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Abstract

Popular word embedding algorithms exhibit

stereotypical biases, such as gender bias. The

widespread use of these algorithms in machine

learning systems can thus amplify stereotypes

in important contexts. Although some methods

have been developed to mitigate this problem,

how word embedding biases arise during training

is poorly understood. In this work, we develop

a technique to address this question. Given a

word embedding, our method reveals how per-

turbing the training corpus would affect the re-

sulting embedding bias. By tracing the origins of

word embedding bias back to the original train-

ing documents, one can identify subsets of doc-

uments whose removal would most reduce bias.

We demonstrate our methodology on Wikipedia

and New York Times corpora, and find it to be

very accurate.

1. Introduction

As machine learning algorithms play ever-increasing roles

in our lives, there are ever-increasing risks for these algo-

rithms to be systematically biased (Zhao et al., 2018; 2017;

Kleinberg et al., 2016; Dwork et al., 2012; Hardt et al.,

2016). An ongoing research effort is showing that machine

learning systems can not only reflect human biases in the

data they learn from, but also magnify these biases when de-

ployed in practice (Sweeney, 2013). With algorithms aiding

critical decisions ranging from medical diagnoses to hiring

decisions, it is important to understand how these biases are

learned from data.

In recent work, researchers have uncovered an illuminat-

ing example of bias in machine learning systems: Popular

word embedding methods such as word2vec (Mikolov et al.,
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2013a) and GloVe (Pennington et al., 2014) acquire stereo-

typical human biases from the text data they are trained on.

For example, they disproportionately associate male terms

with science terms, and female terms with art terms (Angwin

et al., 2016; Caliskan et al., 2017). Deploying these word

embedding algorithms in practice, for example in automated

translation systems or as hiring aids, thus runs the serious

risk of perpetuating problematic biases in important societal

contexts. This problem is especially pernicious because

these biases can be difficult to detect—for example, word

embeddings were in broad industrial use before their stereo-

typical biases were discovered.

Although the existence of these biases is now established,

their origins—how biases are learned from training data—

are poorly understood. Ideally, we would like to be able

to ascribe how much of the overall embedding bias is due

to any particular small subset of the training corpus—for

example, an author or single document. Naı̈vely, this could

be done directly by removing the document in question, re-

training an embedding on the perturbed corpus, then com-

paring the bias of the original embedding with the bias of

the retrained embedding. The change in bias resulting from

this perturbation could then be interpreted as the document’s

contribution to the overall bias. But this approach comes at

a prohibitive computational cost; completely retraining the

embedding for each document is clearly infeasible.

In this work, we develop an efficient and accurate method

for solving this problem. Given a word embedding trained

on some corpus, and a metric to evaluate bias, our method

approximates how removing a small part of the training

corpus would affect the resulting bias. We decompose this

problem into two main subproblems: measuring how per-

turbing the training data changes the learned word embed-

ding; and measuring how changing the word embedding

affects its bias. Our central technical contributions solve the

former subproblem (the latter is straightforward for many

bias measures). Our method provides a highly efficient way

of understanding the impact of every document in a training

corpus on the overall bias of a word embedding; therefore,

we can rapidly identify the most bias-influencing documents

in the training corpus. These documents may be used to

manipulate the word embedding’s bias through highly selec-

tive pruning of the training corpus, or they may be analyzed

in conjunction with metadata to identify particularly biased
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subsets of the training data.

We demonstrate the accuracy of our technique with exper-

imental results on both a simplified corpus of Wikipedia

articles in broad use (Wikimedia, 2018), and on a corpus of

New York Times articles from 1987–2007 (Sandhaus, 2008).

Across a range of experiments, we find that our method’s

predictions of how perturbing the input corpus will affect

the bias of the embedding are extremely accurate. We study

whether our results transfer across embedding methods and

bias metrics, and show that our method is much more ef-

ficient at identifying bias-inducing documents than other

approaches. We also investigate the qualitative properties

of the influential documents surfaced by our method. Our

results shed light on how bias is distributed throughout the

documents in the training corpora, as well as expose inter-

esting underlying issues in a popular bias metric.

2. Related Work

Word embeddings are compact vector representations of

words learned from a training corpus, and are actively de-

ployed in a number of domains. They not only preserve

statistical relationships present in the training data, gener-

ally placing commonly co-occurring words close to each

other, but they also preserve higher-order syntactic and se-

mantic structure, capturing relationships such as Madrid is

to Spain as Paris is to France, and Man is to King as Woman

is to Queen (Mikolov et al., 2013b). However, they have

been shown to also preserve problematic relationships in the

training data, such as Man is to Computer Programmer as

Woman is to Homemaker (Bolukbasi et al., 2016).

