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ABSTRACT Over the past decade, a growing number of studies have investigated the relationship between 

the structure and function of human brain by predicting the resting-state functional connectivity (rsFC) 

from structural connectivity (SC). Yet how the whole-brain patterns of FC emerge from SC still remains 

incompletely understood. Unlike previous studies, here we propose an alternative approach for addressing 

this issue by predicting SC from rsFC. We first hypothesize that the functional couplings among brain areas 

at rest are shaped at least in three phases temporally: the initial direct interplay between brain areas, the 

communications within and between network modules, and followed by the indirect interactions ascribed to 

indirect structural pathways. We then introduce a network deconvolution (ND) algorithm inspired from the 

mechanism of cell differentiation, named CDA, to distinguish the direct dependencies from the functional 

network followed by a weight trimming algorithm based on Euclidean distance kernel function for 

shrinking the modular effects. Finally, we keep those region pairs with shorter shortest path length (SPL) 

together with shorter Euclidean distance as the structural connections. We apply the model and the 

algorithms to three intensively studied group averaged empirical connectome datasets with different 

parcellation resolutions and the results demonstrate that the predicted intrahemispheric structural 

connections and the weights distribution are highly consistent with the empirical SC derived from diffusion 

magnetic resonance imaging (dMRI) and probabilistic tractography, thus strongly supporting the model and 

algorithms proposed. 

INDEX TERMS human brain mapping, brain connectivity, structure-function relation, network 

deconvolution 

I. INTRODUCTION 

Unravelling the relationship between the relatively static 

anatomical topology and the diverse functional repertoire of 

the human brain is highly crucial for understanding the 

mechanisms of how brain cognition and diseases are 

developed [1-3]. Since the beginning of 1990s, diffusion 

MRI and functional MRI (fMRI) have become two emerging 

types of in vivo noninvasive neuroimaging means for 

mapping the connectivity of human brain [4,5]. Diffusion 

MRI especially diffusion tensor imaging (DTI) and diffusion 

spectrum imaging (DSI) are able to measure the number and 

density of the anatomical white matter fiber tracts between 

brain areas while the functional MRI is capable of recording 

the blood oxygenation level-dependent (BOLD) signals that 

indirectly reflect the true neural activities occurring in human 

brain. Both imaging modalities can be used to estimate one 

kind of brain connectome rendered as a square symmetric 

connectivity matrix [6-8]. The matrix inferred by dMRI is 
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called structural connectivit (SC) in which each entry refers 

to the anatomical connection strength or density measured 

between two brain regions, while the matrix estimated by 

fMRI is termed functional connectivity (FC) in which each 

element is usually obtained by computing the statistical 

correlation between BOLD time series. 

In the past decade, the relationship between SC and FC has 

received increasing attention in the field of neuroscience. 

Numerous statistical and computational modeling studies 

have been conducted to uncover how SC gives rise to FC and 

how FC emerges from SC by predicting FC from SC. Some 

statistical studies suggested that FC can be predicted but to a 

limited extent by some anatomical connectivity features such 

as fiber length, fiber counts or physical distance between 

brain regions [9-13]. For example, a study using SC to 

predict FC [9] observed that the relationship between SC and 

FC is robust when structural connections are present. 

However, when direct SC is absent, the FC varies over a 

wide range and could be accounted by indirect linkages 

which were shown a significant predictor of FC, especially 

for the visual cortices of each hemisphere. Another study on 

macaque also supported this finding that the generation of FC 

in the absence of direct SC can be determined by signal flows 

via connections with common afferents mediated by a third 

area [10]. The configuration of motifs, such as length2-SC 

indirect patterns, revealed an important role of SC-FC 

relation. Note that the brain functional and structural 

networks also have topological properties, such as 

modularity. Intra-modular connections, which predominate in 

highly modular brain networks, are generally short distance. 

However, between-modular connections are generally long-

distance, even though they can help achieve high global 

efficiency of brain networks. Penalizing SC connections by a 

function of distance was demonstrated efficient to simulate 

FC [12]. Others explored the relations using network 

topological features such as shortest path, search information, 

path transitivity [14,15], as well as unweighted degree 

product [16,17]. While computational modeling approaches 

such as linear and nonlinear neural mass models (NMM) 

tend to simulate the neural dynamics among neuronal 

populations in human brain [3,9,18-21], in which hundreds of 

differential equations and tens of physiological parameters 

are involved, making it a daunting task to find an optimal 

solution. More recent studies relate SC and FC through 

machine learning approaches such as matrix or spectral 

mapping [22,23], connectome embedding [24], temporal 

multiple kernel learning [25], and routing with linear 

programming [26], etc. The key difference between machine 

learning based approaches and traditional methods is that the 

machine learning based approaches are able to highly capture 

the relation between SC and FC from the connectome data 

directly, yet the model parameters need to be retrained for 

different connectome data. In fact, the fundamental role of 

how the whole-brain pattern of FC particularly FC between 

region pairs without direct anatomical link is shaped still 

remains fully unknown.  

Different from previous studies, here we present an 

opposite approach to address this issue by predicting the SC 

from rsFC. We first establish a FC model that allows for 

three different types of effects including the direct 

dependencies between neuronal populations, information 

exchange within and between network modules, and the 

indirect interactions via indirect pathways. We then build 

network inversion algorithms to remove the indirect and 

modular effects from FC in a reverse order and finally 

predict the structural connections from the remaining 

connections with shorter shortest path length and Euclidean 

distance. Finally, we test the model and algorithms on three 

group averaged empirical connectome datasets with 

different resolutions and the performances are evaluated by 

comparing the predicted structural connections with the 

empirical structural connections in terms of the number of 

the correctly or falsely predicted links as well as the weight 

distributions of the connections. 

 
II. MATERIALS AND METHODS 

A. CONNECTOME DATASETS 

Three connectome datasets with different resolutions were 

used for testing and assessing the proposed models and 

algorithms.  

