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Abstract

As it becomes easier to sequence multiple genomes from closely related species, evolutionary 

biologists working on speciation are struggling to get the most out of very large population-

genomic data sets. Such data hold the potential to resolve evolutionary biology’s long-standing 

questions about the role of gene exchange in species formation. In principle the new population 

genomic data can be used to disentangle the conflicting roles of natural selection and gene flow 

during the divergence process. However there are great challenges in taking full advantage of such 

data, especially with regard to including recombination in genetic models of the divergence 

process. Current data, models, methods and the potential pitfalls in using them will be considered 

here.

Introduction

One of the many doors that open when a species’ genome is first sequenced is to the world 

of population genomics and to the unparalleled study of the evolutionary divergence of 

closely related populations and species. Ever since Darwin developed his model of how one 

species splits into two (his principle of divergence described in Chapter four of “The Origin 

of Species”)1 the field of evolutionary biology has been divided on the question of whether 

Darwin’s model is correct. With growing access to very large amounts of genome data, from 

multiple individuals of a species, it becomes increasingly likely that we will resolve this 

long-standing question. Recent next-generation sequencing (NGS) technologies and 

assembly tools, including restriction-site-associated DNA sequencing (RAD-tag) 2, now 

make it possible to affordably obtain genome-scale data from multiple individuals 3, 4. When 

individuals are sampled from multiple populations of a species, as has been done for humans 

e.g. 5, 6, 7, as well as stickleback fish e.g. 2 and dogs 8, or from closely related species as has 

been done with Heliconius butterflies 9 and orangutans 10, we gain an exceptional view, not 

only the variation within populations and species, but also the variation that lies between. 

Data sets like these include millions of variable SNPs and other kinds of polymorphisms and 

hold the promise of finally revealing the secrets of how species have formed.

However a flood of new data may not lead directly to a commensurate gain in knowledge; 

and today, as new population genomic data sets are emerging, our skills of analysis and 
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interpretation are partly overwhelmed. With the rise of large NGS datasets, that reveal 

complex patterns of variation across species’ genomes, we find that our best models and 

tools for explaining patterns of variation were designed for a simpler time, with smaller data 

sets. In the first place NGS datasets present unique challenges, apart from their size, that 

result from the way they are generated. For example, it is common to use a reference 

genome to align additional genomes and yet this introduces a form of ascertainment bias that 

can affect one’s findings. Secondly most models and methods available to analyze NGS data 

have limitations that prevent using all of the information in the data that bears on the 

processes of interest.

In this review we survey the state of the art of population divergence models and inference 

methods, with regard to population genomics data sets. We do not examine in detail the 

technical challenges related with NGS for correcting sequencing, assembly and SNP calling 

errors, as these have been recently reviewed elsewhere 3, 11, 12. Rather we focus on models 

of population divergence and on methods to detect and quantify gene flow, as well as 

methods to distinguish alternative modes of speciation. We discuss the limitations of these 

methods and provide examples of their application to recently available genome-wide 

datasets.

Models s of species formation

Speciation in the absence of gene flow

When two populations become allopatric (i.e. completely geographically separated) they can 

diverge without mixing genes and eventually become reproductively isolated 13. Compared 

to divergence in the presence of gene exchange this is a comparatively simple process; and 

this simplicity, together with clear biogeographic evidence, such as the finding that in island 

archipelagos it is common to find different species on different islands, convinced many that 

this was how nearly all new species formed 13–18. For much of the 20th century, this 

allopatric mode of speciation was thought to explain nearly all speciation events, at least in 

animals.

Speciation in the presence of gene flow

Darwin supposed that species could form even without having geographically separated 

populations. Rather he envisioned that natural selection can act in disparate ways over a 

species range to pull a species in different directions and eventually split it, first into 

different varieties and finally into separate species. However Darwin’s model of what has 

come to be called ‘sympatric speciation’ was considered by many to be unlikely. The reason 

is that researchers realized that gene exchange across a species range, which would occur in 

Darwin’s scenario, would be a strong homogenizing force counteracting divergence via 

natural selection. More recently genetic data (e.g. mtDNA sequences and microsatellites) 

together with biogeographic circumstances have provided compelling evidence that 

sympatric speciation has occurred in a number of contexts 19–21.

At the genetic level Darwin’s model raises complexities, for it predicts that divergence in the 

presence of gene flow can cause different genes to experience very different histories. 
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Diversifying selection favors different alleles in different parts of a species range (and at one 

or more loci). However, the movement of all genes across the range of the species as the 

normal result of organisms reproducing and dispersing will regularly move alleles that are 

affected by the diversifying selection into the “wrong” part of the species range. It will also 

cause the species to appear to be homogenous when examined for patterns of variation at 

genes not targeted by diversifying selection. For example, it is possible for diversifying 

selection to be driving divergence at just a few genes, while gene flow maintains relative 

uniformity across the species range for most of the genome22, 23. Finding the genomic 

regions of divergence – so-called “islands of speciation” – typically requires a genomic 

approach 24.