A recent line of work has begun to develop measures to

document these biases as well as algorithms to correct for

them. Caliskan et al. (2017) introduced the Word Embed-

ding Association Test (WEAT) and used it to show that word

embeddings trained on large public corpora (e.g., Wikipedia,

Google News) consistently replicate the known human bi-

ases measured by the Implicit Association Test (Greenwald

et al., 1998). For example, female terms (e.g., “her”, “she”,

“woman”) are closer to family and arts terms than they are

to career and math terms, whereas the reverse is true for

male terms. Bolukbasi et al. (2016) developed algorithms to

de-bias word embeddings so that problematic relationships

are no longer preserved, but unproblematic relationships

remain. We build upon this line of work by developing a

methodology to understand the sources of these biases in

word embeddings.

Stereotypical biases have been found in other machine learn-

ing settings as well. Common training datasets for multil-

abel object classification and visual semantic role labeling

contain gender bias and, moreover, models trained on these

biased datasets exhibit greater gender bias than the train-

ing datasets (Zhao et al., 2017). Other types of bias, such

as racial bias, have also been shown to exist in machine

learning applications (Angwin et al., 2016).

Recently, Koh & Liang (2017) proposed a methodology for

using influence functions, a technique from robust statistics,

to explain the predictions of a black-box model by tracing

the learned state of a model back to individual training ex-

amples (Cook & Weisberg, 1980). Influence functions allow

us to efficiently approximate the effect on model parameters

of perturbing a training data point. Other efforts to increase

the explainability of machine learning models have largely

focused on providing visual or textual information to the

user as justification for classification or reinforcement learn-

ing decisions (Ribeiro et al., 2016; Hendricks et al., 2016;

Lomas et al., 2012).

3. Background

3.1. The GloVe word embedding algorithm

Learning a GloVe (Pennington et al., 2014) embedding from

a tokenized corpus and a fixed vocabulary of size V is

done in two steps. First, a sparse co-occurrence matrix

X ∈ R
V×V is extracted from the corpus, where each entry

Xij represents a weighted count of the number of times

word j occurs in the context of word i. Gradient-based

optimization is then used to learn the optimal embedding

parameters w∗, u∗, b∗, and c∗ which minimize the loss:

J(X,w, u, b, c) =

V∑

i=1

V∑

j=1

f(Xij)(w
T
i uj + bi + cj − logXij)

2 (1)

where wi ∈ R
D is the vector representation (embedding) of

the ith word in the vocabulary, 1 ≤ i ≤ V . The embedding

dimension D is commonly chosen to be between 100 and

500. The set of uj ∈ R
D represent the “context” word

vectors1. Parameters bi and cj represent the bias terms for

wi and uj , respectively. The weighting function f(x) =
min((x/xmax)

α, 1) is used to attribute more importance

to common word co-occurrences. The original authors of

GloVe used xmax = 100 and found good performance with

α = 0.75. We refer to the final learned emebedding as

w∗ = {w∗
i } throughout.

3.2. Influence Functions

Influence functions offer a way to approximate how a

model’s learned optimal parameters will change if the train-

ing data is perturbed. We summarize the theory here.

Let R(z, θ) be a convex scalar loss function for a learn-

1When the context window is symmetric, the two sets of vectors
are equivalent and differ only based on their initializations.
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ing task, with optimal model parameters θ∗ of the form in

Equation (2) below, where {z1, ..., zn} are the training data

points and L(zi, θ) is the point-wise loss.

R(z, θ) =
1

n

n∑

i=1

L(zi, θ) θ∗ = argmin
θ

R(z, θ) (2)

We would like to determine how the optimal parameters

θ∗ would change if we perturbed a small subset of points

in the training set; i.e., when zk → z̃k for all k in the set

of perturbed indices δ. It can be shown that the perturbed

optimal parameters, which we denote θ̃, can be written as:

θ̃ ≈ θ∗ −
1

n
H−1

θ∗

∑

k∈δ

[∇θL(z̃k, θ
∗)−∇θL(zk, θ

∗)] (3)

where Hθ∗ = 1
n

∑n
i=1 ∇

2
θL(zi, θ

∗) is the Hessian of the

total loss, and it is assumed |δ| ≪ n. Note that we have

extended the equations presented by Koh & Liang (2017)

to address multiple perturbations. This is explained in the

supplemental materials.

3.3. The Word Embedding Association Test

The Word Embedding Association Test (WEAT) measures

bias in word embeddings (Caliskan et al., 2017). It con-

siders two equal-sized sets S, T of target words, such as

S = {math, algebra, geometry, calculus} and T = {poetry,

literature, symphony, sculpture}, and two sets A, B of at-

tribute words, such as A = {male, man, boy, brother, he}
and B = {female, woman, girl, sister, she}.

