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Geneticists have been interested in inbreeding and inbreed-
ing depression since the time of Darwin. Two alternative
approaches that can be used to measure how inbred an
individual is involve the use of pedigree records to estimate
inbreeding coefficients or molecular markers to measure
multilocus heterozygosity. However, the relationship be-
tween inbreeding coefficient and heterozygosity has only
rarely been investigated. In this paper, a framework to predict
the relationship between the two variables is presented. In
addition, microsatellite genotypes at 138 loci spanning all 26
autosomes of the sheep genome were used to investigate
the relationship between inbreeding coefficient and multi-

locus heterozygosity. Multilocus heterozygosity was only
weakly correlated with inbreeding coefficient, and hetero-
zygosity was not positively correlated between markers more
often than expected by chance. Inbreeding coefficient, but
not multilocus heterozygosity, detected evidence of inbreed-
ing depression for morphological traits. The relevance of
these findings to the causes of heterozygosity–fitness
correlations is discussed and predictions for other wild and
captive populations are presented.
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Introduction

When related individuals mate, their offspring are
generally less viable, less fertile or smaller than the
population mean – a phenomenon known as inbreeding
depression. Consequently, inbreeding has been the focus
of considerable attention in a number of areas of biology
including animal and crop production, human medicine,
conservation biology and the evolution of mating
systems (Thornhill, 1993; Hedrick and Kalinowski,
2000; Keller and Waller, 2002). Inbreeding depression
arises because inbreeding increases the probability that
an individual will be (a) homozygous for segregating
deleterious recessive alleles and (b) homozygous at loci
exhibiting overdominance (Falconer, 1989; Lynch and
Walsh, 1998). Deleterious recessive alleles are thought to
be the major cause of inbreeding depression (Charles-
worth and Charlesworth, 1999).

Inbreeding depression can be inferred in a number
of ways (Keller and Waller, 2002). The most straight-
forward approaches utilise the inbreeding coefficient
f (Wright, 1922) – defined as the probability that
two alleles at a locus are identical by descent (ibd).
For example, relatives can be deliberately mated to

produce individuals of known f, which are then
compared to outbred individuals from the same popula-
tion. A similar approach is to use pedigree records to
calculate f for all of the individuals in the population.
Inbreeding depression is then inferred by regressing
phenotype (or log-transformed phenotype) on the
inbreeding coefficient (Morton et al, 1956; Lynch and
Walsh, 1998).

If inbreeding coefficients are unavailable, an alterna-
tive approach is to examine the association between
marker heterozygosity (typically measured at 5–10 loci)
and phenotypic value. This approach, sometimes termed
heterozygosity–fitness correlations (HFCS), originated
with the advent of soluble allozyme markers (Allendorf
and Leary, 1986; Mitton, 1993; David, 1998). Initial
investigations with allozymes sought to address whether
genetic variation was maintained by drift or selection;
in other words, did genotype at individual loci have a
direct effect on fitness? However, in recent years, a
number of studies have reported significant relationships
between multilocus heterozygosity (hereafter MLH) in
noncoding DNA and fitness-related traits in wild
populations, with inbreeding depression usually re-
garded as the most likely explanation for the relationship
(Coltman et al, 1999; Marshall and Spalton, 2000; Slate
et al, 2000; Amos et al, 2001; Acevedo-Whitehouse et al,
2003). This explanation is intuitively appealing as inbred
individuals are expected to be relatively homozygous
throughout the genome. However, the inbreeding coeffi-
cient and MLH do not measure the same quantity. When
two alleles at a locus are ibd, the genotype is said to be

Received 27 September 2002; accepted 18 November 2003;
published online 14 July 2004

Correspondence: J Slate, Current address: Department of Animal and
Plant Sciences, University of Sheffield, Western Bank S10 3TN, UK.
E-mail: j.slate@sheffield.ac.uk
3Current address: Australian Equine Genetics Research Centre (AEGRC),
University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

Heredity (2004) 93, 255–265
& 2004 Nature Publishing Group All rights reserved 0018-067X/04 $30.00

www.nature.com/hdy



autozygous, otherwise the genotype is allozygous. Allozy-
gous genotypes may be homozygous (identical by state)
or heterozygous, but in the absence of recent mutation an
autozygous genotype is always homozygous (Hartl and
Clark, 1997).

