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Abstract

Neural Machine Translation (NMT) currently

exhibits biases such as producing translations

that are too short and overgenerating frequent

words, and shows poor robustness to copy

noise in training data or domain shift. Re-

cent work has tied these shortcomings to beam

search – the de facto standard inference algo-

rithm in NMT – and Eikema and Aziz (2020)

propose to use Minimum Bayes Risk (MBR)

decoding on unbiased samples instead.

In this paper, we empirically investigate the

properties of MBR decoding on a number of

previously reported biases and failure cases of

beam search. We find that MBR still exhibits a

length and token frequency bias, owing to the

MT metrics used as utility functions, but that

MBR also increases robustness against copy

noise in the training data and domain shift.1

1 Introduction

Neural Machine Translation (NMT) currently suf-

fers from a number of issues such as underesti-

mating the true length of translations (Koehn and

Knowles, 2017; Stahlberg and Byrne, 2019; Kumar

and Sarawagi, 2019), underestimating the probabil-

ity of rare words and over-generating very frequent

words (Ott et al., 2018), or being susceptible to

copy noise in the training data (Khayrallah and

Koehn, 2018). In out-of-domain translation, hallu-

cinations (translations that are fluent but unrelated

to the source) are common (Koehn and Knowles,

2017; Lee et al., 2018; Müller et al., 2020).

Previous work has addressed these problems

with decoding heuristics such as length normal-

ization (Wu et al., 2016), data cleaning (Junczys-

Dowmunt, 2018; Bañón et al., 2020) or model reg-

ularization (Bengio et al., 2015; Shen et al., 2016;

1Code and documentation available at https://

github.com/ZurichNLP/understanding-mbr

Wiseman and Rush, 2016; Zhang et al., 2019; Ng

et al., 2020).

Recently, Eikema and Aziz (2020) have high-

lighted the role of the decision rule, namely search-

ing for the highest-scoring translation, and have

argued that it is at least partially to blame for some

of these biases and shortcomings. They found that

sampling from an NMT model is faithful to the

training data statistics, while beam search is not.

They recommend the field look into alternative

inference algorithms based on unbiased samples,

such as Minimum Bayes Risk (MBR) decoding.

We believe MBR has potential to overcome sev-

eral known biases of NMT. More precisely, if a bias

can be understood as being caused by the mode-

seeking nature of beam search then we hypothesize

that MBR could exhibit less bias. We view short

translations, copies of the source text and halluci-

nations as hypotheses that are probable, but quite

different to other probable hypotheses. If such

pathological hypotheses are in a pool of samples,

it is unlikely that MBR would select them as the

final translation.

While Eikema and Aziz (2020) compare the sta-

tistical properties of samples and beam search out-

puts, and show that MBR can perform favourably

compared to beam search according to automatic

metrics, our paper aims to perform a targeted study

of MBR and its properties, specifically its effects

on the biases and shortcomings discussed previ-

ously. In our experiments we find that

• If used with a utility function that favours

short translations, MBR inherits this bias;

• MBR still exhibits a token probability bias in

that it underestimates the probability of rare to-

kens and overestimates very common tokens;

• Compared to beam search, MBR decoding is

more robust to copy noise in the training data;

https://github.com/ZurichNLP/understanding-mbr
https://github.com/ZurichNLP/understanding-mbr
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• MBR exhibits higher domain robustness than

beam search. We demonstrate that MBR re-

duces the amount of hallucinated content in

translations.

2 Background

2.1 Maximum-a-posteriori (MAP) decoding

The de facto standard decoding algorithm in

NMT is beam search (Graves, 2012; Boulanger-

Lewandowski et al., 2013; Sutskever et al., 2014).

Beam search belongs to a broader class of inference

procedures called maximum-a-posteriori (MAP) al-

gorithms. What MAP algorithms have in common

is that they attempt to find the most probable trans-

lation under a given model. Essentially, they try

to recover the mode of the output distribution over

sequences.

An exact solution to this search problem is usu-

ally intractable. Beam search is an approximation

that is tractable, but it also frequently fails to find

the true mode of the distribution (Stahlberg and

Byrne, 2019).