The similarity of words a and b in word embedding w is mea-

sured by the cosine similarity of their vectors, cos(wa, wb).
The differential association of word c with the word sets A
and B is measured with:

g(c,A,B, w) = mean
a∈A cos(wc, wa)−

mean
b∈B cos(wc, wb)

For a given {S, T ,A,B}, the effect size through which we

measure bias is:

Bweat(w) =
mean
s∈S g(s,A,B, w)− mean

t∈T g(t,A,B, w)
std-dev
c∈S∪T g(c,A,B, w)

(4)

Where mean and std-dev refer to the arithmetic mean and the

sample standard deviation respectively. Note that Bweat only

depends on the set of word vectors {wi| i ∈ S∪T ∪A∪B}.

4. Methodology

Our technical contributions are twofold. First, we formal-

ize the problem of understanding bias in word embeddings,

introducing the concepts of differential bias and bias gra-

dient. Then, we show how the differential bias can be ap-

proximated in word embeddings trained using the GloVe

algorithm. We address how to approximate the bias gradient

in GloVe in the supplemental material.

4.1. Formalizing the Problem

Differential Bias. Let w = {w1, w2, ..., wV }, wi ∈ R
D

be a word embedding learned on a corpus C. Let B(w)
denote any bias metric that takes as input a word embedding

and outputs a scalar. Consider a partition of the corpus

into many small parts (e.g. paragraphs, documents), and

let p be one of those parts. Let w̃ be the word embedding

learned from the perturbed corpus C̃ = C \ p. We define

the differential bias of part p ⊂ C to be:

∆pB = B(w)−B(w̃) (5)

Which is the incremental contribution of part p to the to-

tal bias. This value decomposes the total bias, enabling a

wide range of analyses (e.g., studying bias across metadata

associated with each part).

It is natural to think of C as a collection of individual docu-

ments, and think of p as a single document. Since a word

embedding is generally trained on a corpus consisting of a

large set of individual documents (e.g., websites, newspaper

articles, Wikipedia entries), we use this framing throughout

our analysis. Nonetheless, we note that the unit of analysis

can take an arbitrary size (e.g., paragraphs, sets of docu-

ments), provided that only a relatively small portion of the

corpus is removed. Thus our methodology allows an an-

alyst to study how bias varies across documents, groups

of documents, or whichever grouping is best suited to the

domain.

Co-occurrence perturbations. Several word embedding

algorithms, including GloVe, operate on a co-occurrence

matrix rather than directly on the corpus. The co-occurrence

matrix X is a function of the corpus C, and can be viewed

as being constructed additively from the co-occurrence ma-

trices of the n individual documents in the corpus, where

X(k) is the co-occurrence matrix for document k. In this

manner, we can view X as X =
∑n

k=1 X
(k). We then

define X̃ as the co-occurrence matrix constructed from the

perturbed corpus C̃. If C̃ is obtained by omitting document

k, we have X̃ = X −X(k).

Bias Gradient. If a word embedding w is (or can be

approximated by) a differentiable function of the co-

occurrence matrix X , and the bias metric B(w) is also

differentiable, we can consider the bias gradient:

∇XB(w(X)) = ∇wB(w)∇Xw(X) (6)

Where the above equality is obtained using the chain rule.

The bias gradient has the same dimension as the co-

occurrence matrix X . While V × V is a daunting size,

if the bias metric is only affected by a small subset of the

words in the vocabulary, as is the case with the WEAT bias
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metric, the gradient will be very sparse. It may then be

feasible to compute and study. Since it “points” in the direc-

tion of maximal bias increase, it provides insight into the

co-occurrences most affecting bias.

The bias gradient can also be used to linearly approximate

how the bias will change due to a small perturbation of X .

It can therefore be used to approximate the differential bias

of document k. Again letting X̃ = X−X(k), we start from

a first order Taylor approximation of B(w(X̃)) around X:

B(w(X̃)) ≈ B(w(X))−∇XB(w(X)) ·X(k)

We then rearrange, and apply the chain rule, obtaining:

B(w(X))−B(w(X̃)) ≈ ∇wB(w)∇Xw(X) ·X(k)

Where w(X̃) is equivalent to the w̃ of Equation (5).

4.2. Computing the Differential Bias for GloVe

The naive way to compute the differential bias for a doc-

ument is to simply remove the document from the corpus

and retrain the embedding. However, if we wish to learn

the differential bias, of every document in the corpus, this

approach is clearly computationally infeasible. Instead of

computing the perturbed embedding w̃ directly, we calcu-

late an approximation of it by applying a tailored version of

influence functions. Generally, influence functions require

the use of H−1
θ∗ , as in Equation (3). In the case of GloVe

this would be a 2V (D + 1) by 2V (D + 1) matrix, which

would be much too large to work with.