Unfortunately, there are (at least) three possible
explanations for HFCs (David, 1998; Hansson and
Westerberg, 2002), only one of which requires inbreed-
ing. The first is that some or all of the marker loci have a
direct effect on fitness with heterozygous genotypes
conferring the greatest fitness (ie the locus exhibits
overdominance). This explanation can generally be
excluded for studies using microsatellite loci as they
are usually nonfunctional. The second explanation is that
the markers are in physical linkage with either over-
dominant or dominant loci that influence fitness. If a
marker and trait locus are in linkage disequilibrium, then
individuals that are heterozygous at the marker locus
will also tend to be heterozygous at the trait locus. This
explanation is often termed a local effect. A third
explanation is that the heterozygosity at marker loci
reflects heterozygosity at unlinked trait loci. Such an
association is only expected to arise in populations that
exhibit variance in inbreeding and is sometimes termed a
general effect or identity disequilibrium (Weir and
Cockerham, 1973). It is this explanation that is invoked
when it is claimed that an HFC indicates inbreeding
depression. Note that the first two explanations do not
require inbreeding. Spurious HFCs can also arise when
individuals are sampled from several populations that
exhibit between-population variation in both heterozyg-
osity and nongenetic (eg environmental) components of
trait variance. In other words, the HFC is an artefact of
population structure.

Given that f and MLH are popular metrics for inferring
inbreeding depression, it is surprising that the relation-
ship between the two has only rarely been investigated
theoretically (Bierne et al, 2000) or empirically (Hedrick
et al, 2001; Curik et al, 2003). Further investigation of the
relationship would not only help determine when MLH
can be used as a reliable alternative to f, but would also
help to ascertain the genetic basis of HFCs (Hansson and
Westerberg, 2002). Indeed, most of the available HFC
theory predicts that MLH and fitness, under the
inbreeding hypothesis, should only correlate as a
consequence of their common dependence on f. When
only MLH and fitness are known, f remains an implicit
variable. But having an independent knowledge of f from
pedigrees allows one to test properly the central point of
the theory. To our knowledge, no study combines
estimates of heterozygosity at a large number of loci
dispersed across the genome, accurate knowledge of f
using detailed pedigrees, and measures of phenotypic
variation. Domestic livestock populations offer opportu-
nities to address this problem because stud books are
often available, and comprehensive genotype data sets
are arising from genome-wide scans for quantitative trait
loci (QTL).

The aims of this study were to

(i) predict the relationship between MLH and indivi-
dual f under a simple model whereby the expected
heterozygosity at a marker locus is a function of f,
and heterozygosity is uncorrelated across marker
loci in individuals of the same f;

(ii) test this theoretical prediction with an extensive
data set (590 individuals of known f, typed at up
to 138 microsatellites) from a domestic sheep
population.

(iii) provide some predictions on the relationship be-
tween f and MLH in several intensively studied
populations, in order to determine how effectively
microsatellites can be used to infer inbreeding
depression in wild populations.

Methods

The model
It is assumed that the inbreeding level of an individual is
characterised by a single f value determined by its
pedigree. All loci are assumed to be equally affected by
inbreeding. Note that estimates of f based on known
pedigrees may slightly differ from the true value of f, as
founders are assumed to have an f of zero. However,
provided the pedigrees are correct and several genera-
tions (three or more) deep, they should enable good
estimates of true f. The distribution of f has probability
density function p(f ).

Let hi be the heterozygosity (0 for a homozygote and 1
for a heterozygote at marker locus i). The expected
heterozygosity E(hi) at locus i is h0,i(1�f ) for a given f,
where h0,i is the genetic diversity at locus i, or the
expected heterozygosity in the absence of inbreeding.

It is assumed that any correlation among hi at
different loci across individuals only arises due to
within-population variation in f. In other words, no
correlation will be expected in individuals that share
the same value of f. This is usually true for unlinked
loci. Note that 96% of locus pairs are unlinked in the
Coopworth sheep data set presented in this study, with
only 0.12% of locus pairs located within 10 cM of each
other.

