

Understanding the Interconnection Network of SpiNNaker
Javier Navaridas†, Mikel Luján*, Jose Miguel-Alonso†, Luis A. Plana*, Steve Furber*

† Dpt. of Computer Architecture and Technology

The University of the Basque Country, Spain
Manuel de Lardizabal, 1. 20018 San Sebastian

(+34) 943 018019

 * School of Computer Science

The University of Manchester
Oxford Road, Manchester M13 9PL, UK.

(+44) 161 306 9280

{javier.navaridas, j.miguel}@ehu.es {mikel.lujan, plana, steve.furber}@manchester.ac.uk

ABSTRACT
SpiNNaker is a massively parallel architecture designed to model
large-scale spiking neural networks in (biological) real-time. Its
design is based around ad-hoc multi-core System-on-Chips which
are interconnected using a two-dimensional toroidal triangular
mesh. Neurons are modeled in software and their spikes generate
packets that propagate through the on- and inter-chip
communication fabric relying on custom-made on-chip multicast
routers. This paper models and evaluates large-scale instances of
its novel interconnect (more than 65 thousand nodes, or over one
million computing cores), focusing on real-time features and
fault-tolerance. The key contribution can be summarized as
understanding the properties of the feasible topologies and
establishing the stable operation of the SpiNNaker under different
levels of degradation. First we derive analytically the topological
characteristics of the network, which are later confirmed by
experimental work. With the computational model developed, we
investigate the topology of SpiNNaker, and compare it with a
standard 3-dimensional torus. The novel emergency routing
mechanism, implemented within the routers, allows the topology
of SpiNNaker to be more robust than the 3-dimensional torus,
regardless of the latter having better topological characteristics.
Furthermore, we obtain optimal values of two router parameters
related with livelock and deadlock avoidance mechanisms.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Network topology
C.4 [Performance of Systems]: – Fault tolerance, Performance
attributes

General Terms
Performance, Design, Reliability, Experimentation.

Keywords
Analytical Evaluation, Biologically Inspired Architecture, Fault
Tolerance, Interconnection Networks, Massively Parallel
Architecture, Performance Evaluation, Real-time Applications,
Spiking Neurons, Systems on Chip.

1. INTRODUCTION
The SpiNNaker system is a biologically-inspired massively
parallel architecture of bespoke multi-core System-on-Chips
(SoC) designed with the aim of simulating up to a billion spiking
neurons in (biological) real-time. Its main applications are to be
the “mind” of a robot providing real-time stimulus-response
behavior [8], and as an experimental platform to improve our
understanding of the brain architecture. Biological spiking neural
networks communicate by means of spike events which occur
when a neuron is stimulated beyond a given threshold and fires.
Spike events are communicated to all connected neurons, with
typical fan-outs of the order of 1000. Fortunately, applications
such as these have abundant parallelism and no explicit
requirement to maintain consistency in shared memories. Another
characteristic of the biological process is its inherent resilience to
failures; neurons may die and spikes may be missed. Furthermore,
the biological process [6, 10] advances at very low pace when
compared to standard computer components: milliseconds vs.
microseconds, and with neurons spiking in average 10 times per
second (average firing rate of 10Hz).

SpiNNaker takes advantage of these characteristics to deploy a
well-balanced, low-power massively parallel architecture. The
largest configuration houses 216 nodes creating a system with over
one million computing cores, able to simulate neural nets with
more than one billion (109) neurons. Its design is based around
bespoke multi-core SoC which are interconnected using a two-
dimensional (2D) toroidal triangular mesh. Neurons are modeled
in software and their spikes generate packets that propagate
through the on- and inter-chip communication fabric relying on
bespoke on-chip multicast routers.

This paper focuses on the Interconnection Network (IN) that
implements the inter-chip communication used to simulate
synaptic connections. We describe SpiNNaker and its topology
(Section 2) and derive analytically its most interesting
characteristics (Section 3). SpiNNaker sits at a rather different
design point compared with High-Performance Computing (HPC)
systems, such as those in the TOP500 list [7]. Those are
commonly built with very fast processors over not-so-fast
networks, while SpiNNaker uses low-power cores working at
200MHz with an IN capable of communicating at 1 Gbps. These
features dictate that our experimental study (Section 4) is far from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’09, June 8–12, 2009, York Town Heights, New York, USA.

Copyright 2009 ACM 978-1-60558-498-0/09/06...$5.00.

a traditional one in HPC; latency and throughput become
secondary figures of merit. In fact the main concern is to be able
to understand the balance between injection load and the number
of dropped packets, as SpiNNaker implements a packet dropping
mechanism to avoid deadlock and livelock. Given the large scale
of the system, throughout the experimental study we consider
scenarios in which the IN suffers different levels of failures. As
the IN traffic is dependent on the specific features of the spiking
neural network, the experiments consider a worst case scenario
where the traffic disregards locality and pushes the injection load
beyond the biological 10Hz average neuron firing rate. Finally,
Section 5 presents related work, while Section 6 summarizes the
work.