The 90 ROIs (regions of interest) dataset was obtained at 

Weill Cornell Medicine and employed in [18,19], in which 

the structural and diffusion MRI together with the resting-

state fMRI data were collected on 8 healthy adults and 

parcellated into 90 cerebral regions after diffusion 

tractography processing. The structural connection weight 

between any two regions was estimated by a weighted sum 

of fiber tracts going between them and corrected by 

topological distance. The functional connectome and the 

corresponding matrices were obtained by computing the 

Pearson correlation between BOLD time series derived from 

resting-state fMRI. Both resting-state FC and SC matrices 

were averaged across the 8 individual participants. To be in 

common with the other two datasets, we rearranged the lobe 

order as: frontal, parietal, occipital, temporal, and subcortical. 

The 246 ROIs dataset is a subset of the connectivity-based 

brain imaging research database (C-BIRD) at Beijing Normal 

University [27], which contains multi-modal MRI data from 

49 young healthy subjects. Informed consent to all 

participants in the Institutional Review Board (IRB) of the 

State Key Laboratory of Cognitive Neuroscience and 

Learning of Beijing Normal University and approved study 

was obtained. All participants agreed to share data freely on 

the Internet in an anonymous form. In our study, the human 

Brainnetome atlases of 246 brain ROIs was used 

(http://atlas.brainnetome.org) [28]. This atlas composed of 

210 cortical and 36 sub-cortical subregions, which contains 

the information on both anatomy and functional connections. 

Probabilistic tracking was performed and the fiber direction 

was determined according to the probability to obtain the 

structural connection of 246 ROIs. The structural 

connectivity matrix of each participant was obtained through 
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PANDA software (https://www.nitrc.org/projects/panda/), in 

which rows and columns represent brain nodes, and element 

values represent connection probabilities between nodes. The 

resting-state FC matrix was calculated using pair wise 

Pearson’s correlation coefficients of BOLD time series 

obtained from each brain area. Both rsFC and SC matrices 

were averaged across the 49 individual participants. 

FIGURE 1.  The mean FC and SC connectomes of the three datasets. (A) 
90-ROI dataset, averaged across 8 individual participants. (B) 246-ROI 
dataset, averaged across 49 individual participants. (C) 998-ROI dataset, 
averaged across 5 individual participants. 

 

The high resolution dataset with 998 ROIs has been 

extensively studied in previous research [9,14,29,30], in 

which the structural and diffusion MRI together with the 

resting-state fMRI data were collected on 5 healthy right-

handed male subjects. DSI was performed using a diffusion-

weighted single-shot echo planar imaging (EPI) sequence. 

Following diffusion spectrum and T1-weighted MRI 

acquisitions, the segmented gray matter was partitioned into 

998 ROIs. White-matter tractography was performed with a 

custom streamline algorithm and fiber connectivity was 

aggregated across all voxels within each of the 998 

predefined ROIs. The resting-state FC matrix was calculated 

using pair wise Pearson’s correlation coefficients of BOLD 

time series obtained from each brain area. Both rsFC and SC 

were averaged across the 5 individual participants. Refer to 

[14] and [29] for more details. 

All the aforementioned connectivity matrices are 

symmetric and arranged that the upper left and lower right 

quadrants map the right hemisphere and left hemisphere of 

the brain respectively, while the off-diagonal quadrants map 

the inter-hemisphere between the two. 

Because weak and non-significant links may represent 

spurious connections in FC [31], therefore, we removed all 

the connections whose strength were smaller than 0.1 and the 

negative connections (the functional anticorrelations still 

remain elusive) in FC. Furthermore, all self-connections 

(diagonal elements in the FC matrix) were also excluded.  

The three empirical group-averaged connectomes are 

demonstrated in Fig.1. 

B. MODEL OF FC 

We start with the assumption that the observed resting-

brain functional network, 
obsG , can be formulated as the sum 

of at least three parts in temporal order of formation: the 

direct network 
dirG , the modular network 

mdlG , along with 

the indirect network 
indG : 

obs dir mdl indG G G G                                   (1) 

Where obsG , dirG , mdlG , and indG  are four 

M M symmetric matrices, containing non-negative 

elements only. M indicates the number of brain areas. The 

direct network, 
dirG , stemming from the relatively invariant 

anatomical structure, which reflects the initial interplay 

among brain areas or neuronal populations. The modular 

network, mdlG , arising from the communication within and 

between network modules, which allows for local 

segregation and global integration. While the indirect 

network, indG , induced by the indirect paths between brain 

areas, which can facilitate the signal transmission along 

structural pathways.  

Define dirm dir mdlG G G   as the whole direct effects after 

the modular effects set up. According to previous studies [9, 

14, 22, 23], the indirect effects on FC cannot be exclusively 

attributed to the indirect paths of length 2, but there is no 

denying that longer paths contribute less to the whole FC. 

Here, for computational convenience, we suppose that the 

indirect effects induced by the longer indirect paths are 

approximately proportional to the direct effects, thus we can 

model the indirect effects as 

2 (1 )ind dirm dirmG G G                                (2) 

Where 0 1  , indicating different contributions to the 

whole indirect effects by indirect paths of length 2 and longer 

paths.  

Putting (1) and (2) together, we obtain, 

2(2 )obs dirm dirmG G G                               (3) 

C. NETWORK DECONVOLUTION WITH CDA 

Distinguishing the direct network dirmG  from the observed 

network obsG  in (3) can be formulated as a network 

https://www.nitrc.org/projects/panda/
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deconvolution problem [32]. Obviously, there are no real and 

analytical solutions to (3) due to its nonlinearity and high 

dimensionality. Here, we formulate the network 

deconvolution problem as finding an optimal direct 

connection matrix by optimization. 