The term H refers to standardised MLH, calculated as
the proportion of typed loci at which an individual was
heterozygous divided by the population mean hetero-
zygosity of those typed loci. This standardisation was
initially used by Coltman et al (1999) in a study of Soay
sheep, where individuals had been typed at different
subsets of the same loci. The standardisation ensures that
all individuals are measured on an identical scale and
has subsequently been employed elsewhere (Slate et al,
2000; Amos et al, 2001). Standardised MLH is usually
highly correlated with the more traditional nonstandar-
dised version:

H ¼
P

i hiP
i hi

where hi is the mean heterozygosity of all indivi-
duals typed at locus i and summation is across all typed
loci.

The predicted distribution of heterozygosity: f has
distribution with mean E(f ) and variance s2(f ). We first
derive the moments of the distribution of multiple-locus
heterozygosity as functions E(f ) and s2(f ). Then we will
use these expressions to derive the expected correlations
between f and heterozygosity, and between hetero-
zygosity and fitness.
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From the relationship above, the expected heterozyg-
osity at locus i is

EðhiÞ ¼
Z

EðhijfÞpðfÞdf

¼
Z

h0;ið1 � fÞpðfÞdf ¼ h0;ið1 � EðfÞÞ

and, by definition, E(H)¼ 1.
Given that hi can only take the values 0 or 1, hi

2¼ hi, the
variance in hi is

s2ðhiÞ ¼EðhiÞ � EðhiÞ2

¼h0;ið1 � EðfÞÞ � h2
0;ið1 � EðfÞÞ2

The covariance in heterozygosity among loci i and j is

sðhi; hjÞ ¼ EðhihjÞ � EðhiÞEðhjÞ

where

EðhihjÞ ¼
Z

Eðhij fÞEðhjj fÞpð fÞdf

¼h0;ih0;j

Z
ð1 � fÞ2pðfÞdf

¼h0;ih0;jð1 � 2Eð fÞ þ Eð f2ÞÞ

and

EðhiÞEðhjÞ ¼ h0;ih0;jð1 � Eð fÞÞ2

¼ h0;ih0;jð1 � 2EðfÞ � Eð fÞ2Þ

which yields

sðhi; hjÞ ¼ h0;ih0;jðEðf2Þ � Eð fÞ2Þ
¼ h0;ih0;js2ðfÞ

The variance in H is

s2ðHÞ ¼ 1=
X

iEðhiÞ
� �2

s2
�X

ihi

�

¼ð1=
P

iEðh0;iÞÞ2s2ð
P

ihiÞ
ð1 � EðfÞÞ2

where

s2ð
X

ihiÞ ¼
X

is2ðhiÞ þ 2
X

i

X
jsðhi; hjÞ

¼ ð1 � EðfÞÞ
X

ih0;i � ð1 � Eð fÞÞ2

�
X

ih
2
0;i þ s2ðfÞ2

X
i

X
jh0;ih0;j

Then, after some algebra, we obtain

s2ðHÞ ¼ 1

ð1 � EðfÞÞ
P

ih0;i
�

P
i h2

0;i

ð
P

i h0;iÞ2

� 1 þ s2ðfÞ
ð1 � EðfÞÞ2

 !
þ s2ðfÞ
ð1 � EðfÞÞ2

ð1Þ

This expression involves several terms that depend on
intrinsic characteristics of the set of loci analysed
(number of loci, genetic diversity and how it varies
across loci). In order to increase clarity, we can consider a

first-order approximation that makes the simplifying
assumption that all loci have the same genetic diversity
h0. The expression for the variance in H then becomes

s2ðHÞ ¼ 1

ð1 � EðfÞÞh0L
� 1

L
1 þ s2ðfÞ

ð1 � EðfÞÞ2

 !

þ s2ðfÞ
ð1 � EðfÞÞ2

ð2Þ

where L is the number of typed loci. It is apparent that,
as the number of typed loci increases, the third term
alone will be a good approximation of the variance in H,
which will be roughly proportional to the variance in
inbreeding.