An additional major player in the divergence process, particularly when gene-flow is 

occurring, is recombination, the breaking and re-joining of chromosomes that happens 

during meiosis every generation, and that allows different parts of the genome to have 

different histories. Because of recombination, an allele favored by selection and increasing 

in frequency will carry with it, in its trajectory towards fixation, only those flanking regions 

to which it is most tightly linked 25, 26. Also, it is possible for alleles at neutral loci to move 

by the action of gene flow across the species range, and to co-occur in the very same 

population of genomes where there are loci diverging by the action of diversifying 

selection 27. Recombination thus allows a species to have a population of genomes with a 

split personality – to resemble two diverging gene pools at loci affected by diversifying 

selection, and to resemble a single gene pool at loci that are not under selection in this way. 

Evidence of this kind of genomic schism has come from a diversity of systems in recent 

years, based on DNA Sanger sequence and microsatellite data 23 and more recently from 

NGS data in stickleback fishes 2 and Heliconius butterflies 9.

Modeling Population Divergence

A widely used theoretical framework for studying speciation using genetic data is the 

“isolation with migration” (IM) model, so named because it includes both the separation of 

two populations (isolation) following a splitting event from their common ancestral 

population as well as migration between populations 28–30. Figure 1 shows a series of IM 

models of increasing complexity that are relevant when studying speciation. At one extreme 

is a simple isolation model, where the migration rate is zero in both directions, which 

corresponds to an allopatric divergence scenario (Fig. 1A). Other models include isolation 

with migration (Fig 1B), isolation after migration (Fig 1C) and secondary contact (Fig 1D). 

Models like those in Figure 1 have been the focus of a great deal of research in recent years, 

and it has been shown that patterns of genetic variation in samples from two closely related 

populations or species can be used to distinguish a pure isolation model (Fig. 1A) from a 

model with migration (Fig. 1B–D) 28, 29. The growing evidence of persistent gene exchange 

between closely related species means that divergence often arises in the midst of conflicting 

evolutionary processes 23. Given evidence of diversifying selection together with gene flow, 

the next question is often “when did the gene flow occur?”. Has it been continuous (model 

1B), or has it stopped (model 1C), or did it start anew with secondary contact after the 

populations had already diverged (model 1D).
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Inferring the history of divergence

With enormous information content, NGS data from multiple individuals offer the promise 

of disentangling the complex interplay between selection, gene flow and recombination that 

occurs during speciation with gene flow. First, by having information for essentially all parts 

of the genome, we can gain a more detailed and accurate picture of the demography of 

populations 31, 32. Second, it becomes possible to ask whether some parts of the genome 

have been exchanging genes more than others. Significant variation in gene flow levels 

across the genome constitutes clear, albeit indirect evidence that selection is acting against 

gene flow to a greater degree in some genome regions than others 33, 34. Third, NGS data 

allow us to get better estimates of recombination rates and linkage disequilibrium (LD) 

patterns along the genome 35, 36 and this can in principle be used to infer the timing and 

magnitude of gene flow. Finally, polymorphism and LD along the genome also bear 

information about selective sweeps and genes that are the targets of diversifying selection 

reviewed in 37, 38). However, all of these inferences depend on having a theoretical 

framework that connects patterns of variation to an explicit model.

Historical gene flow and LD patterns

Population geneticists have long known that the movement of genes into a population can 

create strong patterns of LD in the regions of the genome experiencing that gene 

flow 36, 39, 40. However it remains a challenge to take advantage of this phenomenon to infer 

the history of gene flow 40–42. One approach to disentangle alternative divergence models, 

such as the ones shown in Fig. 1, is based on the distribution of haplotype block 

lengths 43, 44. The principle is that when a migrant enters a population it carries a set of 

chromosomes that, as time goes by, are broken into smaller fragments due to recombination 

(Fig. 3).

The distribution of block lengths depends not only on the recombination rate but also on the 

frequency at which a given population receives immigrants and the older the migration event 

the shorter the blocks are expected to be. Thus, the distribution of block lengths should allow 

disentangling alternative scenarios. A similar idea has been recently used to separate a 

scenario of admixture from ancestral population structure in the case of Neanderthals and 

modern humans 45. In this study LD patterns in present day European genomes data 

supported a model with gene flow from Neanderthals, estimated to have occurred between 

37 and 86 KYA.