Specifically, for a given direct connection matrix
dirmG , we 

can obtain a prediction of the observed correlation matrix 

from (3), denoted by p

obsG . Then network deconvolution 

process can be converted into searching for an optimal sparse 

direct connection matrix
dirmG , subject to 

2

2 1
arg min  ( , )    

dirm

p p p

obs obs obs obs obs obs
G

E G G G G G G     (4) 

The Frobenius 2 - norm term in (4) measures how well the 

direct connection matrix describes the observed connection 

matrix, and here we define this as the sum of the square of all 

the entries in the error matrix p

obs obsG G : 

2 2

2
,

( , ) ( , )p p

obs obs obs obs

i j

G G G i j G i j                  (5) 

Whereas the 1 - norm term in (4) is used to expedite the 

iteration process during optimization and defined by the sum 

of the absolute value of all the entries in the error 

matrix p

obs obsG G : 

1
,

( , ) ( , )p p

obs obs obs obs

i j

G G G i j G i j                    (6) 

It is not easy to find an global optimal direct connection 

matrix dirmG  from (3) and (4) using the traditional gradient 

descent algorithms due to the high dimensionality of the 

problem and will get even harder when the size of the 

network increases. While bio-inspired optimization 

algorithms, such as genetic algorithms (GAs) [33], particle 

swarm optimization (PSO) [34], and ant colony optimization 

(ACO) [35], etc., can only handle problems with dozens of 

dimensions. It is worth noting that Zhong et al. [36] 

incorporated the multi-agent concept into GAs and proposed 

a multiagent genetic algorithm (MAGA) which can handle 

high dimensional function optimization problems with 20-

1000 dimensions. However, the performance of MAGA 

worsens rapidly when the dimensions of the solution space 

approaches 10000. Normally, MAGA needs tens of 

thousands of iterations to get the optimal solution even with 

1000 dimensional functions. 

Studies in developmental biology show that cell 

differentiation is a fundamental and central process for 

shaping tissues and organs with specific functions in our 

body. The resulting morphogenesis involves several cellular 

behaviors such as division, differential growth, migration, 

fusion, differential adhesion, contraction, as well as apoptosis 

(programming death) [37]. These behaviors allow for local 

cell-cell interactions and gene regulations occurring under 

precise spatiotemporal coordination [38,39]. Inspired by the 

developmental mechanisms of cell differentiation at the 

microscale, in our previous work, we developed a new 

biologically inspired optimization algorithm for handling 

super-high dimensional optimization problems [40], in which 

only four behaviors were simply modeled and the algorithm 

can only be applied to numerical function optimization. In 

this paper, we redefine all the cellular behaviors 

mathematically and extend the algorithm to matrix 

optimization cases because a matrix can be simply 

symbolized as a cell. Additionally, the elements in the matrix 

can be modeled and expressed by genes and the matrix 

operations can be viewed as the morphological changes of a 

cell, thus the matrix optimization process can be realized by 

performing the behaviors of cell differentiation. A number of 

child cells descended by their parent interact with each other 

by regulating their internal gene expressions to evolve 

generation by generation by way of exhibiting different 

differentiation behaviors aforementioned. On the basis of the 

principle of survival of the fittest, cells with higher activity 

values will be more likely to continue to be alive after each 

differentiation behavior, while those with smaller activity 

values will die and be replaced by other more robust cells. 

Therefore, the quality of the cells will be better and better. 

After a certain number of evolving generations, the cell 

swarm will be smoothly differentiated towards the best shape 

representing a global optimal solution to the problem.  

Consider C is a set of N cells, 1 2{ , , , }NC cell cell cell , 

and define Cs as the stem cell of C. Where icell  ( i=1, 2, …, N) 

is the ith cell denoted by a n n  matrix and 1icell  , 1icell  are 

its two neighbors. Let miP , adP , 
fuP and 

apP , denote the 

probability of cell migration, differential adhesion or 

contraction, fusion, and apoptosis during cell development 

and differentiation, respectively; iact  and iage  refer to the 

activity value and age of cell i, respectively. 

1) CELL DIVISION AND GROWTH 

Cell division is the first developmental behavior for nearly 

all types of cells, particularly asymmetric mitosis, which 

occurs autonomously and can be modeled by dividing each 

cell asymmetrically into descendent cells distinct from their 

parents [37].  

Specifically, assume k is a random number within (1, n), 

the division of a cell can be defined as dividing the mother 

cell into two daughter cells: 

1 2i i icell cell cell                                    (7) 

where the first k rows of icell are duplicated into the 

corresponding rows of 1icell , the remaining n k rows of 

icell  are copied into the corresponding rows of 2icell , while 

the rest of the rows in 1icell  and 2icell  are all set to be 0.  

Then make the two daughter cells grow by replacing the 

last n k rows of 1icell and the first k rows of 2icell with 

random values generated from the stem cell, Cs, respectively, 
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i.e. (0, )su C , note that ( , )u   is a uniform random number 

generator and (0, )su C represents a random matrix.  

For computational consideration, if the activity value of 

either of the daughter cells is higher than their parent, the 

parent cell will be replaced by the daughter cells with higher 

activity value. Otherwise, the parent cell will remain to live. 

2) CELL MIGRATION 

Cell migration means the cells inside the tissue will move 

from one location to another. Migration can be random or 

towards a preferred direction. Here, we use two strategies for 

modeling cell migration in CDA: directed migration and 

random migration. Directed migration means the cell will 

move towards where the best cell (with the highest activity 

value currently) in the current generation is located, while 

random migration means the cell moves to some location 

between its current location and the best cell randomly.  

Specifically, for each icell , if (0,1) miu P , the cell will 

perform directed migration strategy: 

( ) ( 1,1)i best i best icell cell cell cell Mstep u            (8) 

Otherwise, the cell will perform random migration strategy: 

( ) ( 1,1)i i best i icell cell cell cell Mstep u               (9) 

Where bestcell is the best cell in the current generation, 

iMstep  stands for the migration step length which is defined 

by, 

1

/
N

i i i

i

Mstep act act


                                           (10) 

Where acti stands for the activity value of celli, which can 

be defined by the objective function in (4).  

