HD plus, Texture Technologies Corp., NY) as 

shown in Fig.2.1. Internal diameter and height of the cylinder were 6.35–76.2 mm, 

respectively. The cylinder was wrapped with a heating element to heat the contents of the 

cylinder during the compression. Thermocouples were attached to the cylinder, and the 

temperature was regulated by a temperature controller (SDC 120KC-A, Brisk Heat Corp., 

OH). The cylinder section was rested on the base plate, which had an internal diameter 

matching the diameter of the cylinder. Feedstocks with different combinations of 

moisture contents (8, 14, 16 and 20% w.b) and hammer mill sizes (2, 4, and 8 mm) were 

pelleted at different loading conditions (1000, 2000, 3000, 4000, and 5000 N) with 

corresponding pressure (31.6, 63.2, 94.8, 126.4 and 158.0 MPa) using the single pelleting 

unit. Samples of a quantity of 0.5–0.7 g were loaded into the cylinder, and the piston was 

allowed to compress in a single stroke. The temperature of the cylinder was maintained at 

100 ± 2 °C to mimic the commercial pelleting process (Mani et al., 2004b). Experimental 

variables selected and the levels of each variable are given in Table 2.2. The crosshead 

speed of the texture analyzer was set at 50 mm min−1. After reaching the preset load, the 

piston was allowed to detain at an indicated preset load for a period of 30 s to avoid the 

spring back effect. The piston was raised, and bottom plate was attached to the cylinder 
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to eject the pellet produced by lowering the piston. Five replications were produced for 

each combination. 

2.3.4. Physical properties  

The physical properties estimation of the untreated, AFEX™ pretreated, 

pelletized untreated and pelletized AFEX™ pretreated samples were carried out. Physical 

properties include bulk density, particle density, and pellet unit density were calculated 

and the values were fitted with different compaction models. The procedures adopted for 

determination of different physical properties are given below. 

2.3.4.1. Bulk density of feedstocks 

Bulk density is the important characteristic of the biomass as it directly influences 

the delivery cost of the feedstock to a biorefinery. Besides, it also impacts the storage and 

material handling system (Lam et al., 2008). Bulk density is the ratio of mass of biomass 

to the total volume they occupy. It is used as a measure to determine the material flow 

consistency. The bulk density of the samples was determined using a hopper and stand 

(Product code 151, Seedburo Equipment Co., Des Plaines, IL) apparatus. A cylindrical 

metal container with a known volume of 0.5 L was placed below the hopper to collect the 

samples fed into the hopper. The mass of the sample present in the container was 

measured for each feedstock, and the bulk density of feedstocks was calculated by 

dividing the mass of the sample by the volume of the vessel. 

2.3.4.2. Particle density of feedstocks 

Gas pycnometer is widely used to determine and characterize solids in powder 

form. In this study, micrometritics multivolume gas pycnometer (1305, Norcross, GA) 
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was used to determine the particle density of the samples. The total pore volume was 

measured by passing the medium gas to fill the void spaces in the cell containing the 

sample. Helium gas was used as a medium gas, and the volume of the sample was 

calculated from the drop in pressure when the known amount of gas was allowed to 

expand into the cell containing the sample. Sample volume was calculated using the 

formula specified in the instrument manual. 

������� = �	��� −  ����

���
��

� − ��
 

2.3.4.3. Pellet unit density 

The dimensions (height and diameter) of the pellets were measured using a 

digital vernier caliper (Digimatic, Mitutoyo Corp., Japan) and the mass of pellets using a 

digital balance (Mettler PM 2500, Delta range, Columbus, OH). The ratio of mass of a 

pellet to its volume provided the pellet unit density, and three replications were 

performed under each condition. 

2.3.5. Analysis of variance (ANOVA) 

Regulating the process and feedstock parameters support the production of quality 

compacted products. Carone et al (2011) represented a simplified model for an 

industrialization process and the study results showed the influence of temperature, 

moisture content and hammer mill screen size and their interactions on density and 

hardness of the pellets. The study concluded that, high temperature, low moisture content, 

and reduced biomass size, in the same order governed the model in determining the 

pellets quality. In this study, the effects of moisture content, screen size, and applied 
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force on compression characteristics of corn stover, prairie cord grass, and switchgrass 

were carried out using the analysis of variance (ANOVA) method. Least significant 

difference (LSD) at 0.05 level of significance was also carried out using SAS software 

(SAS 9.3, Cary, NC). The data were analyzed with PROC GLM procedure to determine 

the main and interaction effects, and the level of significance was set at 5%. Model 

parameters of Walker, Jones, and Kawakita and Ludde model were estimated using 

Microsoft Excel 2010 (Microsoft Corp., Seattle, WA 2010). 

2.3.6. Compaction equations 

2.3.6.1. Walker model (1923) 

Walker, based on a series of experiments on powder compressibility proposed the 

relationship of volume ratio (VR) as function of applied pressure (P) as mentioned in Eq. 

(2.1). 

�� = ��. �� � + ��   --------- (2.1) 

Where VR: volume ratio (V/Vs); m1&z1: model constants; P: applied pressure (Pa); V: 

volume of compact at pressure P (m3); Vs: void free solid material volume (m3). 

2.3.6.2. Jones model (1960) 

Jones studied the compression behavior of industrial metal powders and used the 

Eq. (2.2) to express the relationship between density and pressure data obtained. 

�� � = ��. �� � + ��  -------- (2.2) 

Where,  
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ρ: Packing density (kg/m3); m2: model constant (compressibility); z2: model 

constant; P: Applied pressure (Pa)  

2.3.6.3. Kawakita and Ludde model (1971) 

Kawakita and Ludde evaluated the relationship between pressure and volume 

change in compaction of powders to ascertain the behavior of materials during 

compaction. The model is given by Eq 2.3 

�
� = � �

��� + ��
��   ------- (2.3) 

Where,  

C: Degree of volume reduction [(V0-V)/V0]; a & b: Model constants;  

V0: Volume of compact at zero pressure (m3); P: Applied pressure (MPa) 

2.4. Results and discussion 

2.4.1. Bulk and particle density 

Bulk and particle densities of the untreated and AFEX™ pretreated biomass 

samples are given in Table 2.3. Table 2.4 shows the ANOVA test results for factors 

affecting bulk and particle density of both untreated and AFEX™ pretreated samples. 

The outcomes of the analysis showed the significant effect (p < 0.0001) of moisture 

content, hammer mill screen size, feedstock type, and their interactions on bulk and 

particle density of the samples. Bulk density and particle density of untreated and 

AFEX™ pretreated biomass samples decreased with an increase in hammer mill screen 

size. Larger screen size particles tend to occupy more pore volume than the smaller 
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particles (Mani et al., 2004a), leading to decrease in bulk and particle densities. AFEX™ 

pretreatment increased the bulk and particle density of all three biomass samples, and this 

can be attributed to the brittle and friable nature of biomass after AFEX™ pretreatment 

(Hoover et al., 2014).  The highest bulk density was observed for prairie cord grass for 

both untreated (199.5 kg m-3) and AFEX™ pretreated (232.0 kg m-3) samples. The reason 

could be due to the grinds from prairie cord grass may have been finer than other 

biomasses (Mani et al., 2006). The bulk density of the biomass also increased with 

increase in moisture content as the addition of water increases the weight. Besides, 

moisture conditioned AFEX™ pretreated corn stover had shown significant increase in 

bulk density as compared to moisture conditioned untreated corn stover. Particle density 

of all three AFEX™ pretreated biomass increased significantly compared to the untreated 

samples.  Adapa et al (2010) attributed the increase in particle density of canola, oat, and 

wheat straw after steam explosion pretreatment to the disintegration of long chain 

lignocellulosic structure into short chains during pretreatment. In the case of AFEX™ 

pretreatment, one of the important alterations occurring is the swelling and physical 

disruption of the lignocellulosic matrix structure (Dale, 1986; Balan et al., 2009). This 

effect could have made the feedstocks more fragile and crumble contributing to the 

increased particle density after AFEX™ pretreatment.  

2.4.2. Pellet unit density 

Table 2.5 shows the analysis of variance (ANOVA) results for pellet unit density 

of both untreated and AFEX™ pretreated feedstocks. The analysis showed that all the 

selected variables (applied pressure, moisture content, hammer mill screen size, and 

feedstock) and their interactions had significant contribution in determining the pellet 
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unit density (p < 0.0001). The diameter of pellets ranged from 6.36 to 6.55 mm 

designating the expansion of pellets after extruding from the die. Table 2.6 shows the 

pellet unit density of all untreated and AFEX™ pretreated samples. Pellet unit density of 

untreated and AFEX™ pretreated corn stover increased gradually with an increase in 

applied pressure and moisture content for all screen size samples. No increase in pellet 

unit density was observed when the moisture content was raised above 12% for untreated 

corn stover. Mani et al (2006) reported the significant role of moisture content in 

determining the bulk density of corn stover briquettes. Low moisture corn stover (5–

10%) resulted in denser, more stable, and more durable briquettes than high moisture 

corn stover (15%). The study showed the occurrence of surface cracks when the moisture 

content of the feed was increased above 10 %. In this study, untreated corn stover 

produced maximum pellet unit densities of 1169.3 kg m-3 (2 mm hammer mill screen 

size) and 1153.6 kg m-3 (4 mm hammer mill screen size), when the moisture content was 

maintained at 12 %. AFEX™ pretreated corn stover (2 mm hammer mill screen size) 

produced pellets with unit density of 1419.4 kg m-3. As the screen size was increased to 4 

mm, pellets with unit density similar to the ones observed for 2 mm were produced at 

high loading and moisture content. A significant reduction in unit density of the pellets 

was observed at all moisture levels and loading conditions when the screen size was 

increased to 8 mm. The decrease in pellet unit density with increase in screen size can be 

attributed to smaller surface area available for binding. Increased surface area for smaller 

particle size aids in promoting better binding between the particles (Payne, 1978).   

In the case of untreated prairie cord grass, a gradual increase in pellet unit density 

was observed as the moisture content was increased, and the maximum pellet unit density 
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was obtained at the moisture content between 12 and 16 %. In all circumstances, 

AFEX™ pretreated prairie cord grass pellets unit density increased with increase in 

moisture content and applied pressure. At 20% moisture content, maximum pellet unit 

densities of 1430.7 kg m-3 and 1427.9 kg m-3 was produced at hammer mill screen size of 

2 mm and 4 mm respectively. Untreated prairie cord grass produced relatively less unit 

density pellets in all the conditions. Pellets produced at 158.0 MPa applied pressure with 

16% biomass moisture content (4 mm hammer mill screen size) had high unit density 

(1083.1 kg m-3). Pellets with low unit density were produced with a screen size of 8 mm 

under all conditions. Increase in moisture content increased the pellet unit density of 

untreated and AFEX™ pretreated prairie cord grass.  

AFEX™ pretreated switchgrass samples produced pellets with low unit density 

compared to AFEX™ pretreated corn stover and prairie cord grass pellets. In all cases, 

AFEX™ pretreated samples produced high density pellets. This might be due to the 

increased availability of lignin in the pretreated feedstocks for binding. AFEX™ 

pretreatment causes the biomass to swell and disrupt the lignocellulosic matrix structure, 

thus solubilizing and mobilizing the lignin to biomass surface (Dale, 1986; Chundawat et 

al., 2011). This availability of lignin on the surface could have increased the binding 

property resulting in high density pellets. Shaw (2008) studied the effect of steam 

explosion pretreatment on the compression characteristics of poplar and wheat straw and 

had observed similar results. This increased density of the pellets can have significant 

reduction in cost associated with biomass transportation. Hoover et al (2014) stated the 

increase in bulk density of AFEX™ pellets in comparison with untreated corn stover 
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pellets leads to benefits in transportation, as only fewer trips are necessary to transport 

the same quantity of material. 

2.4.3. Compaction model results  

Density data of the samples and the pressure applied to compress the biomass 

were fitted with Walker, Jones and Kawakitta Ludde models. Table 2.7 shows the model 

constants obtained after the pressure and density data were fitted to the Walker model (1). 

Constant ‘m1
’ in the equation represents the compressibility of the material. 

Compressibility is the change in density due to applied pressure (Peleg, 1973) and a 

higher extent indicates high compressibility of the material. Compressibility values of the 

samples ranged from 0.010 (AFEX™ pretreated corn stover, 4 mm, 20% wb) to 0.372 

(untreated switchgrass, 4 mm, 8% wb). R2 values for the fitting ranged from 0.64 

(AFEX™ prairie cord grass, 8 mm, 20% wb) to 0.99 (corn stover 8 mm, 12% wb and 

prairie cord grass, 2 mm, 8% wb). It was found that an increase in moisture content 

decreased the compressibility values of all untreated and AFEX™ pretreated biomass 

samples. Minor increase in compressibility was noted for all three AFEX™ pretreated 

feedstocks when the hammer mill screen size was increased from 2 mm to 4 mm. The 

effect of hammer mill screen size for the untreated feedstocks was unclear. Untreated 

switchgrass was more compressible than untreated corn stover and prairie cord grass. 

Among AFEX™ pretreated samples, corn stover had high compressible value than all 

three biomass. AFEX™ pretreated samples showed decreased compressibility values 

signifying the impact of pretreatment. Shaw (2008) showed reduction in the 

compressibility, when poplar and wheat straw were subjected to steam expansion 

pretreatment.  
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Constant values of the Jones model were obtained when the logarithm of pellet 

unit density and applied pressure were fitted into the equation (2). Table 2.8 shows the 

constant values obtained from the Jones model. Similar to Walker model, the term ‘m2’ in 

the Jones model represents the compressibility. Decrease in compressibility value was 

observed after the biomass were subjected to AFEX™ pretreatment. Besides, increment 

in moisture content decreased the compressibility representing the increased packing 

density of the biomass with increase in moisture. R2 values for this model ranged from 

0.53 (AFEX™ corn stover, 2 mm, 20% wb) to 0.99 (untreated corn stover 8 mm, 12% 

wb and untreated prairie cord grass, 2 mm, 8% wb). Hammer mill screen size showed no 

considerable effect on compressibility of AFEX™ pretreated feedstocks, whereas the 

increase in compressibility values were observed for untreated feedstocks with increase 

in hammer mill screen size. 

One of the ideal requirements of a compaction equation is to have a sufficient 

accuracy, which can be defined in terms of the goodness of fit (Sonnergard, 2001). A 

higher degree of accuracy was obtained (R2 values - 0.99 &1.00) when the data were 

fitted to Kawakita and Ludde model, representing the best fit conditions for all samples. 

Constant values obtained from the Kawakita and Ludde model are shown in Table 2.9. 

The term‘a’ in the model designates initial porosity of the sample and the value increased 

with an increase in hammer mill screen size. Among all untreated samples, corn stover (8 

mm, 8% wb) had high initial porosity (0.938) and prairie cord grass (2 mm, 20% wb) had 

low porosity (0.817). In the case of AFEX™ pretreated samples, high initial porosity 

(0.909) was observed for corn stover and low porosity (0.827) for prairie cord grass. In 

the case of AFEX™ pretreated samples ‘a’ values ranged from 0.827 to 0.909, whereas 
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untreated biomass samples ranged from 0.817 to 0.938. Denny (2002) identified that the 

constant ‘a’ does not represent initial porosity in all cases due to the non-linearity of the 

plots. Decrease in the initial porosity of the all the samples after AFEX™ pretreatment 

can be witnessed from Table 2.9 and Shaw (2008) observed similar decrease in initial 

porosity of poplar wood and wheat straw during steam explosion pretreatment. The 

author observed a weak relationship between the constant ‘a’ and the theoretical initial 

porosity. The other term ‘1/b’ in the model designates the yield strength or failure stress 

of the compacts, which in other words indicate the compressibility of the material 

(Kawakita and Ludde, 1971). Higher 1/b value was witnessed for untreated samples and 

the value ranged from 1.075 to 7.209. Relatively lower 1/b value was observed for 

pretreated samples, which signifies the impact of AFEX™ pretreatment and the 

requirement of less pressure to produce compacted biomass products. Adapa et al (2009) 

reported the impact of steam explosion pretreatment on barley, canola, oat and wheat 

straw grinds. AFEX™ pretreated corn stover (2 mm, 20% wb) produced low (0.033) and 

untreated prairie cord grass (4 mm, 8% wb) produced high yield strength value (7.209). 

Increase in the moisture content decreased the 1/b value implying the significance of 

moisture content in compacting. Mani et al (2003) stated the significance of moisture 

content, which plays a vital role in determining the density and strength of the densified 

products. In this study, lower values of yield strength were observed at high moisture 

content (16 and 20% wb) representing AFEX™ pretreated biomass at high moisture 

content leads to an onset of deformation at relatively low pressure. Moisture content had 

a mixed effect on the yield strength in the case of untreated biomass samples.  
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2.5. Conclusions 

This study was intended to understand the compression mechanisms of untreated 

and AFEX™ pretreated corn stover, prairie cord grass and switchgrass. Single pelleting 

unit was employed for production of pellets and moisture content of the feedstocks, 

hammer mill screen size, and applied pressure were varied. The results of statistical 

analysis showed the moisture content, screen size, and applied pressure had significant 

effect on pellet unit density of both AFEX™ pretreated and untreated biomass samples (p 

< 0.0001). Pellets produced from 8 mm hammer mill screen size feedstocks exhibited 

lowest pellet unit density. Compression data obtained from different conditions were 

fitted with different compaction models. Kawakita and Ludde model provided the best fit 

for all biomass (R2- 0.99 & 1.00) among the three models selected. Constant value ‘1/b’ 

represents the yield strength, and lower value for AFEX™ pretreated biomass signifies 

the impact of pretreatment making the biomass to compress with less pressure. Lower 

values of yield strength were observed at high moisture content (16 and 20% wb) 

indicating AFEX™ pretreated biomass at high moisture content leads to an onset of 

deformation at relatively low pressure. Moisture content plays a vital role in compacting 

AFEX™ pretreated biomass samples and also, increase in the moisture content reduced 

the application of load to obtain highly compacted pellets. 
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Table 2.1. AFEX™ pretreatment conditions employed for different biomass* 

Feedstock 

NH3 loading 

NH3 to dry biomass loading 

(w/w) 

Moisture 

content 

(db %) 

Pretreatment 

soaking time (min) 

Corn stover 1:1 60 15 

Prairie cordgrass 1:2 40 30 

Switchgrass 1:2 50 30 

*Pretreatment was carried out at 100°C  

 

Table 2.2. Experimental variables 

Feedstock 
Corn stover, Prairie cordgrass, Switchgrass, AFEX™ Corn 

stover, AFEX™ Prairie cordgrass, and AFEX™ Switchgrass 

Moisture content 

(% wet basis) 

8,12,16, and 20 

Load (N) 1000, 2000, 3000, 4000, and 5000 

Hammer mill 

screen size (mm) 

2, 4, and 8 
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Table 2.3. Bulk and particle density of untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass* 

Hammer mill Screen size  

(mm) 

Moisture content  

(%) w.b 

Bulk density (kg/m3) Particle density (kg/m3) 

Untreated CS AFEX™ CS Untreated CS AFEX™ CS 

2 

8 111.33 ± 0.931 199.41 ± 2.68 970.94 ±4.421 1345.80 ± 9.29-11 

12 118.90 ±1.330 202.00 ± 3.77,8 960.02  ± 8.222,23 1336.12 ± 9.611,12 

16 124.79± 2.629 209.54 ± 2.86 947.06 ± 7.324-26 1325.56 ± 6.712-14 

20 127.12 ± 0.629 216.06 ± 2.95 941.26 ± 8.826,27 1321.36 ± 6.013,14 

4 

8 97.30 ± 1.135-37 179.77 ± 2.610,11 954.85 ± 8.223,24 1325.47 ± 10.512-14 

12 100.04 ± 2.433,34 192.33 ± 3.79 939.66 ± 9.126,27 1317.06 ± 10.013-15 

16 104.42 ± 1.332 199.83 ± 2.88 919.50 ± 8.028 1308.47 ± 9.015-17 

20 108.82 ±1.431 206.01 ± 2.96 895.06 ± 6.829,30 1302.10 ± 9.117 

8 

8 79.21 ± 5.941,42 134.12 ± 1.127 842.32 ± 9.031,32 1322.82 ± 9.213,14 

12 82.47  ± 2.440 138.08 ± 2.125,26 834.47 ± 7.732-34 1320.76 ± 11.713,14 

16 88.47 ± 2.339 142.46 ± 2.023 830.90 ± 4.733,34 1305.39 ± 5.716,17 

20 91.35 ± 3.038 150.18 ± 1.921,22 824.37 ± 10.134 1301.38 ± 13.817 

  Untreated PCG AFEX™ PCG Untreated PCG AFEX™ PCG 

2 

8 199.54 ± 1.08 232.09 ± 2.34 1069.38 ± 7.618 1435.17 ± 8.11,2 

12 203.53 ± 2.37 235.90 ± 1.33 1062.68 ± 5.618 1427.07 ± 3.92,3 

16 207.86 ± 2.86 243.68 ± 2.22 1051.11 ± 3.219 1419.86 ± 3.93,4 

20 217.36 ± 1.75 250.90 ± 1.71 1043.70 ± 7.819 1408.68 ± 8.35,6 

4 

8 155.98 ± 1.319 163.33 ± 1.316,17 988.88 ± 8.020 1441.38 ± 9.51 

12 159.92 ± 2.518 169.16 ± 1.713,14 960.80 ± 5.821-23 1438.36 ± 9.41 

16 164.90 ± 2.415,16 172.27 ± 2.412 942.12 ± 4.725-27 1418.76 ± 5.83-5 

20 167.53 ± 2.214,15 177.60 ± 2.211 935.05 ± 9.227 1415.63 ± 6.94,5 
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8 

8 95.41 ± 3.937 134.42 ± 1.327 966.87 ± 9.921,22 1399.05 ± 8.66 

12 98.57 ± 2.634-36 139.23 ± 2.524,25 960.68 ± 7.021-23 1387.62 ± 14.87 

16 101.54 ± 4.033,34 135.81 ± 3.826,27 952.88 ± 6.323-25 1380.46 ± 2.87 

20 103.47 ± 2.832,33 141.38 ±2.723 942.63 ± 10.025-27 1363.24 ± 14.08 

  Untreated SG AFEX™  SG Untreated SG AFEX™ SG 

2 

8 142.95 ± 0.923 179.96 ± 1.810,11 915.10 ± 6.528 1363.78 ± 9.98 

12 148.55 ± 1.722 181.96 ± 1.310 912.41 ± 8.428 1355.64 ± 3.48,9 

16 152.37 ± 1.720,21 187.93 ± 2.39 901.89 ± 4.629 1347.34 ± 3.49,10 

20 154.75 ± 1.319,20 190.45 ± 2.99 891.41 ± 8.930 1339.30 ± 8.910,11 

4 

8 96.07 ± 2.236,37 160.75 ± 2.117,18 892.53 ± 5.029,30 1350.65 ± 9.89 

12 99.42 ± 1.934,35 168.91 ± 1.714 852.44 ± 9.931 1339.45 ± 10.210,11 

16 104.89 ± 1.332 171.74 ± 2.012,13 836.51 ± 8.832,33 1326.84 ± 6.212,13 

20 109.84 ± 1.831 177.88 ± 1.311 830.27 ± 9.933,34 1315.65 ± 10.514-16 

8 

8 76.24 ± 1.843 130.48 ± 2.428 779.94 ± 8.935 1338.77 ± 8.510,11 

12 77.65 ± 3.842,43 136.12 ± 1.126,27 774.01 ± 12.235,36 1327.22 ± 9.912,13 

16 80.74 ± 2.040,41 140.03 ± 2.123,24 771.45 ± 9.035,36 1321.90 ± 5.913,14 

20 82.46 ± 2.340 147.19 ± 2.422 769.29 ± 6.936 1320.48 ± 9.713,14 

CS-Corn stover; PCG-Prairie cord grass; SG-Switchgrass. *Means sharing the same superscript numbers for a given property 

between the two columns are not significantly different (p < 0.05).  
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Table 2.4. ANOVA for factors affecting bulk density and particle density 

Source DF Type I SS Mean Square F Value Pr > F 

Bulk density 

FS 5 457285.73 91457.14 16341.9 <.0001 

SS 2 75050.97 37525.48 6705.19 <.0001 

FS*SS 10 157162.89 15716.28 2808.24 <.0001 

MC 3 5548.82 1849.60 330.49 <.0001 

FS*MC 15 2002.91 133.52 23.86 <.0001 

SS*MC 6 91140.40 15190.06 2714.22 <.0001 

FS*SS*MC 30 125611.73 4187.05 748.16 <.0001 

Particle density 

FS 5 18594599.42 3718919.88 53062.9 <.0001 

SS 2 225245.03 112622.51 1606.94 <.0001 

FS*SS 10 249540.68 24954.07 356.05 <.0001 

MC 3 61448.57 20482.86 292.26 <.0001 

FS*MC 15 12157.42 810.49 11.56 <.0001 

SS*MC 6 6165.52 1027.59 14.66 <.0001 

FS*SS*MC 30 13268.49 442.28 6.31 <.0001 

*FS – Feedstock; SS – Screen size; MC – Moisture content; 
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Table 2.5. ANOVA for factors affecting pellet unit density of untreated and AFEX™ 

pretreated feedstocks 

Source DF Type I SS Mean Square F Value Pr > F 

FS 5 45847370.64 9169474.13 169563 <.0001 

SS 2 2428375.94 1214187.97 22452.9 <.0001 

FS*SS 10 607678.30 60767.83 1123.72 <.0001 

MC 3 853307.99 284436.00 5259.82 <.0001 

FS*MC 15 499873.63 33324.91 616.25 <.0001 

SS*MC 6 30198.51 5033.09 93.07 <.0001 

FS*SS*MC 30 256999.91 8566.66 158.42 <.0001 

PR 4 4954803.05 1238700.76 22906.2 <.0001 

FS*PR 20 735717.04 36785.85 680.25 <.0001 

SS*PR 8 41681.44 5210.18 96.35 <.0001 

FS*SS*PR 40 340287.45 8507.19 157.32 <.0001 

MC*PR 12 192285.39 16023.78 296.31 <.0001 

FS*MC*PR 60 162720.21 2712.00 50.15 <.0001 

SS*MC*PR 24 32408.32 1350.35 24.97 <.0001 

FS*SS*MC*PR 120 164514.19 1370.95 25.35 <.0001 

*FS – Feedstock; SS – Screen size; MC – Moisture content; PR – Applied pressure 
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Table 2.6. Pellet unit density of untreated and AFEX™ pretreated samples 

Moisture  

(%) wb 

Applied pressure  

 (MPa) 

Pellet unit density (kg/m3)  

Untreated CS Untreated PCG Untreated SG AFEX™ CS AFEX™ PCG AFEX™ SG 

2 mm hammer mill screen size 

8 

31.6 1044.6 ± 4.1108-110 770.9 ± 8.6155,156 702.9 ± 11.1168 1065.3 ± 8.4103,104 1158.5 ± 4.682-86 1135.8 ± 9.789-91 

63.2 1108.4 ± 6.795-97 910.6 ± 6.8132,133 737.8 ± 8.5159-161 1216.5 ± 3.0370-73 1191.3 ± 4.076,77 1216.3 ± 3.770-73 

94.8 1159.5 ± 4.682-86 983.2 ± 2.5118-121 811.1 ± 4.9149-151 1283.7 ± 2.552-59 1223.2 ± 4.969-71 1260.3 ± 3.362-65 

126.4 1159.6 ± 7.482-86 1026.2 ± 7.3113-115 951.3 ± 5.6125-127 1313.1 ± 6.237-42 1266.0 ± 8.860-64 1274.6 ± 2.358-60 

158.0 1153.1 ± 3.884-87 1064.5 ± 5.4103-105 1039.1 ± 7.9109-111 1358.5 ± 3.725-29 1294.8 ± 7.647-53 1318.7 ± 5.035-40 

12 

31.6 1086.0 ± 10.4100,101 876.6 ± 6.9136,137 723.9 ± 7.9162-165 1297.3  ± 5.246-49 1179.3 ± 8.978-80 1101.1 ± 10.197-99 

63.2 1132.5 ± 3.490-92 929.0 ± 9.1128-130 767.2 ± 6.4156,157 1325.3 ± 8.634-36 1212.9 ± 12.371-73 1276.1 ± 6.555-60 

94.8 1165.7 ± 1.981-83 1010.0 ± 8.0117 835.9 ± 4.3143-145 1392.4 ± 11.113-17 1254.6 ± 6.664,65 1322.3 ± 9.235-39 

126.4 1148.9 ± 12.086-88 1026.6 ± 5.8112-115 976.5 ± 8.4119-121 1409.2 ± 0.55-11 1323.5 ± 6.435-37 1353.6 ± 6.727-30 