Genome Scans using Indicators of Divergence

Depending on an investigator’s question, it can sometimes be useful to take a fairly simple 

approach that does not use models with lots of parameters to study the levels of divergence 

between populations. This is achieved by tailoring analyses to a specific component of the 

divergence process, and scanning across the genome while calculating statistics that are 

expected to be sensitive to that feature. In particular, there has been lots of interest in 

detecting “islands of differentiation” that are those regions of the genome that are different 

between species, potentially as a result of the action of selection, by looking at the 

distribution of summary statistics that measure genetic differentiation, such as FST 46. For 
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example, in the first study using RAD-tag sequencing, the differentiation of 45,000 SNPs 

along the genome between oceanic and freshwater populations of threespine sticklebacks 

(Gasterosteus aculeatus) showed, overall, reduced levels of differentiation (FST values close 

to zero) 2. However, when taking a sliding window approach, in comparisons between the 

freshwater and oceanic populations the authors found evidence for genomic regions 

characterized by very high FST values (>0.35), potentially harboring genes under selection in 

freshwater environment. Interestingly, the same genomic regions were found in the different 

freshwater populations, suggesting parallel adaptation to the freshwater environment. These 

results are in agreement with a larger study comprising seven pairs of closely related marine 

and freshwater populations comprising 5,897,368 SNPs 47.

Another type of genome scan that is targeted to identify recent admixture relies upon 

comparing the population tree (assumed to be known) with the gene trees inferred at a 

specific site. Incongruences between the population tree and the gene tree can be due to 

lineage sorting (shared ancestral polymorphism) or to gene flow. One statistic, called “D”, 

that was specifically designed to detect introgression from one population to another is 

shown in Fig. 4 48. Computing D requires a genome from each of two sister populations, a 

genome from a third population (potential source of introgressed genes) and a fourth 

outgroup genome to identify the ancestral state (identified as A). Focusing on SNPs where 

the candidate source population has the derived allele (B) and the two sister genomes have 

different alleles, there are two possible configurations, either ABBA or BABA. Under the 

hypothesis of shared ancestral polymorphism the number of tree topologies of ABBA and 

BABA are expected to be equal and the expected D will be zero. Deviations from that 

expectation are interpreted as evidence of introgression. As with FST genome scans, 

investigators can look at the distribution of D along the genome given an arbitrary window 

size, but when using D the aim is to find genomic regions that specifically experienced 

introgression, whereas in the case of FST, the goal is to identify regions of high 

differentiation, regardless of the cause.

Genome scans using D were used to detect admixture between archaic and modern 

humans 49, 50, and to study the patterns of introgression in Heliconius butterflies 9. In the 

case of modern and archaic humans unidirectional introgression from Neanderthals to non-

African humans was estimated to have occurred for 1–4% of the genome 49. Similarly, in the 

case of archaic Denisovans and present-day humans at 642,690 SNPs point to 4–6% of the 

present day Melanesian genomes being derived from admixture with Denisovans 50. In the 

application of this approach to Heliconius butterflies a very interesting example of 

introgression driven by positive selection was identified 9, 51. Using RAD-tag sequencing of 

4% of the genome (~12 Mb), it was possible to detect introgression from the sympatric H. 
timareta to H. melpomene amaryllis (2–5% admixture), which are species exhibiting the 

same wing color patterns. Interestingly, only a few regions exhibited significant values of the 

D statistic, including genes known to contain the mimicry loci B/D and N/Yb. Despite the 

lack of an explicit test of positive selection, the fact that these regions harbor genes involved 

in mimicry is in agreement with an active role of selection promoting introgression at these 

regions. In both cases of humans and Heliconius there was evidence of regions exchanged 

between populations that were already differentiated, pointing to the importance of 

secondary contact in the recent evolutionary history of these species. In these species, the 
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patterns of differentiation along the genome suggest a case where most of the genome is 

differentiated, consistent with a model of allopatric divergence (Fig. 1A) or divergence with 

limited gene flow (Fig. 1B), whereas other regions show evidence of secondary contact and 

uni- or by-directional introgression of genes from one population (species) to the other (Fig. 

1C).

Likelihood and Model-Based Methods

As useful as genome scans with indicator variables can be to identify components of the 

divergence process, they fall short of providing a full portrait of divergence unless they are 

combined with other analyses. In this light, the goal for many investigators is to be able to 

calculate the likelihood of the data under a rich divergence model. For some model of 

divergence M, with a parameter set Θ, the likelihood is the probability, under that model, of 

the data given the parameters, i.e. PrM (Data|Θ)Having a likelihood function at hand allows 

estimating the most likely parameters of a given model either with frequentist or Bayesian 

approaches 52. Also, comparing the likelihood of the data under alternative divergence 

models opens the door to model choice approaches to infer the most probably divergence 

model. Currently there are two main families of likelihood-based approaches to studying 

divergence: one based on the Allele Frequency Spectrum (AFS), and a second based on 

sampling genealogies for short portions of the genome (BOX 1).