The need for a new method. To overcome the computa-

tional barrier of using influence functions in large models,

Koh & Liang (2017) use the LiSSA algorithm (Agarwal

et al., 2017) to efficiently compute inverse Hessian vector

products. They compute influence in roughly O
(
np

)
time,

where p is the number of model parameters and n is the

number of training examples. However, our analysis and ini-

tial experimentation showed that this method would still be

too slow for our needs. In a typical setup, GloVe simply has

too many model parameters (2V (D+1)), and most corpora

of interest cause n to be too large. One of our principal con-

tributions is a simplifying assumption about the behavior of

the GloVe loss function around the learned embedding w∗.

This simplification causes the Hessian of the loss to be block

diagonal, allowing for the rapid and accurate approximation

of the differential bias for every document in a corpus.

Tractably approximating influence functions. To ap-

proximate w̃ using influence functions, we must apply Equa-

tion (3) to the GloVe loss function from Equation (1). In

doing so, we make a simplifying assumption, treating the

GloVe parameters u, b, and c as constants throughout the

analysis. As a result, the parameters θ consist only of w

(i.e., u, b, and c are excluded from θ). The number of

points n is V , and the training points z = {zi} are in

our case X = {Xi}, where Xi refers to the ith row of

the co-occurrence matrix (not to be confused with the co-

occurrence matrix of the ith document, denoted as X(i)).

With these variables mapped over, the point-wise loss func-

tion for GloVe becomes:

L(Xi, w) =

V∑

j=1

V f(Xij)(w
T
i uj + bi + cj − logXij)

2

and the total loss is then J(X,w) = 1
V

∑V
i=1 L(Xi, w),

now in the form of Equation (2).

Note that our embedding w∗ is still learned through dynamic

updates of all of the parameters. It is only in deriving this

influence function-based approximation for w̃ that we treat

u, b, and c as constants.

In order to use Equation (3) to approximate w̃ we need an

expression for the gradient with respect to w of the point-

wise loss, ∇wL(Xi, w), as well as the Hessian of the total

loss, Hw. We derive these here, starting with the gradient.

Recall that w = {w1, w2, ..., wV }, wk ∈ R
D. We observe

that L(Xi, w) depends only on wi, u, bi, and c; no word

vector wk with k 6= i is needed to compute the point-wise

loss at Xi. Because of this, ∇wL(Xi, w), the gradient

with respect to w (a vector in R
V D), will have only D

non-zero entries. These non-zero entries are the entries in

∇wi
L(Xi, w), the gradient of the point-wise loss function

at Xi with respect to only word vector wi. Visually, this is

as follows:

∇wL(Xi, w) =

( D(i−1)
︷ ︸︸ ︷

0, ..., 0 ,

D
︷ ︸︸ ︷

∇wi
L(Xi, w),

D(V−i)
︷ ︸︸ ︷

0, ..., 0
︸ ︷︷ ︸

V D dimensions

)

(7)

where the D-dimensional vector given by ∇wi
L(Xi, w) is:

V∑

j=1

2V f(Xij)(w
T
i uj + bi + cj − logXij)uj

From Equation (7), we see that the Hessian of the point-

wise loss with respect to w, ∇2
wL(Xi, w) (a V D × V D-

dimensional matrix), is extremely sparse, consisting of

only a single D × D block in the ith diagonal block po-

sition. As a result, the Hessian of the total loss, Hw =
1
V

∑V
i=1 ∇

2
wL(Xi, w) (also a V D × V D matrix), is block

diagonal, with V blocks of dimension D×D. Each D×D
diagonal block is given by:

Hwi
= ∇2

wi
L(Xi, w) =

V∑

j=1

2V f(Xij)uju
T
j
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which is the Hessian with respect to only word vector wi of

the point-wise loss at Xi.

This block-diagonal structure allows us to solve for each

w̃i independently. Moreover, w̃i will only differ from w∗
i

for the tiny fraction of words whose co-occurrences are

affected by the removal of the selected document for the

corpus perturbation. We can approximate how any word

vector will change due to a given corpus perturbation with:

w̃i ≈ w∗
i −

1

V
H−1

wi

[
∇wi

L(X̃i, w
∗)−∇wi

L(Xi, w
∗)
]

(8)

An efficient algorithm. Combining Equation (8) with

Equation (5), we can approximate the differential bias of

every document in the corpus. Notice in Equation (8) that

w̃i = w∗
i for all i where X̃i = Xi. Also recall that Bweat

only depends on a small set of WEAT words {S, T ,A,B}.

Therefore, when approximating the differential bias for a

document, we only need to compute w̃i for the WEAT words

in that document. This is outlined in Algorithm 1.