158.0 1169.3 ± 9.280-82 1062.5 ± 3.1103-105 1058.2 ± 7.6104-107 1410.8 ± 8.25-9 1345.0 ± 9.630-32 1363.3 ± 7.224-27 

16 

31.6 1083.7 ± 7.9100,101 833.4 ± 8.5144-146 714.9 ± 8.1165-167 1388.0 ± 5.415-19 1325.9 ± 5.134-36 1300.1 ± 6.043-47 

63.2 1113.1 ± 8.694-96 903.1 ± 4.7133,134 739.8 ± 8.2159,160 1397.6  ± 5.511-16 1393.8 ± 3.612-17 1345.3 ± 6.630-32 

94.8 1130.4 ± 7.891-93 957.6 ± 5.1124-126 869.7 ± 6.6137,138 1405.1  ± 3.37-12 1397.7 ± 6.712-16 1348.0 ± 2.229-32 

126.4 1169.6 ± 5.680-82 1013.5 ± 2.9116,117 990.5 ± 4.5118 1417.7 ± 4.32-5 1400.8 ± 8.19-13 1369.1 ± 4.221-25 

158.0 1155.5 ± 7.783-87 1054.3 ± 2.7104-108 1083.1 ± 5.4100-102 1419.4 ± 12.11-5 1402.2 ± 6.17-13 1372.4 ± 7.120-23 

20 

31.6 1053.7 ± 10.9105-108 840.3 ± 9.4142-145 712.8 ± 5.6165-168 1400.5 ± 13.59-13 1371.1 ± 9.820-23 1302.9 ± 14.242-47 

63.2 1113.6 ± 7.594-96 912.2 ± 7.2131-133 742.6 ± 6.5159 1415.2 ± 5.44-6 1415.7 ± 7.54-6 1376.4 ± 7.219-23 

94.8 1115.6 ± 6.894,95 967.9 ± 9.7122-124 822.9 ± 7.4146-148 1420.0 ± 9.91-5 1416.1 ± 9.63-6 1378.5 ± 4.518-22 

126.4 1172.5 ± 10.679-81 1033.7 ± 8.2110-113 971.7 ± 8.8121-123 1413.3 ± 5.05-7 1427.9 ± 7.21,2 1382.8 ± 8.517-20 

158.0 1157.1 ± 2.183-86 1065.4 ± 5.9103,104 1078.2 ± 2.8101,102 1414.5 ± 8.05,6 1430.7 ± 7.61 1388.5 ± 10.414-18 
  4 mm hammer mill screen size 

8 

31.6 954.6 ± 7.8125,126 671.4 ± 9.6170 615.9 ± 10.2173 1065.1 ± 8.1103,104 1195.1 ± 9.775,76 1155.2 ± 13.183-87 

63.2 1061.8 ± 6.4103-105 733.5 ± 6.0159-162 705.2 ± 7.6167,168 1230.0 ± 7.868,69 1205.9 ± 12.373-75 1182.2 ± 7.377-79 

94.8 1102.1 ± 7.396-98 853.4 ± 5.4140,141 797.9 ± 7.6152,153 1294.8 ± 7.647-53 1221.2 ± 14.169-72 1224.8 ± 10.869,70 

126.4 1135.0 ± 6.989-91 1028.0 ± 12.1111-114 925.6 ± 8.4129,130 1339.4 ± 2.531-33 1258.1 ± 7.864-66 1253.3 ± 4.565,66 

158.0 1142.5 ± 10.788-90 1056.0 ± 5.7104-108 947.5 ± 3.2126,127 1364.6 ± 8.624-27 1295.8 ± 12.347-52 1299.5 ± 6.344-48 

12 

31.6 971.4 ± 5.2121-123 720.3 ± 7.9163-165 645.9 ± 7.7171,172 1164.0 ± 6.381-84 1253.0 ± 7.565,66 1089.3 ± 10.599-101 

63.2 1083.5 ± 4.8100-102 803.7 ± 6.9149-152 727.0 ± 8.6161-164 1253.8 ± 1.365,66 1361.5 ± 9.424-27 1242.2 ± 5.166,67 

94.8 1104.3 ± 5.295-98 892.2 ± 4.3134,135 812.3 ± 9.1147-150 1366.6 ± 12.224-26 1400.1 ± 3.39-14 1284.3 ± 11.151-58 

126.4 1123.2 ± 7.492-94 1030.2 ± 3.1111-114 903.1 ± 1.4134 1382.6 ± 4.417-20 1411.7 ± 8.75-9 1299.3 ± 6.144-48 

158.0 1153.6 ± 6.984-87 1079.0 ± 8.8101,102 952.6 ± 7.1125,126 1401.2 ± 8.89-13 1415.8 ± 4.34-6 1303.4 ± 9.142-47 
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16 

31.6 962.8 ± 9.9123-125 801.8 ± 0.5150-152 689.0 ± 8.7169 1282.7 ± 4.954-59 1268.2 ± 10.960-63 1142.9 ± 11.288-90 

63.2 1032.5 ± 6.1111-113 844.8 ± 3.9141-143 729.2 ± 4.4160-164 1391.8 ± 14.613-17 1362.0 ± 9.524-27 1262.8 ± 6.561-64 

94.8 1059.3 ± 5.8104-106 918.5 ± 7.9130-132 808.8 ± 8.7149-152 1393.4 ± 6.812-17 1379.6 ± 7.618-21 1303.2 ± 13.442-47 

126.4 1131.5 ± 7.990-93 1062.8 ± 3.9103-105 871.0 ± 5.1137,138 1395.3 ± 4.212-16 1412.8 ± 8.95-8 1322.8 ± 9.335-38 

158.0 1144.4 ± 6.187-89 1088.4 ± 5.7100,101 923.1 ± 8.0130,131 1397.9 ± 8.810-15 1419.2 ± 5.41-5 1350.2 ± 8.728-31 

20 

31.6 935.5 ± 3.2128,129 808.0 ± 11.5149-152 680.9 ± 5.8169,170 1386.0 ± 7.016-19 1345.8 ± 3.230-32 1274.5 ± 9.958-61 

63.2 1044.5 ± 6.2108-110 866.1 ± 4.2137-139 740.1 ± 6.9159,160 1409.6 ± 4.75-10 1396.4 ± 10.112-16 1336.4 ± 2.932-34 

94.8 1046.5 ± 4.8107-109 940.5 ± 9.1127,128 829.5 ± 8.8145,146 1410.4 ± 8.55-9 1396.9 ± 9.912-16 1355.0 ± 2.226-30 

126.4 1120.4 ± 6.893,94 1032.7 ± 7.2111-113 854.4 ± 4.0139-141 1410.6 ± 13.65-9 1426.5 ± 4.01-4 1359.1 ± 7.625-28 

158.0 1145.0 ± 3.087-89 1059.7 ± 3.0104-106 909.4 ± 6.3132,133 1411.3 ± 2.15-9 1427.6 ± 3.81-3 1367.2 ± 3.422-25 
  8 mm hammer mill screen size 

8 

31.6 682.7 ± 8.3169,170 656.7 ± 7.1171 589.5 ± 5.6174 1052.9 ± 4.3105-108 1071.9 ± 7.3102,103 1087.2 ± 8.02100,101 

63.2 849.5 ± 5.3140-142 706.4 ± 7.9166-168 657.0 ± 4.9171 1206.0 ± 7.673-75 1211.2 ± 9.172-74 1206.3 ± 1.973-75 

94.8 977.0 ± 1.4119-121 757.7 ± 4.6157,158 731.0 ± 8.2159-162 1259.3 ± 3.463-65 1225.7 ± 7.169,70 1225.7 ± 7.069,70 

126.4 1020.5 ± 8.8114-117 823.6 ± 8.2146,147 799.5 ± 4.3151-153 1275.6 ± 9.956-60 1277.4 ± 10.754-60 1276.1 ± 8.955-60 

158.0 1063.4 ± 1.7103-105 890.7 ± 6.5135 828.8 ± 6.9145,146 1300.3 ± 7.643-47 1283.9 ± 5.352-58 1284.7 ± 5.350-58 

12 

31.6 775.1 ± 6.8155,156 723.9 ± 7.9162-165 642.5 ± 3.2172 1092.8 ± 8.598-100 1163.7 ± 2.181-85 1152.0 ± 5.085-88 

63.2 877.1 ± 5.5136,137 767.2 ± 6.4156,157 726.8 ± 8.2161-164 1232.3 ± 8.967-69 1260.6 ± 10.862-65 1251.8 ± 9.965,66 

94.8 985.7 ± 9.7118-120 812.3 ± 9.2147-150 755.3 ± 2.7158 1270.8 ± 1.860-62 1269.1 ± 15.660-63 1276.7 ± 8.354-60 

126.4 1023.1 ± 4.4113-116 903.6 ± 9.4133,134 814.1 ± 12.0147-149 1288.5 ± 7.348-54 1287.4 ± 2.950-56 1287.2 ± 7.749-56 

158.0 1038.3 ± 8.9109-112 918.1 ± 3.4130-132 876.8 ± 3.3136,137 1295.8 ± 6.547-51 1296.4 ± 5.646-49 1297.3 ± 4.546-49 

16 

31.6 832.2 ± 4.9145,146 690.5 ± 7.6169 643.4 ± 2.7172 1194.8 ± 6.575.76 1237.6 ± 9.867,68 1188.9 ± 1.176-78 

63.2 887.0 ± 9.5135,136 704.8 ± 3.8167,168 741.6 ± 1.2159 1251.6 ± 6.565,66 1283.2 ± 6.253-59 1284.7 ± 3.850-58 

94.8 975.4 ± 5.8120-122 782.2 ± 8.9154,155 776.1 ± 4.8155,156 1294.8 ± 7.647-53 1306.4 ± 3.141-46 1298.5 ± 7.846-49 

126.4 1022.4 ± 2.4113-116 847.8 ± 4.9141,142 811.7 ± 1.8148-150 1269.5 ± 8.160-63 1311.6 ± 10.238-44 1310.7 ± 3.139-45 

158.0 1049.7 ± 5.4106-109 893.3 ± 7.9134,135 859.8 ± 8.8139,140 1302.9 ± 11.343-47 1311.8 ± 5.137-43 1322.5 ± 0.535-38 

20 

31.6 846.7 ± 2.6141-143 685.8 ± 6.6169 644.6 ± 6.8172 1252.4 ± 6.565,66 1272.4 ± 5.559-61 1200.7 ± 8.774-76 

63.2 891.3 ± 5.1135 717.6 ± 9.9164-166 723.4 ± 3.9162-165 1295.4 ± 10.147-52 1300.0 ± 6.144-48 1275.3 ± 4.257-60 

94.8 987.5 ± 3.4118,119 823.8 ± 5.3146,147 789.5 ± 11.8153,154 1315.6 ± 0.636-41 1304.2 ± 2.541-47 1286.9 ± 7.749-56 

126.4 1016.0 ± 9.1115-117 865.4 ± 7.4137-139 801.5 ± 2.2150-152 1299.8 ± 8.544-48 1305.8 ± 0.941-47 1308.0 ± 1.540-46 

158.0 1047.1 ± 8.6107-109 897.2 ± 7.2133,134 867.6 ± 7.5137,138 1329.9 ± 5.633-35 1326.4 ± 0.534-36 1348.4 ± 1.829-31 

*CS – Corn stover; PCG – Prairie cord grass; SG – Switchgrass; Means sharing the same superscript numbers between the columns 

are not significantly different from each other (p < 0.05).   
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Table 2.7. Model values obtained from Walker model (1923) 

Screen size 

(mm) 

Moisture 

content 

(%) 

m1 z1 R2 SSE* m1 z1 R2 SSE* 

Untreated Corn stover AFEX™ Corn stover 

2 

8 -0.237 5.522 0.91 0.053 -0.097 2.872 0.98 0.008 

12 -0.199 4.805 0.94 0.036 -0.144 3.686 0.91 0.032 

16 -0.192 4.696 0.89 0.049 -0.032 1.583 0.94 0.005 

20 -0.181 4.481 0.93 0.035 -0.037 1.655 0.80 0.013 

4 

8 -0.103 2.779 0.96 0.015 -0.169 4.156 0.96 0.024 

12 -0.090 2.510 0.93 0.017 -0.126 3.307 0.96 0.017 

16 -0.096 2.616 0.97 0.011 -0.049 1.862 0.74 0.021 

20 -0.105 2.765 0.95 0.017 -0.010 1.108 0.75 0.004 

8 

8 -0.271 5.864 0.97 0.033 -0.158 3.971 0.95 0.023 

12 -0.185 4.288 0.99 0.008 -0.113 3.138 0.91 0.025 

16  0.134 3.332 0.98 0.010 -0.062 2.179 0.97 0.007 

20 -0.136 3.341 0.97 0.016 -0.034 1.624 0.97 0.003 

Untreated Prairie cord grass AFEX™ Prairie cord grass 

2 

8 -0.257 5.808 0.99 0.014 -0.080 2.640 0.94 0.013 

12 -0.233 5.360 0.96 0.034 -0.096 2.883 0.92 0.019 

16 -0.230 5.308 0.96 0.033 -0.034 1.660 0.79 0.012 

20 -0.173 4.241 0.93 0.033 -0.026 1.470 0.89 0.006 

4 

8 -0.359 7.725 0.94 0.065 -0.055 2.176 0.86 0.016 

12 -0.285 6.284 0.97 0.035 -0.083 2.568 0.91 0.018 

16 -0.191 4.501 0.89 0.047 -0.074 2.386 0.95 0.012 

20 -0.179 4.276 0.96 0.024 -0.037 1.695 0.94 0.006 

8 

8 -0.235 5.567 0.95 0.037 -0.129 3.511 0.95 0.020 

12 -0.183 4.521 0.93 0.035 -0.077 2.517 0.90 0.018 

16 -0.203 4.941 0.89 0.052 -0.041 1.817 0.92 0.008 

20 -0.216 5.140 0.93 0.041 -0.010 1.233 0.64 0.005 

Untreated Switchgrass AFEX™ Switchgrass 

2 

8 -0.223 5.204 0.91 0.050 -0.099 2.907 0.98 0.008 

12 -0.188 4.549 0.92 0.038 -0.146 3.740 0.91 0.033 

16 -0.183 4.472 0.89 0.047 -0.044 1.809 0.78 0.033 

20 -0.171 4.244 0.93 0.033 -0.024 1.398 0.89 0.006 

4 

8 -0.372 7.918 0.97 0.045 -0.078 2.530 0.93 0.015 

12 -0.328 7.020 0.97 0.041 -0.125 3.373 0.88 0.033 

16 -0.284 6.175 0.94 0.052 -0.108 3.016 0.95 0.017 

20 -0.279 6.096 0.93 0.055 -0.042 1.764 0.91 0.009 

8 

8 -0.248 5.633 0.98 0.018 -0.117 3.248 0.96 0.015 

12 -0.191 4.523 0.97 0.020 -0.078 2.497 0.90 0.018 

16 -0.180 4.311 0.98 0.016 -0.068 2.285 0.90 0.016 

20 -0.184 4.371 0.98 0.016 -0.068 2.278 0.96 0.009 

*SSE - Sum of squared errors 
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Table 2.8. Model values obtained from Jones model (1960) 

Screen size 

(mm) 

Moisture 

content 

(%) 

m2 z2 R2 SSE* m2 z2 R2 SSE* 

  Untreated Corn stover AFEX™ Corn stover 

2 

8 0.067 5.802 0.89 0.017 0.148 4.416 0.98 0.014 

12 0.044 6.234 0.87 0.012 0.058 0.928 0.92 0.011 

16 0.045 6.198 0.91 0.010 0.014 0.954 0.95 0.002 

20 0.062 5.891 0.89 0.015 0.005 7.144 0.53 0.004 

4 

8 0.133 4.911 0.96 0.015 0.154 4.322 0.97 0.018 

12 0.101 5.144 0.94 0.017 0.122 4.947 0.96 0.017 

16 0.109 4.973 0.96 0.014 0.050 6.295 0.74 0.021 

20 0.121 4.753 0.95 0.020 0.010 7.052 0.75 0.004 

8 

8 0.277 1.764 0.98 0.022 0.140 4.541 0.97 0.018 

12 0.196 3.238 0.99 0.007 0.102 5.249 0.92 0.021 

16 0.151 4.096 0.98 0.014 0.059 6.051 0.97 0.006 

20 0.154 4.055 0.97 0.019 0.033 6.552 0.97 0.003 

 Untreated Prairie cord grass AFEX™ Prairie cord grass 

2 

8 0.220 2.838 0.99 0.008 0.068 5.862 0.94 0.012 

12 0.200 3.213 0.97 0.024 0.084 5.599 0.92 0.018 

16 0.155 4.057 0.94 0.027 0.033 6.623 0.79 0.012 

20 0.198 3.232 0.97 0.022 0.025 6.782 0.89 0.006 

4 

8 0.302 1.236 0.92 0.064 0.047 6.251 0.85 0.014 

12 0.258 2.079 0.95 0.041 0.077 5.815 0.91 0.016 

16 0.185 3.444 0.87 0.051 0.070 5.945 0.95 0.010 

20 0.176 3.621 0.95 0.027 0.036 6.574 0.94 0.006 

8 

8 0.183 3.290 0.93 0.035 0.108 5.124 0.96 0.015 

12 0.155 3.880 0.92 0.032 0.068 5.888 0.91 0.015 

16 0.145 4.004 0.83 0.044 0.038 6.471 0.92 0.007 

20 0.174 3.500 0.89 0.035 0.010 6.992 0.64 0.005 

  Untreated Switchgrass AFEX™ Switchgrass 

2 

8 0.198 3.097 0.89 0.040 0.088 5.505 0.98 0.007 

12 0.171 3.603 0.92 0.035 0.132 4.732 0.92 0.020 

16 0.163 3.717 0.88 0.044 0.033 6.601 0.94 0.005 

20 0.153 3.894 0.92 0.032 0.038 6.520 0.80 0.013 

4 

8 0.326 0.734 0.94 0.056 0.070 5.823 0.92 0.014 

12 0.312 1.038 0.94 0.052 0.112 5.081 0.89 0.014 

16 0.287 1.516 0.92 0.061 0.101 5.305 0.96 0.014 

20 0.282 1.598 0.90 0.068 0.043 6.415 0.92 0.007 

8 

8 0.219 2.573 0.98 0.021 0.103 5.207 0.97 0.012 

12 0.182 3.309 0.96 0.024 0.072 5.806 0.91 0.016 

16 0.171 3.505 0.98 0.013 0.071 5.857 0.91 0.014 

20 0.176 3.416 0.98 0.018 0.065 5.958 0.96 0.008 

*SSE - Sum of squared errors 



44 

 

Table 2.9. Kawakita and Ludde (1971) model constant values 

Screen 

size 

(mm) 

Moisture 

content 

(%) 

1/b 

(1/MPa) 
a R2 SSE 

1/b 

(1/MPa) 
a R2 SSE 

Untreated Corn stover AFEX™ Corn stover 

2 

8 3.251 0.897 0.99 0.94 2.371 0.863 1.00 0.19 

12 3.089 0.887 0.99 0.94 0.887 0.861 1.00 0.20 

16 3.341 0.878 0.99 0.99 0.253 0.853 1.00 0.06 

20 2.996 0.871 0.99 0.79 0.032 0.847 1.00 0.05 

4 

8 0.825 0.919 1.00 0.04 1.407 0.873 1.00 0.03 

12 0.769 0.917 1.00 0.11 1.136 0.859 1.00 0.17 

16 1.075 0.914 1.00 0.26 0.312 0.851 1.00 0.11 

20 1.207 0.910 1.00 0.30 0.067 0.847 1.00 0.02 

8 

8 2.035 0.938 1.00 0.07 1.918 0.909 1.00 0.04 

12 1.614 0.929 1.00 0.18 1.377 0.907 1.00 0.11 

16 1.383 0.923 1.00 0.25 0.934 0.900 1.00 0.09 

20 1.388 0.921 1.00 0.23 0.541 0.894 1.00 0.07 

Untreated Prairie cord grass AFEX™ Prairie cord grass 

2 

8 5.659 0.842 0.99 0.72 1.786 0.827 0.99 0.51 

12 4.904 0.832 0.99 0.58 2.161 0.833 0.99 0.63 

16 3.962 0.822 0.99 0.94 0.448 0.828 1.00 0.11 

20 5.370 0.817 1.00 0.19 0.398 0.826 1.00 0.04 

4 

8 7.209 0.885 0.99 1.28 0.841 0.877 1.00 0.32 

12 5.892 0.877 0.99 1.33 0.738 0.884 1.00 0.08 

16 4.268 0.862 0.99 1.39 0.760 0.882 1.00 0.06 

20 3.971 0.858 0.99 0.89 0.425 0.878 1.00 0.08 

8 

8 2.728 0.903 0.99 0.78 1.024 0.900 1.00 0.10 

12 2.115 0.902 0.99 0.60 0.584 0.896 1.00 0.05 

16 2.684 0.897 0.99 0.79 0.298 0.898 1.00 0.03 

20 2.587 0.896 0.99 0.58 0.238 0.894 1.00 0.08 

Untreated Switchgrass AFEX™ Switchgrass 

2 

8 4.572 0.868 0.99 1.31 1.341 0.869 1.00 0.27 

12 4.199 0.859 0.99 1.27 1.589 0.875 1.00 0.13 

16 4.428 0.851 0.99 1.31 0.436 0.865 1.00 0.08 

20 3.962 0.844 0.99 1.04 0.384 0.865 1.00 0.09 

4 

8 4.399 0.927 0.99 1.04 1.144 0.880 1.00 0.37 

12 4.184 0.925 0.99 0.95 1.186 0.877 1.00 0.17 

16 4.092 0.921 0.99 1.03 1.227 0.878 1.00 0.09 

20 4.494 0.916 0.99 1.33 0.462 0.872 1.00 0.03 

8 

8 2.379 0.920 1.00 0.42 0.965 0.903 1.00 0.08 

12 1.957 0.919 0.99 0.51 0.602 0.898 1.00 0.04 

16 1.745 0.913 1.00 0.31 0.554 0.897 1.00 0.06 

20 1.901 0.913 1.00 0.43 0.743 0.893 1.00 0.19 

*SSE - Sum of squared errors 
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Fig. 2.1. Single pelleting unit positioned in the texture analyzer 
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3. EFFECT OF AFEX™ PRETREATMENT, COMPRESSIVE LOAD, SCREEN 

SIZE, AND MOISTURE CONTENT ON THE SUGAR YIELDS OF CORN 

STOVER, PRAIRIE CORD GRASS, AND SWITCHGRASS.  

3.1. Abstract 

Densified feedstocks should have positive influence on the biomass logistics, 

however the densification should not have any negative influence during downstream 

processing. Understanding the impacts of densification is important to control the factors 

affecting the yields of the end product. This study was intended to study the effects of 

AFEX™ pretreatment, feedstock moisture content (8, 12, 16, and 20% wb), hammer mill 

screen size (2, 4, and 8 mm), compressive load (1000, 2000, 3000, 4000, and 5000 N) on 

sugar recovery from corn stover, prairie cord grass, and switchgrass. Pellets were 

produced from untreated and AFEX™ pretreated corn stover, prairie cord grass, and 

switchgrass produced using a single pelleting unit. Untreated and AFEX™ pretreated 

feedstock pellets were subjected to enzymatic hydrolysis and the glucose and xylose 

yields were investigated. A significant increase in the glucose and the xylose recoveries 

was noted in all the feedstocks after AFEX™ pretreatment. Statistical analysis showed 

that only hammer mill screen size was significant (p<0.05) in controlling the sugar yields 

whereas compressive load and feedstocks moisture content were not (p>0.05). These 

results indicate that the larger screen size AFEX™ pretreated samples can be densified to 

increase the bulk density of the feedstocks without affecting the sugar yields.  
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3.2. Introduction  

The United States energy independence and security act of 2007 mandates the 

production of 36 billion gallons of renewable fuels by the year 2022. The allocations 

include 16 BGY (billion gallons per year) of cellulosic biofuels, 14 BGY of advanced 

biofuels, 1 BGY of biomass-based biodiesel, and 15 BGY of conventional biofuels (corn, 

starch-based ethanol). To achieve the target of 36 billion gallons by 2022, the United 

States should increase the current biofuels production up to three times (USEIA, 2013). 

To meet this ambitious target, biorefineries should overcome the challenges associated 

with lignocellulosic feedstocks logistics and conversion process.  

Biofuels production using food based feedstocks (corn, sugarcane, soybeans, etc.) 

could not be an attractive option to reach the ambitious goal set by the energy 

independence and security act. Besides, the diversion of food crops for biofuels 

production will escalate the food price. Lignocellulosic feedstocks appear to be an 

alternate energy resources for biofuels production also providing an alternative and 

effective way of waste disposal. Lignocellulosic feedstocks which include agricultural 

residues, forest residues, organic portion of municipal and industrial wastes, and 

perennial grass. These lignocellulosic feedstocks can be employed to produce biofuels 

and this option is an attractive due to the plentiful availability, renewable nature, and 

carbon neutral characteristics. This will also help to deviate production of biofuels from 

food crops thus avoiding food vs fuel disputes. Different lignocellulosic biomass 

(agricultural residues, forest residues, wood residues, and energy crops) were considered 

by the U.S. Department of energy as a potential resource to replace 30% of the current 

petroleum consumption (Perlack et al., 2011). These lignocellulosic feedstocks can be 
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transformed into different biofuels using biochemical and thermochemical pathways. In 

the thermochemical conversion process, the biomass will be subjected to pyrolysis or 

gasification process to yield syngas which turn can be converted into liquid biofuels via 

Fisher-Tropsch or biological conversion process (Balan, 2014). In biochemical 

conversion pathway, the carbohydrate components of the biomass (cellulose and 

hemicellulose) will be hydrolyzed to yield simple sugars (glucose, xylose, arabinose, 

etc.), which in turn will be converted into bioethanol via fermentation process using 

microorganisms. Bioethanol is currently the most widely produced and utilized biofuel 

(Rabinovitch-Deere et al., 2013).   

The conversion of biomass to bioethanol via biochemical conversion poses 

significant challenges. Lignocellulosic biomass possesses complex chemical structure 

comprising cellulose, hemicellulose, and lignin.  Among the components, cellulose and 

hemicellulose are the polysaccharides enclosed by lignin. Due to this complexion, the 

polysaccharide components will not have an access to the enzymes during the hydrolysis 

step. To overcome this hurdle, an effective pretreatment step is mandatory. An effective 

pretreatment involves altering the chemical structure of the lignocellulosic biomass, thus 

exposing the cellulose and hemicellulose components accessible to the enzyme attack. An 

effective pretreatment also requires less or no toxic compound formation, which will 

affect the enzymatic hydrolysis and subsequent fermentation process. Several 

pretreatment techniques have been extensively studied on different lignocellulosic 

biomass and different conditions are being optimized to define the best pretreatment 

method. It is difficult to conclude the best pretreatment, as the method depends on the 

type of lignocellulosic biomass and desired products (Harmsen et al., 2010).  
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Ammonia Fiber Expansion (AFEX™) is a promising physiochemical 

pretreatment process, which involves treating the biomass with liquid ammonia at a 

moderate temperature and pressure (Balan et al., 2009). The process involves treating 

biomass with liquid ammonia under moderate pressure (100–400 psi) and temperature 

(70–200 °C) in a stainless steel reactor for a short residence period of 5–30 min (Bals et 

al., 2010). The selection of optimum parameters like pressure, temperature, and residence 

time depends on the recalcitrant nature of lignocellulosic biomass (Balan et al., 2009). 

Release of rapid pressure after the residence period marks the end of pretreatment 

process. This rapid release of pressure results in breaking of complex chemical structure 

of biomass, thus exposing cellulose and hemicellulose fibers for enzymes to attack 

(Chundawat et al., 2011; Kumar et al., 2009). AFEX™ pretreated corn stover (Teymouri 

et al., 2005), switchgrass (Alizadeh et al., 2005), and rice straw (Sulbarán-de-Ferrer et 

al., 2003) exhibited an increase in sugar yields when subjected to enzymatic hydrolysis. 

Handling, transporting, and storing of low bulk density lignocellulosic feedstocks 

are another major hurdles for economic biofuels production. Densification is one of the 

preprocessing operations, which involve compression of lignocellulosic biomass to form 

as a compacted product. This helps in improving the handling, transporting, and storage 

obstacles associated with the lignocellulosic biomass logistics. Tumuluru et al (2012) 

specified that integrating densification with pretreatment helps to overcome the hurdles 

connected with biomass logistics. It is also imperative that densification process should 

not create any adverse effects on the biomass conversion to biofuels. Kaliyan and Morey 

(2010) indicated that the heat generated during the densification process softens the 

lignin, which acts as a binding agent in sticking the fibers together. Considering the 
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changes in the lignocellulosic biomass structure during the AFEX™ pretreatment and 

densification, it is imperative to determine the sugar yields to understand that the 

alterations during pretreatment and densification are productive or destructive. Hence, the 

objective of this chapter is to study the impacts of AFEX™ pretreatment and 

densification using a single pelleting unit on the sugar yields from corn stover, prairie 

cord grass, and switchgrass. The specific objectives are to study the impacts of feedstock 

moisture content (5, 10, 15% wb), hammer mill screen size (2, 4, and 8 mm), and applied 

load (1000, 2000, 3000, 4000, and 5000 N) on the glucose and xylose yields from the 

untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass.  