The predicted correlation in heterozygosity between
two loci: The correlation in heterozygosity between
two loci is obtained using the above expressions for the
covariance and variance in heterozygosity at loci i and j:

rðhi; hjÞ ¼
s2ðfÞ

1 � EðfÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0;ih0;jð1 � h0;ið1 � EðfÞÞÞð1 � h0;jð1 � EðfÞÞÞ

p
ð3Þ

The standard error of the estimated r(hi, hj) is (Zar, 1996)

Sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

hi;hj

n � 2

s
ð3aÞ

The predicted correlation between individual hetero-
zygosity and inbreeding coefficient: The covariance
between heterozygosity and f is

sðhi; fÞ ¼ Eðhi; fÞ � EðhiÞEðfÞ
The first term of this expression reduces to

EðhifÞ ¼
Z

EðhijfÞfpðfÞdf

¼
Z

h0;ið1 � fÞfpðfÞdf ¼ h0;iðEðfÞ � Eðf2ÞÞ

so that the covariance between heterozygosity and f can
be written as

sðhi; fÞ ¼ h0;iðEðfÞ � Eðf2ÞÞ � h0;iðEðfÞ � EðfÞ2

¼ �h0;is2ðfÞ
The covariance between H and f is

sðH; fÞ ¼
P

i sðhi; fÞP
i EðhiÞ

¼ �s2ðfÞ
ð1 � EðfÞÞ

and the correlation between H and f is

rðH; fÞ ¼ �s2ðfÞ
ð1 � EðfÞÞsðfÞsðHÞ ¼

�sðfÞ
ð1 � EðfÞÞsðHÞ ð4Þ

The predicted correlation between H and fitness
traits: We assume the Morton et al (1956) model for
the relationship between inbreeding and fitness traits
such that the trait (or the logarithm of the trait) declines
as a linear function of f. Thus, W¼ a�bf, where W is the
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trait, a is a constant and b is the inbreeding load. b can be
estimated by linear regression of W on f.

If we assume that all correlations between hetero-
zygosity and the trait arise as a result of inbreeding, then

rðW;HÞ ¼ rðW ; fÞrðH; fÞ ð5Þ
r(W, f ) is estimated by the regression of the trait on f,
while r(H, f ) is defined above (equation (4)).

Application of the model to a real data set
Coopworth sheep were developed by crossing the
Romney and Border Leicester breeds in New Zealand
in the 1950s. The breed society was formally recognised
in 1968 and Coopworths are now the second most
numerous breed in New Zealand. We investigated a
population of Coopworth sheep that was founded from
six farms in the 1970s and has been the subject of
divergent selection for backfat depth since 1981 (Morris
et al, 1997). Subsequently, five F1 (fat� lean) sires have
been backcrossed to both the fat and lean lines as part of
an experiment to map QTL for morphological traits
(Campbell et al, 2003). A total of 590 progeny were typed
at up to 138 approximately evenly spaced microsatellite
loci, spanning all 26 autosomes. Every individual was
measured for a number of morphological traits and
various potential explanatory variables were also re-
corded (see below). Inbreeding coefficients were calcu-
lated using the routine PROC INBREED, implemented in
SAS (SAS Institute, Cary, NC, USA). For every indivi-
dual, 7–10 generations of ancestors were known, dating
back to the foundation of the selection lines, enabling
accurate calculation of f. It was assumed that all founder
individuals had an f of zero and were unrelated. MLH at
all 138 loci was calculated, and converted to standar-
dised MLH (see Coltman et al (1999) and above).
Hereafter, MLH refers to the standardised version (H in
the above model). Note that progeny were not genotyped
at loci for which the sire was homozygous. Thus the
genotype data file was only 73% complete – equivalent to
an average of 101 genotypes per individual. The mean
number of typed loci per half-sib family ranged from 98
(sire 603) to 106 (sires 610 and 616). In subsequent
analyses, we report the expected relationship between f
and MLH assuming that 101 loci were typed.

These data were then used to address three questions:

(1) What is the relationship between f and MLH?
(2) Is heterozygosity correlated between loci?
(3) Do either f or MLH explain phenotypic variation?

The relationship between the two measures of in-
breeding and 10 morphological traits (empty body
weight, hot carcass weight, spleen weight, liver weight,
heart weight, backfat depth at the 12th rib, tibia length,
carcass length, longissimus dorsi weight and testes
weight) was investigated. All traits appeared normally
distributed (spleen weight was log-transformed), so
univariate general linear modelling was employed.