Algorithm 1 Approximating Differential Bias

input Co-occ Matrix: X , WEAT words: {S, T ,A,B}
w∗, u∗, b∗, c∗ = GloVe(X) # Train embedding

for doc in corpus do

X̃ = X −X(k) # Subtract coocs from doc k

for word i in doc ∩ (S ∪ T ∪ A ∪ B) do

# Only need change in WEAT word vectors

w̃i = w∗
i +H−1

wi

[
∇wi

L(X̃i, w
∗)−∇wi

L(Xi, w
∗)
]

end for

∆docB ≈ Bweat(w
∗)−Bweat(w̃)

end for

5. Experimentation

Our experimentation has several objectives. First, we test

the accuracy of our differential bias approximation. We then

compare our method to a simpler count-based baseline. We

also test whether the documents which we identify as bias

influencing in GloVe embeddings affect bias in word2vec.

Finally, we investigate the qualitative properties of the influ-

ential documents surfaced by our method. Our results shed

light on how bias is distributed throughout the documents

in the training corpora, and expose interesting underlying

issues in the WEAT bias metric.

5.1. Experimental Setup

Choice of corpus and hyperparameters. We use two

corpora in our experiments, each with a different set of

GloVe hyperparameters. This first setup consists of a corpus

constructed from a Simple English Wikipedia dump (2017-

11-03) (Wikimedia, 2018) using 75-dimensional word vec-

tors. These dimensions are small by the standards of a

typical word embedding, but sufficient to start capturing

syntactic and semantic meaning. Performance on the TOP-1

analogies test shipped with the GloVe code base was around

35%, lower than state-of-the-art performance but still clearly

capturing significant meaning.

Our second setup is more representative of the academic

and commercial contexts in which our technique could be

applied. The corpus is constructed from 20 years of New

York Times (NYT) articles (Sandhaus, 2008), using 200-

dimensional vectors. The TOP-1 analogy performance is

approximately 54%. The details of these two configurations

are tabulated in the supplemental material.

Choice of experimental bias metric. Throughout our ex-

periments, we consider the effect size of two different WEAT

biases as presented by Caliskan et al. (2017). Recall that

these metrics have been shown to correlate with known hu-

man biases as measured by the Implicit Association Test.

In WEAT1, the target word sets are science and arts terms,

while the attribute word sets are male and female terms. In

WEAT2, the target word sets are musical instruments and

weapons, while the attribute word sets are pleasant and un-

pleasant terms. A full list of the words in these sets can be

found in the supplemental material. They are summarized

in Table 1. These sets were chosen so as to include one

societal bias that would be widely viewed as problematic,

and another which would be widely viewed as benign.

5.2. Testing the Accuracy of our Method

Experimental Methodology. To test the accuracy of our

methodology, ideally we would simply remove a single

document from a word embedding’s corpus, train a new

embedding, and compare the change in bias with our differ-

ential bias approximation. However, the cosine similarities

between small sets of word vectors in two word embed-

dings trained on the same corpus can differ considerably

simply because of the stochastic nature of the optimization

(Antoniak & Mimno, 2018). As a result, the WEAT bi-

ases vary between training runs. The effect of removing

a single document, which is near zero for a typical docu-

ment, is hidden in this variation. Fixing the random seed is

not a practical approach. Many popular word embedding

implementations also require limiting training to a single

thread to fully eliminate randomness. This would make

experimentation prohibitively slow.

In order to obtain measurable changes, we instead remove

sets of documents, resulting in larger corpus perturbations.

Accuracy is assessed by comparing our method’s predictions

to the actual change in bias measured when each document

set is removed from the corpus and a new embedding is

trained on this perturbed corpus. Furthermore, we make all
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Table 1. WEAT Target and Attribute Sets

WEAT1 WEAT2

Target Sets
S science instruments

T arts weapons

Attribute Sets
A male pleasant

B female unpleasant

Table 2. Baseline WEAT Effect Sizes

WEAT1 WEAT2

Wiki 0.957 (± 0.150) 0.108 (± 0.213)

NYT 1.14, (± 0.124) 1.32, (± 0.056)

predictions and assessments using several embeddings, each

trained with the same hyperparameters, but differing in their

random seeds.

We construct three types of perturbation sets: increase, ran-

dom, and decrease. The targeted (increase, decrease) per-

turbation sets are constructed from the documents whose

removals were predicted (by our method) to cause the great-

est differential bias, e.g., the documents located in the tails

of the histograms in Figure 1. The random perturbation sets

are simply documents chosen from the corpus uniformly

at random. For a more detailed description, please refer to

the supplemental material. Most of the code used in the

experimentation has been made available online2.

Experimental Results. Here we present a subset of our

experimental results, principally from NYT WEAT1 (sci-

ence vs. arts). Complete sets of results from the four con-

figurations ({NYT, Wiki} × {WEAT1, WEAT2}) can be

found in the supplemental materials.

The baseline WEAT effect sizes (± 1 std. dev.) are shown

in Table 2. It is worth noting that the WEAT2 (weapons

vs. instruments) bias was not significant in our Wiki setup.