Recapitulating, the main contributions of this paper are:

� an analytical characterization of SpiNNaker’s IN topology and
its properties;

� a computational model of the system used to carry out
simulation-based studies that validate the analytical study;

� the characterization of optimal parameters for the deadlock and
livelock avoidance mechanisms;

� a worst-case study of the stability of the SpiNNaker IN under
pessimistic levels of failures and injection load scenarios
beyond the expected normal operation; and

� an assessment of the efficiency of emergency routing to keep
the system operating stably.

2. SPINNAKER ARCHITECTURE
To emulate the very high connectivity of biological systems,
SpiNNaker uses a self-timed, packet-switched network which
supports efficient multicast, high bandwidth, and low-delay
communications. The heart of the communication infrastructure is
an on-chip router and the self-timed implementation of the fabric
that allows the seamless extension of the on-chip communications
to include the inter-chip links. Further details of the
communication fabric can be found in [19].

2.1 SpiNNaker Node
The basic block or node is the SpiNNaker chip. It contains one
multi-core SoC with 20 low-power ARM968 cores. Each core has
a tightly-coupled dedicated memory that can hold 32KB of
instructions and 64KB of data. Each core runs an independent
event driven neural process with events generated by modules
such as timer, vector interrupt controller (VIC), communication
controller (CC) and DMA controller. All the cores in a chip share
a SDRAM of up to 1 GB storing, for example, synaptic
connection information. Access to this shared storage space is
carried out by means of a self-timed NoC [9] which is used to
connect resources in the chip. The router can be accessed through
the NoC, but only for configuration purposes; during normal
execution the ARM cores use the communication controller to
send or receive packets. This NoC provides higher
communication bandwidth (8 Gbps), lower contention and lower
power consumption than any typical bus-based interconnect [20].
A model of the SpiNNaker chip is depicted in Fig. 1. Detailed
simulations of the chip using Verilog and SystemC showed that
each core can model in biological real-time up to around 1000
individual neurons [13].

2.2 On-chip Router
Each chip incorporates a router [9] that allows inter- and on-chip
communications. The router is the heart of the NoC and occupies
approximately 10% of the chip area. Its primary role is to direct
each neural event packet to those cores where the connected
neurons are located. Given the area constraints of the SpiNNaker
chip, popular NoCs based on 2D meshes are not feasible because
of the large area they occupy.

A depiction of the router is shown in Fig. 2. It has 20 ports for
internal use by the ARM cores and six ports to communicate with
six adjacent chips. All ports are full-duplex and implement self-
timed protocols. The organization within the router is hierarchical;
ports are merged in three stages before using the actual routing
engine. Note that the router is able to forward a single packet at
once, but it works faster than transmission ports. Thus, most of the
time routers will be idle, and router delay barely affects the pace
at which packets are processed.

The router is designed to support point-to-point and multicast
communications using small packets (5 bytes, normally 40 bits).

ARM968

Core

INSTR Timer

VIC

DMA
Ctrl.

Comm. Ctrl.

20

NoC

SDRAM
Boot
ROM

System
Ctrl.

Router

N S

W

E

S
W

N
E

Ethernet

20

DATAC
a
c
h
e

20

Figure 1. Schematic model of the SpiNNaker

chip with all its components depicted.

W

E

M
e
rg

e
r

NE

SW

M
e
rg

e
r

N

S

M
e
rg

e
r

M
e
rg

e
r

M
e
rg

e
r

M
e
rg

e
r

M
e
rg

e
r

1Gbps

D
e
c
o
d
e
 P

a
c
k
e
t

R
o
u
te

 P
a
c
k
e
t

O
u
tp

u
t

S
e
le

c
t

Router

 W

 E

 SW

 N

 S

 NE

from
cores

2
G

b
p
s

4
G

b
p
s

1Gbps

to
cores

Routing
Table8

G
b
p
s

Figure 2. Architecture of the router. Black arrows represent

links outwards from the chip. White arrows represent hard-

wired links within the chip.

The multicast engine helps reducing pressure at the injection
ports, and reduces significantly the number of packets that
traverse the network, compared to a pure point-to-point
alternative. Routers make routing decisions based on the source
address (neuron identifier) of the packets. In other words, a
neural-event packet does not contain any information about its
destination(s), only the neuron that has fired.

The information necessary to deliver these packets to all the
relevant cores and chips is compressed and distributed across
1024-word routing tables. Each router contains one routing table,
and the tables have to be preloaded using application-specific
information. To allow further compression, the tables offer a
masked associative route look-up and the routers are designed to
perform a default routing (no entry needed in the tables) that
sends the packet to the port opposite to the one the packet comes
from. For example, if the packet comes from the North it will be
sent to the South. Thus, the expected shape of the routes between
chips is by means of two straight lines with one inflection point
[14].

The network topology allows two-hop routes among neighbor
chips (see Fig. 3) which are denoted as emergency routes. These
routes may be invoked to bypass problematic links due to
transient congestion states or link failures. In practice, only one of
the two possible turns is implemented in the router to minimize
chip area.

The flow-control mechanism is very simple. When a packet
arrives to an input port, one or more output ports are selected and
the router tries to transmit the packet through them. If the packet
cannot be forwarded, the router will keep trying, and after a given
period of time it will also test the clockwise emergency route. It
will try both the regular and the emergency route. Finally, if a
packet stays in the router for longer than a given threshold
(waiting time) the packet will be dropped to avoid deadlock
scenarios. To avoid livelock situations, packets have an age field
in their header. When two ages pass and the packet is still in the
IN, it is considered outdated and dropped. The ages are global to

the whole system and its time-span is arbitrary, a router
configuration parameter. Section IV-C provides bounds for the
recommended values for these two network parameters (waiting
time and age length).