Box 1

Contrasting the AFS with genealogy sampling approaches

AFS

In two populations, the AFS corresponds to a multidimensional matrix X, where each 

xi,jentry gives the number of SNPs with an observed derived allele count of iin 

population1, and jin population 2. The likelihood of the observed AFS is easily computed 

given the AFS expected under a given evolutionary model. Each entry in the expected 

AFS reflects the probability of a given SNP falling into that cell. Assuming all SNPs are 

independent (i.e. assuming free recombination between SNPs), these probabilities can be 

obtained given the distribution of allele frequencies across populations, which are found 

with diffusion approximations to the evolutionary processes or with the coalescent. Once 

the expected AFS is obtained under a given model, it is easy to compute the likelihood 

for an arbitrarily large number of SNPs, making this a method applicable to the analysis 

of genomic data.

Genealogy sampling

Coalescent-based models aim at extracting information about relevant selective and 

demographic events from gene trees relating homologous DNA sequences (haplotypes) 

sampled from multiple populations. Each locus may contain several SNPs, and hence 

haplotype data contains an extra layer of information when compared with AFS 

approaches. Most methods assume no recombination within each locus, and free 

recombination among loci. Coalescent-based methods are usually based on samplers that 

collect genealogies from the posterior distribution. However, exploring the genealogical 

space can be extremely complex and relies on highly computationally intensive Monte 
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Carlo algorithms, such as MCMC, that do not easily extend to large genomic multilocus 

datasets.

AFS Coalescent-based

Type of data SNPs (biallelic markers) Phased DNA 
segment (haplotype)

Assumptions about recombination Free recombination among SNPs (all 
SNPs independent)

Free recombination 
among loci, and 
complete linkage 
within loci

Assumptions about mutation Mutation rates equal for all SNP Mutation rates vary 
across loci

Likelihood Diffusion-based or Coalescent-based Coalescent-based

Methods Composite -likelihoods.
Relatively fast and able to deal with 
millions of SNPs.

Monte Carlo methods 
based on genealogy 
samplers (MCMC, 
Importance 
Sampling, etc.) or 
based on 
approximate methods 
(ABC, PAC).
Usually slow and 
computationally 
intensive, 
compromising their 
application to large 
genomic datasets.

Likelihoods using the Allele Frequency Spectrum

For a single SNP sampled in each of two populations, considered together with the base that 

is present in an outgroup genome, the data can be summarized as the number of copies of 

the derived allele in each of the two populations. For a large number of SNPs these counts 

fill a discrete distribution, the allele frequency spectrum (AFS) in two dimensions (one for 

each sampled population), which can be represented in graphical form (see Figure 3). A 

population genomic data set that is reduced to an AFS contains no information on LD, and 

thus discards much of the signal of gene flow. Nevertheless this approach has seen renewed 

interest as large SNP data sets have become more common 53–55. Fig. 2 shows how the AFS 

can vary considerably for the different IM models shown in Fig. 1, particularly how simple 

isolation differs from models with gene flow. In the absence of gene flow (Fig 2A) the 

frequencies of SNPs found in only one population are different from the SNPs in the other 

population because genetic drift drives different alleles to fixation in each population. In 

contrast, in models with gene flow, the cells along the diagonal exhibit a higher density (Fig. 

2B) because there are many SNPs with similar frequencies in the two populations. However, 

as exemplified in these AFSs, it is difficult to separate alternative scenarios with gene flow, 

as these tend to be similar (Fig. 2B–D).

Given an AFS calculated from a data set, it is necessary then to be able to generate an 

expected AFS given a model of speciation and a set of parameter values. Although the 

expected AFS can be generated by simulations 41, 53, 56, the expected AFS is also the focus 

of a famous body of population genetic theory in which differential equations describe the 

diffusion of allele frequencies in populations 57, 58. In recent years the diffusion equation 
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approach has been reawakened for the study of the AFS under IM models, such as the ones 

shown in Fig. 1, from genomic data 55, 59, 60. If it is assumed that the SNPs segregate 

independently, then given both an observed and an expected AFS for a model of interest, the 

likelihood can be calculated directly using a multinomial distribution. One difficulty is that 

in reality most data sets comprise SNPs close enough on the genome that the assumption of 

independence does not apply. Still, the same likelihood calculation can be applied (now 

identified as a “composite likelihood” 55) without introducing bias to the parameter 

estimates, albeit with limited access to confidence intervals and other analyses for which a 

likelihood is often used61.