2.2 Known deficiencies of NMT systems

NMT systems are known to be deficient in a num-

ber of ways. We describe here only the ones rele-

vant to our discussion and experiments.

Length bias: Systems underestimate the true

length of translations. On average, their trans-

lations are shorter than references (Koehn and

Knowles, 2017; Stahlberg and Byrne, 2019; Ku-

mar and Sarawagi, 2019).

Skewed word frequencies: In translations, to-

kens that occur frequently in the training data are

overrepresented. On the other hand, rare tokens oc-

cur fewer times than their probability in the training

data would suggest (Ott et al., 2018).

Beam search curse: Increasing the beam size

leads to finding translations that are more probable

under the model. In theory, this should improve

translation quality. Paradoxically, empirical results

show that large beam sizes decrease quality (Koehn

and Knowles, 2017; Ott et al., 2018).

Susceptibility to copy noise: Copied content in

the training data disproportionately affects trans-

lation quality. More specifically, the most detri-

mental kind are copies of the source sentence on

the target side of the training data (Khayrallah and

Koehn, 2018). If such copies are present in the

training data, copy hypotheses will be overrepre-

sented in beam search (Ott et al., 2018).

Low domain robustness: Systems are not ro-

bust under distribution shifts such as domain shift.

Having a system translate in an unknown test do-

main often does not gradually degrade transla-

tion quality, but leads to complete failure cases

called hallucinations (Lee et al., 2018; Koehn and

Knowles, 2017; Müller et al., 2020).

Much past research has attributed those deficien-

cies to model architectures or training algorithms,

while treating beam search as a fixed constant in

experiments. In contrast, Eikema and Aziz (2020)

argue that the fit of the model is reasonable, which

means that neither the model itself nor its training

can be at fault. Rather, they argue that the underly-

ing problem is beam search.

Inadequacy of the mode: Stahlberg and Byrne

(2019) and Eikema and Aziz (2020) suggest that

the mode of the distribution over output sequences

is in fact not the best translation. On the contrary,

it seems that in many cases the mode is the empty

sequence (Stahlberg and Byrne, 2019). In addition,

it appears that the probability of the mode is not

much different from very many other sequences, as

the output distribution is quite flat in an extensive

region of output space (Eikema and Aziz, 2020).

Intuitively, it makes sense that such a situation

could arise in NMT training: maximum likelihood

estimation training does not constrain a model to

be characterized well by its mode only. If the mode

is inadequate, then obviously that is problematic

for a mode-seeking procedure such as beam search,

and MAP inference in general. In fact, MAP decod-

ing should be used only if the mode of the output

distribution can be trusted (Smith, 2011).

An alternative is a decision rule that considers

how different a translation is from other likely trans-

lations.

2.3 Minimum Bayes Risk Decoding

MBR decoding was used in speech recognition

(Goel and Byrne, 2000) and statistical machine

translation (Kumar and Byrne, 2004; Tromble et al.,

2008). More recently, MBR was also used to im-

prove beam search decoding in NMT (Stahlberg

et al., 2017; Shu and Nakayama, 2017; Blain et al.,

2017). Eikema and Aziz (2020) are the first to test

a variant of MBR that operates on samples instead

of an nbest list generated by beam search.

We give here a simplified, accessible definition

of MBR in the context of NMT. Essentially, the

goal of MBR is to find not the most probable trans-
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lation, but the one that minimizes the expected

risk for a given loss function and the true posterior

distribution. In practice, the set of all possible can-

didate translations can be approximated by drawing

from the model a pool of samples S of size n:

S = (s1, ..., sn) ∼ p(y|x, θ). (1)

The same set of samples can also be used to ap-

proximate the true posterior distribution. Then for

each sample si in S, its expected utility (the in-

verse risk) is computed by comparing it to all other

samples in the pool. The sample with the highest

expected utility is selected as the final translation:

y⋆ = argmax
si∈S

1

n

n∑

sj=1

u(si, sj) (2)

The size of the pool n and the utility function u

are hyperparameters of the algorithm. A particular

utility function typically computes the similarity

between a hypothesis and a reference translation.