3) CELL FUSION 

Cell fusion indicates the cell will merge with the best cell 

around its neighbors. There are also two strategies of cell 

fusion, one is dominated by the cell per se, the other by the 

best cell from its neighbors. 

For each icell , if (0,1) fuu P , the cell will perform the 

following fusion strategy: 

( ) ( 1,1)best best

i i i icell cell cell cell u                    (11) 

Otherwise, the cell will perform strategy: 

( ) ( 1,1)best

i i i icell cell cell cell u                        (12) 

Where best
cell is the cell with maximum activity value 

among its 4 neighbors: 2 1 1 2{ , , , }i i i icell cell cell cell    . 

4) CELL DIFFERENTIAL ADHESION AND 
CONTRACTION 

Cell differential adhesion and contraction are crucial steps 

in cell differentiation and defined by the gene networks. Cell 

differential adhesion and contraction change the size and 

shape of cells and then generate long-range forces between 

the differentiated cells, and results in cell migration and 

mechanical stresses on cells, which may trigger cell division, 

growth, and death [39]. 

In CDA, cell differential adhesion and contraction are 

modeled to change the values of each gene by increasing or 

decreasing a small random value related to the stem cell 

through heating or cooling the cell by changing the 

temperature T. 

For each icell , if (0,1) adu P , the cell will perform the 

following adhesion and contraction strategy: 

( 1 ( 1),  1 / ( 1))i i scell cell u / T T C                  (13) 

Where T denotes the temperature, which will increase by 1 

degree after each iteration, if it exceeds a predefined value it 

will be reset to zero. At present, the predefined temperature is 

set to be 100 degrees Celsius for CDA. 

5) CELL APOPTOSIS 

Cell apoptosis is also crucial in pattern formation and 

morphogenesis, which can transform one pattern into another. 

In CDA, we model cell apoptosis by just resetting some 

genes in the cell to be zero or replacing them by a small 

value generated randomly if the activity values of these genes 

are still below some value after a certain number of 

generations. The life span of a cell, 100, is chosen in the 

current CDA.  

Specifically, for each icell , if its age exceeds the life span 

and (0,1) apu P , those genes with smaller activity values will 

be set to zero; or if (0,1) apu P , these genes will be randomly 

generated using (0,0.1)u . 

Based on the above description, the network 

deconvolution algorithm based on CDA can be implemented 

by the following steps: 

Step 1: Initialize the cell swarm. Generally, in an 

evolutionary algorithm, the initial population is usually 

created by randomly assigning each gene to a binary or a real 

number. While for CDA-ND, all the N initial cells are 

descended from the stem cell, denoted by the observed 

functional network, obsG , i.e.: 

, 1,2,i s s

i
cell C C i N

N
                          (14) 

It is worth noting that each cell represents a candidate 

solution and can be specified by a M M  matrix.   

Step 2: Estimate the activity value of each cell, act(celli), 

based on (4); 

Step 3: For each cell, exhibit the division behavior first, 

then followed by growth, migration, fusion, 
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adhesion/contraction, and apoptosis differentiation behaviors 

as well. And then evaluate all the cells after each behavior by 

comparing the activity values between the mother cells and 

the child cells and keep the cells with higher activity values; 

Step 4: Update the cell swarm and find the one with the 

highest activity value, i.e., the best cell in the current 

generation t, t

bestcell ;  

Step 5: If 1( ) ( )t t

best bestact cell act cell
 , leave the t

bestcell in the 

next generation; otherwise 1t t

best bestcell cell
 . This step will 

ensure the CDA to converge to the global optimum because 

the best solution is always maintained in the swarm; 

Step 6: Decide whether it satisfies the termination criterion 

or not. If the stopping criterion holds, the algorithm will end, 

otherwise repeat from Step 3. 

The overview of CDA-ND is schematically illustrated in 

Fig.2. 

FIGURE 2.  Overview of CDA-ND. A number of child cells descended by 
their parent interact with each other by regulating their internal gene 
expressions to evolve generation by generation by way of exhibiting 
different differentiation behaviors such as division, growth, migration, 
fusion, adhesion, contraction as well as apoptosis (programming death). 
From left to right: the parent cell (the original observed FC), three 
snapshots of the initial child cells coming from the parent cell, cell 
differentiation behaviors, and the optimal cell after CDA-ND (the 
remaining direct connectivity after the indirect effects on FC matrix are 
removed. 

D. KERNEL-BASED WEIGHT TRIMMING (KWT) 

The deconvolved direct correlation network dirmG  after 

network deconvolution with CDA  consists of two parts: the 

initial direct dependencies between brain areas and the 

modular effects owing to the modular network structure. 

Studies on network topology and properties of the anatomical 

connectivity of human brain indicated that the brain structure 

shows small-world characteristics, i.e., with high local 

clustering coefficient and small average shortest path length, 

allowing for local functional segregation and global 

functional integration [2, 12, 29]. This can be evidenced by 

the rich-club organization of the structural connectivity of the 

human brain [41], in which many small group of modules 

clustered by short-range connections between cortical region 

pairs are highly connected through hubs. The small-world 

and modular structure of human brain network suggest that 

there more likely exists an anatomical link between region 

pairs with shorter physical distance while the probability of 

having a link between two distant regions is much smaller. 

Thus, we can construct a Gaussian kernel matrix based on 

Euclidean distance between brain areas and map it onto the 

deconvolved direct network 
dirmG  after CDA to hold the 

short-range and weaken the long-range connection strength.  

Specifically, for each region pair ( , )i j , we choose the 

Gaussian kernel function as,  

2

2

( , )

2( , )

D i j

K i j e 


                                    (15) 

Where ( , )D i j denotes the Euclidean distance between 

region i and j, which can be estimated using the mean 

Talairach coordinates of voxels comprising an ROI [9];  is 

a volume parameter, controlling the size of the modules and 

varying with the network size.  