3.3. Materials and Methods  

3.3.1. Feedstock preparation 

The feedstocks corn stover (2008), prairie cord grass, and switchgrass (2009) 

obtained from local farms in Brookings, South Dakota were ground with three different 

screen opening sizes viz. 2, 4 (Hammer Mill, Thomas Wiley Laboratory Mill, 

Swedesboro, NJ) and 8 mm (Speed King, Winona Attrition Mill Co., Winona, MN). The 

ground materials were sealed in plastic bags and sent to the biomass conversion research 

laboratory (BCRL, Michigan State University, MI) for AFEX™ pretreatment. The 

pretreatment conditions were optimized individually for each feedstock based on the 

recalcitrant nature of lignocellulosic biomass (Balan et al., 2009) by BCRL. The key 

variables employed during the AFEX™ process were pretreatment time, ammonia–

biomass ratio, temperature, and feedstock moisture content. The AFEX™ pretreatment 

conditions used for different feedstocks are given in Table 3.1. The pretreated materials 

were sealed in plastic bags and stored in a refrigerator at 4 °C until further use. 
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3.3.2. Moisture conditioning  

The moisture content of the samples was determined using ASABE Standards 

(2006) standard and was reported in percent wet basis. The initial moisture content of the 

stored untreated feedstocks varied from 4% to 8%, and for the AFEX™ pretreated 

feedstocks the moisture content varied from 5% to 8% on a wet basis. Moisture content 

was varied at four different levels (8, 12, 16, and 20% on wet basis) and the selection of 

moisture content range was based on Kaliyan and Morey (2009) study. In their study, the 

authors optimized the conditions to produce durable briquettes from corn stover and 

switchgrass by varying the moisture content from 8% to 20%. To achieve the desired 

moisture levels, a calculated quantity of water was added to the samples in a plastic 

container, and the contents were tumbled manually. Moisture adjusted samples were 

stored in sealed plastic bags at 4 °C overnight, and the samples were brought to room 

temperature prior to the beginning of experiments. 

3.3.3. Compression test using single pelleting unit 

Compression tests were performance on the AFEX™ pretreated and untreated 

biomass grinds, using single pelleting unit (Mani et al., 2002, Tabil and Sokhansanj, 

1996a and Tabil and Sokhansanj, 1996b). The unit consists of a piston and cylinder 

assembly with a base plate resting on the platform. The piston was connected to the 

crosshead of the texture analyzer (TA HD plus, Texture Technologies Corp., NY). 

Internal diameter and height of the cylinder were 6.35–76.2 mm, respectively. The 

cylinder was wrapped with a heating element to heat the contents of the cylinder during 

the compression. Thermocouples were attached to the cylinder, and the temperature was 
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regulated by a temperature controller (SDC 120KC-A, Brisk Heat Corp., OH). The 

cylinder section was rested on the base plate, which had an internal diameter matching 

the diameter of the cylinder. Feedstocks with different combinations of moisture contents 

(8, 14, 16 and 20% w.b) and hammer mill sizes (2, 4, and 8 mm) were pelleted at 

different loading conditions (1000, 2000, 3000, 4000, and 5000 N) with corresponding 

pressure (31.6, 63.2, 94.8, 126.4 and 158.0 MPa) using the single pelleting unit. Samples 

of a quantity of 0.5–0.7 g were loaded into the cylinder, and the piston was allowed to 

compress in a single stroke. The temperature of the cylinder was maintained at 100 ± 2 

°C to mimic the commercial pelleting process (Mani et al., 2004). The crosshead speed of 

the texture analyzer was set at 50 mm min−1. After reaching the preset load, the piston 

was allowed to detain at an indicated preset load for a period of 30 s to avoid the spring 

back effect. The piston was raised, and bottom plate was attached to the cylinder to eject 

the pellet produced by lowering the piston. Five replications were produced for each 

combination. 

3.3.4. Enzymatic hydrolysis 

Untreated, AFEX™ pretreated, untreated pelleted, AFEX™ pretreated pelleted 

samples were subjected to enzymatic hydrolysis following NREL protocol (Selig et al., 

2008). The enzymatic hydrolysis was carried out using 10 ml hungate glass tubes. 

Samples with the equivalent of 0.1 g of cellulose along with sodium citrate buffer (0.1 M, 

pH 4.8) was taken in the glass tubes. 100 μl of 2% sodium azide was added to inhibit the 

growth of organisms during the digestion. Enzyme loadings added were 15 FPU/g of 

glucan, 30CBU/g of glucan, and 250 XU/g of glucan. All the enzymes were provided by 

Novozymes (Krogshoejvej, Denmark). The sample tubes were incubated at 50 °C for 72 
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h in an incubated orbital shaker (MaxQ™ HP 420, Thermo scientific, MA) at an RPM of 

150. After 72 h, the sample tubes were kept in boiling water for a period of 10 min to 

inactivate the enzymes. Supernatants from each tube were collected from hydrolyzed 

samples and were subjected to centrifugation at 13,000 × g for 15 min in a centrifuge 

(Fisher scientific, Accuspin™ 400). The centrifuged samples were frozen and thawed 

twice to settle the impurities and the supernatant was taken in HPLC vials. The 

supernatants were injected into sugar analysis in an HPLC (Agilent Technologies, Santa 

Clara, CA; Bio-rad Aminex 87H column, Hercules, CA) to quantify the sugars present in 

the samples. A sample volume of 20 μl was injected into the column at a flow rate of 0.6 

ml/min at a 65 °C column temperature. Sugar yields were calculated using Selig et al. 

(2008) procedure by considering the chemical composition of the samples and the 

concentration of sugars obtained from HPLC analysis. 

3.3.5. Statistical analysis  

In this study, the effects of moisture content, screen size, and applied force were 

tested on the glucose and xylose yields of corn stover, prairie cord grass, and switchgrass.  

Analysis of variance (ANOVA) was used to determine the significant difference among 

the means of the samples. Design-Expert software (Version 8.0.7.1, Stat-Ease, 

Minneapolis, MN) was used to develop the model equations using full-factorial design.  

3.4. Results and discussion 

 The results of the chemical composition analysis of untreated corn stover, prairie 

cord grass, and switchgrass are provided Table 3.1. Glucose and xylose yields were 

recorded for the untreated, untreated pelleted, AFEX™ pretreated, AFEX™ pretreated 
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pelleted corn stover, prairie cord grass, and switchgrass. Table 2 and 3 shows the glucose 

and xylose yields of the pellets produced from AFEX™ pretreated corn stover, prairie 

cord grass, and switchgrass. Glucose yield for the pellets produced from AFEX™ corn 

stover, prairie cord grass, and switchgrass varied from 87.7 % to 94.9 %, 89.3 % to 

95.0%, and 89.8 % to 95.0%, respectively. Xylose yield for the AFEX™ corn stover, 

prairie cord grass, and switchgrass varied from 39.0 % to 51.9 %, 37.5 % to 49.8%, and 

37.5% to 50.8%, respectively. Xylose yields from the AFEX™ pretreated feedstocks 

were lower compared to the glucose yields and the reason could be due to the usage of 

multi-enzyme for xylose conversion. The multi-enzyme (NS50012) is a mixture of 

xylanase, pectinase, arabinose, cellulose, and β-glucanase and this cocktail of enzymes 

could have reduced the xylose yields. Glucose yield for the pellets made from untreated 

corn stover, prairie cord grass, and switchgrass varied from 87.7 % to 94.9 %, 89.3 % to 

95.0%, and 89.8 % to 95.0%, respectively. Xylose yield for the pellets produced from 

untreated corn stover, prairie cord grass, and switchgrass varied from 39.0 % to 51.9 %, 

37.5 % to 49.8%, and 37.5% to 50.8%, respectively. Increase in the glucose and xylose 

yields were observed for all the biomass subjected to AFEX™ pretreatment and this 

shows the impact of AFEX™ pretreatment on the selected lignocellulosic biomass. 

AFEX™ pretreatment impacts physical and chemical structure changes in the ultra and 

macro structure of lignocellulosic biomass (Dale, 1986) and some of the alterations 

include cellulose decrystallization, partial depolymerization of hemicellulose, cleavage of 

lignin-carbohydrate complex (LCC), and surface area increase (Balan, 2009). The 

breaking of lignin - carbohydrate complex is vital which could be the reason for the 

increased sugar yields in all the three biomass.  
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Fig 3.1 and 3.2 shows the glucose and xylose yields from the pellets produced from 

untreated corn stover, prairie cord grass, and switchgrass under different conditions. 

Reduction in the hammer mill screen size increased the sugar yields of all the untreated 

feedstocks. Particle size reduction leads to increase in the surface area to volume ratio 

thus improving the accessibility for the enzymes to reach the active substrate sites 

(Mansfield et al., 1999). Biomass particle size had considerable amount of impact on the 

enzymatic hydrolysis yields for AFEX™ corn stover (Chundawat et al., 2006). Elshafei 

et al (1991) observed a slight increase in the hydrolysis yields with decrease in the 

particle size of the untreated corn stover and the authors attributed the increase to the 

increased surface area of the feedstock accessible to the enzyme. The other selected 

factor, compressive load did not influence the glucose and xylose yields for both 

untreated and AFEX™ pretreated biomass (p<0.05). This results indicate that AFEX™ 

pretreated biomass can be densified to increase the bulk density for efficient handling and 

transportation, while maintaining the sugar yields similar to the loose biomass. Rijal et al 

(2014) observed that the low temperature, low-pressure novel densification method had 

no effects on the ethanol yields from AFEX™ pretreated corn stover and switchgrass. 

Sundaram et al (2016) observed the similar glucose and xylose yields when AFEX™ 

pretreated corn stover, prairie cord grass, and switchgrass and the extruded pellets from 

the AFEX™ biomass were subjected to enzymatic hydrolysis. Moisture content did not 

affect the glucose and xylose yields from untreated and AFEX™ pretreated feedstocks 

(p>0.05). Karunanithy and Muthukumarappan (2010) reported that the increase in the 

glucose recovery when prairie cord grass and switchgrass were subjected to extrusion at 

low moisture content (15%). The authors observed the biomass softening when the 
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moisture content was increased leading to less friction developed inside the extruder 

barrel. 

Table 3.4 shows the model equations developed for the sugar yields from the 

pellets produced from untreated corn stover, prairie cord grass, and switchgrass under 

different conditions. The p value for the AFEX™ pretreated feedstocks was higher than 

0.05, indicating the insignificance of screen size, moisture content and loading 

interactions on the glucose and xylose yields from enzymatic hydrolysis. The quality of 

the regression equation was determined by the R2 value and the influences of the 

independent variables on dependent variable was determined by the p values. The model 

equations developed for the pellets made from AFEX™ pretreated feedstocks were not 

significant (p>0.05) and for the untreated feedstocks the equations were significant 

(p<0.05) as shown in Table 3.4. For the pellets produced from untreated feedstocks the 

model equation was significant, indicating the variables affecting the sugar yields. The 

independent variables X1, X2, and X3 represent hammer mill screen size (mm), moisture 

content (%), and compressive load (N). The dependent variables Yg and Yx represent 

glucose and xylose recovery. Among all the independent variables, only hammer mill 

screen size had significant impact on glucose and xylose recovery (p<0.05). The ANOVA 

results for the pelleted produced from untreated corn stover, prairie cord grass, and 

switchgrass under different conditions are provided in Table 3.5, 3.6, and 3.7 

respectively. Based on the ANOVA, it was clear that glucose and xylose recovery 

increased with decrease in the hammer mill screen size whereas moisture content and 

loading was not significant in deciding the sugar yields from untreated feedstocks. 

Biomass densification involves only mechanical compression and no changes in the 
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biomass chemical structure was cited in the literature of biomass. Mani et al (2002) 

hypothesized the three different stages involved in the densification process namely 

particle rearrangement, plastic and elastic deformation, and mechanical interlocking of 

the particles. The inability of the densification to break the complex chemical structure 

could be the reason for similar sugar yields, regardless of the increase in the compressive 

load. No influences on glucose and xylose yields after densification indicates that 

AFEX™ pretreated biomass can be densified to improve the handling characteristics 

without affecting the sugar yields during downstream processing.    

3.5. Conclusions  

The impacts of AFEX™ pretreatment and densification on the enzymatic 

hydrolysis yields were investigated for corn stover, prairie cord grass, and switchgrass. 

The feedstocks were subjected to AFEX™ pretreatment followed by densification using a 

single pelleting unit. The pelleted feedstocks were subjected to enzymatic hydrolysis and 

glucose and xylose yields were calculated. Glucose yields for the AFEX™ corn stover, 

prairie cord grass, and switchgrass varied from 73.1 % to 94.0 %, 69.3 % to 93.2% and 

69.7 % to 95.5%, respectively. Xylose yields for the pellets produced from untreated corn 

stover, prairie cord grass, and switchgrass varied from 39.0 % to 51.9 %, 37.5 % to 

49.8%, and 37.5% to 50.8%, respectively. Glucose and xylose yields for the loose 

AFEX™ pretreated feedstocks were statistically similar to the pellets produced from the 

AFEX™ pretreated feedstocks. Moisture content and compressive load was not 

significant (p>0.05) in affecting the glucose and xylose yields, whereas hammer mill 

screen size was significant (p<0.05) for untreated feedstocks. It can be concluded from 

the results that the AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 
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can be densified for efficient transportation, while maintaining the sugar yields similar to 

that of loose biomass. 
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Table 3.1. Chemical composition of untreated corn stover, prairie cord grass, and 

switchgrass 

Feedstock Corn stover Prairie cord grass Switchgrass 

Glucan (%) 34.3 37.8 32.2 

Xylan (%) 18.5 22.6 14.8 

Arabinan (%) 2.5 2.9 2.3 

Lignin (%) 15.7 15.3 13.3 
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Table 3.2. Glucose yields of the pellets produced from AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

SS (mm) Moisture (%) Load (N) AFEX™ CS AFEX™ PCG AFEX™ SG 

2 

8 

1000 94.9 90.6 94.6 

2000 93.4 91.0 91.9 

3000 91.3 91.6 91.6 

4000 93.4 93.6 94.7 

5000 93.6 93.8 90.8 

12 

1000 92.5 91.5 93.9 

2000 92.7 95.0 92.9 

3000 90.7 92.7 91.1 

4000 93.4 92.6 94.4 

5000 91.5 92.0 93.8 

16 

1000 94.0 90.5 92.3 

2000 93.5 94.6 94.6 

3000 92.7 90.6 91.0 

4000 92.6 90.3 91.4 

5000 91.3 89.8 92.0 

20 

1000 93.2 93.8 91.0 

2000 92.0 90.3 94.4 

3000 93.6 91.2 94.6 

4000 92.9 93.5 91.0 

5000 91.6 94.2 91.4 

4 

8 

1000 93.9 95.0 92.8 

2000 93.3 90.9 92.1 

3000 90.1 92.8 90.6 

4000 93.1 90.3 91.5 

5000 92.8 89.3 93.5 

12 

1000 93.7 94.4 91.3 

2000 94.4 90.3 91.6 

3000 90.1 91.2 93.9 

4000 91.4 94.4 92.8 

5000 93.6 94.3 94.9 
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16 

1000 92.3 92.2 93.4 

2000 93.3 91.4 93.4 

3000 91.3 94.1 89.8 

4000 93.2 93.7 90.6 

5000 92.6 90.3 91.0 

20 

1000 92.1 91.4 91.6 

2000 94.1 92.5 91.5 

3000 91.4 92.5 92.7 

4000 93.6 89.9 94.5 

5000 92.3 90.2 92.6 

8 

8 

1000 93.5 92.2 90.5 

2000 90.9 90.8 94.6 

3000 93.5 90.0 90.3 

4000 94.2 90.9 91.2 

5000 88.9 90.1 95.0 

12 

1000 94.8 93.6 92.8 

2000 89.5 92.3 90.3 

3000 91.0 91.3 90.3 

4000 92.9 92.1 91.2 

5000 92.4 91.4 92.2 

16 

1000 91.4 92.3 91.4 

2000 91.4 93.5 93.7 

3000 90.7 94.8 90.8 

4000 89.9 93.3 90.2 

5000 92.2 92.4 91.0 

20 

1000 87.7 94.9 91.0 

2000 90.9 89.7 92.9 

3000 92.3 93.6 91.4 

4000 93.3 93.3 92.2 

5000 91.3 92.3 90.9 
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Table 3.3. Xylose yields of the pellets produced from AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

SS (mm) Moisture (%) Load (N) AFEX™ CS AFEX™ PCG AFEX™ SG 

2 

8 

1000 44.5 44.0 49.5 

2000 43.2 48.7 44.1 

3000 45.6 44.5 49.0 

4000 48.8 40.7 40.6 

5000 46.6 49.5 44.4 

12 

1000 50.4 43.0 46.3 

2000 50.0 45.6 44.3 

3000 49.9 45.0 43.0 

4000 50.2 40.4 43.2 

5000 43.2 44.1 50.2 

16 

1000 44.2 43.0 44.7 

2000 44.7 48.0 50.8 

3000 47.6 48.6 41.5 

4000 47.0 49.0 47.6 

5000 47.2 46.2 44.9 

20 

1000 51.9 42.7 49.1 

2000 50.8 43.6 46.4 

3000 49.9 44.9 45.9 

4000 43.5 43.1 44.7 

5000 41.5 46.1 44.4 

4 

8 

1000 45.3 40.6 46.9 

2000 47.6 44.8 43.0 

3000 45.1 42.4 42.7 

4000 46.3 40.8 40.6 

5000 47.7 42.6 44.7 

12 

1000 50.4 45.5 37.5 

2000 50.0 42.9 43.9 

3000 42.6 45.7 43.4 

4000 44.8 44.4 45.4 

5000 42.4 41.2 45.0 
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16 

1000 43.5 44.7 46.6 

2000 44.9 42.0 45.6 

3000 47.4 37.5 44.5 

4000 47.0 41.8 39.9 

5000 49.1 45.6 50.0 

20 

1000 48.9 49.8 43.5 

2000 46.4 43.9 48.9 

3000 53.6 47.7 45.9 

4000 48.1 45.7 47.0 

5000 47.8 46.3 40.6 

8 

8 

1000 44.1 47.8 45.9 

2000 41.0 46.4 47.4 

3000 42.9 43.4 46.9 

4000 45.9 47.4 41.6 

5000 43.8 44.1 44.7 

12 

1000 47.4 45.4 44.4 

2000 47.0 46.3 47.8 

3000 46.9 41.0 46.9 

4000 47.2 45.0 39.0 

5000 40.6 43.4 45.0 

16 

1000 41.6 39.7 44.1 

2000 42.0 44.3 48.0 

3000 44.7 43.5 42.7 

4000 44.2 43.0 42.4 

5000 44.4 46.6 42.6 

20 

1000 48.8 46.0 42.9 

2000 47.8 45.6 44.4 

3000 46.9 42.7 37.5 

4000 40.9 42.9 39.8 

5000 39.0 43.0 42.8 
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Table 3.4. p value and model equations for the glucose yield from the pellets 

produced from untreated corn stover, prairie cord grass, and switchgrass 

Feedstocks Model equations p-value R2 

Untreated corn stover Yg = 1.703 + 0.057X1 - 0.035X2 - 0.003X3 p<0.05 0.84 

Untreated switchgrass Yg = 25.41 + 1.300X1 - 0.08X2 - 0.0002X3 p<0.05 0.88 

Untreated switchgrass Yg = 25.32 - 1.87X1 - 0.005X2 - 0.0001X3 p<0.05 0.87 

 

Table 3.5. ANOVA results for the factors affecting the glucose yields from untreated 

corn stover pellets 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 1569.106 35 44.83159 4.453847 0.0001 

A-SS 1290.943 2 645.4715 64.12513 < 0.0001 

B-Moisture 22.40198 3 7.467326 0.74185 0.5376 

C-Load 24.99014 4 6.247535 0.620669 0.6521 

AB 15.23801 6 2.539669 0.252306 0.9535 

AC 81.68245 8 10.21031 1.014355 0.4517 

BC 133.8498 12 11.15415 1.108122 0.3976 

Residual 241.5795 24 10.06581   

Cor Total 1810.685 59    
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Table 3.6. ANOVA results for the factors affecting the glucose yields from untreated 

prairie cord grass 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 905.5571 35 25.87306 3.734835 0.0006 

A-SS 644.2078 2 322.1039 46.49643 < 0.0001 

B-Moisture 26.3772 3 8.7924 1.269203 0.3073 

C-Load 35.17635 4 8.794088 1.269447 0.3094 

AB 79.87404 6 13.31234 1.921667 0.1183 

AC 73.2398 8 9.154975 1.321541 0.2802 

BC 46.68188 12 3.890157 0.561553 0.8509 

Residual 166.2599 24 6.927497   

Cor Total 1071.817 59    

 

Table 3.7. ANOVA results for the factors affecting the glucose yields from untreated 

switchgrass 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 1508.097 35 43.0885 5.053072 < 0.0001 

A-SS 907.0375 2 453.5188 53.18503 < 0.0001 

B-Moisture 14.27523 3 4.758408 0.558028 0.6478 

C-Load 30.6544 4 7.663601 0.898725 0.4802 

AB 43.41082 6 7.235137 0.848479 0.5457 

AC 391.0799 8 48.88499 5.732838 0.0004 

BC 121.6395 12 10.13663 1.188742 0.3446 

Residual 204.6525 24 8.527188   

Cor Total 1712.75 59    
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(b) Prairie cord grass 
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(c) switchgrass 

Set 1:8% moisture at 1000 N; Set 2: 8% moisture at 2000 N; Set 3: 8% moisture at 3000 

N; Set 4: 8% moisture at 4000 N; Set 5: 8% moisture at 5000 N; Set 6: 12% moisture at 

1000 N; Set 7: 12% moisture at 2000 N; Set 8: 12% moisture at 3000 N; Set 9: 12% 

moisture at 4000 N; Set 10: 12% moisture at 5000 N; Set 11: 16% moisture at 1000 N; 

Set 12: 16% moisture at 2000 N; Set 13: 16% moisture at 3000 N; Set 14: 16% moisture 

at 4000 N; Set 15: 16% moisture at 5000 N; Set 16: 20% moisture at 1000 N; Set 17: 

20% moisture at 2000 N; Set 18: 20% moisture at 3000 N; Set 19: 20% moisture at 4000 

N; Set 20: 20% moisture at 5000 N; 

 

Fig. 3.1. Glucose yields from pellets produced under different conditions 

(a) untreated corn stover; (b) untreated prairie cord grass; (c) untreated 

switchgrass. 
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(c) switchgrass 

 

 Set 1:8% moisture at 1000 N; Set 2: 8% moisture at 2000 N; Set 3: 8% moisture at 3000 

N; Set 4: 8% moisture at 4000 N; Set 5: 8% moisture at 5000 N; Set 6: 12% moisture at 

1000 N; Set 7: 12% moisture at 2000 N; Set 8: 12% moisture at 3000 N; Set 9: 12% 

moisture at 4000 N; Set 10: 12% moisture at 5000 N; Set 11: 16% moisture at 1000 N; 

Set 12: 16% moisture at 2000 N; Set 13: 16% moisture at 3000 N; Set 14: 16% moisture 

at 4000 N; Set 15: 16% moisture at 5000 N; Set 16: 20% moisture at 1000 N; Set 17: 

20% moisture at 2000 N; Set 18: 20% moisture at 3000 N; Set 19: 20% moisture at 4000 

N; Set 20: 20% moisture at 5000 N; 

 

Fig. 3.2. Xylose yields from pellets produced under different conditions 

(a) untreated corn stover; (b) untreated prairie cord grass; (c) untreated 

switchgrass. 
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4. INFLUENCE OF AFEX™ PRETREATED CORN STOVER AND SWITCH 

GRASS BLENDING ON THE COMPACTION CHARACTERISTICS AND 

SUGAR YIELDS OF THE PELLETS 

4.1. Abstract 

 The objective of this research was to investigate the impacts of Ammonia Fiber 

Expansion (AFEX™) pretreated corn stover and switchgrass blending ratio (25:75, 50:50 

and 75:25 percent on dry weight), compressive pressure (31.6, 94.8, and 158.0 MPa), and 

screen size (2 and 4 mm) on pellet unit density, pellet hardness, specific energy 

consumption for pellets production, and the sugar yields. A single pelleting unit was 

employed in the study, and the untreated, AFEX™ pretreated, and AFEX™ pretreated 

blended samples were pelleted. The pellets produced from AFEX™ pretreated samples 

reached their maximum pellet unit densities at an applied pressure of 94.8 MPa. Pellet 

hardness was tested by applying the force to the pellets and recording the maximum force 

required to break. Results showed that the pellets produced from the small screen size 

sample at a higher applied pressure required more force to break. Besides, blend with 

higher proportion of AFEX™ pretreated corn stover produced harder pellets (711 N). 

Specific energy consumption for the pellets production varied from 11.4 to 57.9 kW h t−1, 

and due to low bulk density of switchgrass, blends with a higher proportion of 

switchgrass consumed more energy for pellet production. Glucose yields of the AFEX™ 

pretreated samples were enhanced by 4–4.5 times and the xylose yields by 2–2.5 times 

compared to the untreated samples. Pelleting and biomass blending had no significant 

effects on sugar yields of the AFEX™ pretreated corn stover and switchgrass samples. 
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4.2. Introduction 

 The Energy Independence and Security Act of 2007 mandates the United States to 

produce 36 billion gallons of renewable biofuels annually by the year 2022 (Sissine, 

2007). Considering the sustainable and environmental friendly characteristics, 

lignocellulosic biomass appears to be an alternative source to the fossil fuel usage. 

Greene and Mugica (2005) suggested the research focus towards demonstration and 

development of effective lignocellulosic biomass pretreatment, production of diverse 

bioproducts, and cost effective biofuels production from high yielding feedstocks. 

Preprocessing is a crucial phase in the biomass supply chain, which involves different 

operations to convert the harvested biomass appropriate for the end use in biorefineries. 

Conventional biorefinery adopts centralized processing approach, however, by shifting 

the preprocessing operations to the storage sites, the risks associated with handling 

diverse formats of biomass can be eliminated at the processing site (Hess et al., 2007). 

Wright et al (2006) showed the improvement in transportation, handling, and 

merchandising potential of the biomass processed through distributed processing. A 

network of distributed processing facilities termed as ‘Regional Biomass Processing 

Depot’ (RBPD) involves different operations such as feedstock procurement, 

pretreatment, densification, and delivery of single product to the biorefineries (Eranki and 

Dale, 2011). The authors showed that RBPDs produce similar net energy yield and 

reduce greenhouse gas emissions by 3.7 percent than the centralized conventional system. 

Overcoming the biomass recalcitrant nature is one of the key challenges in biofuel 

production from lignocellulosic feedstocks (Brodeur et al., 2011). Biomass pretreatment 

is a vital preprocessing operation in breaking the complex chemical structure, thus 



72 

 

separating the cellulose and hemicellulose components from lignin matrix and making 

them available for enzymatic hydrolysis. Developing an effective and economical 

pretreatment process is imperative in producing biofuels at a competitive price. Ammonia 

Fiber Expansion (AFEX™) is a promising physiochemical pretreatment process, which 

involves treating the biomass with liquid ammonia at a moderate temperature and 

pressure (Balan et al., 2009). The process involves treating biomass with liquid ammonia 

under moderate pressure (100–400 psi) and temperature (70–200 °C) in a stainless steel 

reactor for a short residence period of 5–30 min (Bals et al., 2010). The selection of 

optimum parameters like pressure, temperature, and residence time depends on the 

recalcitrant nature of lignocellulosic biomass (Balan et al., 2009). Release of rapid 

pressure after the residence period marks the end of pretreatment process. This rapid 

release of pressure results in breaking of complex chemical structure of biomass, thus 

exposing cellulose and hemicellulose fibers for enzymes to attack (Chundawat et al., 

2011 and Kumar et al., 2009). AFEX™ pretreated corn stover (Teymouri et al., 2005), 

switchgrass (Alizadeh et al., 2005), and rice straw (Sulbarán-de-Ferrer et al., 2003) 

exhibited an increase in sugar yields when subjected to enzymatic hydrolysis. 