Therefore, MBR “can be thought of as selecting a

consensus translation [...] that is closest on average

to all likely translations” (Kumar and Byrne, 2004).

3 Motivation for experiments

We hypothesize that MBR decoding is useful for

a certain class of failure cases encountered with

beam search. Namely, if an incorrect translation

from beam search can be characterized as a hy-

pothesis that is likely but fairly different from other

hypotheses with similar probability, then MBR is

expected to improve over beam search.

Several known deficiencies of NMT systems out-

lined in Section 2.2 belong to this class of beam

search failures. For instance, length bias occurs

when a beam search translation is shorter than other

hypotheses with comparable probability. Likewise,

translations that are copies of the input sentence

or hallucinations (translations that are fluent, but

unrelated to the input) can be avoided with MBR if

they are not common in a pool of samples.

Finally, we study the skewedness of token fre-

quencies in translations. Eikema and Aziz (2020)

study lexical biases in NMT models, showing that

model samples have higher agreement with the

training distribution than MAP output. We inves-

tigate whether this is also true for MBR decoding,

focusing on the well-known bias towards frequent

tokens.

4 Experimental Setup

4.1 Data

We use data for a number of language pairs from

the Tatoeba Challenge (Tiedemann, 2020). Indi-

vidual language pairs are fairly different in terms

of language families, scripts and training set sizes.

See Appendix A for details about our data sets.

For one additional experiment on out-of-domain

robustness we use data from Müller et al. (2020).

This data set is German-English and defines 5 dif-

ferent domains of text (medical, it, koran, law and

subtitles). Following Müller et al. (2020) we train

our model on the medical domain, and use data in

other domains to test domain robustness.

We hold out a random sample of the training

data for testing purposes. The size of this sample

varies between 1k and 5k sentences, depending on

the overall size of the training data.

4.2 Models

Our preprocessing and model settings are inspired

by OPUS-MT (Tiedemann and Thottingal, 2020).

We use Sentencepiece (Kudo, 2018) with subword

regularization as the only preprocessing step, which

takes care of both tokenization and subword seg-

mentation. The desired number of pieces in the

vocabulary varies with the size of the data set.

We train NMT models with Sockeye 2 (Domhan

et al., 2020). The models are standard Transformer

models (Vaswani et al., 2017), except that some

settings (such as word batch size and dropout rate)

vary with the size of the training set. Following

Eikema and Aziz (2020) we disable label smooth-

ing so as to get unbiased samples.

4.3 Decoding and evaluation

In all experiments, we compare beam search to

MBR decoding and in most cases also to single

samples. For beam search, we always use a beam

size of 5. Single samples are drawn at least 100

times to show the resulting variance.

If not stated otherwise, all results presented are

on a test set held out from the training data, i.e. are

certainly in-domain, which avoids any unintended

out-of-domain effects.

We evaluate automatic translation quality with

BLEU (Papineni et al., 2002), CHRF (Popović,

2016) and METEOR (Denkowski and Lavie, 2014).

We compute BLEU and CHRF with SacreBLEU

(Post, 2018). See Appendix B for details.
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Figure 1: CHRF1 scores of MBR decoding on two test corpora: the standard Tatoeba test set (out-of-domain) and

a test set of held-out training data (in-domain). Plots show the difference between MBR and beam search, as a

function of the number of samples used for MBR.

smoothed? α β γ δ

bleu ✗ - - - -
bleu-floor ✓ - - - -
bleu-add-k ✓ - - - -
bleu-exp ✓ - - - -

chrf-0.5 ✗ - 0.5 - -
chrf-1 ✗ - 1.0 - -
chrf-2 ✗ - 2.0 - -
chrf-3 ✗ - 3.0 - -

meteor ✗ 0.85 0.2 0.6 0.75
meteor-0.5 ✗ 0.50 0.2 0.6 0.75

Table 1: Utility functions used with MBR. The

smoothed variants of BLEU correspond to the ones im-

plemented in SacreBLEU (Post, 2018) and are defined

in Chen and Cherry (2014).