However, our analysis does not require that the bias under

consideration fall within any particular range of values.

A histogram of the differential bias of removal for each doc-

ument in our NYT setup (WEAT1) can be seen in Figure 1.

Notice the log scale on the vertical axis, and how the vast

majority of documents are predicted to have a very small

impact on the differential bias.

We assess the accuracy of our approximations by measuring

how they correlate with the ground truth change in bias

(as measured by retraining the embedding after removing

a subset of the training corpus). Recall these ground truth

changes are obtained using several retraining runs with dif-

ferent random seeds. We find extremely strong correlations

(r2 ≥ 0.985) in every configuration, for example Figure 2.

2Code at https://github.com/mebrunet/understanding-bias

Figure 1. Histogram of the approximated differential bias of re-

moval for every document in our NYT setup, considering WEAT1,

measured in percent change from the baseline mean.

Figure 2. Approximated and ground truth WEAT bias effect size

due to the removal of various perturbation sets for our NYT corpus,

considering WEAT1. Each point describes the mean effect size

of one set; error bars depict one standard deviation; the baseline

(unperturbed) mean is shown with a vertical dotted line.

We further compare our approximations to the ground truth

in Figure 3. We see that while our approximations under-

estimate the magnitude of the change in effect size when

the perturbation causes the bias to invert, relative ranking is

nonetheless preserved. There was no apparent change in the

TOP-1 analogy performance of the perturbed embeddings.

We ran a Welch’s t-test comparing the perturbed embed-

dings’ biases with the baseline biases measured in the origi-

nal (unperturbed) embeddings. For 36 random perturbation

sets, only 2 differed significantly (p < 0.05) from the base-

line. Both of these sets were perturbations of the smaller

Wiki corpus and they only caused a significant difference

for WEAT2. This is in strong contrast to the 40 targeted

perturbation sets, where only 2 did not significantly differ

from their respective baselines. In this case, both were from

the smallest (10 document) perturbation sets.

5.3. Comparison to a PPMI Baseline

We have shown that our method can be used to identify

bias-influencing documents and accurately approximate the
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Figure 3. Approximated and ground truth differential bias of re-

moval for every perturbation set. Results for different perturbation

sets arranged vertically, named as type - size (number of documents

removed). (NYT - WEAT1)

impact of their removal, but how does it compare to a more

naive, straightforward approach? The positive point-wise

mutual information (PPMI) matrix is a count-based dis-

tributed representation commonly used in natural language

processing (Levy et al., 2015). We compare the WEAT

effect size in our NYT GloVe embeddings versus when

measured in the corpus’ PPMI representation (on 2000 ran-

domly generated word sets). As expected, there is a clear

correlation (r2 = 0.725). It is therefore sensible to use the

change in PPMI WEAT effect size to predict how the GloVe

WEAT effect size will change.

A change in the PPMI representation due to a co-occurrence

perturbation (e.g. document removal) can be computed

rapidly. This allows us to scan the whole corpus for the

most bias influencing documents. However, we find that

the documents identified in this way have a much smaller

impact on the bias than those identified by our method.

For example in our Wiki setup (WEAT1) removing the 10

documents identified as most bias increasing by the PPMI

method reduced the WEAT effect size by 4%. In contrast,

the 10 identified by our method reduced it by 40%. Further

comparisons are tabulated in the supplemental material.

5.4. Impact on Word2Vec and Other Bias Metrics

The documents identified as influential by our method

clearly have a strong impact on the WEAT effect size in

GloVe embeddings. Here we explore how those same docu-

ments impact the bias in word2vec embeddings, as well as

other bias metrics.

We start by training five word2vec emebeddings with com-

parable hyperparameters3 for each perturbation set, and

3We use a CBOW architecture with the same vocabulary, vector
dimensions, and window size as our GloVe embeddings.

Figure 4. The effects of removing the different perturbation sets

(most impactful documents as identified by our method) on the

WEAT bias in: our GloVe embeddings, the PPMI representation,

and word2vec embeddings with comparable hyper-parameters;

error bars represent one standard deviation. (NYT - WEAT1)

measure how their removals affect the bias. Figure 4 shows

how the WEAT effect size changes in GloVe, the PPMI, and

word2vec for each set (NYT-WEAT1). We see that while

the response is weaker, both the PPMI representation and

the word2vec embeddings show a clear change in effect size

due to the perturbations. For example, the baseline WEAT

effect size in word2vec is 1.35 in the unperturbed corpus,

but after removing decrease-10000 (the 10k most bias con-

tributing documents for GloVe), the effect size drops to 0.11.

This means we have nearly neutralized the bias in word2vec

through the removal of less than 1% of the corpus (and there

is no significant change in TOP-1 analogy performance).