One of the important physical limitations in handling, transporting, and storing 

lignocellulosic biomass is its low bulk density, (Eranki and Dale, 2011) which directly 

influences the production cost of biofuels. Densification involves application of 

mechanical and thermal energy to the bulky biomass to produce uniform densified 

products for efficient handling, transport, and storage. Mani et al (2002) elucidated the 

basic mechanisms involved in densification process. During the first stage, the biomass 

particles rearrange to form a closely packed mass. In the second stage, plastic and elastic 
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deformation of particles occur with the increase in the applied pressure. Biomass undergo 

reduction in the volume with an increase in the applied pressure, till attaining its true 

density during the third stage. Lignin, one of the components of lignocellulosic biomass 

becomes soft and acts as a natural binder when subjected to high temperature and 

pressure (van Dam et al., 2004). The softened lignin acts as a glue in sticking the fibers 

together. Different densification methods like baling, pelleting, briquetting, and 

compaction have been tested on different feedstocks (Tumuluru et al., 2011). However, 

literature on the impacts of pretreatment and densification on physical quality of the 

pellets (durability, pellet density, bulk density, hardness, etc.) and sugar yields are 

limited. Hoover et al (2014) studied the impacts of AFEX™ pretreatment and pelleting of 

corn stover on physical quality of pellets and sugar yields from enzymatic hydrolysis. 

Rijal et al (2014) investigated the impacts of AFEX™ pretreatment and ComPAKco 

densification method of corn stover, prairie cord grass, and switchgrass on the sugar 

yields from simultaneous saccharification and fermentation (SSF) and simultaneous 

hydrolysis and fermentation (SHF). Sundaram et al (2015) studied the effects of AFEX™ 

pretreatment on the compression characteristics of corn stover, prairie cord grass, and 

switchgrass. To reduce the overall biofuel production costs and to enhance the energy 

balance of biomass supply and conversion chain, Shi et al (2013) proposed that the 

pretreatment and densification of mixed biomass feedstocks could be an effective 

method. Considering the potential of mixed biomass pellets and AFEX™ pretreatment as 

a promising pretreatment technology, this research was intended to study the impacts of 

AFEX™ pretreatment, blending, and densification on the physical qualities of the pellets 

and the sugar yields from corn stover and switchgrass. 
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4.3. Materials and methods 

4.3.1. Feedstock preparation 

The feedstocks corn stover and switchgrass obtained from the local farms in 

Brookings, South Dakota were milled using a hammer mill (Thomas Wiley laboratory 

mill, USA) attached with screen sizes of 2 and 4 mm. The milled materials were sealed in 

plastic bags and sent to the Biomass Conversion Research Laboratory (BCRL, Michigan 

State University, MI,) for AFEX™ pretreatment. The optimum conditions used for 

AFEX™ pretreatment are provided in Table 4.1. The samples received after the 

pretreatment were sealed in plastic bags and stored in the refrigerator at 4 °C until further 

use. Initial moisture content of the samples was determined using oven drying method 

ASABE standard S358.2 (ASABE Standards, 2006). Dry weight of untreated corn stover 

(UCS), untreated switchgrass (USG), AFEX™ pretreated corn stover (ACS), and 

AFEX™ pretreated switchgrass (ASG) were determined and the blends were prepared 

based on the dry weight of individual biomass. Three different blends were produced viz. 

B1 (25% ACS and 75% ASG), B2 (50% ACS and 50% ASG), B3 (75% ACS and 25% 

ASG). Moisture content of the samples and the blends was adjusted to 15 percent on a 

wet basis, considering the requirement of less pressure at higher moisture content to 

produce highly compacted pellets (Sundaram et al., 2015). Moisture content was adjusted 

by addition of calculated quantity of distilled water and the contents were mixed using a 

kitchen aid mixer (Kitchen aid professional plus 5, St. Joseph, MI). Moisture adjusted 

samples were stored at 4 °C in refrigerator and were thawed to the room temperature 

before beginning the experiments. The chemical composition of untreated corn stover and 

switchgrass was determined using National Renewable Energy Laboratory—laboratory 
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analytical procedure (Sluiter et al., 2007). The retention of the components cellulose, 

hemicellulose, and lignin after pretreatment is the unique feature of AFEX™ 

pretreatment. Hence, for the calculations of enzymatic yields, the compositions of 

untreated samples were used (Campbell et al., 2013). 

4.3.2. Bulk and particle density determination 

Bulk density of untreated and AFEX™ pretreated samples was determined by 

measuring the mass of the sample occupying a known container volume. A hopper and 

stand apparatus (Seedburo equipment Co., Des Plaines, IL) was used to determine the 

bulk density of the samples. Samples were fed through the hopper and the cylindrical 

container with a volume of 0.5 l was placed underneath the hopper to collect the samples. 

Surplus samples collected were removed by passing a thin wire across the top of the 

cylindrical container. Mass of samples collected in the container was weighed and was 

divided by the volume of the container to determine the bulk density. Particle density of 

untreated and AFEX™ pretreated samples was measured using a multivolume gas 

pycnometer (Micrometritics multivolume pycnometer 1305, Norcross, GA). The 

measurement was based on the pressure difference between the volume of reference cell 

and the sample cell. Helium gas was used as a displacement medium and three 

replications were carried out for each sample. 

4.3.3. Single pelleting unit 

Pellets were produced by compressing the biomass in a single pelleting unit 

shown in fig. 2.1. The unit comprised of a piston and cylinder assembly with a base plate. 

The cylinder had an internal diameter of 6.35 mm and height of were 6.35 and 76.2 mm. 
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A mass of 0.5–0.7 g of sample was fed into the cylinder and the piston attached to the 

texture analyzer (TA HD plus, Texture Technologies Corp, NY) cross head was allowed 

to compress the sample at a speed of 50 mm min−1. The contents inside the cylinder 

were heated by the heating element wrapped around it. The cylinder was heated to a 

temperature of 100 ± 2 °C to simulate the commercial pelleting operation (Mani et al., 

2004). Thermocouple attached to the cylinder was regulated by a controller (SDC 

120KC-A, Brisk heat corporation, OH) to control the temperature. The diameter of base 

plate was same as the cylinder diameter and bottom of the cylinder was rested on base 

plate during compression. To avoid the spring back effect, after attaining the preset load 

piston was allowed to maintain at same preset load for 30 s (Tabil and Sokhansanj, 

1996a). Ejection of pellets produced was carried out by attaching the bottom plate above 

base plate and the piston was lowered. Pellets were produced under three different 

applied loads viz. 1000, 3000, and 5000 N with corresponding applied pressures of 31.6, 

94.8, and 158.0 MPa respectively. Three replications of each sample were compressed. 

4.3.4. Pellet unit density and hardness 

Dimensions (height and diameter) of the pellets were measured using a digital 

vernier caliper (Digimatic, Mitutoyo Corp., Japan) and the mass of sample using digital 

weighing balance (Mettler PM 2500 Delta range, Columbus, OH). The ratio of mass of a 

pellet to its volume provided the unit density of a pellet. Compressive resistance or 

hardness test mimics the environment where pellets underneath are subject to stress by 

the weight of pellets placed over it during transportation and storage conditions. Hardness 

of pellets was tested by crushing the pellets using a cylindrical probe (TA-4, Texture 

Technologies Corp, NY) attached to the crosshead of texture analyzer. A single pellet 
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was positioned in its natural position and a vertical force was applied at a speed of 50 mm 

min−1 to the pellet. The force applied vs deformation was recorded by the exponent 

software (Stable Micro Systems Ltd., UK) and the maximum force recorded in the curve 

was taken as the pellet hardness. 

4.3.5. Specific energy consumption 

During the compression tests, force applied vs. displacement curve was recorded 

by exponent software (Stable Micro Systems Ltd., UK) and the energy spent for 

compression of biomass and ejection of pellets were calculated by integrating the area 

under the curve. The ratio of energy spent (for compression and ejection) and the mass of 

the sample were used to calculate the specific energy consumption and is given in kW h 

t−1. Three replications of each sample compressed were used to calculate the specific 

energy consumption. 

4.3.6. Enzymatic hydrolysis 

Untreated, AFEX™ pretreated, untreated pelleted, AFEX™ pretreated pelleted, 

and blended samples were subjected to enzymatic hydrolysis following NREL protocol 

(Selig et al., 2008). The enzymatic hydrolysis was carried out using 10 ml hungate glass 

tubes. Samples with the equivalent of 0.1 g of cellulose along with sodium citrate buffer 

(0.1 M, pH 4.8) was taken in the glass tubes. 100 μl of 2% sodium azide was added to 

inhibit the growth of organisms during the digestion. The enzyme cellulase (NS50013 

activity 70 FPU g-1) was maintained at 15 FPU g-1 DM, β-glucosidase (NS50010 activity 

250 CBU g-1) at 30 CBUg-1 DM, and multienzyme (NS50012 activity 100 FBG g-1) at 30 

FBG g-1. All the enzymes were provided by Novozymes (Krogshoejvej, Denmark). The 
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sample tubes were incubated at 50 °C for 72 h in an incubated orbital shaker (MaxQ™ 

HP 420, Thermo scientific, MA) at an RPM of 150. After 72 h, the sample tubes were 

kept in boiling water for a period of 10 min to inactivate the enzymes. Supernatants from 

each tube were collected from hydrolyzed samples and were subjected to centrifugation 

at 13,000 × g for 15 min in a centrifuge (Fisher scientific, Accuspin™ 400). The 

centrifuged samples were frozen and thawed twice to settle the impurities and the 

supernatant was taken in HPLC vials. The supernatants were injected into sugar analysis 

in an HPLC (Agilent Technologies, Santa Clara, CA; Bio-rad Aminex 87H column, 

Hercules, CA) to quantify the sugars present in the samples. A sample volume of 20 μl 

was injected into the column at a flow rate of 0.6 ml/min at a 65 °C column temperature. 

Sugar yields were calculated using Selig et al (2008) procedure by considering the 

chemical composition of the samples and the concentration of sugars obtained from 

HPLC analysis. 

4.3.7. Statistical analysis 

Least significant difference test was carried out using PROC GLM method in the 

SAS web editor (SAS 9.3, Cary, NC) to determine the significant effects of selected 

parameters on the pellet properties and the sugar yields. Level of confidence was set at 

95%. 

4.4. Results and discussion 

4.4.1. Bulk and particle density 

Bulk and particle densities of untreated, AFEX™ pretreated, and blended samples 

are reported in Table 4.2. Mani et al (2006) reported the bulk density of corn stover as 
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156 kg m−3 (1.6 mm screen size) and 131 kg m−3 (3.2 mm screen size). Similarly, for the 

switchgrass, bulk densities were reported as 156 kg m−3 (1.6 mm screen size) and 115 kg 

m−3 (3.2 mm screen size). In this study, the bulk density of untreated stover (UCS) was 

120.9 kg m−3 (2 mm screen size) and 107.3 kg m−3 (4 mm screen size). Untreated 

switchgrass bulk density was 115.5 kg m−3 (2 mm screen size) and 100.8 kg m−3 (4 mm 

screen size). Compared to the control samples, AFEX™ pretreated samples exhibited 

higher bulk and particle densities. This could be due to the conversion of fibrous biomass 

into brittle material during AFEX™ pretreatment. Hoover et al (2014) noticed the brittle 

and friable nature of corn stover when subjected to AFEX™ pretreatment.  

The mean bulk and particle densities of the sample ACS (2 mm screen size) was 

highest (237.8 kg m−3 and 1423.1 kg m−3, respectively) among all the samples taken and 

among the blended samples, blend with a high proportion of corn stover (B3) at 2 mm and 

4 mm screen size produced high bulk and particle density. AFEX™ pretreated corn 

stover sample had the higher bulk and particle densities than AFEX™ pretreated 

switchgrass and the presence of a higher proportion of corn stover could have increased 

the bulk and particle densities in the B3 sample. Bulk densities of all the samples were 

statistically significant and the blending ratio and screen size had a significant effect (p < 

0.0001). However, the mean particle densities of the blends B1, B2, B3 for 2 mm screen 

size and blends B2 and B3 for 4 mm screen size were statistically similar. The factors 

blending ratio and screen size were not significant in deciding the particle densities of the 

blends. In all the conditions, bulk and particle densities of the samples increased with a 

decrease in the screen size. 
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4.4.2. Pellet unit density 

Fig.4.1 shows the pellet unit density of 2 mm and 4 mm screen size samples 

compressed at different applied pressures. It can be inferred from the figure that, unit 

density of the pellets increased with an increase in the applied pressure for both screen 

size samples. The factors screen size, blending ratio, and applied pressure had significant 

effect on the pellet unit density (p < 0.0001), but their interactions were not significant. It 

was observed that the increase of pellet unit density was minor when the applied pressure 

was increased from 94.8 to 158.0 MPa. Stelte et al (2011) observed the minor increase in 

the pellet unit density of wheat straw, Norway spruce and European beech, when the 

pelleting pressure was increased between 250 and 600 MPa and major change in the 

pellet density was observed when the pressure was below 50 MPa. Similarly, Adapa et al 

(2009) reported the significant increase (p < 0.05) in the compact density of canola and 

oat straw when the pressure applied was increased from 31.6 to 94.7 MPa. When the 

pressure applied was increased above 94.7 MPa, there was no significant increase in the 

compact density as the compacts reached their corresponding particle densities. Similar 

fashion was observed in this study as the pellet unit densities approached their respective 

particle densities. 

Particle density values reported were in the range of 900–1200 kg m−3 for corn 

stover and 600–1000 kg m−3 for switchgrass samples (Mani et al., 2006). In this study, 

AFEX™ pretreated samples produced pellets with higher unit density than the untreated 

samples, representing the impact of AFEX™ pretreatment. During AFEX™ pretreatment 

the lignin—carbohydrate matrix structure is broken down and the components are free 

from the complex matrix, thus solubilizing and mobilizing the lignin to biomass surface 
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(Dale, 1986, Bals et al., 2010 and Chundawat et al., 2011). This increased availability of 

lignin could have contributed to better binding of AFEX™ pretreated samples compared 

to the untreated samples. Sundaram et al (2015) studied the impacts of AFEX™ 

pretreatment on the compression characteristics of corn stover, prairie cord grass, and 

switchgrass. The study showed the requirement of less pressure to produce highly 

compacted products after the feedstocks were subjected to AFEX™ pretreatment. In this 

study, blend comprising higher proportion of corn stover (B3, 2 mm screen size) at a 

maximum compressive pressure (158 MPa) produced pellets with maximum unit density 

(1416.25 kg m−3). Higher density of AFEX™ pellets can have benefits in transportation 

with fewer trucks or railcars necessary to transport the same weight of material (Hoover 

et al., 2014). 

4.4.3. Pellet hardness 

Table 4.3 shows the hardness of pellets produced from untreated, AFEX™ 

pretreated, and AFEX™ pretreated blended samples at different applied pressures. 

Maximum pellet hardness (923 N) was recorded for AFEX™ pretreated corn stover 

pellets (2 mm screen size) produced at 158.0 MPa. AFEX™ pretreated corn stover pellets 

were strongest among the samples, and the sample with a high proportion of corn stover 

at 2 mm screen size (B3) produced pellets with maximum hardness (711 N). Increased 

hardness of the corn stover pellets can be attributed to the higher lignin content present in 

the corn stover than the switchgrass samples. Lignin becomes soft and acts as a natural 

binder when subjected to high temperature and pressure (van Dam et al., 2004). It was 

observed that the pellets produced from smaller screen size samples under maximum load 

can withstand maximum force before breaking. The hardness values of the pellets 
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produced from 2 mm screen size particles were higher compared to the pellets produced 

from 4 mm screen size particles. This could be due to the increased surface area available 

for binding during the pelleting process. Tabil and Sokhansanj (1996b) observed that the 

screen size was not significant in determining the durability of the pellets, but smaller 

screen size particles produced more durable pellets. Jannasch et al (2001) reported the 

increase in pellet hardness of switchgrass when the particle size was decreased from 1/8 

(3.2 mm) to 7/64 (2.8 mm) inch. Table 4.4 shows the main and interaction effects of the 

selected variables on pellet hardness. The variables blending ratio, screen size, applied 

pressure and their interactions had a significant impact (p < 0.001) on pellet hardness. 

AFEX™ pretreatment impacts physical and chemical alterations to the structure of 

lignocellulosic biomass (Balan et al., 2009 and Dale, 1986). Lignin melting, 

depolymerization and depositing on the biomass surface (Dale, 1986 and Chundawat et 

al., 2011) are the significant alterations benefitting the biomass densification process. The 

increased availability of lignin in AFEX™ pretreated samples during the pelleting 

process could be the reason for increased pellet hardness compared to the untreated 

samples. 

4.4.4. Specific energy consumption 

Energy consumption comprises the energy required for biomass compression and 

ejection of pellets from the die. Energy spent for pellet production from different samples 

at different applied loads are shown in Fig.4.2. The energy required for compression was 

relatively higher than the energy required for pellet ejection in all the conditions. The 

energy consumption ranged from 11.4 to 57.9 kW h t−1, and it can be observed that the 

energy consumption increased with an increase in the applied pressure. Energy 
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consumption for AFEX™ pretreated switchgrass pellets production was relatively higher 

than that of AFEX™ corn stover pellets, and the reason could be due to the low bulk 

density nature of switchgrass compared to the corn stover samples. Adapa et al (2002) 

reported the similar result when fractionated alfalfa grinds exhibited higher displacement 

values during the compression and the authors credited the reason to low bulk density of 

the feedstock. Among the blended samples, blend with equal proportion of AFEX™ corn 

stover and AFEX™ switchgrass (B2) consumed higher energy (57.9 kW h t−1). However, 

the magnitude of energy consumption for the pellets produced from 2 mm and 4 mm 

screen size samples was less. In other words, AFEX™ pretreatment had reduced the 

energy consumption required for pellets production for large screen size samples. 

Statistical analysis showed the significant impact of selected variables and their 

interactions (p < 0.0001) on specific energy consumption. Table 4.4 shows the main and 

interaction effects of variables for specific energy consumption. In this study, the energy 

spent was relatively less when the pressure applied was increased above 94.8 MPa as the 

pellets approached their corresponding particle densities (Adapa et al., 2009). 

4.4.5. Enzymatic hydrolysis and the sugar yields 

Table 4.5 shows the chemical composition of untreated corn stover and 

switchgrass samples. The glucose yields of 2 mm and 4 mm unpelleted AFEX™ 

pretreated corn stover (ACS) were 92.8% and 93.2% respectively. For unpelleted 

AFEX™ pretreated switchgrass (ASG), the glucose yields were 92.5% (2 mm) and 

91.8% (4 mm). In the case of untreated corn stover (UCS), the glucose yields were 21.4% 

(2 mm) and 20.3% (4 mm), whereas for switchgrass samples (USG) the yields were 

18.8% (2 mm) and 19.5% (4 mm). It was observed that the glucose yields from AFEX™ 
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pretreated samples were 4–4.5 times higher than that of untreated samples. Xylose yields 

of unpelleted AFEX™ pretreated corn stover were 45.8% (2 mm) and 46.9% (4 mm) and 

for unpelleted AFEX™ pretreated switchgrass the yields were 45.3% (2 mm) and 47.4% 

(4 mm). Untreated samples xylose yields were 15.5% (2 mm) and 20.5% (4 mm) for corn 

stover and 13.1% (2 mm) and 19.4% (2 mm) for switchgrass samples. Increase in xylose 

yields of AFEX™ pretreated corn stover and switchgrass samples was 2–2.5 times higher 

than that of untreated samples. Increase in the glucose and xylose yields of AFEX™ 

pretreated samples compared to the untreated samples exhibited the influence of the 

pretreatment on the biomass. Lignocellulosic biomass has limited accessible surface area 

available for enzyme interaction with cellulose components (Fan et al., 1980 and Hajny 

and Reese, 1969), due to the linkage of cellulose and hemicelluloses with lignin 

components acting as a physical barrier. AFEX™ pretreatment results in cellulose 

decrystallization, hemicellulose depolymerization, and cleaving of lignin-carbohydrate 

linkages (Balan et al., 2009 and Dale, 1986). These physicochemical alterations in the 

structure of biomass have resulted in enhanced sugar yields from AFEX™ pretreated 

corn stover and switchgrass samples. 

Glucose and xylose yields of the pellets produced from AFEX™ pretreated and 

AFEX™ pretreated blend samples compressed under different pressures are shown in 

Fig.4.3 and 4.4. Glucose yields varied from 92.3 to 93.5% for AFEX™ pretreated corn 

stover pellets and from 91.8 to 92.5% for AFEX™ pretreated switchgrass pellets. Xylose 

yields of pelleted AFEX™ pretreated corn stover ranged from 46.8% to 48.9% and for 

AFEX™ pretreated switchgrass pellets the yields ranged from 45.3% to 49.4%. From 

Fig.4.3 and 4.4, it can be observed that under different applied pressures, the yields of 
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glucose and xylose from AFEX™ pretreated and AFEX™ pretreated blended pellets 

were not significant. In other words, pelleting pressure had a neutral effect on the glucose 

and xylose yields from the AFEX™ pretreated and AFEX™ pretreated blended pellets. 

Rijal et al (2014) also observed the densification of AFEX™ pretreated corn stover and 

switchgrass using ComPAKco technology had no significant effect on the sugar yields 

after 48 h of hydrolysis. 

Reduction in biomass particle size increases the surface area to volume ratio, thus 

improving the enzymatic digestibility (Mansfield et al., 1999). In this study, the screen 

size was not a significant factor in deciding the sugar yields from of AFEX™ pretreated 

corn stover and switchgrass samples. Hoover et al (2014) noted the decrease in the sugar 

yields of AFEX™ pretreated corn stover pellets when the grind size was increased from 4 

mm to 6 mm. In this study, the screen sizes employed were 2 mm and 4 mm and no 

significant differences in the sugar yields were noted. This could be due to the increased 

surface area available for enzymes to interact with cellulose and hemicellulose 

components after the AFEX™ pretreatment. Glucose yields of the pellets produced from 

blended samples varied from 90.5% to 93.6% and the xylose yields varied from 45.3% to 

49.5%. The statistical analysis showed that the sugar yields from the blended samples 

were statistically similar and blending of two different AFEX™ pretreated biomass had 

no significant effects. Shi et al (2013) also showed that the mixed biomass pellets 

produced from ionic liquid pretreated feedstocks had neutral effects on the sugar yield 

and it can be a viable and valuable resource considering the availability of biomass. 

To summarize, pellets achieved their true densities at an applied pressure of 94.8 

MPa and pelleting beyond this pressure did not produce denser pellets. Pelleting at 
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different pressures had no significant effect on the sugar yields of AFEX™ pretreated and 

AFEX™ pretreated blended samples. Reducing the screen size from 4 mm to 2 mm had 

minor positive effect on the pellet physical qualities and no effects on the sugar yields. 

Use of the large screen size sample could decrease the energy required for raw material 

preparation for pretreatment and densification. Blending of two different lignocellulosic 

biomass had no significant effect on the sugar yields and the pellets produced from the 

AFEX™ pretreated mixed feedstocks could be a feasible resource considering the 

availability of biomass around the processing depots. 

4.5. Conclusions 

This study investigated the impacts of the blending of AFEX™ pretreated corn 

stover and switchgrass on the pellet compaction characteristics and sugar yields. Pellets 

were produced under different conditions using a single pelleting unit. Pellet unit density, 

pellet hardness, specific energy consumption for pellet production, and sugar yields were 

investigated. Following are the outcomes obtained from the study: 

1. AFEX™ pretreatment increased the pellet unit density and pellet hardness of 

corn stover and switchgrass samples. Increase in pellet unit density was observed with 

increase in the applied load, and the AFEX™ pretreated samples achieved their 

maximum pellet unit density at 94.8 MPa applied pressure. 

2. Pellets produced from the blend with a higher proportion of corn stover (B3) (2 

mm) produced strongest pellets with hardness of 711 N. Besides, the pellets produced 

from 2 mm screen size samples required more force to break than the 4 mm samples. 

3. The variables blending ratio, screen size, and applied pressure had significant 

effect on energy consumption. The energy required for pellets production varied from 
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11.4 to 57.9 kW h t−1, and the energy consumption increased with increase in the applied 

pressure. AFEX™ pretreated switchgrass required more energy for compaction because 

of its low bulk density compared to corn stover, and the blend with higher proportion of 

switchgrass consumed more energy. 

4. Glucose and xylose yields of AFEX™ pretreated samples were 4–4.5 times 

and 2–2.5 times higher than that of the untreated samples. Biomass blending and 

pelleting had no significant effect on glucose and xylose yields of all the samples. These 

results indicate that blending and pelleting the feedstocks can be a potential and viable 

option to minimize the logistical issues without affecting the sugar yields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

Table 4.1. Optimum AFEX™ pretreatment conditions employed for corn stover and 

switchgrass 

Feedstock 

Ammonia loading 

(Ammonia: Dry 

biomass) (w/w) 

Temperature 

(°C) 

Moisture 

content  

(db %) 

Pretreatment 

soaking time (min) 

Corn stover 1:1 100 60 15 

Switchgrass  1:2 100 50 30 

 

Table 4.2. Bulk and particle density of different samples 

Samples 
Bulk density (kg m-3) Particle density (kg m-3) 

2 mm 4 mm 2 mm 4 mm 

ASG 150.5 ± 3.5f 116.3 ± 5.4i 1368.6 ± 17.8bc 1332.1 ± 11.3d 

B1 176.1 ± 2.8d 135.9 ± 3.8g 1369.1 ± 21.6bc 1360.3 ± 25.0dc 

B2 202.5 ± 6.8b 162.5 ± 6.3e 1377.1 ± 19.0bc 1374.0 ± 20.0bc 

B3 230.0 ± 8.1a 190.3 ± 7.7c 1385.4 ± 29.5bc 1380.6 ± 20.5bc 

ACS 237.8 ± 6.9a 197.3 ± 6.5bc 1423.1 ± 11.2a 1393.6 ± 13.8ab 

UCS 120.9 ± 4.7h  107.6 ± 3.8j 956.7 ± 7.8e 923.5 ± 5.8f 

USG 115. 5 ± 3.4i 100.8 ± 2.7k 905.2 ± 6.9g 843.6 ± 9.7h 

Same letters in superscript within column for a given property are not significantly 

different (p < 0.0001) 
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Table 4.3. Pellet hardness of the samples compressed at different applied pressures 

Feedstock Pressure (MPa) 
Pellet hardness (N) 

2 mm 4 mm 

ASG 

31.6 132 ± 5.0 124 ± 16.9 

94.8 404 ± 79.6 361 ± 49.4 

158.0 564 ± 27.7 367 ± 63.3 

B1 

31.6 138 ± 7.3 135 ± 52.1 

94.8 394 ± 39.4 334 ± 24.1 

158.0 587 ± 22.9 556 ± 58.6 

B2 

31.6 120 ± 13.0 183 ± 33.7 

94.8 426 ± 17.2 355 ± 54.4 

158.0 626 ± 40.4 613 ± 32.8 

B3 

31.6 334 ± 51.6 173 ± 66.1 

94.8 668 ± 43.7 418 ± 51.6 

158.0 711 ± 94.1 633 ± 34.1 

ACS 

31.6 192 ± 81.8 410 ± 54.5 

94.8 771 ± 47.9 483 ± 89.8 

158.0 923 ± 72.2 805 ± 90.1 

USG 

31.6 107 ± 18.6 105 ± 35.7 

94.8 138 ± 27.5 129 ± 64.8 

158.0 272 ± 38.7 248 ± 28.4 

UCS 

31.6 128 ± 15.8 132 ± 34.8 

94.8 176 ± 40.0 186 ± 51.9 

158.0 307 ± 32.4 296 ± 19.9 
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Table 4.4. Main and interaction effects of variables on pellet hardness and specific 

energy consumption 

Source DF 
Type III 

SS 

Mean 

Square 

F 

Value 
Pr > F 

Pellet hardness 

Blend ratio 4 893904 223476 49 <.0001 

Screen size 1 108736 108736 23 <.0001 

Blending ratio* Screen size 4 64485 16121 3 0.0114 

Applied pressure 2 3005969 1502984 331 <.0001 

Blend ratio*Applied pressure 8 103422 12927 2 0.0094 

Screen size*Applied pressure 2 104458 52229 11 <.0001 

Blend ratio* Screen size*Applied 

pressure 
8 162220 20277 4 0.0003 

Specific energy consumption 

Blend ratio 4 395 99 63 <.0001 

Screen size 1 2 2 2 0.2208 

Blending ratio* Screen size 4 442 110 71 <.0001 

Applied pressure 2 42448 21224 13607 <.0001 

Blend ratio*Applied pressure 8 38 5 3 0.0033 

Screen size*Applied pressure 2 186 93 60 <.0001 

Blend ratio* Screen size*Applied 

pressure 
8 160 20 13 <.0001 

 

Table 4.5. Chemical composition of untreated corn stover and switchgrass 

Feedstock 
Glucan 

(%) 

Xylan 

(%) 

Arabinan 

(%) 

Ash 

(%) 

Lignin 

(%) 

Corn stover 34.3 18.5 2.5 5.5 15.7 

Switchgrass 32.2 14.8 2.3 3.7 13.3 
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a) 2 mm 

 

b) 4 mm 

Fig. 4.1. Pellet unit density of the samples at different applied pressures 
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Fig. 4.2. Specific energy consumption of different samples at different applied pressures 
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Fig. 4.3. Glucose yield of pelleted produced under different conditions 

 

Fig. 4.4. Xylose yields of pellets produced under different conditions 

Pellet set 1 = 2 mm screen size samples compressed at 31.6 MPa; Pellet set 2 = 2 mm screen size samples 

compressed at 94.8 MPa; Pellet set 3 = 2 mm screen size samples compressed at 158.0 MPa; Pellet set 4 = 

4 mm screen size samples compressed at 31.6 MPa; Pellet set 5 = 4 mm screen size samples compressed at 

94.8 MPa; Pellet set 6 = 4 mm screen size samples compressed at 158.0 MPa. 
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5. IMPACT OF AFEX™ PRETREATMENT AND EXTRUSION PELLETING 

ON PELLET PHYSICAL PROPERTIES AND SUGAR RECOVERY FROM 

CORN STOVER, PRAIRIE CORD GRASS, AND SWITCHGRASS 

5.1. Abstract 

The effects of AFEX™ pretreatment, feedstock moisture content (5,10, and 15% 

wb), particle size (screen sizes of 2, 4, and 8 mm), and extrusion temperature (75, 100, 

and 125°C) on pellet bulk density, pellet hardness, and sugar recovery from corn stover, 

prairie cord grass, and switchgrass were investigated. Pellets were produced from 

untreated and AFEX™ pretreated feedstocks using a laboratory scale extruder. AFEX™ 

pretreatment increased subsequent pellet bulk density from 453.0 kg m-3 to 650.6 kg m-3 

for corn stover from 463.2 kg m-3 to 680.1 kg m-3 for prairie cord grass, and from 433.9 

kg m-3 to 627.7 kg m-3 for switchgrass. Maximum pellet hardness of 2342.8 N, 2424.3 N, 

and 1298.6 N was recorded for AFEX™ pretreated corn stover, prairie cord grass, and 

switchgrass respectively. Glucose yields of AFEX™ corn stover pellets, prairie cord 

grass, and switchgrass pellets varied from 88.9% to 94.9%, 90.1% to 94.9%, and 87.0% 

to 92.9% respectively. Glucose and xylose yields of AFEX™ pellets were not affected by 

the extruder barrel temperature and the hammer mill screen size. The results obtained 

showed that low temperature and large particle size during the extrusion pelleting process 

can be employed for AFEX™ treated biomass without compromising sugar yields.  