AFS-based analyses on population genomic data sets have so far been conducted mostly on 

human data humans 44, 55, 60, but the same approach can be used to study the divergence of 

closely related species. A nice example of this is the study of the divergence of Sumatran 

(Pongo abelii) and Bornean (Pongo pygmaeus) orangutans 10. Low coverage (8x) Illumina 

sequencing of 10 individuals from each species yielded a total of 12.74 million SNPS, and 

an AFS analysis lead to an estimated speciation time of 400,000 years with a low level of 

gene exchange between the species 10.

The AFS approach has also been applied to more complex models with more than two 

populations or species. One example comes from the analysis of human data from the 1000 

Genomes Project under a three population IM model with gene flow and population 

expansions 62. By considering only SNPs at synonymous sites, and by modeling explicitly 

genotype calling errors, these authors estimated a time for expansion out of Africa around 51 

KYA, a split between Europeans and East Asians around 23 KYA, recent population 

expansion in both Europeans and East Asians, and significant but reduced gene flow among 

all populations.

Likelihoods by Sampling Genealogies

If the recombination rate is low, such that it is unlikely to have occurred in the time since the 

common ancestor of a sample of sequences from one or various populations, as can be the 

case over a short region of the genome, the history of a sample of sequences can be 

described by a gene tree or genealogy (Box 2). The depth and structure of such genealogies 

have been described by coalescent theory for a diversity of models, including the models 

shown in Fig 1. 63–65, and this coalescent modeling has made it possible to calculate the 

likelihood for data sets with multiple sequences of a short genomic region sampled from one 

or more populations. The key parameters in this approach do not include the actual 

genealogy for the sequences, but rather include the demographic parameters, like those in an 

IM model. Rather than focusing on the best gene tree (as is often the case in phylogenetics), 

the likelihood that is the target of this kind of population genetic research is obtained by 

integrating over all possible genealogies 66. However because this integration cannot be 

solved analytically except for small sample sizes, likelihoods calculated using these 

approaches rely on computationally intensive methods 67, 68. The general principle of these 

methods is to sample a set of genealogies consistent with the data to calculate the 

likelihood 68, 69, which may in turn be used to obtain a posterior probability in a Bayesian 

approach 52. These methods have seen tremendous advances in recent decades, making it 
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possible to estimate effective population sizes, migration rates, admixture contributions, 

dates of population declines, etc.32, 67. Moreover, through likelihood ratio tests 69 or through 

marginal likelihoods 70, it has become possible to assess the fit of alternative models of 

divergence.

Box 2

Challenges of computing likelihoods with recombination

If there is free recombination among sites, the likelihood of the data under most models is 

simply the product of the likelihoods of each site. This is the assumption underlying the 

AFS based methods. At the other extreme, when all sites are fully linked, the ancestry of 

a sample is fully captured by a gene tree shared by all sites. This is the realm of 

coalescent-based methods and of most genealogy sampling approaches. However the 

reality for most portions of most genomes lies in between these two extremes, and it is 

for intermediate levels of recombination, when two portions of the genome are neither 

completely linked, not completely unlinked, that the calculation of the likelihood 

becomes very difficult.

In a genealogy sampling method, likelihoods are computed by integrating over the 

genealogy space. Under a model characterized by a set of parameters Θ given data from 

L loci, X = (X1,..., XL), and its underlying gene trees, G = (G1,..., GL), where Xi and Gi 

represent the data and gene trees of the ith locus (i = 1,..., L), respectively, the likelihood 

is found as a product over loci:

where f(G|Θ) is the probability of the genealogies given the parameters Θ, and f(Xi|Gi) is 

the probability of the data at the ith locus given its genealogy. The ancestral relationships 

between sequences are described by a gene tree with coalescent and migration events 

(Fig a). Recombination causes different parts of the genome to have different 

genealogical histories, and so the ancestry of a set of sequences is best pictured as a 

graph known as the Ancestral Recombination Graph (ARG) with joining events 

(coalescent events) and the splitting of gene copies into two parental copies 

(recombination events) 64, 74, 95, 96 (Fig b). Each recombination event corresponds to a 

split of the sequence into two sub-sequences that carry different ancestral segments. 

Interestingly, given the ARG, denoted A, we can look at the marginal gene trees for each 

site along the sequence, and compute the likelihood as a product over those marginal 

genealogies Gi as

where S is the number of sites, and f(Gi|A) is the probability of the marginal genealogy of 

ith site given the ARG, which is by definition 1. The marginal distribution of genealogies 
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can be obtained given the ARG, but the ARG cannot be obtained given the marginal 

genealogies. This is at the core of the difficulties of dealing with recombination. First, in 

comparison with gene trees, the ARG is dramatically more complex making the search 

through the ARG space intractable for population divergence models. Second, data 

typically contains diffuse information about which ARGs are more likely.