We also see a change as measured by other bias metrics in

our perturbed GloVe embeddings. The metric proposed by

Bolukbasi et al. (2016) involves computing a single dimen-

sional gender subspace using a definitional sets of words.

One can then project test words onto this axis and measure

how the embedding implicitly genders them. We explore

this in our NYT setup by using the WEAT 1 attribute word

sets (male, female) to construct a gender axis, then project-

ing the target words (science, arts) onto it. In Figure 5 we

show the baseline projections and compare them to the pro-

jections after having removed the 10k most bias increasing

and bias decreasing documents. We see a strong response

to the perturbations in the expected directions.

5.5. Qualitative Analysis

We’ve demonstrated that removing the most influential doc-

uments identified by our methodology significantly impacts

the WEAT, a metric that has been shown to correlate with

known human biases. But can the semantic content of these

documents be intuitively understood to affect bias?
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Figure 5. The effect of removing the 10k most bias increasing and

bias decreasing documents as identified by our method on the

projection of the target words onto the gender axis vs. unperturbed

corpus (base); error bars show one std dev; corpus word frequency

noted in parentheses. (NYT - WEAT1)

We comment here on the 50 most bias influencing doc-

uments in the New York Times corpus, considering the

WEAT 1 bias metric ({male, female}, {science, arts}). This

list is included in the supplemental materials. We indeed

found that most of these documents could be readily un-

derstood to affect the bias in the expected semantic sense.

For example, the second most bias decreasing document

is entitled “For Women in Astronomy, a Glass Ceiling in

the Sky”, which investigates the pay and recognition gap in

astronomy. Many of the other bias decreasing documents

included interviews with female doctors or scientists.

Correspondingly, the most bias increasing documents con-

sisted mainly of articles describing the work of male en-

gineers and scientists. There were several obituary entries

detailing the scientific accomplishments of men, e.g., “Kaj

Aage Strand, 93, Astronomer At the U.S. Naval Observa-

tory”. Perhaps the most self-evident example was an article

entitled “60 New Members Elected to Academy of Sciences”,

a list of almost exclusively male scientists receiving awards.

There were, however, a few examples of articles that seemed

like their semantic content should affect the bias inversely to

how they were categorized. For example, an article entitled

“The Guide”, a guide to events in Long Island, mentions that

the group Woman in Science would be hosting an astron-

omy event, but nonetheless increases the bias. Only 2 or 3

documents seemed altogether unrelated to the bias’ theme.

Surprisingly, some of the most bias influencing articles con-

tained none of the science or arts WEAT terms explicitly,

only synonyms (and some of the male or female terms).

This shows that the impact of secondary co-occurrences can

be very strong. A naive approach to understanding bias may

only consider co-occurrences between WEAT words, but

our method shows that this would miss some of the most

bias influencing documents in the corpus.

Importantly, we also noticed a large portion of the most

bias influencing documents dealt with astronomy or con-

tained hers, the rarest words their respective WEAT sub-

sets. Upon further investigation, we found that the log of

a word’s frequency is correlated with the extent to which

its relative position (among WEAT words) is affected by

the perturbation sets (r2 = 0.828). This can be seen in

Figure 5. Not surprisingly, our results indicate that the em-

bedded representations of rare words are more sensitive

to corpus perturbations. However, this leaves the WEAT

metric vulnerable to exploitation through the manipulation

of rarer words. The WEAT effect size is an average of

cosine-similarities between the embedded representations

of four subsets of words. A handful of well chosen docu-

ments can significantly alter the embeddings of a few rare

words in those subsets. Therefore documents containing

the rare words can have a disproportionate impact on the

metric. This weakness helps explain how removing a mere

0.07% of articles can reverse the WEAT effect size in the

New York Times, as is shown in Figure 3, decrease-1000.

6. Conclusion

In this work, we introduce the problem of tracing the origins

of bias in word embeddings, and we develop and experi-

mentally validate a methodology to solve it. We conceptual-

ize the problem as measuring the resulting change in bias

when we remove a training document (or small subset of

the training corpus), and interpret this as the amount of bias

contributed by the document to the overall embedding bias.

Computing this naively for each training document would

be infeasible. We develop an efficient approximation of this

differential bias using influence functions and apply it to

the GloVe word embedding algorithm. We experimentally

validate our approach and find that it very accurately approx-

imates the true change in bias that results from manually

removing training documents and retraining. It performs

well on tests using Simple Wikipedia and New York Times

corpora and two WEAT bias metrics.

Our work represents a new approach to understanding how

machine learning algorithms learn biases from training data.

Our methodology could be applied to assess how the bias of

a set of texts has evolved over time. For example, using pub-

licly available datasets of newspaper articles or books, one

could measure how cultural biases as measured by WEAT

or other metrics have evolved over time. More broadly, our

efficient method for tracing how perturbations in training

data affect changes in the bias of the output is a general idea,

and could be applied in many other contexts.