Finally, the resulting direct network can be obtained by 

kernel-based weight trimming (KWT), as follows, 

dir dirmG KG                                              (16) 

III. RESULTS 

Our results are verified by following: first, evaluating the 

optimization algorithm–CDA by minimizing the error 

between observed matrix (i.e., functional networks) and 

simulated observed matrix to find the optimal deconvolved 

direct matrix on example datasets; second, validating the role 

of the shortest path length (SPL) to reconstruct empirical SC 

by showing the receiver-operating characteristic curves 

(ROC) and the area under curves (AUC); third, verifying the 

predicted SC by checking both the rate of correctly predicted 

connections and the similarity of connection strength with the 

empirical SC; fourth, comparing proposed algorithm with 

two existing methods by showing the prediction rates. 

For convenience, we list the important acronyms used in 

Table 1. 

 
TABLE 1 List of the important acronyms  

Acronyms Definitions Acronyms Definitions 

SC Structural connectivity KWT Kernel-based weight 

trimming 

rsFC Resting-state 

functional connectivity 

CDA-ND ND based on CDA 

CDA Cell differentiation 

algorithm 

ROC Receiver-operating 

characteristic 
SPL Shortest path length AUC Area under curves 

dMRI Diffusion magnetic 

resonance imaging 

TPR True positive rate 

fMRI Functional magnetic 

resonance imaging 

FPR False positive rate 

DTI Diffusion tensor 

imaging 

RH/LH Right/left hemisphere 

DSI Diffusion spectrum 
imaging 

IH Interhemisphere  

BOLD Blood oxygenation 

level-dependent 

ED-ND Eigen-decomposition 

based ND 

NMM Neural mass model CDA-SPL CDA with SPL 

ROIs Regions of interest CDA-

KWT-SPL 

CDA with KWT and 

SPL 

ND Network deconvolution FC-TH FC thresholding 
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A. EVALUATION OF CDA 

Before applying the proposed CDA to the empirical 

connectome datasets. We first apply it to search for an 

optimal symmetric matrix with 100 100 dimensions , which 

satisfies (3), where  =0.6. The simulated direct matrix and 

the observed matrix are shown in Fig. 3 (A) and (B), 

respectively. 

Some model parameters need to be predetermined before 

the CDA works. The population size of cells, Nc, can usually 

be chosen as 20-50. The migration probability 
miP determines 

whether CDA exploits new locations between the current cell 

and the current best cell or explores around the current global 

best cell, when 0.5miP  , CDA mainly acts on searching new 

solutions (exploitation). The fusion probability 
fuP decides 

how often the cells exchange their information with their 

local best (within their neighbors). While the adhesion or 

contraction probability adP ensures the diversity of cells, 

obviating the premature of the algorithm and the apoptosis 

probability 
apP  controls the death of genes in a cell if the age 

of a cell with lower activity value exceeds its life span.  

FIGURE 3.  Applying CDA-ND algorithm to find an optimal symmetric 
matrix with 100×100 dimensions. (A) the simulated direct matrix. (B) the 
simulated observed matrix. (C) the deconvolved direct matrix after CDA-
ND. (D) the convergence performance. The Pearson correlation between 
the simulated direct matrix and the deconvolved direct matrix is 0.9987. 

 

After a large number of tests, in our study, the parameters 

of CDA are chosen as: N=20, 0.5miP  , 0.5fuP  , 0.2adP  , 

0.1apP  , the life span of a cell is 100, the temperature T is 

100. Two termination criteria are exploited: (1) to ensure 

each entry in the error matrix, , p

obs obsG G , is less than -510 , 

then the total error calculated by (4) satisfies 

   51 / 2 10M M     , where M is the order of the matrix 

to be optimized; (2) the maximal number of generations 

exceeds a predefined number. 

The optimal direct matrix after CDA is shown in Fig.3 (C) 

and the convergence performance is shown in Fig.3 (D). It 

can be seen that the deconvolution error drops down to the 

predefined precision (0.0495) from 14.517 after 55,597 

numbers of generations (Fig.3 (D), about 1.634 hours on a 

Dell laptop computer with Intel (R) Core (TM) i7-7560 CPU 

@ 2.40GHz, 16G memory, and Windows10 operating 

system). The Pearson correlation between the simulated 

direct matrix and the deconvolved direct matrix is 0.9987, 

indicating that the simulated direct network with size 

100  100 can be fully distinguished from the observed 

functional network with the proposed CDA.  

We then apply the CDA to the empirical 90-ROI and 998-

ROI datasets, respectively. The recordings of the 

convergence curves for the 45 45 matrix optimization (RH, 

90-ROI dataset) and 500 500 matrix optimization (RH, 998-

ROI dataset) are shown in Fig. 4 (A) and (B), respectively. It 

can be seen that the deconvolution error drops down to 

0.0017 from 5.77 after 10,000 numbers of iterations for the 

45 45 matrix optimization (Fig. 4 (A), about 3 minutes on 

the same Dell laptop computer), while from 258.38 to 5.76 

after 20,000 numbers of iterations for the 500 500 matrix 

optimization (Fig. 4 (B), about 10 hours on the same Dell 

laptop computer ), showing the proposed CDA is able to find 

an optimal matrix with size up to 500  500, i.e. 250,000 

dimensions, after a certain number of iterations. 

 
FIGURE 4.  Two sample convergence curves of CDA–ND for the RH of 

the 90-ROI and 998-ROI datasets. (A) 45 45 matrix optimization (RH, 

90-ROI). (B) 500 500 matrix optimization (RH, 998-ROI). 

B. STRUCTURAL CONNECTION IDENTIFICATION 

Note that dirG  represents  the positive couplings between 

not only the structurally connected brain regions but also 

some regions that are indirectly structurally coupled, which 

could be simulated by a neural mass model. Nevertheless, it 

is an intractable issue to infer the true SC by inversion from a 

neural mass model. Here we adopt an alternative way to 

build the bridge between dirG  and the actual SC.  