MBR also depends on samples, so we repeat

each MBR experiment twice to show the resulting

variance. We also vary the number of samples used

with MBR, from 5 to 100 in increments of 5. Fi-

nally, we produce MBR translations with different

utility functions. All of the utility functions are

sentence-level variants of our evaluation metrics:

BLEU, CHRF or METEOR. See Table 1 for an

overview of utility functions. If not stated other-

wise, MBR results are based on 100 samples and

use chrf-1 as the utility function.

5 Length bias

We evaluate MBR decoding with different utility

functions. There is no single utility function which

performs best on all evaluation metrics. Instead,

any of our evaluation metrics can be optimized

by choosing a closely related utility function (see

Figure 2 and Appendix D). For instance, chrf-2

as the utility function leads to the best CHRF2

evaluation scores.

Number of samples: We find that the transla-

tion quality of MBR increases steadily as the num-

ber of samples grows (see Figure 2). This means

that MBR does not suffer from the beam search

curse where single pathological hypotheses in a

large beam can jeopardize translation quality.

We analyze the lengths of translations produced

by different decoding methods in Table 2 (see Ap-

pendix E for additional statistics). We find that

in terms of mean length of translations, beam

search underestimates the true length of transla-

tions, even when hypotheses are normalized. Hy-

potheses generated by sampling better match the

reference length. This is in line with the findings

of Eikema and Aziz (2020).

For MBR decoding, it is clear that the choice of

utility function has an impact on the mean length of

the resulting translations. For instance, employing

sentence-level BLEU as the utility function leads to

translations that are too short. BLEU is a precision-

based metric known to prefer shorter translations

on the sentence level (Nakov et al., 2012).

chrf-2 and meteor emphasize recall more,

and the resulting MBR translations overestimate

the true length of translations.2 On the other hand,

chrf-0.5, a CHRF variant with a bias for preci-

sion, leads to the shortest translations overall.

We test whether we can reduce length biases by

symmetrizing our utility functions u as follows:

usym(si, sj) = H(u(si, sj), u(sj , si)) (3)

where H is the harmonic mean. This should avoid

favouring either recall or precision, but in practice

even symmetric utility functions lead to translations

that are shorter than references on average.

Based on these observations we conclude that

MBR inherits length biases associated with its

utility function.

2While Popović (2016) find that the recall-biased CHRF2
achieves the highest correlation with human judgments as an
evaluation metric, this does not entail that the same recall bias
is optimal in the utility function for MBR.
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Figure 2: Comparison of MBR utility functions. Different columns show translation quality as measured by a

particular evaluation metric. Line colors refer to different utility functions. Shaded areas show standard deviation.

DAN-EPO AZE-ENG BEL-RUS DEU-FRA

reference 11.91 15.54 8.41 20.19

sample 11.73 15.15 8.29 19.99

beam-normalized 11.61 14.45 8.23 19.62

beam-unnormalized 11.21 13.62 8.20 19.08

bleu-floor 11.51 14.41 8.18 19.55

meteor 12.23 15.29 8.26 20.38

chrf-2 12.50 15.88 8.31 20.89

bleu-floor-symmetric 11.51 14.34 8.19 19.53

meteor-symmetric 11.47 14.12 8.20 19.40

chrf-2-symmetric 11.48 14.16 8.18 19.40

chrf-0.5 10.63 12.99 8.08 18.02

Table 2: Lengths of hypotheses as mean number of tokens.
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Figure 3: Probability of tokens in translations (x-axis) bucketed by frequency in training data (y-axis). Vertical

bars indicate standard deviation for methods that involve sampling.

6 Token frequency bias

Beam search overgenerates tokens that are very

common in the training data and undergenerates

rare tokens (see Section 2.2). Sampling on the other

hand assigns correct probabilities to common and

rare tokens. Given that MBR is based on samples,

does it share this property with sampling?

In Figure 3 we show that this is not the case.

Although the skewedness of probabilities is less

severe for MBR than for beam search, MBR still

assigns too high a probability to frequent events.

A reason for this is that our utility functions are

based on surface similarity between samples, so

rare tokens, which will be sampled rarely, will thus

also have low utility.