 

5.2. Introduction  

Lignocellulosic biomass can be envisaged as an alternative to limited availability, 

environmentally polluting, and import reliant fossil fuels. However, challenges associated 
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with the conversion of lignocellulosic biomass into biofuels are significant. Biofuels 

production are not economically competitive with fossil fuels due to technological 

limitations, low demand, and logistical constraints (Caputo et al., 2005). Among the 

technical issues, the recalcitrant nature of lignocellulosic biomass and its low bulk 

density are two of the most significant challenge that need to be addressed before biofuels 

production can be competitive with fossil fuels.  

5.2.1. Biomass densification 

Physical limitations of lignocellulosic feedstocks include low bulk density, 

irregular shape, and high moisture content. Due to these difficulties, biomass poses 

significant challenges in the feedstock supply chain (Tumuluru et al., 2010). To 

overcome these challenges, Kaliyan and Morey (2009) suggested that biomass can be 

densified into different densified products such as pellets, briquettes, or cubes. 

Densification involves the application of mechanical compression to the biomass 

particles, thus increasing the biomass density (Mani et al., 2006). During the 

densification process, biomass particles undergo three different stages (Mani et al., 

2003). In the first stage, biomass particles rearrange to form a closely packed mass. 

During the second stage, biomass particles undergo elastic and plastic deformation as the 

applied force increases the inter-particle contact. With this increase in the applied 

pressure and temperature, lignin, one of the basic structural components of 

lignocellulosic biomass, becomes soft and acts a natural binding agent. In the third stage, 

the compression continues at high pressure till the grinds achieving the particle density. 

Biomass densification is affected by the following parameters: feedstock particle size, 

moisture content, chemical composition, preheating temperature, densification pressure 
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and temperature, retention time, and die rotation (Tumuluru et al., 2010). These factors 

can be optimized to produce high quality densified products.  

5.2.2. Biomass pretreatment 

Lignocellulosic biomass is made up of three basic structural components viz. 

cellulose, hemicelluloses, and lignin. Among these components, cellulose and 

hemicelluloses are sugar polymers and can be hydrolyzed to yield fermentable sugars. 

But the cellulose and hemicelluloses are surrounded by lignin, which acts as a barrier to 

protect the sugar polymers from degradation. Biomass pretreatment is a crucial 

preprocessing operation, which involves altering the cellulose-hemicellulose-lignin 

matrix, thus removing the barriers to degradation. Several biomass pretreatment 

technologies have been designed to improve feedstock characteristics, process conversion 

efficiency, energy density of bulky biomass, and to reduce the costs associated with 

handling, transportation, and storage (Eisentraut and Brown, 2012).   

Ammonia Fiber Expansion (AFEX™) is a thirty-year-old pretreatment method 

that involves treating biomass with liquid ammonia under mild temperature (70-200°C) 

and pressure (100-400 psi) for a specific time (Bals et al., 2010). This swell the cellulose 

fibers, which are allowed to explode when the pressure is rapidly released (Dale, 1986). 

The explosion effect results in several physical and chemical alterations in biomass 

structure. Some of the alterations include cellulose decrystallization, partial 

depolymerization of hemicellulose, cleavage of lignin-carbohydrate complex (LCC), and 

surface area increase due to structural disruption. Chundawat et al (2007) studied the 

effect of AFEX™ pretreatment on the enzymatic digestibility of corn stover. FTIR results 

confirmed the cleavage of lignin–carbohydrate complex (LCC) for AFEX™-treated 
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fractions and spectroscopy results showed the extraction of cleaved-lignin phenolic 

fragments and other extractives to the biomass surface. AFEX™ pretreatment increased 

sugar yield of different lignocellulosic biomass. Biersbach et al (2015) showed the 

significant improvement in the ethanol yields from corn stover, prairie cord grass, and 

switchgrass pretreated through AFEX™. Alizadeh et al (2005) reported a 2.5 times 

increase in ethanol yield after the switchgrass was subjected to AFEX™ pretreatment. 

Similarly, Teymouri et al (2005) reported an increase in ethanol yield of 2.3 times after 

the corn stover was pretreated through AFEX™.  

5.2.3. Regional biomass processing depots (RBPD) 

For economical and successful operation of large scale biorefineries, developing a 

reliable feedstock supply chain is crucial. A biomass supply chain may comprise several 

processing steps including harvest/collection, storage, preprocessing, and transportation. 

Carolan et al (2007) proposed a network called “Regional biomass processing depots” 

(RBPD) to address the logistical issues for the large scale biorefineries. RBPDs involves 

procuring, pretreating, and densifying biomass on a distributed scale to minimize 

transport of bulk, low density feedstocks. RBPDs densifies the feedstock prior to 

shipment to a larger, centralized biofuel production facility (Eranki and Dale, 2011).  

To make the RBPDs successful, it is imperative to understand the impacts of 

different preprocessing operations on the physical qualities and the sugar yields from the 

densified products. Rijal et al (2014) studied the impact of particle size and densification 

on AFEX™ pretreated corn stover, switchgrass, and prairie cord grass on ethanol yield. 

The results showed that densification had no adverse effects on ethanol yield for corn 

stover and switchgrass, but the yield was reduced for prairie cord grass. Hoover et al 



98 

 

(2014) studied the effect of pelleting variables on physical properties and sugar yields of 

corn stover pretreated through AFEX™. Improved durability and bulk density were 

noticed and die speed, heating, and particle size did not affect the sugar yield.  

The objective of this study was to understand the effect of AFEX™ pretreatment 

and extrusion pelleting process on the pellet physical qualities and sugar yields from corn 

stover, prairie cord grass, and switchgrass. The impacts of selected variables viz. barrel 

temperature (75, 100, and 125°C), hammer mill screen size (2, 4, and 8 mm), and 

feedstock moisture content (5, 10, and 15% wet basis) on pellet physical qualities (pellet 

bulk density and pellet hardness) and sugar yields (glucose and xylose) were examined.   

5.3. Materials and Methods 

5.3.1. Samples preparation  

The feedstocks corn stover, prairie cord grass, and switchgrass were harvested 

from local farms in Brookings, SD (2009), and were milled using three different screen 

sizes viz. 2, 4 mm (Hammer Mill, Thomas Wiley laboratory mill, Swedesboro, NJ), and 8 

mm (Speed King, Winona Attriltion mill Co, Winona MN). Samples (2 kg) of milled 

samples were sealed in ziploc bags and sent to Michigan State University (Biomass 

conversion research laboratory) for AFEX™ pretreatment. The optimum conditions 

employed for AFEX™ pretreatment of the feedstocks are given in Table 5.1. AFEX™ 

pretreated samples were returned and stored in the refrigerator at 4°C until use. Before 

pelleting, the moisture content of the untreated and pretreated samples was adjusted to 5, 

10, and 15% on a wet basis by adding a calculated quantity of water. To improve the 

quality of pellets and to attain the standards, additives can be added to the feedstocks in 
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the range of 0.5-5% (by weight) to produce quality pellets (Tabil, 1996). In this study, 

2% of corn starch (by weight) was added to the untreated samples before pelleting.  

5.3.2. Extrusion pelleting  

Pelleting was carried out using a single screw extruder (Brabender Plasti-corder 

Extruder model PL 2000, Hackensack, NJ). The barrel length to screw diameter (l/d) was 

20:1 and the compression ratio used in the extruder was 3:1. The temperature of the 

barrel and the die section of the extruder were maintained at three different levels, viz. 

75,100, and 125°C. The speed of the extruder screw was controlled by a 7.5 HP motor, 

which had the ability to vary the screw speed from 0 to 210 rpm. A constant screw speed 

of 50 rpm was maintained during the experiment and the sample feeding was done 

manually through the hopper. Compressed air was employed as a cooling agent and to 

maintain the required temperature whole through the barrel length. 200 g of moisture 

adjusted samples were fed into the hopper and pellets were collected in the die section. 

Fig.5.1 shows the single screw extruder, the pellets obtained from the untreated and 

AFEX™ pretreated prairie cord grass (b) and (c). 

5.3.3. Analytical methods  

Biomass bulk density is a key parameter in determining the economics and logical 

requirements for handling and transporting the biomass from field to the biorefineries 

(Lam et al., 2007). Bulk density of the pelleted and unpelleted corn stover, prairie cord 

grass, and switchgrass samples were determined using a hopper and stand equipment 

(151, Seedburo equipment Co., Des Plaines, IL). The mass of samples collected was 

divided by the known cylinder volume to determine the bulk density of the samples. Gas 
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pycnometer (Micrometritics multivolume 1305, Norcross, GA) was employed to 

determine the particle density of untreated and AFEX™ pretreated samples.  

Texture analyzer (TA HD plus, Texture Technologies Corp, NY) shown in 

Fig.5.2 was used to determine the hardness of untreated and AFEX™ pretreated pellets. 

Force vs. displacement graph was depicted by the exponent software (Version 6.0, Stable 

Microsystems Ltd, UK) and the maximum force required to break the sample was taken 

from the graph. Untreated, AFEX™ pretreated, untreated pelleted, and AFEX™ 

pretreated pelleted samples were subjected to enzymatic hydrolysis using NREL LAP 

009 procedure (Selig et al., 2008).  The amount of cellulase enzyme (NS50013 activity 

70 FPU g-1) was maintained at 15 FPU g-1 DM, β-glucosidase (NS50010 activity 250 

CBU g-1) at 30 CBUg-1 DM, and multienzyme (NS50012 activity 100 FBG g-1) at 30 

FBG g-1. The contents were incubated at 50 ±1°C in an incubated bench top orbital 

shaker (Thermo forma scientific 420, Waltham, MA) at 150 rpm of for a period of 72 

hours. A representative sample of 1 mL was subjected to sugar analysis in HPLC 

(Agilent Technologies, Santa Clara, CA; Bio-Rad Aminex 87H column, Hercules, CA) 

using a mobile phase of 0.005 M sulfuric acid at 0.6 ml min-1 flow rate at a column 

temperature of 65°C. Sugar yields were calculated based on Seling et al (2008) 

procedure, considering the chemical composition of untreated samples and the sugar 

concentrations from HPLC analysis.  

5.3.4. Statistical analysis  

Statistical analysis was executed using SAS statistical software (SAS 9.3, SAS 

Institute Inc. Cary, NC) at 5% level of significance. One-way analysis of variance 

(ANOVA) was performed to determine the significant difference between the means of 
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different properties. PROC GLM procedure in SAS software was employed to determine 

the least significant difference (LSD) values at p < 0.05. Experimental design was made 

using Design-Expert software (Version 8.0.7.1, Stat-Ease, Minneapolis, MN). Second-

order polynomial equation (Eq 5.1) was developed to evaluate the impacts of barrel 

temperature (X1 - 75, 100, 125°C), screen size (X2 - 2, 4, 8 mm), and moisture content 

(X3 - 5, 10, 15% wb) on glucose and xylose yields. 

Y=α0+α1X1+α2X2+α3X3+α11X1
2+α22X2

2+α33X3
2+α12X1X2+α13X1X3+α23X2X3 ----- Eq 

(5.1) 

Where, Y – sugar yields (glucose and xylose); X1, X2, and X3 are selected 

independent variables; α0 to α33 – coefficients to be estimated and they represent the 

linear, quadratic and interaction terms.   

5.4. Results and Discussion 

5.4.1. Bulk and particle densities of feedstocks 

 Table 5.2 shows the bulk and particle density of untreated and AFEX™ pretreated 

corn stover, prairie cord grass, and switchgrass samples. The bulk density of the samples 

decreased as the particle size increased, since larger particles result more pore volume 

(Mani et al., 2004). The highest bulk density of 234.3 kg m-3 (2 mm screen size, 15% 

moisture content) was observed in AFEX™ pretreated prairie cord grass, while untreated 

prairie cord grass (2 mm screen size, 15% moisture content) resulted in a density of 201.3 

kg m-3. Increasing the moisture content increased the bulk density of all the samples.  

Similar to the bulk density, the highest particle densities were 1447.9 kg m-3 (4 mm 

screen size, 5% moisture content) in AFEX™ pretreated prairie cord grass and 1070 kg 

m-3 in untreated prairie cord grass (2 mm screen size, 5% moisture content). Particle 
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density is a good indicator of pelletability (Oginni, 2014) and higher values allow for 

production of high quality pellets at lower energy consumption (McBain, 1966). Smaller 

particle size results in reduced air pores and increased particle density. As moisture 

content of the untreated and AFEX™ pretreated samples was increased, the particle 

density decreased due to faster volumetric expansion of particles (McMullen et al., 2005; 

Bernhart and Fasina, 2009). Sundaram et al (2015) observed a similar decrease in particle 

density, when moisture content of untreated and AFEX™ pretreated corn stover, prairie 

cord grass, and switchgrass samples was varied from 8% to 20%.   

A significant increase in bulk and particle density of corn stover, prairie cord 

grass, and switchgrass samples was noted after the samples were pretreated through 

AFEX™. This increase highlights the impact of AFEX™ pretreatment on feedstocks 

properties. AFEX™ pretreatment impacts physico-chemical alterations in the ultra and 

macro structure of lignocellulosic biomass (Dale, 1986). Hoover et al (2014) studied the 

AFEX™ pretreatment of corn stover and concluded that the corn stover become more 

brittle and friable after pretreatment. This could be the reason for increased bulk and 

particle density of AFEX™ pretreated samples. ANOVA results for the factors (hammer 

mill screen size and feedstock moisture content) affecting the bulk and particle density of 

the samples are given in Table 5.3. The statistical analysis confirmed that moisture 

content and feedstock particle size (hammer mill screen size) had significant impact (p < 

0.05) on the bulk and particle density of the untreated and AFEX™ pretreated samples. 
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5.4.2. Effect of barrel temperature, moisture content, and screen size on pellet bulk 

density  

Pellet bulk density is one of the important properties which directly impacts costs 

involved in feedstock storage and transportation (Tarasov et al., 2013). Pellet bulk 

density of untreated and AFEX™ pretreated corn stover, prairie cord grass, and 

switchgrass pellets produced under different conditions are provided in Table 5.4. Pellets 

produced from samples pretreated through AFEX™ technology had higher bulk density 

than the untreated samples. Pellet bulk density of untreated corn stover, prairie cord 

grass, and switchgrass were 453.0, 463.2, and 433.9 kg m-3, respectively, while the 

densities were increased to 650.6, 680.1, and 627.7 kg m-3
, respectively when the 

feedstocks were first subjected to AFEX™ pretreatment. One of the important impacts of 

AFEX™ pretreatment is the extraction of cleaved lignin phenolic fragments and other 

extractives to the biomass surface (Chundawat et al., 2007). This increased availability of 

lignin on the surface of biomass acts as a binding agent during the pelletization process, 

resulting in a highly compacted product. Sundaram et al (2015) studied the compaction 

behavior of AFEX™ pretreated corn stover, prairie cord grass, and switchgrass through 

compression experiments. Based on the yield strength from the Kawakita and Luddde 

model, the authors concluded that AFEX™ pretreatment made the biomass samples 

easier to compress compared to the untreated samples.   

The effects of selected variables (barrel temperature, screen size, and moisture 

content) on pellet bulk density of untreated and AFEX™ samples were statistically 

analyzed, and Table 5.5 shows the ANOVA results. The moisture content of the 

feedstock had a significant effect on pellet bulk density. Higher moisture content 
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increased the bulk density of pellets produced from AFEX™ pretreated and untreated 

samples. Mani et al (2006) found that water present in the feedstock acts as a binder and 

as a lubrication agent which aids in increasing the bonding between particles by 

promoting van der Waals forces and by increasing the true area of contact between the 

particles. Feedstock particle size had an inverse effect on the pellet bulk density of 

untreated samples (p<0.05), but was not a significant factor for the AFEX™ pretreated 

samples. During the extrusion process, the feedstock is subjected to heating, mixing, and 

shearing, resulting in physical and chemical alterations to the feedstock (Lin et al., 2012). 

The brittle and friable AFEX™ pretreated feedstocks (Hoover et al., 2014) when 

subjected to extrusion could have experienced high shear between the particles and 

between the particles and barrel. These actions could have further reduced the particle 

size of feedstock milled through larger screens thus making the screen size an 

insignificant factor.  

Similar to screen size, extrusion temperature had a direct and significant effect on 

the pellet bulk density of untreated feedstocks. This outcome can be attributed to the 

effect of temperature on the binding agent. Lee et al (2000) observed that gelatinization 

of corn starch increased as barrel temperature was increased in a twin screw extruder. 

Kaliyan and Morey (2009) stated mechanical shearing of feedstocks during densification 

improves gelatinization of starch. In this study, corn starch added as a binding agent and 

was likely subjected to gelatinization, thus acting as a binding agent in sticking the 

particles together. Barrel temperature did not significant affect pellet bulk density of 

AFEX™ pretreated corn stover, prairie cord grass, and switchgrass pellets. Hoover et al 

(2014) also concluded that preheating had no significant effect on the density and 
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durability of the pellets made from AFEX™ pretreated corn stover. The increased 

availability of lignin after the AFEX™ pretreatment, when subjected to thermal softening 

during the extrusion process could be the responsible for improved binding to produced 

compacted pellets. AFEX™ pellets with higher bulk density can have benefits during the 

logistics, since fewer trips are necessary to transport the same amount of untreated 

feedstocks (Hoover et al., 2014).  

5.4.3. Effect of barrel temperature, moisture content, and screen size on pellet 

hardness  

The pellet hardness or compressive resistance test is useful in assessing the pellets 

ability to withstand crushing loads by the weight of pellets overhead, as would occur 

during storage, handling, and transportation. Table 5.6 shows the hardness values of 

pellets produced from untreated versus AFEX™ pretreated corn stover, prairie cord 

grass, and switchgrass under different conditions. Lignin is a natural binding agent that 

plays a vital role in densifying biomass (Kaliyan and Morey, 2010). In untreated 

feedstocks the presence of lignin, in its natural form, resulted in extruded pellets with 

maximum hardness of 238.5 N, 267.5 N, 162.8 N for corn stover, prairie cord grass, and 

switchgrass, respectively. In comparison, the hardness of the pellets produced from the 

AFEX™ pretreated samples were significantly higher. This increase in hardness can be 

attributed to the disintegration of lignocellulosic structure of biomass after AFEX™ 

pretreatment, especially in terms of modifications to lignin structure. Lignin 

modifications include cleaving of the lignin-carbohydrate complex and lignin C-O-C 

bonds, which results in solubilization of lignin and redepositing on the surface of the 

biomass (Dale, 1986). This increased surface availability of lignin after AFEX™ 



106 

 

pretreatment contributed to the better binding of particles during the pelleting process, 

thus increasing pellet hardness by an order of magnitude.  

Barrel temperature had a significant positive correlation to pellet hardness in 

untreated feedstocks. This can be attributed to the effects of temperature on the binding 

agent added to the feedstock, and to the thermal softening of lignin during the extrusion 

pelleting. Wood (1987) studied the effect of raw and pre-gelatinized starch on the pellet 

hardness and concluded that pellets produced from pre-gelatinized starch had higher 

hardness. Starch granules could have been subjected to gelatinization (Cavalcanti, 2004) 

when the untreated feedstocks were subjected to shear friction during the extrusion 

pelleting. Maximum hardness of 2424.3 N was recorded for AFEX™ pretreated prairie 

cord grass pellets (4 mm screen size, 15% moisture content, and 125°C barrel 

temperature). AFEX™ pretreated corn stover achieved a maximum hardness of 2342.8 N 

(2 mm screen size, 15% moisture content, and 125°C barrel temperature), while AFEX™ 

pretreated switchgrass produced a maximum hardness of 1298.6 N (4 mm screen size, 

10% moisture content, and 75°C barrel temperature). Statistical analysis showed that 

extrusion barrel temperature was not a significant factor (p>0.05) in affecting pellet 

hardness of AFEX™ pretreated samples. This result indicates that good quality AFEX™ 

pellets can be produced at a low temperature of 75°C using extrusion pelleting. Karki et 

al (2015) reported the high quality pellets produced from AFEX™ pretreated corn stover, 

prairie cord grass, and switchgrass using an alternative, low temperature (ambient to 

60°C) densification system. Producing quality pellets at low temperature will have 

significant impact in reducing the pellet production cost.  
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Feedstock moisture content was directly correlated with pellet hardness for both 

untreated and AFEX™ pretreated feedstock samples (p < 0.0001) as shown in Table 5.7. 

Water acts as a binding and lubricating agent during the pelleting process. Moisture 

content of the feedstocks is a crucial factor in extruder machines to produce harder 

pellets, since water acts a binding and lubricating agent (Grover and Mishra, 1996). 

Lehtikangas (2001) found that moisture reduce the lignin softening temperature by 

plasticizing the molecular chains. For the untreated feedstocks, the combination of starch 

gelatinization (Kaliyan and Morey, 2009) and lignin softening could have increased the 

pellet hardness when the moisture content was increased.  

Screen size also had a significant influence on pellet hardness (p < 0.0001) of 

untreated and AFEX™ pretreated samples. For both untreated and AFEX™ pretreated 

samples, maximum pellet hardness was obtained using 2 mm and 4 mm screen size 

samples. A significant reduction in hardness was observed when the screen size was 

increased to 8 mm. Finely ground materials will produce highly compacted products due 

to filling of voids by the way of particle rearrangement when the applied pressure is 

increased (Jiang et al., 2014). Moreover, smaller particles will have a better surface area 

available for binding during the densification process. Payne (1978) stated that medium 

or fine ground materials will have greater surface area for moisture addition, which 

increases the starch gelatinization promoting better binding of particles during the 

pelleting process.  
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5.4.4. Effect of barrel temperature, moisture content, and screen size on sugar 

recovery 

The chemical composition of untreated corn stover, prairie cord grass, and 

switchgrass are given in Table 5.8. Glucose and xylose recovery from untreated corn 

stover, prairie cord grass, and switchgrass pelleted under different conditions are shown 

in Fig.5.3. For the untreated feedstocks, the glucose yields were 56.3 to 68.6% for corn 

stover pellets, 42.6% to 52.0% for prairie cord grass pellets, and 38.7% to 58.1% for the 

switchgrass pellets. The glucose yields varied from 88.9% to 94.9% for the pellets 

produced from AFEX™ pretreated corn stover and from 90.1% to 94.9% for the pellets 

produced from AFEX™ pretreated prairie cord grass. For pellets produced from AFEX™ 

pretreated switchgrass the variation ranged from 87.0% to 92.9%. Glucose yields from 

the pellets produced from AFEX™ corn stover, AFEX™ prairie cord grass, and AFEX™ 

switchgrass were 1.6 times, 2.1 times, and 2.3 times higher respectively, compared to 

pellets produced from untreated samples. Increases in xylose yields from the AFEX™ 

corn stover, prairie cord grass, switchgrass pellets were 1.6, 1.4, and 2.0 times compared 

to the pellets produced from untreated samples. The increase in glucose and xylose 

recovery can be credited to the influence of AFEX™ pretreatment. AFEX™ pretreatment 

produce physical and chemical structure alterations in the ultra and macro structure of 

lignocellulosic biomass (Dale, 1986). The alterations include cellulose decrystallization 

(Gollapalli et al., 2002), hemicellulose depolymerization, cleaving of lignin-carbohydrate 

linkages, cleaving of lignin C-O-C bonds, and increased surface area due to structural 

disruption (Chundawat et al., 2011). These alterations could have increased enzyme 

accessibility to cellulose and hemicellulose, thus increasing sugar yields.  
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Table 5.9 shows the p-value and model equations for the glucose and xylose 

yields from the pellets produced from untreated corn stover, prairie cord grass, and 

switchgrass. The model values (p-value) for the pellets produced from the untreated corn 

stover, prairie cord grass, and switchgrass were significant (p<0.05). For the AFEX™ 

pretreated pellets the selected variables did not affect the sugar yields (p>0.05). 

Feedstock particle size (hammer mill screen size) did not significantly (p > 0.05) affect 

glucose and xylose yields of the pellets produced from AFEX™ pretreated corn stover, 

prairie cord grass, and switchgrass. This could be due to the friable and brittle nature of 

AFEX™ pretreated biomass (Hoover et al., 2014) undergoing further size reduction 

during the extrusion pelleting process. This outcome suggests that the large screen size 

AFEX™ pretreated samples can be employed, without compromising the sugar yields. 

This will reduce biofuel production costs (Kaliyan and Morey, 2009). For the pellets 

produced from untreated samples, hammer mill screen size did not significantly affect the 

glucose and xylose yields (p < 0.05). Maximum glucose recovery of 68.6 % (4 mm 

screen size, 15% moisture content, 125°C barrel temperature) was obtained from the 

untreated corn stover pellets, whereas for untreated prairie cord grass pellets the 

maximum recovery was 52.9 % (4 mm screen size, 125°C). Glucose recovery was much 

lower when the screen size was increased 8 mm for untreated corn stover and prairie cord 

grass pellets. For the untreated switchgrass pellets, the maximum sugar recovery of 

58.1% was obtained from the pellets produced from 2 mm screen size particle with 10% 

moisture content extruded at 125°C.  

Moisture content (5% and 15%) did not affect the glucose and xylose yields of 

pellets produced from untreated and AFEX™ pretreated samples (p>0.05). Karunanithy 
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and Muthukumarappan (2010) observed that glucose recovery from prairie cord grass and 

switchgrass decreased, when the moisture content was increased beyond 15%. The 

authors attributed this decrease in glucose recovery to the less resistance offered by the 

high moisture samples during the extrusion.  