We find that the SPL together with the number of steps 

along the shortest path between brain areas can highly 

capture the relation between both connected and unconnected 

pairs of regions, including structural links showing negative 

correlations. We validate this by extracting the SPL matrices 

from the empirical SC matrices of the three datasets and 

keeping those region pairs with shorter weighted path length 

together with fewer steps along each shortest path. Log-

weighted length was chosen due to the log-normal 

distribution of the connection strengths [9, 29, 42]. We 

evaluate the reconstructed results using the ROC curves 

(Fig.5), in which all the AUC value of the three datasets are 

close to 1, meaning nearly all the intrahemispheric structural 

connections, including those connections with negative 
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FIGURE 5.  The performance evaluation of the reconstructed empirical SC using ROC curves for the three datasets by log-weighted SPL and the 
number of steps. All the areas under curves (AUC) are close to 1, which suggests that the shortest path length together with the number of steps of 
the path can strongly reflect the SC irrespective of whether the functional correlations between the connected node pairs are positive or negative. 

 

functional correlations, can be correctly reconstructed when 

detecting the same number of connections as the actual 

number of connections within each hemisphere of the 

empirical SC. The reconstructed results are assessed by true 

positive rate (TPR) and false positive rate (FPR), as listed in 

Table 2, showing that 93.26%, 84.45%, and 91.7% of the 

mean intrahemispheric links are correctly reconstructed for 

the 90-ROI, 246-ROI, and 998-ROI datasets respectively. 

 
TABLE 2 Reconstructed results of the empirical SC for the three 

datasets by log-weighted SPL and the number of steps. 

 

90 ROIs 246 ROIs 998 ROIs 

RH LH RH LH RH LH 

TPR(%) 93.60 92.92 84.25 84.64 92.0 91.40 

FPR(%) 13.56 16.44 15.28 14.67 1.28 1.25 

C. SC PREDICTION 

In what follows, we apply the model and algorithms to the 

three empirical datasets to predict the structural links of the 

right hemisphere (RH) and the left hemisphere (LH), 

respectively. We do not evaluate the interhemisphere (IH) 

because studies on dMRI suggested that the structural 

connections of the IH are noisy and some structural  

connections might be missed or falsely measured [43-47]. As 

the predicted SC is weighted, we apply two methods to verify 

the quality of the predicted SC. Firstly, we check the rate of 

correctly predicted links (prediction rate) by detecting the 

same number of connections as the actual number of 

connections within each hemisphere of the empirical SC and 

plotting ROC curves under a range of continuous predicted 

SC thresholds. The empirical structural network was 

binarized where connections are either absent (strength is 0) 

or present (strength is positive) before ROC analysis. A high 

prediction rate indicates that the structural links are well 

distinguished from a dense connected functional network 

regardless of the connection strength. Secondly, to assess the 

connection strengths of the predicted SC, we also graphically 

demonstrate the predicted connectomes as compared with the 

empirical weighted SC for each dataset, and the Pearson 

correlations which linearly depict the strength similarity 

between the two are given as well. It is worth noting that, in 

the current model, the optimal FC model parameter  was 

determined as 0.6 after extensive tests across all the three 

datasets, while the optimal kernel parameter   was chosen 

as 30 for the 90-ROI dataset and 15 for the other two datasets 

with higher resolutions, respectively. 

The prediction results are averaged with 5 runs and 

compared among CDA alone, CDA followed by SPL (CDA - 

SPL), as well as CDA followed by KWT and then SPL 

(CDA-KWT–SPL) (Table 3). It can be seen that, compared 

with CDA alone, the prediction rate of the RH and LH are 

increased by 4.34% and 3.98% for the 90-ROI dataset, 

2.88% and 3.35% for the 246-ROI dataset, and 6.44% and 

7.22% for the 998-ROI dataset with CDA-SPL, respectively. 

While with CDA- KWT –SPL, the prediction rate of the RH 

and LH are raised by 18.79% and 13.58% for the 90-ROI 

dataset, 7.09% and 6.7% for the 246-ROI dataset, and 

14.83% and 16.29% for the 998-ROI dataset respectively as 

compared with CDA alone. The mean SC prediction rates are 

more than 91% for the 90-ROI dataset, 83% for the 246-ROI 

dataset, and 74% for the 998-ROI dataset, respectively. 

These results suggest that the indirect paths and the 

Euclidean distance between brain areas are two contributing 

factors and play different roles in yielding the whole brain 

FC at rest, while the shortest paths with shorter lengths 

reflect the key features of SC. 

Furthermore, Fig.6 demonstrates the predicted 

intrahemispheric SC connectomes in contrast to the 

corresponding empirical connectomes for all the three 

datasets. 

 
TABLE 3 Comparison results of the prediction rates (%) for the three 

datasets with the three methods. 

          Datasets    

Methods     

90 ROIs 246 ROIs 998 ROIs 

RH LH RH LH RH LH 

CDA 72.83 77.15 76.11 77.13 59.59 58.65 

CDA-SPL 77.17 81.13 78.99 80.48 66.03 65.87 

CDA-KWT-SPL 91.62 90.73 83.20 83.83 74.42 74.94 

D. COMPARED WITH EIGEN-DECOMPOSITION BASED 
(ED-ND) ALGORITHM 

We further evaluate the performance of the proposed 

CDA-ND in contrast to the ED-ND algorithm [30,32] as well 

as the FC thresholding (FC-TH) method [9,11] in terms of
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FIGURE 6.  Graphical demonstration of the predicted intrahemispheric SC in comparison with the corresponding empirical SC for the three datasets. 
(A) 90 ROIs, Pearson correlation: (RH) R= 0.8926; (LH) R= 0.9169. (B) 246 ROIs, Pearson correlation: (RH) R= 0.8721; (LH) R= 0.8749 (C) 998 ROIs, 

Pearson correlation: (RH) R= 0.7391; (LH) R= 0.7384. All correlations reported in this paper are 1 3P e   . Abbreviations and meaning of the legend 

names are as follows: SCemp denotes the empirical SC, SCpre refers to the predicted SC, RH/LH indicates the right/left hemisphere. 