Unfortunately, there is a trade-off between cor-

rect probability statistics for very common and

very rare words and translation quality. The

most faithful statistics can be obtained from sam-

pling, but sampling leads to the worst overall trans-

lation quality.

7 Domain robustness

In general, as the number of samples grows, MBR

approaches but does not outperform beam search

on our in-domain data (see Figure 1). On our out-

of-domain data, the gap between MBR and beam

search is smaller. We hypothesize that MBR may

be useful for out-of-domain translation.

We evaluate MBR on a domain robustness bench-

mark by Müller et al. (2020). Figure 4 shows that

on this benchmark MBR outperforms beam search

on 2 out of 4 unknown test domains. A possible rea-

son why MBR is able to outperform beam search

in unknown domains is that it reduces hallucinated

translations. To test this hypothesis, we define a

hallucination as a translation that has a CHRF2

score of less than 0.01 when compared to the refer-

ence, inspired by Lee et al. (2018).

Given this definition of hallucination, Figure 5

shows that on average, MBR assigns a lower utility

score to hypotheses that are hallucinations. Sim-

ilarly, MBR reduces the percentage of hallucina-

tions found in the final translations, compared to

beam search or sampling. To summarize, we find

that MBR decoding has a higher domain robust-

ness than beam search.

8 Impact of copy noise in the training

data

If copies of source sentences are present on the tar-

get side of training data, copies are overrepresented

in beam search (Section 2.2). Here we test whether

MBR suffers from this copy bias as well.

We create several versions of our training sets

where source copy noise is introduced with a proba-
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Figure 4: CHRF1 scores of MBR and beam search on the domain robustness benchmark of Müller et al. (2020).

The medical test set is in-domain, the remaining sets are out-of-domain.

Figure 5: Analysis of hallucinations in MBR and beam translations. Left: Average utility of hallucination hypothe-

ses in pools of samples. Right: how often hallucinations occur in final translations.

Figure 6: Susceptibility to copy noise in training data.
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Figure 7: Analysis of copies in MBR and beam translations. Left: Average utility of copy hypotheses in pools of

samples. Right: how often copies occur in final translations.

bility between 0.1% and 50%. As shown in Figure

6, MBR and beam search are comparable if there

are few copies in the training data. However, if

between 5 and 25% of all training examples are

copies, then MBR outperforms beam search by a

large margin (> 10 BLEU for Arabic-German).

As further evidence for the ability of MBR to

tolerate copy noise we present an analysis of copies

in Figure 7. We define a copy as a translation with

a word overlap with the reference of more than 0.9.

We show that MBR assigns a much lower utility

to copy hypotheses than to all hypotheses taken

together. In the final translations, MBR manages to

reduce copies substantially. For instance, if around

10% of the training examples are copies, beam

search produces around 50% copies, while MBR

reduces this number to below 10%.

We conclude from this experiment that MBR is

more robust to copy noise in the training data.

We acknowledge that this setting is artificial be-

cause copy noise can easily be removed from data

sets. Nonetheless, it is a striking example of a

known shortcoming of NMT systems usually at-

tributed to the model or training procedure, when

in fact beam search is at least partially to blame.

9 Conclusion and future work

MBR decoding has recently regained attention in

MT as a decision rule with the potential to over-

come some of the biases of MAP decoding in NMT.

We empirically study the properties of MBR decod-

ing with common MT metrics as utility functions,

and find it still exhibits a length bias and token

frequency bias similar to beam search. The length

bias is closely tied to the utility function. However,

we also observe that MBR decoding successfully

mitigates a number of well-known failure modes

of NMT, such as spurious copying, or hallucina-

tions under domain shift. The mechanism by which

MBR achieves such robustness is that copies or

hallucinated hypotheses in a pool of samples are

assigned low utility and never selected as the final

translation.

In our experiments, MBR did not generally out-

perform beam search according to automatic met-

rics, but we still deem it a promising alternative to

MAP decoding due to its robustness. For future

work, we are interested in exploring more sophisti-

cated similarity metrics to be used as utility func-

tions, including trainable metrics such as COMET

(Rei et al., 2020), and investigating how these util-

ity functions affect the overall quality and biases of

translations.