Emulating the behavior of biological neural networks, dropped
packets in SpiNNaker are not re-sent. Losing neurons (one per
second in human brains) or signals does not impede the normal
functioning of the biological processes; however, dropping level
must be kept (very) low.

2.3 Topology of the Interconnection Network
SpiNNaker chips are arranged in a 2D mesh topology with links
to the North, South, East, West, Southwest and Northeast
neighbors. An 8×8 instance of this topology is depicted in Fig. 3.
Note that chips at the network boundaries are connected by means
of peripheral, wrap-around links not shown in the figure for the
sake of clarity.

The external 6-ports in the SpiNNaker chip could also allow for a
three-dimensional (3D) torus arrangement. In fact, the topological
properties of a 3D torus, such as bisection bandwidth and distance
related characteristics, are better than those of the SpiNNaker
topology. Nonetheless, the topology chosen for SpiNNaker has
some interesting advantages:

� a two-dimensional system is easier to manufacture and deploy,

� the diagonal links add redundancy to the design, and

� the previously described emergency routing can be easily
implemented.

A three-hop emergency routing could be implemented in the on-
chip router to support a 3D torus configuration, but at a significant
cost in terms of chip area. Note also that routing in a 3D torus
requires more entries in the routing tables, as regular routes are
composed by three straight lines instead of two. This increases the
entries in the routing tables roughly by a 33%, which may force
an increase in the number of entries per table and, therefore, the
chip area. In Section 4.4 we compare the behavior of the two
topologies, illustrating how the greater stability provided by
emergency routing tips the scale in favor of the SpiNNaker
topology.

3. TOPOLOGICAL PROPERTIES
An analytical study of the IN allows us to derive some
representative characteristics: the maximum theoretical
throughput for uniform load (computed from the bisection
bandwidth), the average distance between nodes, and the diameter
of the network. For the sake of simplicity, we consider only
square topologies with an even number of nodes per dimension.
Expressions for other dimension ratios and/or odd number of
nodes per dimension could be derived analogously.

3.1 Definitions
The following conventions are used to denote elements and
characteristics of the IN under study:

n: The number of nodes per dimension.

N: The total number of nodes in the system; N=n2.

BB: The bisection bandwidth defined as the bandwidth of a
minimum cut joining two equal partitions of the network,
measured as the number of links in such cut.

Figure 3. Example of an 8×8 SpiNNaker topology. Peripheral

wrap-around connections are not depicted for the sake of

clarity. The regular route (thin and slashed line) and the

two emergency routes (thick and dotted lines) among

the two shaded nodes are shown.

Θ: The maximum theoretical throughput measured as the number
of packets per cycle each node can inject, when using uniform
traffic.

D: Diameter of the network, i.e. the maximum distance between
two nodes considering only minimal paths.

δ: Average distance between the nodes of the network. Again,
only minimal paths are considered.

3.2 Bisection Bandwidth
According to [5], in networks with uniform channel bandwidth, as
the one studied here, the bisection bandwidth is proportional to
the channel count of the minimum cut of the network. For an n×n
SpiNNaker topology, the minimum cut of the network in two
halves is the one that divides it in two adjacent rectangles; note
that both the horizontal and vertical cuts lead to the same scenario.
In both cases, the cut crosses n·4 links (n·2 internal and n·2

peripheral links). This means that at most n·4 packets can traverse

these links per cycle in each direction. Under random uniform

traffic, the
2

N nodes located in one half of the network generate

packets with probability 0.5 to the other half; therefore a

maximum of
cyclepackets

N

n

N

n
/

·16

4

·4
= can pass through the

bisection. The BB puts an upper bound on the maximum injection
rate per node under uniform traffic assumption. Thus, the
maximum theoretical throughput is:

nodecyclepackets
nn

n
//

16·16
2
==Θ .

Recall that the link bandwidth was selected as to keep
communication latencies below the biological real-time constraint
of 1ms, even in peaks of network utilization. Since the link

bandwidth is 1 Gbps, this leads to:

nodeGbps
n

/
16

=Θ .

However, the network is not expected to reach this theoretical
limit. Research in neuroscience provides an estimation of average
neuron firing rates of 10Hz in active populations [6]. Thereby, for
SpiNNaker, we can estimate the average network usage required
by each node as:

MbpsbitsneuronscoresHz 840·1000·20·10 = .

For the largest configuration of SpiNNaker (256×256), we obtain

a limit of the theoretical throughput

Mbps
n

62
16

1

256

1616
≈===Θ ,

which indicates that the system is expected to operate below 15%
of network capacity. Therefore no emphasis should be put on (nor
conclusions extracted from) the behavior of the IN under
saturation.

3.3 Distance-Related Characteristics
The average and maximum distance between nodes in a system
have a definite impact on the latency of packets that travel along

the network. For this reason, designers try to minimize these
properties. Note that the SpiNNaker topology is vertex-symmetric
and therefore all nodes have identical view of the network.