Barrel temperature did not have a significant effect on glucose and xylose 

recoveries of untreated samples. Maximum glucose recovery of untreated corn stover 

(68.6%), prairie cord grass (52.9%), and switchgrass (58.1%) was obtained at 125°C 

barrel temperature. Glucose recovery dropped when these samples were pelleted at lower 

temperatures. Maximum glucose recovery at higher temperature suggests the cell wall 

disruption during extrusion pelleting. Karunanithy and Muthukumarappan (2009, 2010) 

studied the potential of extrusion as a pretreatment method to enhance the enzymatic 

digestibility of corn stover, prairie cord grass, and switchgrass. The studies showed 

maximum sugar recoveries were obtained at a barrel temperature of 150°C for corn 

stover and switchgrass. Barrel temperature had no significant effect on the sugar recovery 

of the pellets produced from AFEX™ pretreated samples. This results indicate that 

pellets can be produced from AFEX™ pretreated samples at very low temperature of 75° 

with maximum sugar yields.  

Extrusion pelleting had no significant impact on the sugar recovery of pellets 

produced from the AFEX™ samples compared to the unpelletized AFEX™ pretreated 

samples. Bals et al (2014) studied the downstream processing of pellets produced from 

AFEX™ pretreated corn stover and noted that AFEX™ pellets were easily mixable, and 

that glucose and xylose yields for pelletized and non-pelletized AFEX™ corn stover were 

equal. Rijal et al (2014) also suggested that the subsequent grinding of densified products 
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was not necessary, as ethanol yields were statistically similar for the AFEX™ PAKs and 

milled AFEX™ PAKs produced from AFEX™ pretreated corn stover, prairie cord grass, 

and switchgrass. 

5.5. Conclusions 

The current work examined the impacts of feedstock moisture content, hammer 

mill screen size, and extruder barrel temperature on pellet bulk density, pellet hardness, 

and sugar yields from untreated and AFEX™ pretreated corn stover, prairie cord grass, 

and switchgrass. Following are the conclusions obtained from the results:  

•  AFEX™ pretreatment increased the bulk and particle densities of the corn stover, 

prairie cord grass, and switchgrass. Moisture content and screen size had 

significant impacts on the bulk and particle density of the AFEX™ pretreated 

samples. 

•  Pellet bulk density of the corn stover, prairie cord grass, and switchgrass 

increased to 650.6 kg m-3
,
 680.1 kg m-3, and 627.7 kg m-3

 after pretreatment by the 

AFEX™ technique. Barrel temperature and screen size were not significant 

factors, whereas moisture content was significantly affecting bulk density of the 

compacted AFEX™ pellets.  

•  Pellets produced from the AFEX™ pretreated samples were more than 10 times 

harder than pellets produced from the untreated samples. Moisture content was a 

significant factor in producing the harder pellets from all AFEX™ pretreated 

samples. Harder pellets were produced from the AFEX™ pretreated samples at a 

selected low barrel temperature of 75°C.  
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•  Reducing the hammer mill screen size from 8 mm to 2 mm and increasing the 

temperature from 75°C to 125°C did not increase the sugar yields from AFEX™ 

pretreated pellets. Hence, producing AFEX™ pellets using low barrel temperature 

(75°C) and large screen size (8 mm) could effectively reduce the cost of pellets 

production without compromising sugar yields.  
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Table 5.1. AFEX™ pretreatment conditions employed for different biomass* 

Conditions 

Corn 

stover 

Prairie cord 

grass 

Switchgrass 

Ammonia loading, NH3 to dry biomass 

loading (w/w) 

1:1 1:2 1:2 

Moisture content (db %) 60 40 50 

Pretreatment soaking time (min) 15 30 30 

*Pretreatment was carried out at 100°C  
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Table 5.2. Bulk and particle densities of untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

Hammer mill 

screen size 

(mm) 

Moisture 

content (%) 

wb 

Bulk density (kg m-3)* 

Untreated corn 

stover 

AFEX™ corn 

stover 

Untreated prairie 

cord grass 

AFEX™ prairie 

cord grass 

Untreated 

switchgrass 
AFEX™ switchgrass 

2 

5 104.5 ± 1.524 196.8 ± 2.96 186.8 ± 4.77 222.6 ± 4.13 131.6 ± 3.620,21 169.8 ± 4.09 

10 116.8 ± 2.623 199.9 ± 5.05,6 190.4 ± 2.67 229.0 ± 3.72 147.5 ± 1.815 176.2 ± 3.48 

15 121.1 ± 2.622 207.3 ± 2.94 201.3 ± 3.25 234.3 ± 2.91 149.8 ± 3.015 179.9 ± 3.98 

4 

5 95.4  ± 2.525,26 165.0 ± 5.910 154.4 ± 3.714 156.7 ± 2.813,14 88.1 ± 2.527,28 155.5 ± 2.513,14 

10 98.1 ± 2.325,26 179.9 ± 4.48 158.2 ± 4.512,13 162.1 ± 2.710,11 95.6 ± 3.225,26 160.9 ± 3.211,12 

15 103.5 ± 2.624 189.9 ± 5.27 164.1 ± 1.310 169.2 ± 4.79 103.5 ± 2.624 170.4 ± 3.99 

8 

5 76.6 ± 6.730,31 132.2 ± 2.120,21 90.1  ± 1.527 129.4 ± 0.721 74.2 ± 2.631 122.0 ± 3.622 

10 81.7 ± 3.229 136.4 ± 1.518,19 95.2 ± 3.226 138.2 ± 3.317,18 75.7 ± 2.031 133.3 ± 2.719,20 

15 85.5 ± 3.528 141.0 ± 3.716-18 99.1 ± 2.825 143.3 ± 2.816 80.3 ± 1.929,30 140.1 ± 1.316,17 

Hammer mill 

screen size 

(mm) 

Moisture 

content (%) 

wb 

Particle density (kg m-3)* 

Untreated corn 

stover 

AFEX™ corn 

stover 

Untreated prairie 

cord grass 

AFEX™ prairie 

cord grass 

Untreated 

switchgrass 
AFEX™ switchgrass 

2 

5 981.6 ± 13.018,19 1348.3 ± 12.96-9 1086.5 ± 9.816 1438.3 ± 5.61,2 922.0 ± 7.324,25 1367.6 ± 9.55 

10 965.6 ± 6.820-22 1340.0 ± 8.78-12 1075.4 ± 4.216,17 1430.3 ± 10.82 913.2 ± 10.025 1356.1 ± 5.35,6 

15 948.6 ± 2.623 1328.1 ± 16.912-15 1070.0 ± 4.417 1426.9 ± 11.72 910.8 ± 4.525 1355.1 ± 4.26,7 

4 

5 957.5 ± 10.321-23 1340.2 ± 12.88-12 988.2 ± 3.318 1447.9 ± 6.81 894.8 ± 14.326 1353.1 ± 12.76,7 

10 949.4 ± 9.123 1330.3 ± 6.611-14 973.6 ± 8.919,20 1446.5 ± 11.41 888.2 ± 12.926,27 1349.7 ± 5.56-8 

15 930.2 ± 8.624 1317.28 ± 9.715 981.1 ± 9.118,19 1430.0 ± 8.42 877.5 ± 5.227 1343.6 ± 6.97-10. 

8 

5 853.4 ± 13.528 1325.1 ± 14.913-15 975.8 ± 11.919,20 1402.3 ± 6.33 779.4 ± 12.229 1340.8 ± 13.28-11 

10 846.7 ± 11.528 1319.9 ± 11.914,15 968.0 ± 6.520,21 1389.3 ± 5.24 770.3 ± 11.229-30 1332.8 ± 12.210-13 

15 844.6 ± 7.028 1316.7 ± 15.115 954.1 ± 9.822,23 1390.7 ± 4.33,4 765.0 ± 12.630 1336.7 ± 4.59-13 

*Means with same superscripts between columns for different properties are not significantly different (p<0.05) 
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Table 5.3. ANOVA results for the factors affecting bulk and particle density of 

untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

Source DF Type III SS Mean Square F Value Pr > F 

Bulk density 

Feedstock (FS) 5 301906.1 60381.2 5305.8 <.0001 

Screen size (SS) 2 196886.8 98443.4 8650.4 <.0001 

FS*SS 10 81254.2 8125.4 714.0 <.0001 

Moisture content (MC) 2 9008.6 4504.3 395.8 <.0001 

FS*MC 10 164.4 16.4 1.4 0.1604 

SS*MC 4 108.9 27.2 2.3 0.0509 

FS*SS*MC 20 1254.8 62.7 5.5 <.0001 

Particle density 

Feedstock (FS) 5 8979311.7 1795862.3 122.5 <.0001 

Screen size (SS) 2 814977.9 407488.9 27.8 <.0001 

FS*SS 10 112924.3 11292.4 0.7 0.6570 

Moisture content (MC) 2 22224.8 11112.4 0.7 0.0497 

FS*MC 10 721297.1 72129.7 4.9 <.0001 

SS*MC 4 155690.8 38922.7 2.6 0.0339 

FS*SS*MC 20 180538.9 9026.9 0.6 0.8988 
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Table 5.4. Pellet bulk density untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

Screen 

size 

(mm) 

Barrel 

temperature 

(°C) 

Moisture 

content (% 

wb) 

Corn stover Prairie cord grass Switchgrass 

AFEX™ Untreated AFEX™ Untreated AFEX™ Untreated 

2 

75 5 622.0 ± 2.726-33 454.7 ± 10.053-67 641.3 ± 9.413-21 466.0 ± 5.447-54 614.0 ± 7.531-33 442.2 ± 3.667-70 

75 10 629.7 ± 5.221-29 453.0 ± 7.155-67 668.5 ± 16.81-6 475.0 ± 9.946-48 618.7 ± 10.328-33 449.0 ± 5.660-69 

75 15 631.2 ± 12.3 460.8 ± 11.950-60 680.1 ± 7.81 463.2 ± 3.947-57 620.2 ± 4.227-33 450.9 ± 5.057-68 

100 5 627.8 ± 11.822-30 460.7 ± 3.950-60 656.2 ± 10.16-11 490.7 ± 10.043-45 619.4 ± 4.227-33 448.3 ± 4.961-69 

100 10 638.1 ± 3.815-23 461.5 ± 4.449-58 663.0 ± 14.62-6 482.8 ± 7.645,46 621.4 ± 2.026-33 464.5 ± 6.247-56 

100 15 643.9 ± 8.412-20 460.4 ± 2.250-60 676.0 ± 7.31,2 497.2 ± 3.641-44 625.2 ± 5.424-31 473.7 ± 2.846-49 

125 5 625.3 ± 7.623-31 463.8 ± 3.747-57 653.0 ± 6.97-13 513.6 ± 8.237-40 618.1 ± 4.729-33 459.1 ± 9.751-62 

125 10 643.2 ± 5.213-20 467.2 ± 8.447-53 659.9 ± 9.94-9 503.0 ± 5.739-43 622.0 ± 1.126-33 472.7 ± 3.946-50 

125 15 646.0 ± 11.710-18 469.5 ± 7.147-51 642.6 ± 4.613-20 497.9 ± 4.641-43 627.7 ± 5.922-30 475.1 ± 1.246,47 

4 

75 5 633.9 ± 13.518-26 455.2 ± 5.852-66 640.1 ± 3.914-22 482.8 ± 12.645,46 615.2 ± 0.330-33 458.2 ± 6.051-63 

75 10 636.5 ± 4.617-25 458.4 ±4.651-62  677.7 ± 3.71 493.2 ± 8.642-45 612.7 ± 4.831-33 466.5 ± 4.547-54 

75 15 638.0 ± 6.015-24 458.6 ± 3.051-62 673.4 ± 6.31-3 484.4 ± 4.444-46 619.3 ± 1.727-33 456.5 ± 4.852-64 

100 5 636.9 ± 4.816-24 459.6 ± 2.751-61 651.1 ± 7.17-14 504.4 ± 9.539-42 610.5 ± 4.832,33 454.8 ± 7.152-67 

100 10 644.6 ± 12.712-19  465.9 ±5.747-54 669.5 ± 9.51-5 512.7 ± 5.737-40 615.6 ± 8.730-33 466.9 ± 4.547-54 

100 15 650.6 ± 16.97-15 462.2 ±4.648-58 671.1 ± 6.51-5 482.8 ± 8.545,46 624.3 ± 9.225-31 467.7 ± 3.147-52 

125 5 641.6 ± 8.013-21 465.0 ± 2.947-56 659.1 ± 8.64-10 520.3 ± 7.535-38 610.3 ± 3.733 452.6 ± 1.956-67 

125 10 649.7 ±14.38-15 465.6 ± 4.347-55 678.7 ± 5.91 508.3 ± 6.438-41 618.2 ± 9.929-33 458.1 ± 8.951-64 

125 15 645.5 ± 9.811-18 464.8 ±2.847-56 662.3 ± 12.73-8 515.6 ± 9.836-39 619.1 ± 3.826-33 464.4 ± 5.547-56 

8 

75 5 633.9 ± 8.018-26 449.3 ±3.858-69 631.9 ± 13.220-28 502.5 ± 9.940-43 612.7 ± 4.331-33 436.9 ± 1.469,70 

75 10 647.3 ± 10.49-17 455.7 ±9.352-65 661.3 ± 9.83-8 497.2 ± 11.241-44 620.9 ± 10.427-33 445.3 ± 9.863-70 

75 15 649.7 ± 15.28-16 454.4 ± 1.253-67 677.5 ± 10.01 498.1 ± 4.941-43 623.3 ± 15.226-32 447.1 ± 3.661-69 

100 5 636.3 ±9.017-24 448.0 ± 0.361-69 645.0 ± 12.412-18 524.0 ± 8.534-37 612.4 ± 5.431-33 438.1 ± 0.368-70 

100 10 646.4 ±8.210-17 452.4 ± 1.456-67 678.9 ± 5.81 532.3 ± 12.234,35 617.4 ± 5.629-33 447.5 ± 7.861-69 

100 15 650.6 ± 16.97-15 454.1 ±5.554-67 672.5 ± 4.11-4 522.1 ± 8.535-37 619.1 ± 9.827-33 443.1 ± 6.265-70 

125 5 639.0 ±14.214-22 445.3 ± 4.764-70 646.0 ± 12.410-18 524.2 ± 7.034-37 610.5 ± 12.732,33 433.9 ± 3.370 
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125 10 647.1 ± 12.89-17 446.5 ±1.762-70 663.2 ± 4.92-6 527.9 ± 14.234-36 618.2 ± 9.929-33 434.1 ± 3.770 

125 15 643.0 ± 7.813-20 449.7 ± 5.558-69 658.3 ± 8.55-11 535.2 ± 9.034 614.0 ± 8.131-33 442.5 ± 9.966-70 
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Table 5.5.ANOVA table for factors affecting pellet bulk density of the untreated and 

AFEX™ pellets 

Source DF Type III SS Mean Square F Value Pr > F 

Feedstock (FS) 2 55098.0 27549.0 331.56 <.0001 

Screen size (SS) 2 342.4 171.2 2.06 0.1311 

FS*SS 3 1805.6 601.8 7.24 0.0001 

Temperature (T) 2 588.2 294.1 3.54 0.0716 

FS*T 4 711.7 177.9 2.14 0.0787 

SS*T 4 269.0 67.2 0.81 0.5210 

FS*SS*T 6 1026.1 171.0 2.06 0.0617 

Moisture content (MC) 2 8196.3 4098.1 49.32 <.0001 

FS*MC 4 1846.1 461.5 5.55 0.0003 

SS*MC 4 273.0 68.2 0.82 0.5134 

FS*SS*MC 6 609.1 101.5 1.22 0.2984 

T*MC 4 1055.0 263.7 3.17 0.0156 

FS*T*MC 8 2107.9 263.4 3.17 0.0024 

SS*T*MC 8 333.5 41.6 0.50 0.8534 

FS*SS*T*MC 12 731.7 60.9 0.73 0.7165 

 



119 

 

Table 5.6. Pellet hardness of untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass 

Screen 

size 

(mm) 

Barrel 

temperature 

(°C) 

Moisture 

content 

(% wb) 

Corn stover Prairie cord grass Switchgrass 

AFEX™ Untreated AFEX™ Untreated AFEX™ Untreated 

2 

75 5 1442.9 ± 71.626-28 132.5 ± 23.751-56 1367.3 ± 62.328-31 168.3 ± 52.144-54 1178.3 ± 43.136-38 117.4 ± 9.952-56 

75 10 2047.2 ± 82.69,10 158.2 ± 48.245-55 1487.9 ± 38.623-26 212.4 ± 40.442-50 1352.0 ± 41.430,31 130.9  ± 23.251-56 

75 15 2303.8 ± 85.24,5 157.4 ± 15.345-55 1455.0 ± 86.325-27 225.8 ± 18.542-45 1273.2 ± 29.432-35 138.5  ± 16.850-56 

100 5 1628.6 ± 24.718-20 135.4 ± 19.751-56 1856.1 ± 54.413-16 222.5 ± 15.542-45 1214.4 ± 101.334-37 127.8  ± 20.051-56 

100 10 2102.2 ± 27.68,9 157.3 ± 28.145-55 1854.0 ± 20.213-16 248.6 ± 24.242,43 1253.9 ± 65.433-36 147.5  ± 14.646-56 

100 15 2134.5 ± 71.27,8 198.5 ± 25.242-51 1870.3 ± 46.912-15 238.5 ± 11.242-44 1247.9 ± 53.433-36 154.5  ± 12.445-55 

125 5 1539.4 ± 29.922-24 184.3 ± 30.843-53 1944.9 ± 48.611,12 218.5 ± 54.842-47 1158.6 ± 47.837-39 124.3  ± 17.651-56 

125 10 2004.8 ± 39.410,11 214.8 ± 12.442-49 2028.0 ± 88.69,10 267.5 ± 38.442 1298.5 ± 84.331-33 143.5  ± 28.547-56 

125 15 2342.8 ± 53.93,4 238.5 ± 19.442-44 1367.0 ± 75.129-31 249.5 ± 56.342,43 1265.8 ± 53.732-35 162.8  ± 11.844-55 

4 

75 5 1484.3 ± 86.323-26 125.6 ± 22.851-56 1388.0 ± 85.227-30 158.3 ± 27.845-55 1106.4 ± 78.338-40 104.5  ± 22.354-56 

75 10 1689.3 ± 78.318 137.5 ± 34.150-56 1580.0 ± 102.520-22 212.4 ± 40.442-50 1298.6 ± 81.431-33 114.8  ± 10.252-56 

75 15 2014.7 ± 75.210,11 145.3 ± 18.447-56 2202.0 ± 67.26,7 184.1 ± 24.643-53 1293.5 ± 64.131-33 130.4  ± 7.151-56 

100 5 1527.9 ± 62.322-25 126.4 ± 35.151-56 2405.0 ± 62.31-3 198.7 ± 12.542-51 1147.7 ± 54.837-39 120.8  ± 16.552-56 

100 10 1798.9 ± 52.115-17 147.3 ± 15.146-56 2389.0 ± 85.22,3 198.5 ± 21.642-51 1189.3 ± 91.536,37 140.6  ± 17.349-56 

100 15 2247.1 ± 28.25,6 160.4 ± 17.545-55 2474.2 ± 18.31 218.2 ± 13.542-47 1268.1 ± 38.432-35 154.1  ± 11.445-55 

125 5 1547.6 ± 33.422,23 134.9 ± 24.851-56 2153.2 ± 61.67,8 214.8 ± 17.342-49 1198.3 ± 53.835-37 120.3  ± 21.252-56 

125 10 1847.2 ± 43.213-17 182.3 ± 18.743-53 2342.2 ± 84.73,4 237.6 ± 12.542-44 1275.3 ± 51.732-34 142.6  ± 16.348-56 

125 15 2147.4 ± 44.37,8 190.4 ± 28.643-51 2424.3 ± 67.81,2 227.9 ± 17.442-45 1212.1 ± 29.734-37 157.6  ± 15.945-55 

8 

75 5 1385.5 ± 64.827-30 73.6 ± 16.856 1429.5 ± 57.126-29 98.7 ± 18.354-56 988.7 ± 59.841 98.3  ± 28.254-56 

75 10 1589.4 ± 54.719-22 99.7 ± 34.254-56 1526.5 ± 26.322-25 125.4 ± 16.551-56 1302.7 ± 34.131-33 114.5  ± 8.252-56 

75 15 1625.8 ± 25.918-21 89.3 ± 29.555,56 1905.6 ± 71.212,13 118.8 ± 10.552-56 1253.2 ± 54.833-36 129.4  ± 15.751-56 

100 5 1338.3 ± 48.730-32 115.8 ± 23.452-56 1467.0 ± 49.624-26 135.8 ± 14.351-56 1159.3 ± 81.037-39 110.5  ± 20.453-56 

100 10 1789.4 ± 67.216,17 139.4 ± 12.749-56 1663.5 ± 75.118,19 157.8 ± 18.545-55 1058.1 ± 65.140,41 125.4  ± 12.951-56 

100 15 1772.4 ± 61.817 129.5 ± 24.851-56 1877.4 ± 17.212-14 138.7 ± 24.250-56 1165.9 ± 73.437,38 124.9  ± 9.951-56 

125 5 1442.7 ± 62.426-29 105.2 ± 22.554-56 1368.5 ± 70.328-31 134.3 ± 27.951-56 1087.8 ± 79.139,40 120.6  ± 11.452-56 
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125 10 1678.3 ± 84.218 126.7 ± 29.951-56 1552.4 ± 87.221-23 184.3 ± 24.143-53 1212.8 ± 27.834-37 133.1  ± 15.251-56 

125 15 1653.4 ± 42.318-20 138.4 ± 18.750-56 1829.5 ± 29.514-17 157.5 ± 13.645-55 1248.6 ± 68.133-36 135.4  ± 11.851-56 
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Table 5.7. ANOVA table for the factors affecting hardness of pellets produced from 

untreated feedstocks 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature (T) 2 28355.1800 14177.5900 19.26 <.0001 

Screen size (SS) 2 115764.9267 57882.4633 78.63 <.0001 

T*SS 4 153.0533 38.2633 0.05 0.9948 

Moisture content (MC) 2 14983.0200 7491.5100 10.18 0.0002 

T*MC 4 2665.9600 666.4900 0.91 0.4674 

SS*MC 4 1522.4933 380.6233 0.52 0.7235 

T*SS*MC 8 720.3667 90.0458 0.12 0.9981 

 

Table 5.8. Chemical composition of untreated corn stover, prairie cord grass, and 

switchgrass 

Feedstock Corn stover Prairie cord grass Switchgrass 

Glucan (%) 34.3 37.8 32.2 

Xylan (%) 18.5 22.6 14.8 

Arabinan (%) 2.5 2.9 2.3 

Lignin (%) 15.7 15.3 13.3 

 

Table 5.9. p-value and model equations for the glucose and xylose yields from the 

pellets produced from untreated corn stover, prairie cord grass, and switchgrass. 

Feedstocks Model equations 
p-

value 
R2 

Untreated corn stover 
Yglucose=61.81+0.57x1-1.46x2+1.88x1x3-1.59x2

2 0.045 0.82 

Yxylose=30.60+0.60x1-0.17x2-1.46x1x3-1.20x2x3 0.009 0.78 

Untreated prairie cord 

grass 

Yglucose =26.02+0.52x1-0.12x2+0.12x2x3-

0.002x1
2 

0.032 0.87 

Yxylose =26.75+0.24x1-0.35x2-2.51x3
2 0.044 0.80 

Untreated switchgrass 
Yglucose =49.15+1.02x1-1.05x1x2+0.75x1

2 0.001 0.82 

Yxylose =31.99+0.83x1+1.95x3-1.35x2x3-0.83x3
2 0.007 0.72 
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Fig. 5.1. Lab scale extruder and the samples 

(a) Lab scale extruder (b) Untreated, AFEX™ pretreated prairie cord grass (c) Untreated 

pellets and AFEX™ pellets 
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Fig. 5.2. Pellet hardness test using Texture analyzer. 
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 (a)  (b) 

 

(c)  (d) 

 

 

(e)  (f) 

Fig. 5.3. Response surface plots showing the effects of temperature and particle size 

(hammer mill screen size) and glucose and xylose yields at 10% moisture content. 

(a) Glucose yields of untreated corn stover pellets; (b) Xylose yields of untreated corn stover pellets; 

(c) Glucose yields of untreated prairie cord grass pellets; (d) Xylose yields of untreated prairie 

cord grass pellets; (e) Glucose yields of untreated switchgrass pellets; (f) Xylose yields of 

untreated switchgrass pellets. 
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6. UNDERSTANDING THE IMPACTS OF AFEX™ PRETREATMENT AND 

DENSIFICATION ON THE FAST PYROLYSIS OF CORN STOVER, 

PRAIRIE CORD GRASS, AND SWITCHGRASS 

6.1. Abstract  

Lignocellulosic feedstocks corn stover, prairie cord grass, and switchgrass were 

subjected to ammonia fiber expansion (AFEX™) pretreatment and densified using 

extrusion pelleting and ComPAKco densification technique. The effects of AFEX™ 

pretreatment and densification were studied on the fast pyrolysis product yields. 

Feedstocks were milled in a hammer mill using three different screen sizes (2, 4, and 8 

mm) and were subjected to AFEX™ pretreatment. The untreated and AFEX™ pretreated 

feedstocks were moisture adjusted at three levels (5, 10, and 15% wb). and were extruded 

using a lab scale single screw extruder. The barrel temperature of the extruder was 

maintained at 75, 100, and 125°C. Durability of the extruded pellets made from AFEX™ 

pretreated corn stover, prairie cord grass, and switchgrass varied from 94.5% to 99.2%, 

94.3% to 98.7, and 90.1% to 97.5% respectively. Results of the thermogravimetric 

analysis showed the decrease in the decomposition temperature of the all the feedstocks 

after AFEX™ pretreatment indicating the increase in thermal stability. Loose and 

densified feedstocks were subjected to fast pyrolysis in a lab scale reactor and the bio-

char and bio-oil yields were measured. Bio-char obtained from the AFEX™ pretreated 

feedstocks exhibited increased bulk and particle density compared to the untreated 

feedstocks. The properties of the bio-oil were statistically similar for the untreated, 

AFEX™ pretreated, and AFEX™ pretreated densified feedstocks. Based on the bio-char 

and bio-oil yields, the AFEX™ pretreated feedstocks and the densified AFEX™ 
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pretreated feedstocks (pellets and PAKs) exhibited similar behavior. Hence, it can be 

concluded that densifying the AFEX™ pretreated feedstocks could be a viable option in 

the biomass processing depots to reduce the transportation costs and the logistical 

impediments without affecting the product yields.  

6.2. Introduction  

Biofuels production from the lignocellulosic biomass could be an attractive 

approach to reduce the expensive fossil fuels import and to reduce the greenhouse gas 

emissions. Researchers are being carried out to overcome the challenges associated with 

the lignocellulosic biomass and to make the biofuels economically competitive with 

petroleum based transportation fuels. The principle challenge associated in establishing 

the lignocellulosic biomass based biorefineries is to make the biomass logistics 

economically and ecologically viable (Hess et al., 2009). Because of the low bulk density 

nature of the lignocellulosic biomass, the difficulties arise while handling, transporting, 

and storing which significantly influences the feedstock costs and quality. Size reduction 

and densification of lignocellulosic biomass plays a vital role in biomass supply chain by 

improving the handling, transportation, and storage costs (Tumuluru et al., 2011; Mia et 

al., 2013). The most commonly used methods of densification are pelleting, briquetting, 

and extrusion processing (Tumuluru et al., 2010). Eranki et al (2011a) explored the 

concept of Regional Biomass Processing Depots (RBPD), which produce pretreated and 

densified biomass promoting the use of existing logistics systems and economic long 

distance hauling. RBPD proved to yield same total energy and less greenhouse gas 

emissions compared to the centralized processing facilities (Eranki and Dale, 2011b).     
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The composite chemical structure of the lignocellulosic biomass makes it difficult 

for efficient and economic conversion into biofuels. Lignin, the protective layer 

encompassing the cellulose and hemicellulose sugar components hinders the enzymatic 

conversion. Pretreatment is the vital process to break and alter the structure of lignin, 

providing the access to the cellulose and hemicellulose (Balan et al., 2009). Several 

pretreatment methods (physical, chemical, and biological) to alter the complex structure 

and their impacts on the sugar yields were studied extensively (Alvira et al., 2010). 

Ammonia Fiber Expansion (AFEX™) is one of the biomass pretreatment technologies, 

which employs physical (high temperature and pressure) and chemical (ammonia) 

processes to break the complex chemical structure (Balan et al., 2009; Dale, 1986). 

AFEX™ pretreatment is a promising option in depot processing facility for delivering 

high value densified biomass (Bonner et al., 2015).  