 

ROC curves, as illustrated in Fig.7. The results show that the 

ED-ND approach outperforms the FC-TH method for the 90-

ROI dataset, but both ED-ND and FC-TH methods have the 

similar performance for the 246-ROI and 998-ROI datasets. 

Whereas the performance of the proposed CDA-ND 

approach far exceeds the other two methods across all the 

three datasets.  

IV. DISCUSSIONS 

A. SUMMARY OF THE MAIN FINDINGS 

This study aims to explore how the long-time averages of 

the whole brain functional connectivity emerges from the 

relatively invariant structural topology in the absence of any 

external stimuli, which intrigues a growing number of 

researchers in neuroscience during the past decade. 

Traditional approaches usually laid emphasize on predicting 

FC from SC using various of computational models. 

However, none of these models are able to completely cast 

light on the nature of the phenomenon. There is still much 

unknown for how the correlations emerged between regions 

that are not directly structurally coupled. The key distinction 

between our research and previous studies is that our study 

shows how one might go in the other direction as opposed to 

the prediction of FC, to uncover the structural connections 

from the resting-state fMRI correlations between brain 

regions.  

We first put forward a FC model in which the observed 

whole resting-brain FC is formulated as the weighted 

combination of direct dependencies and indirect 

dependencies majorly owing to the indirect paths of length 2. 

Then we introduce a bio-inspired network deconvolution 

algorithm as well as a kernel-based weight trimming 

algorithm to search for the best structural connections that 

produce the observed fMRI correlations by minimizing the 

wiring strength and the shortest path length.  

The major finding of our study is that the predicted 

structural connection strengths are well fit by lognormal 

distributions (Fig.8). The predicted connection strength 

ranges from 3.5476e-9 to 0.4635 for the 90-ROI dataset, 

3.4087e-9 to 0.3438 for the 246-ROI dataset, and 3.1997e-5 

to 0.3625 for the 998-ROI dataset, respectively, showing that 

the connection strengths span several orders of magnitude. 

Furthermore, the mean Pearson correlation between the 

predicted intrahemispheric SC and the corresponding 

empirical SC are 0.9048 for the 90-ROI dataset, 0.8735 for 

the 246-ROI dataset, and 0.7388 for the 998-ROI dataset, 

respectively. These results are highly consistent with the 

empirical SC derived with dMRI and the probabilistic 

tractography [9,14,17,29,45,46]. The minimized wiring cost 
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together with the maximized efficiency (shortest path length 

or shorter Euclidean distance between structurally connected 

node pairs) provide strong accounts for supporting the view 

that the human brain network is organized in a tradeoff 

between wire cost and efficiency [48]. 

FIGURE 7.  Performance comparison of the predicted intrahemispheric 
SC for the three datasets with the three different ND approaches using 
ROC curves. (A)  Prediction performance of the three methods for the 
90-ROI dataset. (B) Prediction performance of the three methods for the 
246-ROI dataset. (C) Prediction performance of the three methods for 
the 998-ROI dataset. From left to right: the right hemisphere, the left 
hemisphere. Abbreviations and meaning of the legend names are as 
follows: FC-TH means thresholding the FC matrix directly; ED-ND refers 
to the eigen-decomposition based network deconvolution algorithm [32]; 
CDA-ND indicates the proposed CDA based network deconvolution 
algorithm. ROC: receiver-operating characteristic. AUC: Area under 
Curve. Note that both ED-ND and CDA-ND algorithms have a control 

parameter, the optimal values are set as: for 90-ROI dataset,  =0.9 (ED-

ND),  =30 (CDA-ND); for 246-ROI and 998-ROI datasets,  =0.1 (ED-ND), 

 =15 (CDA-ND). 

 

After CDA-ND, we found that more than 62% of the mean 

intrahemispheric FC was caused by the indirect effects for 

the 90-ROI dataset, 64% for the 246-ROI dataset, and 73% 

for the 998-ROI dataset, respectively. While after KWT, we 

found that the modular effects remain relatively steady, 

accounting for ~24% of the whole FC for the 90-ROI dataset, 

~29% for the 246-ROI dataset, and ~20% for the 998-ROI 

dataset, respectively. Finally, our findings indicated that only 

a small fraction of FC directly reflects SC, accounting for 

~14% of the mean intrahemispheric FC for the 90-ROI 

dataset, ~7% for the 246-ROI and 998-ROI datasets, 

respectively, indicating that the higher the resolution of 

parcellation is, the smaller the direct effects influenced by SC. 

The main methodological contributions of our work are 

the integration of indirect effect and modular effect in the 

contributing factors of shaping FC to uncover SC; and the 

utilization of new method CDA to search optimal results, 

leading to several benefits. First of all, the indirect effect is 

mainly attributed to the length2-paths, therefore, providing a 

simple representation in the model of FC which reduces  

computing and time complexity. Besides, SPL, the minimum 

path distance, is used to remove the indirect effect further, 

providing new insight and methodology to uncover SC. The 

modular effect, described by physical distance, is trimmed 

via a Gaussian kernel, suggesting a possible relationship 

between network topology and functional network. The 

integration of above effects not only helps to shed light on 

how much they contribute to generating FC but can offer a 

way of comparison between the two by removing effects one 

by one. The second benefit of our method is the possibility to 

apply the CDA to other optimization studies, especially for 

the high-dimension solution. CDA has been demonstrated 

efficient with the result of low deconvolution error and good 

performance when the dimensions of the solution space are 

500 × 500=250,000, compared with other optimization 

algorithms [33-36].  