Consequently, the routing space of any node in this topology is
the same and can be seen as a set of hexagons centered in the
node, plus two symmetric sets of triangles. Fig. 4 depicts an

example of the routing space for a node in an 8×8 topology;
hexagons represent those nodes at distance 1, 2, 3 and 4. The
nodes forming the two symmetric triangles are at distance 5. To
simplify the computation of the distance-related characteristics we
consider a single node.

In general, the maximum network distance is the number of hops
needed to reach any node in the two smallest triangles and can be
computed as:






=




+=
3

·2

62

nnn
D .

Note that i·6 nodes are located in the hexagon at distance i when i

belongs to






2

,1
n . However, when n is even, the edges of the

outmost hexagon can be reached going either through the positive

or the negative dimensions. Thus, there are three nodes at distance

2

n that are counted twice. Finally for distance i in





 + D
n

,1
2

,

the two symmetric triangles at distance i contain








+














 −−





3mod

2
·3

26
·9

nn
i

n nodes each. When n is multiple

of six the last triangle contains a single node despite this
expression returning zero. Thus, the average distance is calculated
as:

()

)1·(

3mod
2

·3
6

·9,1max·
2

·2
2
·3·6

6

1

2

1

2

−
















+







−












 ++−

=
∑∑










==

nn

n
i

n
i

nn
i

n

i

n

i
δ

.

d=1

d=2

d=3

d=4

d=5

d=5

Figure 4. Example of a routing space for a SpiNNaker node –

represented by a dark dot – in an 8×8 topology (tessellated).

Light grey dots represent the origin of coordinates (0, 0).

4. EXPERIMENTAL WORK
4.1 Model of the System
A detailed model of the SpiNNaker IN was implemented in
INSEE [23], a time-driven simulator that has been previously used
in several high performance computing environment studies [4,
16, 17]. Note that SpiNNaker has a completely asynchronous

design, so the use of a time-driven approach introduces a very
fine-grain time discretization, with little influence on the results.
The computational model includes most of the features of the
router, and also the topological description of the system.
However, to be able to execute simulations of large-scale systems,
some modeling simplifications are needed. We model a cycle as
the time to route and forward a packet (1 cycle corresponds
approximately to 10 processor cycles). Since routing is faster than

transmission, we allow the router to process several packets in a
single cycle, provided that all the involved input and output ports
are different.

As the routing tables need to be configured differently for each

biological neural network, to avoid tying the evaluation to any
particular application, the table-based routing is not used (which
also reduces the computing resources required to perform
simulations). As the regular routes between chips in the actual
system will attempt to use a minimal path with a single inflection

point, packets are sent through minimal routes using Dimension
Order Routing (DOR) which emulates the expected shape of
actual communications in SpiNNaker. Note that, when applying
DOR, diagonal links are considered a third dimension (Z), thus

the routes followed by packets are always XY, XZ or YZ; note
that XYZ is not a minimal path.

The system is evaluated under point-to-point traffic only; the
multi-cast engine is not used. Nonetheless, the traffic used
disregards the inherent locality of communication in biological
system [6, 10] and examines injection loads above the expected
limit of 15% of the network capacity. Furthermore we want to
remark that, while DOR is unaware of network failures,
SpiNNaker is aware of these failures and can modify the routing
tables to avoid sending packets to areas pinpointed as conflictive.
Hence the results of the experimental study should be taken as
worst-case results.

The nodes are modeled as independent traffic sources that inject
packets following a Poisson temporal distribution, in which the

injection rate (packets/cycle/node) can be tuned to any desired
value. Furthermore, as all the ports from the cores inside a chip
are merged, we model all of them as a single injection queue with
room for four packets. If this queue is full and a core tries to

inject, packets will be dropped.

4.2 Validation of Topological Characteristics
Using the described model of SpiNNaker, we simulate different
sizes of the system ranging from 32×32 (1024 nodes) to 256×256
(65536 nodes). To allow the validation of the analytical study
performed in Section 3, the interconnection networks are fed with
uniform traffic.

Fig. 5 shows classical throughput graphs for networks of 64×64
and 128×128 nodes. Note that the threshold of 8Mbps corresponds

to an injection load of 0.01 packets/cycle/node. The throughput
values of the SpiNNaker router are almost indistinguishable from
the calculated theoretical limit up to an injection load of 0.12 in
Fig. 5a) and of 0.07 in Fig. 5b). In other words, the obtained

throughput follows the theoretical limit for injection loads up to 7
times the expected load. We can also see that the throughput
figures with higher injection rates cannot reach the theoretical
value. Just to verify the analytical results, in the figures we also
present the throughput results of the SpiNNaker topology but
using a router specifically designed for HPC scenarios (IBM
BlueGene/L torus network router [3, 21]). This kind of router is
normally off-chip and incorporates mechanisms such as multiple
virtual channels per physical link to increase throughput and

prevent deadlock, and a congestion-control technique based on the
prioritization of in-transit traffic. It does not implement, though,
the emergency routing mechanism, nor is it viable for a
SpiNNaker chip due to chip area constraints.

a) Throughput - 64x64 SpiNNaker Topology

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4

Injected load

A
c
c
e
p
te
d
 l
o
a
d

HPC router

SpiNNaker router

θ

b) Throughput - 128x128 SpiNNaker Topology

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20

Injected load

A
c
c
e
p
te
d
 l
o
a
d

HPC router

SpiNNaker router

θ

Figure 5. Throughput under uniform traffic of the SpiNNaker topology. Injected and accepted load (in packets/cycle/node).