10 Note on reproducibility

We will not only release the source code used to

train our models (as is common in NLP papers at

the moment), but a complete pipeline of code that

can be run on any instance in a fully automated

fashion. This will allow to reproduce our results,

including the graphs and tables shown in this paper,

in a consistent way with minimal changes. We

encourage the community to attempt to reproduce

our results and publish the results.
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A Data set details

ISO3 abbreviation language pair size scripts

DAN-EPO Danish-Esperanto 110k Roman-Roman

AZE-ENG Azerbaijani-English 680k Roman⋆-Roman

BEL-RUS Belarusian-Russian 70k Cyrillic-Cyrillic

DEU-FRA German-French 47m Roman-Roman

ENG-MAR English-Marathi 370k Roman-Devanagari

ARA-DEU Arabic-German 12m Arabic-Roman

DEU-ENG German-English 1m Roman-Roman

Table 3: Details about data sets. Size refers to the number of sentence pairs in the training data. Roman⋆ = Roman

script with some modifications.

B Evaluation details

For evaluation metrics that require tokenization (BLEU and METEOR), we use the standard mteval13a

tokenization implemented in SacreBLEU. We do not use any language-specific tokenization rules even if

they are available for the target language. The SacreBLEU signatures for our CHRF and BLEU evaluation

metrics are listed in Table 4.

evaluation metric SacreBLEU signature

CHRF 1 chrF1+numchars.6+space.false+version.1.4.14

CHRF 2 chrF2+numchars.6+space.false+version.1.4.14

CHRF 3 chrF3+numchars.6+space.false+version.1.4.14

BLEU BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.14

Table 4: SacreBLEU signatures of evaluation metrics.

C Comments on the development sets distributed with the Tatoeba challenge

The Tatoeba Challenge (Tiedemann, 2020) distributes training, development and test data for a large

number of language pairs. What is peculiar about the challenge is that the training data is assembled from

various sources through OPUS (Tiedemann, 2012), while the development and test data are contributed by

users of Tatoeba3. This means that the development and test set can be considered out-of-domain material.

We investigated this issue and conclude that it does not constitute a problem. When both the development

and test data are sampled from the training data, the results are similar to the ones we present in this paper,

except for a small overall shift.

D Additional comparisons between utility functions

Figures 8 and 9 show additional results for MBR decoding with utility functions that are variants of CHRF

and BLEU.

E Additional length tables

We provide additional length statistics for utility functions used with MBR in Table 5.

3https://tatoeba.org

https://tatoeba.org
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Figure 8: Comparison of utility functions that are variants of CHRF.

Figure 9: Comparison of utility functions that are variants of BLEU.
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DAN-EPO AZE-ENG BEL-RUS DEU-FRA

reference 11.91 15.54 8.41 20.19

sample 11.73 15.15 8.29 19.99

beam-normalized 11.61 14.45 8.23 19.62

beam-unnormalized 11.21 13.62 8.20 19.08

bleu 11.54 14.45 8.17 19.59

bleu-floor 11.51 14.41 8.18 19.55

bleu-add-k 11.46 14.29 8.20 19.40

bleu-exp 11.42 14.29 8.18 19.41

bleu-symmetric 11.55 14.39 8.19 19.58

bleu-floor-symmetric 11.51 14.34 8.19 19.53

bleu-add-k-symmetric 11.39 14.14 8.19 19.25

bleu-exp-symmetric 11.41 14.21 8.18 19.37

chrf-1 11.48 14.16 8.18 19.40

chrf-2 12.50 15.88 8.31 20.89

chrf-3 13.01 16.92 8.45 21.93

chrf-1-symmetric 11.48 14.16 8.18 19.40

chrf-2-symmetric 11.48 14.16 8.18 19.40

chrf-3-symmetric 11.48 14.16 8.18 19.40

chrf-0.5 10.63 12.99 8.08 18.02

meteor 12.23 15.29 8.26 20.38

meteor-symmetric 11.47 14.12 8.20 19.40

Table 5: Lengths of hypotheses as mean number of tokens.