Figure a. 
No recombination - gene tree

Figure b. 
Recombination - ancestral graph

Sousa and Hey Page 10

Nat Rev Genet. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A genealogy-sampling approach to the likelihood can easily be extended to multiple loci if 

each has not had recombination, and if free recombination is assumed between loci. Under 

these assumptions the overall likelihood is the product of that for each locus (BOX 2). Thus, 

in principle, a genealogy sampling approach can be extended to a genome scale, if the 

computational power is available to handle many thousands of genome segments. For small 

sample sizes it is possible to obtain analytic solutions for the likelihood. This has been found 

for a two population IM model with constant gene flow for the special case of two sampled 

genomes 71. When applied to the divergence between Drosophila melanogaster and D. 
simulans, in a dataset with 30,323 genomic segments (average length of 405bp), a 

divergence time of 3.04 MYA and a non-zero migration rate from D. simulans to D. 
melanogaster was inferred 71. An alternative approach to computing the likelihood for larger 

sample sizes consists of computing the likelihood under IM models using generating 

functions, which so far has been shown to be possible for up to samples of three gene 

copies 72, 73.

The largest dataset analyzed so far using a genealogy sampling approach consists of six 

genomes (each divided into 35,574 1kb segments), with one from each of six human 

populations. The data were examined assuming an isolation model with five populations and 

migration between one single pair of populations 6. Significant migration was estimated 

between two pairs of African populations, namely between San and Bantu and San and 

Yoruba. Surprisingly, the estimates for the times of split pointed to a very old divergence 

between these African populations (108–157 KYA), suggesting an ancient and complex 

population structure in that continent.

Likelihoods for Models with Recombination

Our ability to extract the information contained in linkage disequilibrium patterns about 

migration and admixture relies on an explicit model of the process of recombination. 

However, obtaining likelihoods under such models implies complex expressions that are 

difficult to solve or approximate (BOX 2). Full-likelihood methods that jointly estimate 

demography and recombination rates that have been developed so far use a model with just a 

single population 74–76. Because of the difficulties of explicitly including intermediate levels 

of recombination (i.e. neither zero recombination nor effectively free recombination) most 

likelihood methods are limited to small segments of the data, as is typicall with genealogy 

samplers. Alternatively recombination may be ignored as in the composite likelihood 

approaches 77, 78, as represented by most AFS-based applications with concomitant 

limitations 61.

Among approaches that are being developed to include recombination in likelihood 

calculations, are those based on the approximations of conditional likelihoods79–81. These 

methods seems promising, as these conditional distributions can be used to generate 

genealogies and ancestral recombination graphs (ARGs) consistent with the data, which in 

turn can be used to compute likelihoods via importance sampling 82. Another promising 

approach that can be used to obtain the likelihood under a model with recombination for 

data from a small number of individuals (i.e. three), but large numbers of loci, is based on 

generating functions 72.
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Another family of approaches treats recombination as a spatial process along the 

genome 83, 84. In this framework the ancestry of each site is modeled by a gene tree that 

changes at points of recombination as one moves along the genome, as a function of the 

recombination rates and of some underlying demographic model. The recombination rate is 

treated as a parameter of the model and hence can be fixed by the researcher (assumed to be 

known) or can be estimated based on the data. This has been implemented in Hidden 

Markov Models to estimate divergence times and ancestral effective sizes 85, 86, and to 

estimate population size changes87.

Finally, another promising avenue for further research is based on the distribution of 

haplotype block lengths as a function of immigration timing and rates 43. This approach has 

been recently extended to infer changes in migration rates through time 62, and was applied 

to infer changes in historical gene flow rates from Europe using admixed African-American 

HapMap data. Other variations on the this idea are methods that use summary statistics 

sensitive to LD have also been proposed 45, 88, and methods to detect tracts of identity by 

descent (IBD) for informing on rates of migration 89.

Technical challenges of NGS data for population genomic questions

In addition to the current theoretical and methodological limitations described above, there 

are also technical challenges in generating the data. An ideal sequencing technology, 

perhaps someday in the not too distant future, will output high quality reads of lengths 

greater than the size of duplicated regions in the target genome. The current crop of 

technologies that are in wide use fall short of these ideals, particularly in that they generate 

sequences of short lengths (generally less than 500 bp and often less than 100bp) 3, 4. Even 

with very many reads and with paired-end libraries, assembly into a genome facsimile 

generally requires the aid of a previously sequenced reference genome. Two of the main 

difficulties with this protocol are Reference Genome Bias and Phase Uncertainty 11 Other 

challenges with NGS have been recently reviewed elsewhere 3, 4, 11.