Plots for the SpiNNaker router, for an HPC router and for the theoretical maximum throughput. a) 64×64. b) 128×128.

Table 1. Computed (comp.) and measured (meas.) average

and maximum distances for different network sizes.

network size comp. δ meas. δ comp. D meas. D

32×32 12.4516 12.4527 21 21

64×64 24.8923 24.8878 42 42

128×128 49.7795 49.7824 85 85

256×256 99.5564 99.5576 170 170

Table 1 compares the analytically derived (comp.) and measured
(meas.) average distance and diameter for the different networks.
Note that, to accurately measure the distance-related

characteristics, when an emergency route (two hops) is required,
this counts as a single hop. We can see that analytically derived
and measured diameters are the same. For the average distance,
computed and measured values are equal up to the second
decimal.

4.3 Optimization of Timeout Parameters
We evaluate the largest configuration of SpiNNaker (256×256)
under a wide range of injection rates from 0.001 to 0.068
packets/cycle/node, which roughly represent 1.6% and 109% of
the theoretical maximum throughput. This provides a picture of
the behavior of the system under different levels of
communication requirements. Note that most of the simulated
scenarios are noticeably above the expected utilization of the IN.
With this wide range we can study network behavior under
utilization peaks. This study considers uniform distribution of
packet destinations, although the actual system is expected to use
optimized mapping of the neurons keeping communicating
neurons in close proximity [14].

Different values of the waiting time (from 0 to 8) are tested to
elucidate an optimal value for the actual system. Note that zero-
waiting means that, if a packet cannot be transmitted, it tries the
emergency route and, if it is also unavailable, the packet is

dropped immediately. In the rest of the cases, the emergency route
is tested in the last half of the waiting time. The figures of merit
are the ratio of dropped packets, i.e. the amount of dropped

packets normalized to the number of injected packets, and the
injection rate at which each configuration is forced to drop
packets. Note that maximum latency figures help to select a good

value for the age-based packet dropping mechanism to avoid
livelock in the actual system. Although not mandatory, it is
preferable to keep latency low.

Furthermore we study the system under different degrees of

network failures. The experiments are repeated in systems with
one, two and 64 random link failures. The reason to test with one
and two failures is that SpiNNaker can adapt to avoid the non-
working components of the system and, thus, only a small amount

of failures are expected to occur at once. Moreover, if we consider
a pessimistic scenario of mean time between failures of 5 years
with a sigma of 2 years, the region of interest is [30..60] failures.
Given this interval and to test a worst case configuration, we
tested a system with 64 random link failures.

Fig. 6a) shows the ratio of dropped packets in systems without
failures. The lines disappearing at the bottom of the graphs are
those with this ratio equal to zero; i.e., no packet lost. Note that
the higher the waiting time, the higher the load the network is able

to manage without dropping packets. In contrast, the lower values
lead to higher dropped ratios as soon as the network becomes
saturated. This may lead into thinking that the higher the waiting
time, the better the performance.

However, when looking at scenarios with link failures—Fig. 6b),
c) and d)—the picture changes drastically. Those configurations
with high waiting times start dropping packets before those with
medium values, and reach unacceptably high dropped ratios

a) 256x256 in absence of failures

1.E-09

1.E-06

1.E-03

1.E+00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Injection rate (phits/node/cycle)

D
ro
p
p
e
d
 r
a
ti
o

wait=0

wait=1

wait=2

wait=3

wait=4

wait=5

wait=6

wait=7

wait=8

b) 256x256 with 1 link failure

1.E-09

1.E-06

1.E-03

1.E+00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Injection rate (phits/node/cycle)

D
ro
p
p
e
d
 r
a
ti
o

wait=0

wait=1

wait=2

wait=3

wait=4

wait=5

wait=6

wait=7

wait=8

c) 256x256 with 2 link failures

1.E-09

1.E-06

1.E-03

1.E+00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Injection rate (phits/node/cycle)

D
ro
p
p
e
d
 r
a
ti
o

wait=0

wait=1

wait=2

wait=3

wait=4

wait=5

wait=6

wait=7

wait=8

d) 256x256 with 64 link failures

1.E-09

1.E-06

1.E-03

1.E+00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Injection rate (phits/node/cycle)

D
ro
p
p
e
d
 r
a
ti
o

wait=0

wait=1

wait=2

wait=3

wait=4

wait=5

wait=6

wait=7

wait=8

Figure 6. Packet dropped ratio for the different values of waiting time and number of link failures.

a) Failure-free system. b) System with 1 failure. c) System with 2 failures. d) System with 64 failures.

faster. This occurs because long waiting times generate
congestion zones around the faulty links, which spread along the
whole network. The clearest example is wait=8, which, in all the
faulty scenarios, starts dropping packets noticeably before wait

values 4 to 7. Note also how the lower the waiting time, the lesser
the effect failures have on the dropped ratio. For wait=0 or
wait=1 we observe the same behavior independently of the
number of failures. In these cases, even the slightest contention

for the use of the resources leads to packet dropping. Therefore,
congestion zones are neither formed nor spread. Obviously, the
penalty to pay is a higher dropping ratio that surpasses the
acceptable threshold. The overall best performer waiting time is

wait=5. Nevertheless we have to keep in mind that, in scenarios
with high network pressure, unlikely to occur, it could perform
poorer than other smaller timeout values.