Understanding the Origins of Bias in Word Embeddings

References

Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear

time. J. Mach. Learn. Res., 18(1):4148–4187, January

2017. ISSN 1532-4435. URL http://dl.acm.org/

citation.cfm?id=3122009.3176860.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Ma-

chine bias: Theres software used across the country to

predict future criminals. and its biased against blacks.

ProPublica, 2016.

Antoniak, M. and Mimno, D. Evaluating the stability of

embedding-based word similarities. Transactions

of the Association for Computational Linguis-

tics, 6:107–119, 2018. ISSN 2307-387X. URL

https://transacl.org/ojs/index.php/

tacl/article/view/1202.

Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., and

Kalai, A. Man is to computer programmer as woman

is to homemaker? debiasing word embeddings. In 30th

Conference on Neural Information Processing Systems

(NIPS), 2016.

Caliskan, A., Bryson, J. J., and Narayanan, A. Seman-

tics derived automatically from language corpora contain

human-like biases. Science, 356(6334):183–186, 2017.

Cook, R. and Weisberg, S. Characterizations of an empir-

ical influence function for detecting influential cases in

regression. 22:495–508, 11 1980.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,

R. Fairness through awareness. In Proceedings of the 3rd

innovations in theoretical computer science conference,

pp. 214–226. ACM, 2012.

Greenwald, A. G., McGhee, D. E., and Schwartz, J. L. K.

Measuring individual differences in implicit cognition:

The implicit association test. Journal of Personality and

Social Psychology, 74(6):1464–1480, 1998.

Hardt, M., Price, E., Srebro, N., et al. Equality of oppor-

tunity in supervised learning. In Advances in neural

information processing systems, pp. 3315–3323, 2016.

Hendricks, L., Akata, Z., Rohrbach, M., Donahue, J.,

Schiele, B., and Darrell, T. Generating visual expla-

nations. In European Conference on Computer Vision,

pp. 3–19. Springer, 2016.

Kleinberg, J., Mullainathan, S., and Raghavan, M. Inherent

trade-offs in the fair determination of risk scores. arXiv

preprint arXiv:1609.05807, 2016.

Koh, P. W. and Liang, P. Understanding Black-box Pre-

dictions via Influence Functions. In Proceedings of the

34th International Conference on Machine Learning, vol-

ume 70 of Proceedings of Machine Learning Research,

pp. 1885–1894, 2017.

Levy, O., Goldberg, Y., and Dagan, I. Improving Distri-

butional Similarity with Lessons Learned from Word

Embeddings. Transactions of the Association for

Computational Linguistics (TACL), 3:211–225, 2015.

ISSN 2307-387X. doi: 10.1186/1472-6947-15-S2-S2.

URL https://tacl2013.cs.columbia.edu/

ojs/index.php/tacl/article/view/570.

Lomas, M., Chevalier, R., II, E. C., Garrett, R., Hoare, J.,

and Kopack, M. Explaining robot actions. In Proceedings

of the seventh annual ACM/IEEE international confer-

ence on Human-Robot Interaction, pp. 187–188. ACM,

2012.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient

estimation of word representations in vector space. In

International Conference on Learning Representations,

2013a.

Mikolov, T., t. Yih, W., and Zweig, G. Linguistic regularities

in continuous space word representations. In Proceedings

of NAACL-HLT 2013, 2013b.

Pennington, J., Socher, R., and Manning, C. Glove: Global

vectors for word representation. In EMNLP, volume 14,

pp. 1532–1543, 01 2014.

Ribeiro, M. T., Singh, S., and Guestrin, C. Why should i

trust you?: Explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

pp. 1135–1144. ACM, 2016.

Sandhaus, E. The new york times annotated corpus,

2008. URL https://catalog.ldc.upenn.edu/

LDC2008T19.

Sweeney, L. Discrimination in online ad delivery. Queue,

11(3):10, 2013.

Wikimedia. Simplewiki:database download, 2018.

URL https://dumps.wikimedia.org/

simplewiki/.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang,

K.-W. Men also like shopping: Reducing gender bias am-

plification using corpus-level constraints. In Proceedings

of the 2017 Conference on Empirical Methods in Natural

Language Processing, pp. 2979–2989, 2017.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang,

K.-W. Gender bias in coreference resolution: Evaluation

and debiasing methods. In NAACL, 2018.

http://dl.acm.org/citation.cfm?id=3122009.3176860
http://dl.acm.org/citation.cfm?id=3122009.3176860
https://transacl.org/ojs/index.php/tacl/article/view/1202
https://transacl.org/ojs/index.php/tacl/article/view/1202
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
https://dumps.wikimedia.org/simplewiki/
https://dumps.wikimedia.org/simplewiki/