B. COMPARISONS WITH RELATED METHODS 

So far, systematic comparisons of structural connectivity 

and resting-state functional connectivity have gained 

significant success in using the observed dMRI structural 

strengths to predict the resting-state fMRI correlations, 

including correlations between regions that are not directly 

structurally coupled. One previous research evidenced that 

the fMRI correlations can be better predicted by the topology 

of the shortest (and presumably most efficient) structural 

paths [14]. The results showed that both search information 

(accessibility of a path) and path transitivity (the density of 

local detours along a path) along the shortest path can predict 

the strength of FC among both connected and unconnected 

node pairs well. Here our study showed that the presence of 

FC between brain regions cannot be exclusively attributed to 

the shortest paths. A large portion of FC is induced by 

indirect paths, particularly by two-step paths linking two 

brain areas rather than the local detours along the path. 

Furthermore, the shortest paths can highly capture the 

anatomical structure of the human brain (Fig.5), indicating 

that there is more likely a direct structural link between two 

regions with shorter shortest path length even though the 

functional correlation between the two regions is relatively 

weak or even negative.  

In a study by Feizi and colleagues [32], they also 

formulated the inference of the direct relationship from the 

observed correlations as a network deconvolution problem 

and derived a closed-form solution based on eigen-

decomposition. Meanwhile, Robinson et al [30] presented the 

similar solution based on linear neural field theory and 

applied it to the determination of effective brain connectivity 

from FC. The eigen-decomposition based network 

deconvolution (ED-ND) models the observed correlation as 
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FIGURE 8.  Distributions of the negative logarithm of the predicted structural connection strengths between region pairs for the three datasets. The 
predicted connection strengths range from 3.5476e-9 (-log10(3.5476e-9) = 8.4501) to 0.4635 (-log10(0.4635) = 0.3340) for the 90-ROI dataset, 3.4087e-9 (-
log10(3.4087e-9) = 8.4674) to 0.3438 (-log10(0.3438) = 0.4637) for the 246-ROI dataset, and 3.1997e-5 (-log10(3.1997e-5) = 4.4949) to 0.3625 (-log10(0.3625) = 
0.4407) for the 998-ROI dataset, respectively. 

 

the combination of direct and indirect dependencies owing to 

transitive effects of correlations of all indirect paths with 

arbitrary length, and therefore the solution can be solved 

analytically with infinite-series sums. However, their results 

can be achieved only on condition that the largest absolute 

eigenvalue of the direct connection matrix is strictly less than 

one, otherwise the observed correlation matrix needs 

rescaling. Unfortunately, it does not apply to the human brain 

networks. In fact, the human brain functional network is 

much more intricately organized, in which the observed 

functional correlations are related not only to the indirect 

effects by transitivity but also to the modular effects owing to 

the modularized network topological structure. To address 

such a daunting issue, we proposed a bio-inspired network 

deconvolution algorithm based on the mechanism of cell 

differentiation for distinguishing the direct dependencies 

from the observed functional correlations. Results on all the 

three connectome datasets demonstrate that the CDA-ND far 

outperforms the ED-ND in predicting the human brain SC 

from FC (Fig.7). 

In addition, it should be noted that our findings revealed 

different statistical results on the ratio of each component to 

the whole FC in contrast to previous studies [21,49], in which 

FC was simulated from increasingly computational models. 

Our approach obtained the statistical results through 

removing each type of effect from the whole FC. Moreover, 

our study also showed that the establishment of the indirect 

effects on FC rests on the modular effects rather than the 

anatomical connectivity directly. 

C. LIMITATIONS AND FUTURE WORK 

Although the modeling approach and the network 

deconvolution algorithms proposed in this paper have shown 

promising results, they also have some limitations. First, the 

relationship of FC and SC is so complex that there are still 

many unresolved challenges and open debates. Some studies 

even challenged the point that the structural and functional 

connectivity are related in a straightforward manner. For 

example, O’Reilly and colleagues [50] demonstrated 

relatively intact interhemispheric functional connectivity in a 

macaque brain in the absence of major commissural fibers; 

Uddin et al. [51,52] partly characterize residual functional 

connectivity between two hemispheres in a complete 

commissurotomy patient. All these findings indicate that the 

mechanisms shaping the relationship between structure and 

function especially the FC between distant cortical regions 

still remain open issues. Therefore, the proposed FC model 

may not fully capture the relationship between the direct and 

indirect effects of the functional network. However, it can be 

improved with more insights gleaned from both empirical 

and theoretical findings.  

Secondly, the performance of our approach is prone to the 

accuracy of the fMRI data acquisition and dMRI 

tractography. More noise may be produced by fMRI and 

dMRI for datasets with higher resolutions. 

In addition, the negative functional correlations were not 

considered in the current study since the mechanism of 

anticorrelations still remains elusive.  

However, it is worth highlighting that the proposed CDA-

ND algorithm is promising although it takes longer time 

when dealing with large-scale network. In fact, the CDA 

really works when tackling super high dimensional 

optimization problems. To our best knowledge, an 

optimization algorithm that can find an optimal solution 

globally in a nonlinear space with at least 250,000 

dimensions has never been reported before and it will find 

more unexpected applications in revealing direct 

dependencies for some other types of complex networks. 

In the future, we will apply the proposed model and 

algorithms to optimize some noisy or falsely measured as 

well as to infer some missed interhemispheric structural 

connections measured with dMRI, which will produce a 

better human brain structural map in combination with the 

current diffusion MRI tractography. 

D. CONCLUSIONS 

We present an opposite approach to investigating the 

structure-function relationship by predicting SC from rsFC. 

Our method relied on one presupposition–the direct 

anatomical links, indirect pathways, and module topology 

interact with one another forming temporally dependent FC. 

Based on CDA optimization, we demonstrated that empirical 

SC can be reliably predicted, provided that both SPL and 

distance kernel function (i.e, KWT) constraints are set in the 
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deconvolution process. The indirect length2-paths and 

module interplay are found to account for a large proportion 

effect with above 60% and 20% of intrahemispheric FC 

across three datasets, respectively. The direct SC, on the 

contrary, is suggested to play a small role (less than 10%) in 

shaping intrahemispheric FC. By analyzing the different 

contributing factors, our study leads to a better understanding 

of how the underlying anatomy configures functional 

networks and points out the importance of different effects.  
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