The experiments also search for the optimal length of an age in

terms of cycles, a requirement for a properly working livelock
avoidance mechanism. All packets being in the network for more
than two ages will be dropped. An age duration that allows
dropping outdated packets as soon as possible, but without

dropping useful, slowly-advancing packets is desirable. Age
duration could be fixed to the maximum packet latency value
obtained via simulation, which depended on the waiting time. As
ages are global to the whole network, a packet that is injected in
the last cycle of an age will be tagged with that age and, therefore,
is under the risk of being dropped as soon as the next age finishes,
so it will only have one age length plus one cycle to be delivered.
Selecting a lower value of age length may lead to unnecessary
packet dropping. For example, in the case of wait=1 an age length

of 373 cycles would be a good choice. Nonetheless, an outdated
packet may wander around the network for up to 746 cycles.
Table 2 summarizes the measured maximum latencies, for the
different waiting time values and number of link failures.

4.4 Stability of SpiNNaker
Due to the real-time nature of SpiNNaker, our next set of
experiments focuses on stability, understood as low variability of
performance indicators as time evolves. Another distinguishing
feature of SpiNNaker is the emergency routing mechanism, and
part of these experiments focus on assessing its contribution to
keep the system stable.

Experiments start with a fully functioning system, fed with
uniform traffic at 0.02 packets/cycle/node load (~32% of network

throughput, more than twice the expected worst-case scenario).
An increasing amount of failures is introduced every 5K network
cycles, simulating a system that degrades progressively, from 0 to
1024 link failures. At the beginning of every 5K-cycle block

failures are introduced at once. Performance metrics are measured
at intervals of 10 network cycles. In the graphs we plot accepted
load (packets/cycle/node), number of dropped packets, and packet

latency (average and maximum). We have fixed waiting time to 5
as suggested by the experiments reported in the previous
subsection. To better understand the impact of emergency routing
in system stability, we plot the evolution of three different

systems: a 256×256 SpiNNaker configuration with this feature
deactivated, SpiNNaker chips arranged as a 64×32×32 3D torus
which does not allow emergency routing, and the actual
SpiNNaker using emergency routing.

Fig. 7 plots all the obtained results. Notice that the horizontal axis
shows simulation clock (in cycles). The labels on the top (1, 2, 4,
…, 1024) indicate the total number of failures at the
corresponding interval: during the first 5K cycles the network was
fully operative, from 5K to 10K there was a single link failure,
from 10K to 15K there were two failures, and so on. Each
performance metric has its own unit, indicated in the vertical axes:
packets (for the dropped packets line; on the left axis), cycles (for

the latency related figures; left axis) and packets/cycle/node (for
the accepted load line; right axis).

Figures 7a) and b) show how the progressive introduction of
failures in the two systems without emergency routing resulted in
a high variability of the performance metrics. This effect is
reduced, but still very significant, for the 3D topology. Remember
that these are SpiNNaker chips arranged in a 3D torus topology,
but that are not using emergency routing because the on-chip
routers do not implement it due to chip area constraints. If we

look at results with emergency routing—Fig. 7c)—the system
performs very stably.

Focusing on the amount of dropped packets—which is the key
figure of merit, as its value must be kept low—we can see that the
systems without emergency routing start dropping packets as soon
as a single link fails. In the most extreme scenario (1024 failures)
the SpiNNaker topology without emergency routing dropped
roughly 25% of packets, the 3D torus dropped 8% of packets and
SpiNNaker with emergency routing dropped only 0.2% of
packets.

The conclusion of these experiments is that SpiNNaker has a
highly stable network for the real-time simulation of spiking

neurons, even under very pessimistic scenarios. The system does
not show significant performance fluctuations, and degrades
gracefully. Furthermore we have showed the potential of the
emergency routing mechanism to keep the system operating

stably.

5. RELATED WORK
Research in simulating biologically plausible neural networks
(brain-like systems) is not new and has remained a hot topic for
the last decades.

Table 2. Maximum latencies measured for different values of the waiting time and different number of network failures.

configuration wait=0 wait=1 wait=2 wait=3 wait=4 wait=5 wait=6 wait=7 wait=8

0 failures 174 373 790 890 1353 1411 1809 1975 2226

1 failure 174 373 789 888 1352 1411 1811 1974 2227

2 failures 174 373 789 889 1353 1409 1812 1973 2227

64 failures 174 371 787 891 1350 1415 1807 1968 2222

In the early nineties a team at U.C. Berkeley worked in the
Connectionist Network Supercomputer [1]. This project aimed to
build a supercomputer specifically tailored for neural computation
as a tool for connectionist research. The system was designed to

be implemented as a 2D mesh, with a target size of 128 nodes
(scalable to 512). Each node would incorporate a general-purpose
RISC processor plus a vector coprocessor, 16MB of RAM and a
router. To our knowledge, a prototype of the node was built

(under the codename T0), but the system never operated as a
network. Experiments using up to five nodes in a bus
configuration were discussed in [18].