Biofuels can be produced via thermochemical conversion, by thermally degrading 

the biomass to yield solid bio-char, liquid bio-oil, and gaseous products. Fast pyrolysis is 

on the thermochemical conversion technologies, proved to be a feasible and viable route 

to produce renewable liquid fuels (Bridgwater and Peacocke, 2000). Fast pyrolysis 

involves rapid heating of the biomass in an inert atmosphere to yield dark brown liquid, 

when the products are condensed (Bridgwater, 2012). RBPDs can be configured to 

supply the feedstocks in the form best suitable for biochemical and thermochemical 

conversion process (Eranki and Dale, 2011b). Several researches were carried out to 

study the impacts of biomass pretreatment and densification on sugar yields through 

biochemical conversion (Theerarattananoon et al., 2012; Hoover et al., 2014; Rijal et al., 

2014; Sundaram et al., 2016). Based on the literature review, the studies on the impacts 
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of lignocellulosic biomass pretreatment on thermochemical conversion are very limited 

(Amin et al., 2012; Kasparbauer, 2009). Hence, it is imperative to study the impacts of 

biomass pretreatment on products yield through thermochemical conversion. This 

research was developed to investigate the impacts of AFEX™ pretreatment and 

densification on pyrolysis behavior of corn stover, prairie cord grass, and switchgrass. 

The specific objectives were to study the impacts of AFEX™ pretreatment and selected 

variables viz. extruder barrel temperature (75, 100, and 125°C), hammer mill screen size 

(2, 4, and 8 mm), and feedstock moisture content (5, 10, and 15% wet basis) on pellet 

durability, bio-oil, and bio-char yields from corn stover, prairie cord grass, and 

switchgrass. Besides, the densified products (PAKs) produced using a ComPAK co 

device (Karki et al., 2015) was also subjected to fast pyrolysis. The pyrolysis yields and 

the properties of the bio-char and bio-oil obtained from pellets and PAKs were compared.  

6.3. Materials and methods  

6.3.1. Biomass preparation and AFEX™ pretreatment  

The feedstocks corn stover, prairie cord grass, and switchgrass procured from the 

local farm in Brookings, South Dakota were dried and milled using hammer mills fitted 

with screen size of 2, 4 (Thomas wiley laboratory mill, Swedesboro, NJ), and 8 mm 

(Speed King, Winona Attrition Mill Co., Winona, MN). AFEX™ pretreatment was 

carried out at Biomass conversion research laboratory (BCRL), Michigan State 

University. The optimum conditions used for the AFEX™ pretreatment of the feedstocks 

are given in Table 6.1 (Sundaram et al., 2015; Sundaram and Muthukumarappan, 2016). 

Moisture content of the samples were determined using ASABE Standard (ASASBE, 

2006) and the moisture content was adjusted to 5, 10, and 15% on a wet weight basis by 
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adding calculated quantity of water. The moisture adjusted samples were packed in 

plastic bags and stored in the refrigerator. The samples were brought to the room 

temperature, prior to the extrusion pelleting.  

6.3.2. Extrusion pelleting and ComPAK co densification 

Moisture adjusted untreated and AFEX™ pretreated corn stover, prairie cord 

grass, and switchgrass samples were pelleted using a laboratory scale single screw 

extruder (Brabender Plasti-corder Extruder model PL 2000, Hackensack, NJ). Feedstocks 

were extruded at three different barrel and die temperature (75, 100, and 125°C). 

Compression ratio of 3:1, barrel length to screw diameter of 20:1, and the screw speed of 

50 rpm was maintained for all the samples. 200 g of moisture adjusted samples were fed 

manually and the samples were pelleted at three different temperatures. Karki et al (2015) 

used the ComPAK co system to densify the AFEX™ pretreated corn stover, prairie cord 

grass, and switchgrass. The authors termed the densified product obtained from the 

ComPAK co systems as ‘PAKs’. Fig.6.1 shows the untreated, AFEX™ pretreated, 

untreated pelleted, AFEX™ pretreated pelleted, AFEX™ pretreated PAKs, bio-char, and 

bio-oil obtained from corn stover.  

6.3.3. Biomass characterization  

The moisture content of the samples was determined by drying the samples at 

103±2°C for a period of 24 h (ASABE, 2006). The volatile matter and ash content of the 

samples were determined by following ASTM standards (ASTM D3175-11, 2011; 

ASTM D3174-12, 2012). The fixed carbon was determined by considering the mass of 

the sample after the volatile matter was driven off. The elements carbon, hydrogen, and 
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oxygen content of the biomass was determined using an elemental analyzer (CE440 

Exeter Analytical Ltd, UK). Higher heating values of the samples were determined using 

an auto bomb calorimeter (IKA C2000, Wilmington, NC). All the characterization was 

carried out in triplicates. Thermogravimetric analysis (TGA) tests were carried out for the 

untreated, AFEX™ pretreated, untreated pelleted, and AFEX™ pretreated pelleted 

samples using Pyris™ 1 TGA instrument (Perkin Elmer Inc, Waltham, MA). About 5 to 

20 mg of samples were taken in a crucible and heated from room temperature to 900°C at 

a heating rate of 30°C min-1. 

6.3.4. Pyrolysis experimental setup 

Pyrolysis of untreated, AFEX™ pretreated, untreated pelleted, and AFEX™ 

pretreated pelleted corn stover, prairie cord grass, and switchgrass samples were carried 

out in a cylindrical stainless reactor. The cylindrical reactor tubing was 508 mm long 

with an internal diameter of 25.4 mm. The samples were packed between the bed of 

quartz wool (6625-01, GM associates, Oakland, CA) and steel wool (Grade#1, Rhodes 

American) inside the cylindrical reactor. The packed reactor was placed inside an electric 

furnace (Lindberg Blue M™, Thermo Scientific) controlled by a program controller. 

Compressed nitrogen was purged inside the reactor to maintain the inert atmosphere 

during pyrolysis process. Before starting the furnace, nitrogen gas was purged inside the 

reactor for 10 min to remove the air inside the reactor. Thermocouple was placed inside 

the reactor to read the actual temperature inside the reactor. Heating rate of the furnace 

was set at 30°C min-1 and the pyrolysis temperature was set at 400°C. As the temperature 

increased, gases produced were condensed using a condenser placed underneath the 

reactor. The condenser unit consisted of a conical flask with a nose placed inside an ice 
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bath. The condensed liquid product was collected in the conical flask and the non-

condensed gases were sent to an exhaust hood. The condensed liquid and the char left 

inside the reactor were collected and weighed. Fig.6.2 shows the schematic of pyrolysis 

experimental setup. 

6.3.5. Bio-char and bio-oil characterization 

Viscosity of the bio-oil samples was determined by using a viscoanalyzer (ATS 

Rheosystems, NJ) at 20°C. The pH values were determined by using a Fisher scientific 

digital pH meter (Accument basic AB15, Pittsburg, PA). Higher heating value of the bio-

oil samples was determined using an auto bomb calorimeter (IKA C2000, Wilmington, 

NC). The density of the bio-oil samples was determined by diving the mass of the 

samples to its volume at room temperature. Bulk density of the bio-char samples was 

determined by dividing the mass of the sample by the known volume of sample taken in a 

cylindrical container. Particle density of the bio-char samples was determined using a 

multivolume gas (Micrometritics 1305, Norcross, GA).  

6.3.6. Statistical analysis  

Statistical analysis was carried out using SAS statistical software (SAS 9.3, SAS 

Institute Inc. Cary, NC) at 5 % level of significance. PROC GLM procedure in SAS 

software was used to determine the least significant difference (LSD) values and main 

and interaction effects at p < 0.05.  
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6.4. Results and discussion  

6.4.1. Biomass characterization 

Table 6.2 shows the results of proximate and ultimate analysis and heating values 

of the untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass. 

The volatile content of the samples was in the range of 77.3 to 81.9%. Maximum volatile 

matter was observed in the switchgrass samples and the corn stover samples had lowest 

volatile content. Compared to the switchgrass samples, corn stover and prairie cord grass 

samples had more ash content. The elemental carbon content of the samples was in the 

range of 46.4 to 47.3% and the oxygen and hydrogen contents were in the range of 42.4 

to 43.5% and 5.7 to 5.8%, respectively. The heating values of the samples did not show 

much variance and the values ranged from 18.1 to 18.9 MJ/kg. The carbon and hydrogen 

contents of the corn stover sample were similar to the values reported by Evans et al 

(1988) and Kumar et al (2008), except for the oxygen content, which was slightly higher 

in this study. In the case of prairie cord grass and switchgrass samples, the proximate and 

ultimate analysis properties were similar to the values reported by Moutsoglou (2012). It 

can be inferred from the Table 6.2, that the means of proximate, ultimate analysis, and 

heating values of the samples did not vary significantly (p<0.001). In other words, 

AFEX™ pretreatment did not have any significant influence in the proximate, ultimate 

properties, and heating values of the feedstocks. The retention of the biomass components 

(cellulose, hemicellulose, and lignin) and the composition after pretreatment is one of the 

unique features of the AFEX™ pretreatment (Campbell et al., 2013). This could be the 

reason for no significant difference in the properties of the untreated and AFEX™ 

pretreated samples.  
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The thermal degradation behavior of the samples was studied using 

thermogravimetric analysis and Fig.6.3 shows the thermogravimetric (TG) and 

differential thermogravimetric (DTG) curves for the untreated and AFEX™ pretreated 

corn stover, prairie cord grass, and switchgrass. The peak in the derivative weight loss 

curve indicates the maximum rate of weight loss occurred at that temperature. Yang et al 

(Yang et al., 2007) studied the pyrolytic behavior of hemicellulose, cellulose, and lignin 

and noticed the degradation temperature of hemicellulose and cellulose between 220°C 

and 400°C. Prins et al (2006) also observed the two-step mechanism involved in the 

degradation of wood. During the first step, degradation of hemicellulose occurs around 

200°C followed by cellulose degradation in the second step. In Fig.6.3, the first peak in 

the derivative weight loss curve corresponds to the hemicellulose degradation followed 

by the cellulose degradation. Derivative weight loss curves for the untreated and AFEX™ 

pretreated prairie cord grass and switchgrass showed well defined first and second peaks 

corresponding to hemicellulose and cellulose degradation. The hemicellulose degradation 

temperature for the untreated and AFEX™ pretreated prairie cord grass was 325°C and 

317°C. For the untreated and AFEX™ pretreated switchgrass, the degradation 

temperature was 353°C and 347°C. The difference in the hemicellulose degradation 

temperature of the untreated and AFEX™ pretreated prairie cord grass and switchgrass 

designates the impacts of the pretreatment. AFEX™ pretreatment impacts structural 

changes in the biomass and partial hydrolyzing of hemicellulose components is one 

among the structural changes (Dale, 1986). For the untreated and AFEX™ pretreated 

corn stover, the hemicellulose peak was not observed. The rate of weight loss decreased 

after 400°C indicating the degradation of lignin. Yang et al (2007) observed the lignin 
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decomposition from 160°C to 900°C and Randriamanantena et al (2009) observed the 

three stages of lignin degradation beginning from 115°C. From Fig.6.3 it can be 

observed, that the maximum rate of weight losses occurred at 388°C, 382°C, and 410°C 

for AFEX™ pretreated corn stover, prairie cord grass, and switchgrass respectively. For 

the untreated corn stover, prairie cord grass, and switchgrass the maximum rate of weight 

loss occurred at 385°C, 381°C, and 381°C respectively. Increase in the cellulose 

degradation temperature after AFEX™ pretreatment was observed, and this could be due 

to the lignin mobilization to the surface of the biomass after pretreatment. During the 

AFEX™ pretreatment, the ammonia solubilizes the lignin and redeposit on the surface of 

the biomass (Dale, 1986; Campbell et al., 2013; Bals et al., 2010). The mobilized lignin 

on the surface could have hindered the cellulose degradation, leading the reduction in the 

degradation temperature.  

6.4.2. Effect of barrel temperature, moisture content, and screen size on pellet 

durability 

Pellet durability describes the ability of pellets to resist against the forces acting 

on pellets during handling, transportation, and storage. Table 6.3 shows the durability of 

untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass pellets. 

Durability of the pellets made from AFEX™ pretreated corn stover, prairie cord grass, 

and switchgrass varied from 94.5% to 99.2%, 94.3% to 98.7, and 90.1% to 97.5% 

respectively. For the pellets made from untreated corn stover, prairie cord grass, and 

switchgrass the durability varied from 26.5% to 80.5%, 33.5% to 68.1%, and 30.4% to 

72% respectively. Karki et al (2015) reported the durability range of the ComPAK co 

densified corn stover, prairie cord grass, and switchgrass as 92.6 to 95.2%, 87.1-92.1%, 
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78.2 to 91.1% respectively. In this study, higher pellet durability was observed for 

AFEX™ pretreated biomass pellets compared to the untreated biomass pellets and this 

can be attributed to the increased availability of lignin present in the pretreated biomass 

for better binding during the pelleting process. Lignin, one of the natural binders present 

in the lignocellulosic biomass gets mobilized to the surface after the AFEX™ 

pretreatment (Dale, 1986; Bals et al., 2010; Chundawat et al., 2007) and this availability 

of lignin during the pelleting process have contributed for the maximum pellet durability. 

The increased durability of AFEX™ pretreated pellets can resist tougher conditions 

during handling, transportation, and storage compared to untreated pellets. Campbell et al 

(Campbell et al., 2013) indicated that high durability of AFEX™ pellets are suitable to be 

stored, handled and shipped without producing much fines. 

Temperature had a significant impact (p<0.05) only on the durability of pellets 

made from untreated corn stover, prairie cord grass, and switchgrass. Increase in the 

barrel temperature had significant effect on the bonding mechanisms, resulting in higher 

durability of pellets. Shaw et al (2009) reported the increased tensile strength of the 

poplar wood pellets to the increased packing and bonding of the particles, when the die 

temperature was increased from 70°C to 100°C. The increase in durability for pellets 

made from untreated samples with increase in barrel temperature can be attributed to the 

gelatinization of corn starch as a binding agent. Lee et al (2000) observed the positive 

correlation between the twin screw extruder barrel temperature and the degree of 

gelatinization. Pellets made from AFEX™ pretreated samples appeared darker than the 

pellets made from untreated samples and the reason is presence of cleaved-lignin 

phenolic fragments and other extractives on the surface of biomass upon AFEX™ 
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pretreatment (Chundawat et al., 2007). Lignin, an aromatic polymer component 

undergoes softening during the pelleting process, which aids in the binding of particles. 

Kashaninejad and Tabil (2011) stated that when the biomass is heated during 

densification, the available lignin melts and become soft exhibiting thermosetting 

properties. In this extrusion pelleting study, the feedstock was subjected to heating, 

mixing, and shearing inside the barrel and these effects could have increased the 

temperature resulting in thermal softening of lignin.  

Moisture content had a significant effect (p<0.001) effect on the durability of the 

pellets produced from untreated and AFEX™ pretreated feedstocks. Increase in the 

durability of the pellets was observed with increase in the feedstocks moisture content. 

Kaliyan and Morey (2009) observed the decrease in the glass transition temperature of 

the corn stover and switchgrass increase in the moisture content from 10% to 20%. Glass 

transition temperature indicates the transformation of materials from glassy to rubbery 

state (Roos, 1995). With increase in the moisture content, the feedstock becomes soft and 

increase in inter-particle contact will occur when the feedstock is forced against the die in 

screw press compaction (Grover and Mishra, 1996). With increase in the moisture 

content, the feedstocks could have subjected to better heating, mixing, shearing, and size 

reduction inside the extruder promoting better particle binding. Under high pressures in 

the presence of moisture, the natural binders present in the biomass can be activated 

(Kaliyan and Morey, 2010). In this study, moisture content increase could have activated 

the lignin present on the surface of AFEX™ pretreated biomass and this could be the 

reason for increased pellet durability.  
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Hammer mill screen size had significant effect (p<0.001) on the durability of the 

pellets produced from untreated corn stover, prairie cord grass, and switchgrass. The first 

stage in the densification process is the particle rearrangement and Mani et al (2004) 

showed that the smaller particle size samples rearrange quickly than the larger samples to 

a form closely packed mass. Besides, finer particles accept more moisture than larger 

particles (Kaliyan and Morey, 2009) and this effect could have made the smaller screen 

size samples soft resulting in higher degree of compaction inside the extruder barrel. 

Pellets produced from 8 mm screen size samples had cracks and McBain (1966) indicated 

that larger particles are fissure points that causes cracks in the compacts. In the case of 

AFEX™ pretreated samples, the screen size had no significant impact (p>0.05) on the 

pellet durability. However, pellets with maximum durability were produced from 2 mm 

and 4 mm screen size samples. Increase in the durability for smaller screen size samples 

can be attributed to the increased surface availability for binding. Density and durability 

of the pellets are inversely proportional to the particle size because of the increased 

surface area during the compaction process (Tumuluru et al., 2010).   

6.4.3. Effect of AFEX™ pretreatment and extrusion pelleting on pyrolysis yields  

Untreated, AFEX™ pretreated, Untreated pelleted, AFEX™ pretreated pelleted, 

ComPAKco densified corn stover, prairie cord grass, and switchgrass were subjected to 

pyrolysis. Table 6.4 shows the pyrolysis yields of the untreated and AFEX™ pretreated 

corn stover, prairie cord grass, and switchgrass. The yields of bio-oil and bio-char varied 

from 45.9% to 48% and 22.0 to 24.9%, respectively. The non-condensable gas yield 

varied from 27.3% to 31.6%. Statistical analysis showed that the hammer mill screen size 

did not influence (p>0.05) the yields of pyrolysis products. The results showed that the 
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product yields of the pyrolysis were not affected (p>0.05) by the AFEX™ pretreatment in 

corn stover, prairie cord grass, and switchgrass. It can be observed from the Fig.6.4 that 

the decomposition of AFEX™ pretreated feedstocks was slower compared to the 

untreated feedstocks. This results indicate the increase in the thermal stability of the 

feedstocks after AFEX™ pretreatment. Harun et al (2013) observed the increase in the 

nitrogen of AFEX™ pretreated rice straw compared to the untreated rice straw and the 

authors indicated the increase in nitrogen to the addition of ammonia to the biomass 

during the AFEX™ pretreatment. In this study, the slow decomposition of AFEX™ 

pretreated feedstocks could be due to the increase in the nitrogen content of the biomass 

after pretreatment. Fig.6.4 shows the weight loss curve for untreated, AFEX™ pelleted, 

AFEX™ ComPAKco densified corn stover, prairie cord grass, and switchgrass (2 mm 

screen size). The decomposition of the AFEX™ pretreated feedstocks, extrusion pelleted 

AFEX™ pretreated feedstocks, and ComPAKco densified feedstocks were slower 

compared to the untreated feedstocks. In other words, extrusion pelleting and 

ComPAKco densification did not have any influence on the decomposition behavior of 

the AFEX™ pretreated corn stover, prairie cord grass, and switchgrass. Singh et al 

(2013) indicated the decrease in the decomposition of ionic liquid pretreated biomass to 

depolymerization of lignin. Lignin depolymerization is one of the important impacts of 

AFEX™ pretreatment and this also could have decreased the decomposition temperature 

of the AFEX™ pretreated biomass resulting in higher thermal stability.  

Table 6.5 shows the properties of the bio-char and bio-oil obtained from the 

untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass. The 

bio-oils obtained were brown colored having pungent odor. The pH value serves as an 
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indicator of corrosiveness. The pH values of the bio-oil obtained from untreated and 

AFEX™ pretreated feedstocks ranged from 2.25 to 2.77. The acidic nature of the bio-oil 

is due to the presence of acetic and formic acid (Pattiya, 2011). The density of the bio-

oils produced from the untreated and AFEX™ pretreated feedstocks were higher than the 

density of water and this could be due to the presence of ash (Zhang et al., 2007). The 

densities of the bio-oil ranged from 1.20 to 1.26 g cm-3. The dynamic viscosity of the bio-

oils is shown in Table 6.5 and the values showed the insignificant effect of AFEX™ 

pretreatment on the feedstocks. The viscosity values ranged from 2.2 to 2.9 cP at 20°C. 

Karunanithy and Muthukumarappan (2011) also reported the similar viscosity values of 

the bio-oils obtained from aspen, canola, and corn cobs pyrolyzed with the assistance of 

microwave. Heating value of the bio-oils ranged from 14.9 to 15.8 MJ/kg. From the 

literatures, it was observed that the heating values of the bio-oils varied between 15.0 and 

40.4 MJ/kg (Yu et al., 2007; Anouti et al., 2016). The poor heating values of the bio-oil 

could be due to the presence of water. Water content in the bio-oil ranges from 15-35% 

wt (Pandey et al., 2011) comprising pyroligneous water produced during the dehydration 

of carbohydrates (Dobele et al., 2007). No statistical significance (p>0.05) in the pH, oil 

density, viscosity, and heating values was observed between the untreated and the 

AFEX™ pretreated feedstocks.  

Bulk density of the bio-chars obtained from the untreated and AFEX™ pretreated 

feedstocks was lower than the bulk densities of the untreated and AFEX™ pretreated 

feedstocks as reported by Sundaram et al (2015). Different components of lignocellulosic 

biomass thermally decompose at different temperature. Hemicellulose decomposes 

initially followed by cellulose decomposes into volatile product at 400°C 
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(Randriamanantena et al., 2009). These volatilizations of cellulose and hemicellulose 

components could be the reason for decrease in the mass of the biomass leading to the 

reduction in the bulk density of bio-chars. AFEX™ pretreated feedstocks showed 

increased bulk and particle density compared to the untreated feedstocks and the 

statistical analysis showed the significant effect (p<0.05) of pretreatment on bulk and 

particle density. During AFEX™ pretreatment, the biomass undergoes swelling at 

moderate temperature and pressure, and with the drop in pressure the disruption of 

lignocellulosic structure occurs (Dale, 1986; Chundawat et al., 2011). The mobilization 

of lignin to the outer surface of the biomass due to the disruption of the matrix structure 

could have retained some of the volatile compounds in the char resulting in increased 

bulk and particle densities.  

Bio-oil yields of the pellets produced from AFEX™ corn stover, prairie cord 

grass, and switchgrass varied from 44.3% to 46.8%, 43.2% to 47.5%, and 42.4% to 

47.3% respectively. The bio-char yields varied from 24.7% to 25.3%, 24.2% to 25.7%, 

and 23.5% to 24.9% respectively for AFEX™ corn stover, prairie cord grass, and 

switchgrass. The yields of bio-oil, bio-char, and syngas from the pellets produced from 

untreated and AFEX™ pretreated prairie cord grass are shown in Table 6.6 and Table 6.7 

shows the yields from AFEX™ ComPAKs. It can be observed that the yields from the 

pellets and PAKs were in the range of unpelleted samples shown in Table 6.4. In other 

words, extrusion pelleting and ComPAKco densification did not have any significant 

influence on the yields of fast pyrolysis.   

Table 6.8 and 6.9 shows the properties of the bio-oil and bio-char obtained from 

pyrolysis of untreated and AFEX™ pretreated prairie cord grass pellets. It can be 
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witnessed that the properties of the fast pyrolysis products from the unpelleted and 

pelleted samples was not significantly different. In other words, the properties of the bio-

oil and bio-char obtained from the pelleted samples were in the range of the unpelleted 

samples. Therefore, based on the product yields and quality of the products obtained, it 

can be concluded that the extrusion and ComPAK co densified AFEX™ pretreated 

feedstocks behaved like the AFEX™ pretreated feedstocks during the pyrolysis process. 

Densification of the pretreated biomass will reduce the transportation costs and 

environmental impacts associated with the biomass logistics (Eranki and Dale, 2011b). 

Hence densification of AFEX™ pretreated lignocellulosic feedstock for the pyrolysis 

process would reduce the logistical impediments without affecting the products yield.   

6.5.  Conclusions  

The study showed that the durability of the AFEX™ pretreated corn stover, 

prairie cord grass, and switchgrass pellets ranged from 94.5% to 99.2%, 94.3% to 98.7, 

and 90.1% to 97.5% respectively. A significant increase in the pellet durability was 

noticed for the pellets made from AFEX™ pretreated feedstocks compared to the 

untreated feedstocks. Decrease in the degradation temperature was observed for all the 

feedstocks subjected to AFEX™ pretreatment, indicating the increased thermal stability 

of the feedstocks after pretreatment. The yields of bio-oil and bio-char varied from 45.9% 

to 48% and 22.0 to 24.9%, respectively for the untreated and AFEX™ pretreated 

feedstocks. Hammer mill screen size did not have any significant influence on the 

products yield from the fast pyrolysis. No significant difference in the bio-oil and bio-

char yields was observed for the untreated and AFEX™ pretreated feedstocks when 

subjected to fast pyrolysis. Similarly, the densification (pelleting and ComPAK co 
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technique) had no significant effect on the products yield indicating the feasible option to 

densify the AFEX™ pretreated feedstocks in the processing depots without affecting the 

product yields.  
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Table 6.1. AFEX™ pretreatment conditions employed for different biomass* 

Conditions 

Corn 

stover 

Prairie cord 

grass 

Switchgrass 

Ammonia loading, NH3 to dry biomass 

loading (w/w) 

1:1 1:2 1:2 

Moisture content (db %) 60 40 50 

Pretreatment soaking time (min) 15 30 30 

*Pretreatment was carried out at 100°C 
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Table 6.2. Proximate and ultimate analysis, and high heating value of untreated and AFEX™ pretreated feedstocks 

Feedstock 
Screen size 

(mm) 

Moisture 

content 

(%) 

Volatile 

matter (%) 

Ash 

content 

(%) 

Fixed 

carbon 

(%) 
 

C (%) H (%) O (%) 
HHV 

(MJ/kg) 

Untreated 

Corn stover 

2 5.1 ± 0.1
6-8

 77.8 ± 0.3
6,7

 3.5 ± 0.2
4-6

 18.6 ± 0.1
1,2

 47.2 ± 0.21,2 5.8 ± 0.14-6 42.7 ± 0.27-9 18.8 ± 0.1
1

 

4 5.6 ± 0.1
3-5

 77.5 ± 0.8
6,7

 3.6 ± 0.3
3-6

 18.8 ± 0.5
1,2

 47.3 ± 0.11,2 5.8 ± 0.14-6 42.6 ± 0.28,9 18.9 ± 0.1
1

 

8 5.3 ± 0.3
5,6

 77.9 ± 1.0
6,7

 3.9 ± 0.2
2,3

 18.1 ± 0.7
2

 46.9 ± 0.13-6 5.7 ± 0.16-8 42.6 ± 0.39,10 18.7 ± 0.2
1,2

 

Untreated 

Prairie cord 

grass 

2 5.3 ± 0.1
5,6

 79.6 ± 0.4
5

 3.8 ± 0.4
2-5

 16.5 ± 0.4
3

 46.7 ± 0.37-9 5.7 ± 0.15-7 42.9 ± 0.26,7 18.3 ± 0.1
3-6

 

4 5.6 ± 0.1
3,4

 81.1 ± 0.5
1-4

 3.6 ± 0.4
3-6

 15.2 ± 0.9
4-6

 46.6 ± 0.47-9 5.8 ± 0.14-6 43.1 ± 0.24,5 18.1 ± 0.3
6

 

8 5.8 ± 0.2
2,3

 80.8 ± 0.4
3,4

 3.3 ± 0.3
6,7

 15.7 ± 0.7
3-5

 46.8 ± 0.35-7 5.8 ± 0.13,4 43.2 ± 0.13-5 18.3 ± 0.2
5,6

 

Untreated 

Switchgrass 

2 5.7 ± 0.1
3

 80.7 ± 0.6
3,4

 2.8 ± 0.4
8,9

 16.4 ± 0.3
3

 47.3 ± 0.21,2 5.8 ± 0.11,2 43.3 ± 0.21-3 18.5± 0.1
2-5

 

4 6.1 ± 0.1
2

 81.3 ± 0.7
1-3

 2.6 ± 0.2
9

 16.0 ± 0.7
3,4

 47.3 ± 0.21 5.8 ± 0.11 43.5 ± 0.21 18.4 ± 0.2
2-5

 

8 5.1 ± 0.1
6-8

 81.0 ± 0.3
2-4

 2.8 ± 0.3
8,9

 16.1 ± 0.6
3

 47.2 ± 0.31-3 5.8 ± 0.11,2 43.4 ± 0.11,2 18.4 ± 0.2
2-5

 

AFEX™ 

Corn stover 

2 4.8 ± 0.4
8

 77.3 ± 0.3
7

 3.6 ± 0.2
3-6

 19.0 ± 0.4
1

 47.3 ± 0.21,2 5.8 ± 0.14-6 42.6 ± 0.18,9 18.3 ± 0.1
5,6

 

4 5.9 ± 0.2
2,3

 78.2 ± 0.1
6

 3.5 ± 0.1
5,6

 18.2 ± 0.1
2

 47.2 ± 0.11-4 5.8 ± 0.14-6 42.8 ± 0.17,8 18.4 ± 0.1
3-6

 

8 7.0 ± 0.1
1

 76.6 ± 0.2
8

 4.0 ± 0.2
1,2

 19.3 ± 0.2
1

 47.1 ± 0.21-5 5.7 ± 0.16-8 42.4 ± 0.110 18.3 ± 0.2
5,6

 