Reference Genome Bias

When a set of short sequences are assembled with the aid of a guide or reference genome, 

there arises a tendency for the resulting assembly to resemble the reference genome. This is 

a form of Ascertainment Bias which occurs whenever new data is obtained conditional on 

data previously ascertained 90, 91. NGS reads that are different from their homologous 

location in the reference genome at polymorphic sites will tend to be misassembled, and 

overall there will be a tendency to underestimate differences between the new data and the 

reference genome to which it is aligned (Fig. 5)11. This is particularly true for insertions and 

deletions, but also occurs for SNPs. Very high levels of sequence coverage will diminish 

this, as will de novo genome assembly.

Phase Uncertainty

With diploid genome samples two genomes are sequenced simultaneously and the 

investigator typically does not know whether any pair of reads came from the same genome 

in the sample or from different genomes. This issue does not affect the identification of 
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heterozygous positions, but this phase uncertainty greatly hinders the assembly of two 

genomes from one diploid sample and it complicates considerably the assessment of LD 

over longer distances. Use of pair-ended reads can extend the lengths of regions over which 

two separate sequences can be resolved, beyond the length of the actual reads 92. If data are 

available from an individual as well as both of its parents (a so-called “trio”), then it is 

possible to infer both chromosomes of the individual5. Alternatively a population genetic 

statistical approach can be used to estimate phase when there are data from multiple 

individuals93. In the future, technology developments that allow for long reads from each 

chromosome are likely to reduce the problem of phase uncertainty 94.

Conclusions

Notwithstanding the difficulties of reference genome bias, and phase uncertainty, population 

genomic data sets generated using NGS technologies offer tremendous potential for 

discerning the speciation process. However, in the quest to better understand population 

divergence and speciation, we wish to have theory and statistical methods that accommodate 

very large data sets and that connect the observed genomic patterns with relevant historical 

events for complex models of divergence. Currently the available tools do not take full 

advantage of population genomic data sets, although there are sophisticated methods for 

taking a genome scan approach for particular aspects of the divergence process that come 

into their own when population genomic data is available.

Going forward the greatest challenges on the theoretical and statistical side are to develop 

ways to fully include recombination in the analyses. Currently AFS and genealogy sampling 

approaches assume that different SNPs or loci are segregating independently, and other 

methods that take fuller account of recombination are restricted to smaller portions of the 

genome. NGS data has not yet changed our main paradigm of how populations diverge, but 

it has confirmed that natural selection is sometimes in conflict with gene exchange during 

the divergence process, and that gene flow is a widespread process. We envision that great 

advances in population genomic inference will be achieved as comprehensive methods 

emerge for fully including recombination in our divergence models, as these will allow 

investigators to use all of the relevant information in their NGS data.

Glossary

Allopatric divergence
The process of divergence between populations or species that are geographically separated, 

in the absence of gene flow.

Sympatric divergence
The process of divergence between populations or species occupying the same geographical 

area and in presence of gene flow.

Genetic Drift
Stochastic changes in gene frequency due to finite size of populations, resulting from the 

random sampling of gametes from the parents at each generation.
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Neutral Genes
Genes whose genetic patterns are mostly affected by mutation and demographic factors, 

such as genetic drift and migration.

Haplotype
DNA sequence that is inherited as a single unit in absence of recombination.

Single Nucleotide Polymorphism (SNP)
Site in the DNA where there is variation across the genomes in a population, usually 

comprising two alleles that correspond to two different nucleotides.

FST

Proportion of the total genetic variability occurring among populations, typically used as a 

measure of the level of population genetic differentiation.

Allele Frequency Spectrum (AFS)
Distribution of the counts of SNPs with a given observed frequency in a single or multiple 

populations.

Ascertainment bias
Systematic bias introduced by the sampling design (e.g. criteria used to select individuals 

and/or genetic markers) that induces a nonrandom sample of observations

Linkage Disequilibrium
The non-random association of alleles at different sites or loci.

Islands of Differentiation
Genomic regions of elevated differentiation due to the action of natural selection.

Gene tree
Bifurcating tree representing the ancestral relationships of homologous haplotypes sampled 

from a single or multiple populations. A gene tree includes coalescent events and, in models 

with gene flow, migration events. A gene tree is characterized by a topology, branch lengths, 

coalescent times and migration times.

Ancestral Recombination Graph (ARG)
Graph representing the ancestral relationship of homologous DNA sequences sampled from 

a single or multiple populations. In models with gene flow, and ARG includes coalescent, 

migration and recombination events.

Diversifying Selection
natural selection acting towards different alleles (or phenotypes) being favored in different 

regions within a single or among multiple connected populations.