More recently, the Microelectronics Division at the T.U. of Berlin
worked in a project [15] whose objectives were similar to those of
SpiNNaker. Part of this project is an acceleration board, called
SSE, implemented with a collection of FPGAs interconnected via

an on-board bus. An SEE accelerator is able to perform neural
computations 30 times faster than a desktop PC [12]. Other
projects used FPGAs for similar purposes, obtaining speedups of
up to 50 compared to software-only implementations. However,

as these boards cannot be connected to form a network, they are
not able to scale to the magnitudes of SpiNNaker.

a) Emergency routing deactivated - SpiNNaker 256x256

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Simulation clock

 P
a
c
k
e
ts

C
y
c
le
s

0.000

0.005

0.010

0.015

0.020

0.025

p
a
c
k
e
ts
/c
y
c
le
/n
o
d
e

Accepted Load

Maximu

m Delay

Average Delay

Dropped packets

1 2 4 8 16 32 64 128 256 512 1024

b) Without emergency routing - Torus 64x32x32

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Simulation clock

 P
a
c
k
e
ts

C
y
c
le
s

0.000

0.005

0.010

0.015

0.020

0.025

p
a
c
k
e
ts
/c
y
c
le
/n
o
d
e

Accepted Load

Maximum Delay

Average Delay

Dropped packets

1 2 4 8 16 32 64 128 256 512 1024

c) Emergency routing activated - SpiNNaker 256x256

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

Simulation clock

 P
a
c
k
e
ts

C
y
c
le
s

0.000

0.005

0.010

0.015

0.020

0.025

p
a
c
k
e
ts
/c
y
c
le
/n
o
d
e

Accepted Load

Maximum Delay

Average Delay

Dropped packets

1 2 4 8 16 32 64 128 256 512 1024

Figure 7. Evolution of the different systems under uniform traffic at a given load of 0.02 packets/node/cycle. a) SpiNNaker

 without emergency routing. b) Torus 3D, emergency routing not allowed. c) SpiNNaker with emergency routing.

As far as we know, the only active project comparable to
SpiNNaker in terms of simulation scale is the Blue-Brain project
[2] which aims to create a biologically accurate functional model

of the brain. However, the high complexity of its neuronal model
does not allow it to work in real-time. Furthermore, in contrast
with the biologically-inspired SpiNNaker architecture, the
BlueBrain project does not contemplate the construction of any
specific computing system but uses a general-purpose
supercomputer, the IBM BlueGene [3].

The SpiNNaker emergency routing mechanism has been shown to
be very effective for fault tolerance. Implementing fault tolerance

in HPC interconnection networks (such as the well-known 3D
torus) is a hot research topic but current solutions are neither easy
nor cheap to implement in silicon; see for example [11, 22].

6. CONCLUSIONS AND FUTURE WORK
This paper has studied the IN of SpiNNaker, a biologically-
inspired massively parallel system of bespoke multi-core SoC

designed with the aim of simulating up to a billion spiking
neurons in (biological) real-time. To be a robust system the
SpiNNaker architecture relies on redundancy both in terms of
computing and communicating elements. SpiNNaker chips are
interconnected using a 2D toroidal triangular mesh. Neurons are
modeled in software and their spikes generate packets that
propagate through the on- and inter-chip communication fabric
relying on the specifically-designed on-chip multicast routers.

Through simulation, we have examined the temporal evolution of
the system in order to test the stability of SpiNNaker under worst-
case scenarios and with high levels of degradation due to faults.
Three different networks have been tested: the actual network

with and without the emergency routing activated and a 3D torus
which does not allow the use of emergency routing due to
hardware constraints. This study has showed that SpiNNaker has a
highly stable network for the real-time simulation of spiking
neurons, even under very pessimistic scenarios. However the two
systems without emergency routing are not able to keep operation
stable. For example using the largest configuration (over 65
thousand nodes) and 1024 failed links, the SpiNNaker topology
without emergency routing dropped roughly 25% of packets, the
3D torus dropped 8% of packets and SpiNNaker with emergency
routing dropped only 0.2% of packets.

An analytical evaluation of the system IN has been carried out and

validated via simulation. The analysis has obtained expressions to
compute the topological characteristics of the network: theoretical
throughput and distance-related properties. Furthermore, the
experimental study has allowed the selection of optimal values for

the timeout mechanism to avoid deadlock. The focus to select
these parameters has been on reducing packet dropping ratios and
increasing the injection rate at which the system starts dropping
packets. Moreover, the measured values of maximum latencies
have been provided in order to help in the selection of the

appropriate values for the age-based packet dropping mechanism,
implemented to avoid livelock. Our results lead to the conclusion
that keeping in-transit packets waiting for too long for the
allocation of output ports is counterproductive. This contention

results in a backpressure that causes the dropping of packets at the
injection queues. In most of the experiments, a waiting time of
five cycles provides the best balance between the number of
dropped packets at any injection rate and the injection rate that

started losing packets, both in the properly-working scenario and

in scenarios with link failures. However, note that our simulated
routing model was unaware of the network failures. On the other
hand the actual SpiNNaker is aware of these failures and would

route the packets through trusted paths. Thus, a lower degree of
system degradation is expected.