AFEX™ 

Prairie cord 

grass 

2 5.2 ± 0.4
6,7

 80.5 ± 0.2
4

 4.4 ± 0.1
1

 15.0 ± 0.2
5,6

 46.1 ± 0.110 5.7 ± 0.18 42.7 ± 0.17,8 18.4 ± 0.2
3-6

 

4 5.4 ± 0.2
4-6

 81.0 ± 0.4
2-4

 3.7 ± 0.1
2-5

 15.1 ± 0.4
5,6

 46.5 ± 0.18,9 5.8 ± 0.14-6 43.1 ± 0.15 18.3 ± 0.1
5,6

 

8 5.4 ± 0.2
4-6

 81.3 ± 0.2
1-3

 3.9 ± 0.2
2-4

 14.7 ± 0.4
6

 46.4 ± 0.29,10 5.7 ± 0.14-7 43.0 ± 0.15,6 18.3 ± 0.1
3-6

 

AFEX™ 

Switchgrass 

2 5.2 ± 0.3
6,7

 80.9 ± 0.2
2-4

 3.0 ± 0.1
7,8

 16.0 ± 0.3
3

 47.1 ± 0.11-5 5.8 ± 0.12,3 43.3 ± 0.12-4 18.2 ± 0.4
5,6

 

4 4.9 ± 0.1
7,8

 81.9 ± 0.3
1

 2.8 ± 0.1
8,9

 15.2 ± 0.4
5,6

 47.0 ± 0.12-5 5.8 ± 0.11,2 43.5 ± 0.11 18.6 ± 0.1
1-3

 

8 5.1 ± 0.2
6-8

 81.6 ± 0.4
1,2

 3.1 ± 0.2
7,8

 15.2 ± 0.3
5,6

 46.9 ± 0.14-6 5.8 ± 0.12,3 43.4 ± 0.11,2 18.6 ± 0.1
1-3

 

Means sharing the same superscript numbers for a given property between the columns are not significantly different (p < 0.05). 
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Table 6.3. Pellet durability of untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass pellets 

Temp 

(°C) 

Moisture 

content (%) 

wb 

Screen size 

(mm) 

AFEX™ corn 

stover 

Untreated 

corn stover 

AFEX™ 

prairie cord 

grass 

Untreated 

prairie cord 

grass 

AFEX™ 

switchgrass 

Untreated  

switchgrass 

75 

5 

 

2 98.6±0.41 42.1±3.629-32 97.3±2.41,2 44.1±2.026-31 96.1±0.71,2 47.1±4.224-30 

4 98.2±0.31 39.8±5.630-34 97.1±0.91,2 37.8±3.031-34 95.2±2.31,2 38.4±1.831-34 

8 96.4±1.31,2 28.3±2.935,36 94.5±0.21,2 35.3±5.432-35 90.1±1.62 35.1±2.232-35 

10 

2 99.2±0.31 40.4±4.230-34 98.2±1.71 45.4±3.425-31 95.4±0.51,2 48.9±5.122-29 

4 98.1±1.51 34.6±7.932-35 97.8±1.41,2 39.6±1.830-34 94.9±1.41,2 39.0±0.831-33 

8 94.5±4.11,2 26.5±4.236 95.3±2.11,2 33.5±4.233-36 91.3±2.41,2 30.4±4.534-36 

15 

2 98.7±1.21 58.5±4.311-20 98.4±1.21 49.5±10.322-29 93.3±0.91,2 50.1±3.322-28 

4 98.7±1.31 52.5±3.618-25 98.6±1.81 52.5±3.818-25 94.3±1.31,2 49.0±4.922-29 

8 95.6±3.71,2 40.5±4.830-34 94.3±0.71,2 42.5±5.828-32 92.9±1.81,2 40.4±3.030-34 

100 

5 

 

2 98.9±0.61 60.5±3.69-17 97.8±1.61,2 52.5±2.118-25 96.3±0.61,2 55.6±4.312-23 

4 98.2±1.41 58.8±2.611-20 98.3±0.81 53.5±6.616-24 94.4±1.11,2 55.3±2.512-23 

8 96.3±1.41,2 52.3±4.319-25 98.2±0.41 45.3±1.325-31 93.3±0.11,2 43.3±2.827-31 

10 

2 99.1±0.41 72.5±3.53-7 98.2±1.51 59.5±7.110-19 95.2±2.51,2 60.1±0.810-19 

4 97.4±2.01,2 75.3±4.33-5 97.8±2.01,2 58.3±7.511-21 96.3±0.81,2 55.2±4.412-23 

8 94.7±2.71,2 55.2±8.213-23 93.2±2.71,2 52.3±0.619-25 94.1±1.21,2 49.6±3.822-29 

15 

2 98.2±1.41 80.2±4.63 98.6±1.41 62.5±3.48-14 96.4±1.31,2 65.0±3.57-11 

4 97.5±2.01,2 74.7±6.13-6 97.8±1.01,2 58.4±4.911-21 96.0±1.01,2 61.7±4.78-15 

8 94.8±3.71,2 55.5±1.512-23 94.9±3.11,2 48.5±1.723-29 94.2±0.41,2 51.5±4.220-26 

125 

5 

2 98.9±0.31 60.5±5.29-17 98.2±0.31 62.8±7.58-13 96.8±0.71,2 60.1±3.810-19 

4 97.5±2.01,2 54.6±2.614-24 97.9±0.11,2 52.6±1.817-25 95.2±1.61,2 54.9±3.213-24 

8 97.2±1.81,2 50.5±3.221-27 97.8±0.31,2 53.4±1.616-24 92.6±0.51,2 56.6±4.512-22 

10 

2 98.9±0.11 80.5±3.43 98.5±0.91 65.1±3.57-11 97.5±0.81,2 72.0±4.44-7 

4 98.3±0.71 78.3±5.93,4 98.2±1.41 63.2±9.18-12 95.2±1.31,2 66.9±5.26-10 

8 96.3±3.41,2 56.3±4.312-23 95.9±2.11,2 54.1±5.515-24 92.9±0.81,2 54.0±2.115-24 

15 

2 98.8±0.61 78.5±7.63,4 98.7±0.31 68.1±5.75-9 95.9±0.51,2 68.1±5.95-9 

4 97.7±1.31,2 80.3±5.43 98.2±1.41 60.9±6.98-16 95.2±0.61,2 68.7±5.15-8 

8 95.4±2.41,2 60.3±4.69-18 95.3±2.31,2 54.1±3.315-24 92.4±1.01,2 56.3±3.112-23 

Means sharing the same superscript numbers between the columns are not significantly different (p < 0.05). 
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Table 6.4. Pyrolysis yields from untreated and AFEX™ pretreated feedstocks 

Feedstock 
Screen size 

(mm) 

Bio-oil 

(%) 

Bio-char 

(%) 

Syngas 

(%) 

Untreated corn stover 

2 47.3a-c 23.9a-e 28.8a-c 

4 46.9c 24.7ab 28.4a-c 

8 46.1bc 24.5a-c 29.4a-c 

Untreated prairie cord 

grass 

2 48.0ab 24.4a-c 27.5bc 

4 46.5bc 24.9a 28.6a-c 

8 49.0a 23.7a-e 27.3c 

Untreated switchgrass 

2 47.8a-c 22.0ef 30.2a-c 

4 46.3bc 23.8a-e 29.9a-c 

8 46.1bc 22.6c-f 31.3a 

AFEX™ corn stover 

2 48.1ab 22.4d-f 29.5a-c 

4 46.9a-c 22.0ef 31.1ab 

8 46.3bc 22.9b-f 30.8a-c 

AFEX™ prairie cord 

grass 

2 47.7c 23.6a-e 28.7bc 

4 47.5bc 23.9a-e 28.6a-c 

8 47.8c 23.9a-f 28.3c 

AFEX™ switchgrass 

2 48.1ab 22.8c-f 29.1a-c 

4 45.9bc 22.5d-f 31.6a 

8 46.3bc 24.1a-d 29.6a-c 

Means sharing the same superscript letters between the columns are not significantly 

different (p < 0.05). 
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Table 6.5. Properties of the bio-oil and bio-char obtained from untreated and 

AFEX™ pretreated feedstocks 

Feedstock 

Screen 

size 

(mm) 

Bio-oil Bio-char 

pH 

Oil 

density 

(g cm-3) 

Viscosit

y 

(cP) 

 Heating 

value  

(MJ/kg) 

Bulk 

density 

(g cm-3) 

Particle 

density 

(g cm-3) 

 

Untreated corn 

stover 

2 2.67a 1.25a 2.6abc 15.3cde 0.05h 0.43hi  

4 2.76a 1.21a 2.5abc 15.8a 0.06fg 0.51gf  

8 2.67a 1.26a 2.5abc 15.5a-d 0.07f 0.56f  

Untreated prairie 

cord grass 

2 2.59ab 1.25a 2.5abc 15.2ef 0.06fg 0.46gh  

4 2.26b 1.21a 2.4abc 15.4b-e 0.06fg 0.49gh  

8 2.58ab 1.24a 2.4abc 15.5a-d 0.06fg 0.48gh  

Untreated 

switchgrass 

2 2.77a 1.25a 2.1c 14.9f 0.04h 0.40i  

4 2.66a 1.20a 2.2bc 15.0ef 0.06fg 0.47gh  

8 2.54ab 1.20a 2.2bc 14.9f 0.06fg 0.47gh  

AFEX™ corn 

stover 

2 2.74a 1.24a 2.6abc 15.5ef 0.15b 0.82c  

4 2.46ab 1.20a 2.4abc 15.7ab 0.18a 0.90b  

8 2.25b 1.21a 2.9a 15.8a 0.19a 1.12a  

AFEX™ prairie 

cord grass 

2 2.52ab 1.25a 2.4abc 15.6abc 0.12c 0.73de  

4 2.62ab 1.24a 2.5abc 15.5a-d 0.13c 0.76cd  

8 2.53ab 1.20a 2.2bc 15.5a-d 0.13c 0.90b  

AFEX™ 

switchgrass 

2 2.42ab 1.24a 2.5abc 15.2def 0.10d 0.67e  

4 2.46ab 1.24a 2.7ab 15.0f 0.11d 0.75d  

8 2.45ab 1.25a 2.4abc  15.3cde 0.12c 0.77cd  

Means sharing the same superscript letters for a given property between the columns are 

not significantly different (p < 0.05). 
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Table 6.6. Fast pyrolysis yields from untreated and AFEX™ pretreated corn stover 

pellets 

Temp 

(°C) 

Moisture 

(% wb) 

Scree

n size  

(mm) 

Untreated corn stover 

pellets 
AFEX corn stover pellets 

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

75 

5 

2 46.1 26.8 27.1 46.8 24.4 28.8 

4 46.7 24.0 29.3 45.9 26.6 27.5 

8 46.4 23.5 30.2 44.0 23.3 32.7 

10 

2 45.0 22.0 33.0 47.6 23.4 29.0 

4 44.8 23.8 31.4 45.6 25.9 28.5 

8 45.6 24.7 29.7 45.6 26.9 27.5 

15 

2 46.9 23.9 29.2 46.6 23.9 29.5 

4 48.4 25.2 26.4 47.9 27.8 24.3 

8 47.5 25.3 27.2 47.0 26.8 26.2 

100 

5 

2 45.0 27.1 27.9 46.9 24.2 29.0 

4 45.9 26.8 27.3 45.7 24.7 29.6 

8 47.7 23.6 28.8 45.8 25.6 28.6 

10 

2 46.8 26.9 26.3 44.8 24.8 30.5 

4 48.3 25.3 26.4 46.2 23.4 30.4 

8 45.9 25.8 28.3 44.4 25.1 30.5 

15 

2 47.8 25.3 27.0 48.4 27.4 24.2 

4 46.3 21.3 32.4 45.4 24.7 29.8 

8 46.1 25.5 28.4 45.5 25.5 29.0 

125 

5 

2 46.7 23.4 30.0 47.0 26.0 26.9 

4 46.0 23.5 30.5 48.8 25.1 26.1 

8 46.0 25.2 28.7 44.9 25.7 29.4 

10 

2 45.1 26.8 28.1 46.9 25.2 27.8 

4 47.7 24.7 27.7 47.8 26.2 26.0 

8 46.8 25.6 27.6 47.4 22.8 29.8 

15 

2 47.3 21.9 30.8 47.2 25.4 27.5 

4 45.9 28.4 25.7 46.9 25.5 27.6 

8 47.8 24.4 27.8 47.0 25.8 27.2 
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Table 6.7. Fast pyrolysis yields from untreated and AFEX™ pretreated prairie cord 

grass pellets 

Temp 

(°C) 

Moisture 

(% wb) 

Screen 

size  

(mm) 

Untreated prairie cord 

grass  

pellets 

AFEX™ prairie cord 

grass  

pellets 

   

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

75 

5 

2 43.2 25.2 31.6 47.0 24.8 28.2 

4 45.3 24.3 30.4 46.2 23.4 30.4 

8 46.5 24.9 28.6 47.2 24.1 28.7 

10 

2 47.2 25.2 27.6 47.8 23.9 28.3 

4 43.8 24.3 31.9 48.0 24.6 27.4 

8 47.2 25.3 27.5 46.5 23.7 29.8 

15 

2 46.6 24.7 28.7 45.9 23.9 30.2 

4 45.4 25.2 29.4 47.2 23.5 29.3 

8 47.2 24.6 28.2 48.5 24.0 27.5 

100 

5 

2 46.5 24.9 28.6 46.8 24.8 28.4 

4 45.2 25.2 29.6 47.3 23.5 29.2 

8 46.2 25.2 28.6 48.2 25.4 26.4 

10 

2 45.9 25.7 28.4 47.2 23.4 29.4 

4 46.3 26.9 26.8 47.6 25.2 27.2 

8 47.2 24.9 27.9 46.8 24.3 28.9 

15 

2 46.2 25.2 28.6 45.3 24.0 30.7 

4 47.5 24.3 28.2 46.5 23.9 29.6 

8 45.9 25.6 28.5 48.4 25.1 26.5 

125 

5 

2 45.3 25.2 29.5 47.3 23.4 29.3 

4 47.2 24.9 27.9 45.2 25.2 29.6 

8 46.3 25.3 28.4 46.4 24.3 29.3 

10 

2 45.2 25.2 29.6 43.2 24.8 32.0 

4 47.2 24.9 27.9 45.2 23.9 30.9 

8 46.2 26.2 27.6 48.9 24.3 26.8 

15 

2 45.7 24.5 29.8 48.2 25.2 26.6 

4 46.9 26.1 27.0 47.5 24.7 27.8 

8 47.2 24.6 28.2 46.5 23.9 29.6 
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Table 6.8. Fast pyrolysis yields from untreated and AFEX™ pretreated switchgrass 

pellets 

Temp 

(°C) 

Moisture 

(%) 

Screen 

size 

(mm) 

Untreated switchgrass 

pellets 

AFEX switchgrass 

pellets 

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

Bio-

oil 

(%) 

Bio-

char 

(%) 

Syngas 

(%) 

75 

5 

2 46.1 25.0 28.9 46.1 25.3 28.6 

4 46.4 25.6 28.0 45.8 25.3 28.9 

8 45.3 24.6 30.1 45.6 25.4 29.0 

10 

2 47.0 25.9 27.1 46.0 26.3 27.7 

4 46.7 25.2 28.1 46.0 26.4 27.6 

8 45.7 24.4 29.9 45.8 25.8 28.4 

15 

2 45.3 26.0 28.7 45.7 26.4 27.9 

4 45.3 24.7 30.0 45.6 25.9 28.4 

8 46.4 24.6 29.0 45.7 25.3 29.0 

100 

5 

2 46.8 25.6 27.6 46.3 27.0 26.7 

4 46.4 25.1 28.5 46.0 26.7 27.3 

8 45.8 25.1 29.1 45.9 25.7 28.4 

10 

2 47.0 25.3 27.7 45.9 25.3 28.8 

4 46.4 24.7 28.9 46.4 25.3 28.3 

8 46.4 25.7 27.9 45.7 26.4 27.9 

15 

2 47.0 25.3 27.7 46.2 26.8 27.0 

4 46.7 24.5 28.8 45.8 26.4 27.8 

8 46.3 25.3 28.4 46.1 25.8 28.1 

125 

5 

2 46.4 26.6 27.0 47.8 25.1 27.0 

4 46.3 24.8 28.8 47.2 25.1 27.7 

8 46.1 26.4 27.5 46.7 25.1 28.2 

10 

2 46.2 25.2 28.6 46.2 25.2 28.7 

4 46.3 24.9 28.8 47.9 25.5 26.7 

8 46.0 25.5 28.5 46.1 25.6 28.3 

15 

2 46.2 26.6 27.2 47.1 27.0 25.9 

4 45.6 26.8 27.6 47.3 26.7 26.0 

8 47.2 27.0 25.8 46.1 25.7 28.2 
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Table 6.9. Fast pyrolysis yields from AFEX™ ComPAKs. 

Moisture  

(% wb) 
Screen size (mm) Bio-oil (%) Bio-char (%) Syngas (%) 

Corn stover 

2 45.7 23.9 30.4 

4 46.2 24.3 29.4 

8 45.3 24.5 30.2 

Prairie cord grass 

2 46.4 25.2 29.4 

4 46.2 24.6 29.2 

8 47.1 25.3 27.6 

Switchgrass 

2 45.8 24.1 30.1 

4 44.9 24.7 30.4 

8 45.3 24.0 30.7 

 

 

Table 6.10. Properties of the bio-oil and bio-char from untreated prairie cord grass 

pellets 

Temp 

(°C) 

Moisture  

(% wb) 

Screen 

size 

(mm) 

pH 

Oil 

density  

(g cm-

3) 

Viscosity  

(cP) 

Heating 

value  

(MJ/kg) 

Bulk 

density  

(g cm-

3) 

Particle 

Density  

(g cm-3) 

75 

5 

2 2.47 1.23 1.8 15.3 0.08 0.46 

4 2.70 1.24 2.1 15.3 0.08 0.58 

8 2.48 1.24 2.4 15.4 0.09 0.48 

10 

2 2.36 1.20 2.1 15.4 0.08 0.57 

4 3.03 1.21 1.9 15.3 0.07 0.55 

8 2.65 1.22 2.1 15.5 0.06 0.56 

15 

2 2.90 1.20 2.2 15.3 0.06 0.53 

4 2.73 1.19 2.3 15.4 0.05 0.47 

8 2.79 1.24 2.0 15.4 0.06 0.49 

100 

5 

2 2.57 1.24 2.3 15.4 0.05 0.52 

4 2.3 1.22 2.4 14.9 0.06 0.56 

8 3.05 1.21 2.2 15.6 0.07 0.49 

10 

2 2.41 1.21 2.4 14.8 0.06 0.52 

4 2.37 1.23 2.4 15.1 0.05 0.53 

8 2.58 1.20 2.2 15.3 0.04 0.39 

15 

2 2.30 1.25 2.4 15.6 0.07 0.46 

4 2.65 1.20 2.2 14.9 0.08 0.40 

8 2.66 1.21 2.4 15.0 0.07 0.53 

125 

5 

2 2.56 1.24 2.4 15.1 0.05 0.56 

4 2.79 1.25 2.4 15.4 0.07 0.48 

8 2.40 1.24 2.1 15.5 0.05 0.55 

10 

2 2.93 1.22 2.4 15.2 0.06 0.48 

4 2.57 1.23 2.3 15.5 0.07 0.43 

8 2.66 1.25 2.5 15.4 0.04 0.40 

15 

2 2.79 1.21 2.4 15.4 0.07 0.52 

4 2.61 1.22 1.9 15.0 0.05 0.54 

8 2.47 1.21 2.3 15.2 0.05 0.52 
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Table 6.11. Properties of the bio-oil and bio-char from AFEX™ prairie cord grass 

pellets 

Temp 

(°C) 

Moisture  

(% wb) 

Screen 

size 

(mm) 

pH 

Oil 

density  

(g cm-

3) 

Viscosity  

(cP) 

Heating 

value  

(MJ/kg) 

Bulk 

density  

(g cm-

3) 

Particle 

Density  

(g cm-3) 

75 

5 

2 2.30 1.26 2.8 15.4 0.13 0.74 

4 2.65 1.23 2.2 15.5 0.14 0.73 

8 2.83 1.25 2.4 15.5 0.13 0.76 

10 

2 2.56 1.23 2.3 15.2 0.14 0.74 

4 2.70 1.24 2.4 15.4 0.13 0.77 

8 2.91 1.23 2.7 15.7 0.12 0.74 

15 

2 2.40 1.23 2.2 15.8 0.16 0.75 

4 2.73 1.21 2.4 15.6 0.15 0.71 

8 2.81 1.23 2.3 15.2 0.15 0.74 

100 

5 

2 2.67 1.23 2.3 15.7 0.13 0.75 

4 2.72 1.24 2.5 15.3 0.15 0.76 

8 2.45 1.21 2.4 15.4 0.12 0.73 

10 

2 2.67 1.22 2.6 15.4 0.12 0.74 

4 2.54 1.21 2.7 15.6 0.11 0.75 

8 2.64 1.24 2.4 15.6 0.12 0.75 

15 

2 2.72 1.27 2.4 15.2 0.13 0.73 

4 2.59 1.25 2.7 15.8 0.11 0.76 

8 2.63 1.25 2.5 15.4 0.14 0.74 

125 

5 

2 2.88 1.24 1.9 15.3 0.13 0.76 

4 2.29 1.25 2.7 15.2 0.13 0.70 

8 2.70 1.24 2.4 15.4 0.14 0.73 

10 

2 2.32 1.23 2.2 15.3 0.13 0.74 

4 2.54 1.23 2.4 15.4 0.14 0.74 

8 2.49 1.25 2.6 15.4 0.12 0.73 

15 

2 2.66 1.21 2.5 15.2 0.14 0.77 

4 2.73 1.22 2.5 15.6 0.12 0.75 

8 2.47 1.25 2.2 15.6 0.15 0.74 
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Fig. 6.1. Untreated, AFEX™ pretreated, untreated pelleted, AFEX™ pretreated 

pelleted, AFEX™ pretreated PAKs, bio-char, and bio-oil obtained from corn stover.  
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Fig. 6.2. Pyrolysis experimental setup 

(1) Electric furnace; (2) Stainless steel reactor; (3) Biomass sample; (4) Quartz wool; (5) Steel wool; (6) Conical flask with 

nose; (7) Ice bath; (8) Exhaust; (9); Thermocouple; (10) Compressed nitrogen cylinder 
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(a) Corn stover 

 

 

 

 

  

(b) Prairie cord grass 

 

 

 

 

 

 

 

 

 

 

 

(c) Switchgrass 

 

Fig. 6.3. Thermogravimetric (TG) and Derivative weight (DW) loss curve for 

untreated and AFEX™ pretreated corn stover, prairie cord grass, and switchgrass. 
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(a) Corn stover 

 

 

 

 

 

 

 

 

(b) Prairie cord grass 

 

 

 

 

 

 

 

 

(c) Switchgrass 

Fig. 6.4. Thermogravimetric (TG) loss curve for 2 mm untreated, pelleted 

AFEX™ pretreated, and ComPAKco densified AFEX™ corn stover (CS), 

prairie cord grass (PCG), and switchgrass (SG). 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions  

Lignocellulosic biomasses corn stover, prairie cord grass, and switchgrass were 

subjected to Ammonia Fiber Expansion (AFEX) pretreatment and the impacts were 

studied on the densification behavior, quality of the densified products, and the yields of 

the end products. The compression behavior of corn stover, prairie cord grass, and 

switchgrass was studied to understand the impacts of AFEX pretreatment. Feedstocks 

were compressed using a single pelleting unit and the pellet unit density was recorded. 

The factors moisture content, compressive load, and hammer mill screen sizes were 

varied and the compressive behavior was studied using powder compaction models 

(Jones, Walker, and Kawakita and Ludde). The constant values from the models 

indicated the impact of AFEX™ pretreatment, which made the biomass easier to 

compress at low pressure. Also the models indicate, at moisture content in the range of 

16%- 20% AFEX pretreated biomasses require less pressure to produce highly 

compacted pellets. 

 The blending effects were studied using AFEX pretreated corn stover and 

switchgrass on pellet unit density, pellet hardness, specific energy consumption for 

pellets production, and the sugar yields. A single pelleting unit was employed in the study 

and the pellets produced from AFEX™ pretreated samples reached their maximum pellet 

unit densities at lower pressure. Pellet hardness was tested by applying the force to the 

pellets and recording the maximum force required to break. Results showed that the 

pellets produced from the small screen size sample at a higher applied pressure required 
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more force to break. Besides, blend with higher proportion of AFEX™ pretreated corn 

stover produced harder pellets. Specific energy consumption for the pellets production 

varied from 11.4 to 57.9 kW h t−1, and due to low bulk density of switchgrass, blends 

with a higher proportion of switchgrass consumed more energy for pellet production. 

Glucose yields of the AFEX™ pretreated samples were enhanced by 4–4.5 times and the 

xylose yields by 2–2.5 times compared to the untreated samples. Pelleting and biomass 

blending had no significant effects on sugar yields of the AFEX™ pretreated corn stover 

and switchgrass samples. This results indicate that blending and pelleting the AFEX™ 

pretreated feedstocks can be a potential and viable option to minimize the logistical 

issues without affecting the sugar yields. 

The impacts of AFEX™ pretreatment, feedstock moisture content, particle size, 

and extrusion temperature was investigated on pellet bulk density, pellet hardness, and 

sugar recovery from corn stover, prairie cord grass, and switchgrass.  The feedstocks 

were densified using a laboratory-scale extruder. AFEX™ pretreatment increased 

subsequent pellet bulk density of corn stover, prairie cord grass, and switchgrass. 

Maximum pellet hardness was recorded for AFEX™ pretreated feedstocks compared to 

the pellets made from untreated feedstocks. Glucose yields of the pellets produced from 

AFEX™ corn stover, AFEX™ prairie cord grass, and AFEX™ switchgrass were 1.6 

times, 2.1 times, and 2.3 times higher, respectively, compared to pellets produced from 

untreated samples. Glucose and xylose yields of AFEX™ pellets were not affected by the 

extruder barrel temperature and the hammer mill screen size. The results obtained 

showed that low temperature and large particle size during the extrusion pelleting process 

can be employed for AFEX™ treated biomass without compromising sugar yields. 



159 

 

  Durability of the AFEX™ pretreated corn stover, prairie cord grass, and 

switchgrass pellets ranged from 94.5% to 99.2%, 94.3% to 98.7, and 90.1% to 97.5% 

respectively. A significant increase in the pellet durability was noticed for the pellets 

made from AFEX™ pretreated feedstocks compared to the untreated feedstocks. The 

impacts of AFEX™ pretreatment and densification were studied on the thermochemical 

conversion process. Thermal stability of the feedstocks were increased after AFEX™ 

pretreatment when thermogravimetric analysis was used. It was observed that hammer 

mill screen size did not have any significant influence on the fast pyrolysis products 

yield. The yields of bio-oil and bio-char varied from 45.9% to 48% and 22.0 to 24.9%, 

respectively for the untreated and AFEX™ pretreated feedstocks. No significant 

difference in the bio-oil and bio-char yields was observed for the untreated and AFEX™ 

pretreated feedstocks when subjected to fast pyrolysis. Similarly, the extrusion and 

ComPAK co densified feedstocks had no significant effect on the products yield 

indicating the feasible option to densify the AFEX™ pretreated feedstocks in the 

processing depots without affecting the product yields.  

7.2. Recommendations  

7.2.1. Increase the hammer mill screen size range  

In this study, hammer mill screen sizes were varied at 2, 4, and 8 mm. The results 

obtained showed that hammer mill screen sizes employed had no significant influences on 

the densified products quality and products yield. Hence, the hammer mill screen size 

should be expanded beyond 8 mm and the impacts can be studied.  
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7.2.2. Varying extruder parameters  

Extrusion study was conducted only varying the barrel temperature. Literature 

shows that screw speed and die diameter influences the quality of the densified products 

and end product yields. Hence different screw speeds and die diameter can be evaluated.  

7.2.3. Comparison of different densification methods  

In this study, two types of densification method was studied viz. Extrusion 

pelleting and ComPAK co technique. The quality of the densified products obtained from 

different methods can be compared to evaluate the best densification method for logistics. 

This includes comparing the product hardness, bulk density, water resistance, energy 

requirements, etc.  

7.2.4. Determine the effects of different temperature and heating rates on pyrolysis 

yields 

In our study, set temperature of 400°C and heating rate of 30°C per min were used 

for pyrolyzing the feedstocks. Different combination of pyrolysis temperature and heating 

rates can be tested to optimize the bio-oil, bio-char, and syngas yields.  
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