Coalescent Theory
Theory describing the distribution of gene trees (and ARGs) under a given demographic 

model that can be used to compute the probability of a given gene tree.
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Bayesian Inference
Statistical framework where the parameters of the models are treated as random variables, 

allowing expressing the probability of parameters given the data – posterior. The posterior 

probability is obtained via Bayes rule and it is proportional to the likelihood times the prior.

Generating functions
Statistical technique used to obtain the distribution of sums of random variables, as required 

in computation of the probability of genealogies given the parameters of an underlying 

model.

Paired-end libraries
Sequencing from each end of the fragments in a library. The two sequenced ends are 

typically separated by a gap.

Identity by descent (IBD)
Two haplotypes are identical by descent if they are identical copies of a haplotype that are 

shared between individuals within families, and hence are assumed to be identical by 

descent.
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Figure 1. Alternative modes of divergence
All models assume that an ancestral population of size NA splits into two populations at time 

ts (time of split). The two present day populations have effective sizes N1 and N2, 

respectively. In model A) the migration rate is zero in both directions, which corresponds to 

an allopatric divergence scenario. B–D) Alternative models in which populations have been 

exchanging migrants. B) Gene flow at constant rates since the split from the ancestral 

population. Migration rates are assumed constant through time but gene flow can be 

asymmetric, i.e. one migration rate for each direction. C) Scenario in which populations 

begin diverging in the presence of gene flow but experience a cessation of gene flow after 

some time ti (time since isolation). If the lack of current gene flow in this model is due to 

reproductive isolation then this represents a history in which divergence occurred to the 

point of speciation in the presence of gene flow. In D) we consider the alternative migration 

history where populations were isolated and diverged for a period of time in the absence of 

gene flow, followed by secondary contact at tsc (time of secondary contact), and the 

introgression of alleles from the other population by gene flow.
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Figure 2. Allele frequency spectrum under alternative divergence models. Each entry in the 
matrix (x,y) correspond to the probability of observing a SNP with frequency of derived allele x 
in pop 1 and y in pop 2
The colors represent the log of the expected probability for each cell of the AFS. The white 

color corresponds to –Inf, i.e. to cells with an expected probability of zero. These AFS are 

conditional on polymorphic SNPs, hence the cells (0,0) and (10,10) have zero probability. 

The likelihood of an observed AFS can be computed by comparing it with these expected 

AFS. A) Isolation model. B) Isolation with migration. C) Isolation after migration. D) 

Secondary contact. The joint allele frequency spectrums for the different scenarios were 

obtained with coalescent simulations performed with ms (Hudson 2002). All scenarios were 

simulated assuming all populations share the same effective sizes (N=10,000), a time of split 

ts=20,000 generations ago (T/4N=0.5), symmetric migration rate (2N1m12=5, 2N2m21=5, for 

scenarios b, c and d), for scenario c) a time of isolation of ti=2000 generations ago (Ti/

4N=0.05) and, for scenario d) a time of secondary contact of tsc=6000 generations ago (Tsc/

4N=0.15).
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Figure 3. Distinguishing migration events based on LD block structure
Schematic representation of the expected distribution of the haplotype block lengths for A) 

an old migration event, and B) a recent migration event. For simplicity, we assumed that all 

individuals share the same haplotype in the destination population (blue haplotype), i.e. this 

haplotype has reached fixation. When a migrant haplotype enters a population, as times goes 

by, recombination breaks it into smaller fragments. Thus, blocks are expected to be shorter 

following an old migration event (a), than right after a recent migration event, for which 

blocks are expected to be larger.
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Figure 4. Disentangling ancestral polymorphism from gene flow (ABBA/BABA statistic)
The pattern ABBA can occurs due to A) ancestral polymorphism, i.e. coalescent of lineage 

from population 2 with lineage from population 3 in the ancestral population, or B) gene 

flow from population 3 to population 2. Mutation from ancestral state (A) to derived (B) 

shown as a star. Under a model with no gene flow, we expect that the pattern ABBA is as 

frequent as BABA, due to the fact that there is 50% chance that either the lineage from 

population 1 or from population 2 coalesce with lineage from population 3.
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Figure 5. Reference genome as a source of ascertainment bias
Reads from two different individuals are mapped into a reference genome. Reads from 

individual 1 are similar to the reference genome (differences shown in red), and hence are 

easily aligned. However, reads from individual 2 contain several differences (shown in red - 

single point mutations or indels) in one of the regions. Given that these reads contain several 

differences it becomes difficult to align them with the reference genome. This introduces a 

source of ascertainment bias, as the allele frequencies in our sample depends on the 

reference genome, and hence on how it was constructed.
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