As future work we expect to perform more evaluations of the
system with different failure models (e.g., bisected system, small

areas with high density of failures, etc.) and different traffic
models both in terms of the spatial distribution of the
communications using distance distributions that favor short
distance communication and in terms of temporal and causal

relationships among packets (spikes).

7. ACKNOWLEDGMENTS
The Spinnaker project is supported by the Engineering and
Physical Sciences Research Council, through Grants
EP/D07908X/1 and GR/S61270/01, and also by ARM and
Silistix. Steve Furber holds a Royal Society-Wolfson Research

Merit Award. Authors from the University of the Basque Country
are supported by the Spanish Ministry of Education and Science,
grant TIN2007-68023-C02-02, and by Basque Government grant
IT-242-07. Javier Navaridas is supported by a doctoral grant of
the UPV/EHU.

8. REFERENCES

[1] K Asanovic, et al. “A supercomputer for neural
computation.” In Proc. 1994 Intl. Conf. on Neural Networks
(ICNN94).

[2] BlueBrain project. Available (January 2009) at:
http://bluebrain.epfl.ch/.

[3] M Blumrich, et al. “Design and Analysis of the BlueGene/L
Torus Interconnection Network” IBM Research Report
RC23025 Dec. 2003.

[4] JM. Camara et al. "Mixed-radix Twisted Torus
Interconnection Networks". Proc. 21st IEEE International
Parallel & Distributed Processing Symposium - IPDPS '07,

Long Beach, CA, March 26-30, 2007.

[5] WJ Dally and B Towles, “Principles and Practices of
Interconnection Networks”, Morgan Kaufmann Series in
Computer Architecture and Design, 2004.

[6] P Dayan and L Abbott, “Theoretical Neuroscience”.
Cambridge: MIT Press, 2001.

[7] JJ Dongarra, HW Meuer, E Strohmaier. “Top500
Supercomputer sites”. Nov. 2008 edition. Available at:
http://www.top500.org/

[8] T Elliott and N Shadbolt, “Developmental robotics:
Manifesto and application,” Philosophical Trans. Royal Soc.,
vol. A, no. 361, 2003.

[9] S Furber, S Temple, and A Brown, “On-chip and inter-chip

networks for modelling large-scale neural systems,” in Proc.
International Symposium on Circuits and Systems, ISCAS-
2006, Kos, Greece, May 2006.

[10] S Furber, S Temple, “Neural Systems Engineering”. Journal

of The Royal Society Interface 4(13), pp 193-206, April 2007

[11] ME Gomez, et al. “A routing methodology for achieving
fault tolerance in direct networks”. IEEE Transactions on
Computers, 55(4), 2006.

[12] HH Hellmich, et al. “Emulation engine for spiking neurons
and adaptive synaptic weights”. In Proc. IEEE International
Joint Conference on Neural Networks (IJCNN), 2005.

[13] X Jin, SB Furber, and JV Woods. “Efficient Modelling of

Spiking Neural Networks on a Scalable Chip
Multiprocessor”. In Proc. of the International Joint
Conference on Neural Networks, 2008.

[14] MM Khan et al. "SpiNNaker: Mapping Neural Networks

onto a Massively-Parallel Chip Multiprocessor". Proc. 2008
International Joint Conference on Neural Networks
(IJCNN2008).

[15] Microelectronics Division T.U. of Berlin. “Design and
implementation of spiking neural networks.” Available
(January 2009) at: http://mikro.ee.tuberlin.de/spinn.

[16] J. Miguel-Alonso, C. Izu, J.A. Gregorio. "Improving the
Performance of Large Interconnection Networks using
Congestion-Control Mechanisms". Performance Evaluation

65 (2008) 203–211.

[17] J Navaridas et al. "Reducing Complexity in Tree-like
Computer Interconnection Networks". Technical report
EHU-KAT-IK-06-07. Department of Computer Architecture

and Technology, the University of the Basque Country.
Submitted to Elsevier’s Journal on Parallel Computing.

[18] P Pfaerber and K Asanovic. “Parallel neural network training
on multispert”. In Proc. IEEE Third International Conference
on Algorithms and Architectures for Parallel Processing
(ICA3PP’97), 1997.

[19] LA Plana et al. “A GALS Infrastructure for a Massively

Parallel Multiprocessor”. IEEE Design & Test of Computers,
Volume: 24 , Issue: 5, pp. 454 - 463, Sept.-Oct. 2007

[20] LA Plana et al. “An on-chip and inter-chip communications
network for the spinnaker massively-parallel neural net

simulator”. Proc. Second ACM/IEEE Intl. Symposium on
Networks-on-Chip (NoCS 2008), 2008, pp. 215 – 216.

[21] V Puente, et al. “The Adaptive Bubble router”, Journal on
Parallel and Distributed Computing, vol 61, Sept. 2001.

[22] V Puente, JA Gregorio. “Immucube: Scalable fault-tolerant

routing for k-ary n-cube networks”. IEEE Transactions on
Parallel and Distributed Systems, 18(6), 2007.

[23] FJ Ridruejo, J Miguel-Alonso. “INSEE: an Interconnection
Network Simulation and Evaluation Environment”. Lecture
Notes in Computer Science, Volume 3648 / 2005 (Proc.
Euro-Par 2005).