The following terms were initially included in all
models: sire, sex, rearing rank (litter size), maternal
selection line (fat or lean), slaughter order (the first
animal to be slaughtered on a given day is assigned rank
1, the next is assigned rank 2, etc.) and date of birth. All
terms were factorial except slaughter order and date of
birth, which were fitted as covariates. Initially, models

were constructed with all terms fitted as both main
effects and first-order interactions. Statistical significance
of each term was assessed by F ratios. A minimal model
was constructed by dropping all terms that were not
significant at Po0.05. The minimal model was then used
as a baseline model, to which genetic terms (f or MLH)
were added. Both genetic terms were initially fitted as
main effects and as interactions with sire. Note that terms
containing f and MLH were not fitted in the same model.
A significant interaction term would indicate between-
sire variation in the number of segregating partially
deleterious recessive alleles. The nine traits that were
measurable in both sexes were positively correlated with
each other (all correlations Po0.001), so multivariate
analysis of variance (MANOVA) was also employed.
Statistical analyses were implemented in S-plus 6.0
(Insightful, Seattle, WA, USA).

Application of the model to other data sets
In addition to making a comparison between predictions
from the model and observations in an extensive QTL
mapping data set, we also examined the likely relation-
ship between f and MLH in a number of other wild and
domestic populations. This analysis was restricted to
populations for which the mean and variance of f had
been estimated, and for which descriptions of micro-
satellite marker variability were available. The analysis
may not be exhaustive, but it does include a number of
the best-known vertebrate populations for which in-
breeding depression has been reported.

Results

Predictions from the model
We first focus on the question of whether MLH is a good
predictor of f. From equation (4), it can be seen that the
correlation between these two variables is a function of
the mean and variance of f, and of the variance in H. The
variance in H is itself dependent on the number of loci
typed (see equations (1) and (2)). Given the above, an
attempt was made to parameterise the model with
realistic estimates of mean(f ) and s2( f ). A literature
review identified a number of studies for which these
statistics were reported (in a few cases the authors were
contacted to obtain s2(f )). The review included most of
the types of population that are frequently the focus of
inbreeding depression studies, including island popula-
tions (Soay sheep, red deer, song sparrows, collared
flycatchers, Darwin’s finches), captive populations
(wolves), re-introductions (Arabian oryx) and domestic
organisms (Coopworth sheep, Lipizzan horses). Details
of each study population and f summary statistics are
reported in Table 1. Note that microsatellite markers
have been typed in every species. Mean f ranged from a
minimum of 0.002 (collared flycatchers) to 0.103 (wolves)
– a 50-fold difference. The variance in f ranged from
0.0005 (collared flycatchers) to 0.0192 (wolves) – a 38-fold
difference.

Using these parameter estimates, the relative impor-
tance of mean(f ), s2(f ) and the number of typed loci on
the correlation coefficient r(H, f ) was examined (see
Figure 1a–c). Generally, the relationship between f and H
was weak, especially for values of mean(f ) and s2( f ) that
are most commonly observed in wild and domestic
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vertebrate populations. The relationship was largely
insensitive to mean(f ) (see Figure 1a), but was very
dependent on s2(f ) (see Figure 1b). This result is
unsurprising – no relationship is expected in a popula-
tion where all individuals have the same f, regardless of
the actual value of f. Note that when 10 loci are typed the
correlation between f and H is always weak (ro0.5). For
populations with s2(f )o0.005 (nine out of 12 populations
considered here meet this criterion), a genome scan of
200 highly variable markers would only produce crude
estimates of individual f. In summary, unless the study
population has very high variance in f, MLH is only
weakly correlated to f.

Analysis of the Coopworth sheep data set
Individual inbreeding coefficient was positively skewed
and possibly bimodally distributed (Figure 2a), while
MLH followed an approximately normal distribution
(Figure 2b). f had a mean of 0.052 and a variance of 0.008
(Table 1). In comparison with the other 11 populations
reported in Table 1, this gave Coopworth sheep the
fourth largest mean f and the ninth largest variance in f.
Thus, the population is not unusual in terms of observed
levels of inbreeding. Standardised MLH was highly
correlated with its unstandardised equivalent (r¼ 0.984).

Relationship between heterozygosity and inbreeding
coefficient: MLH was significantly and negatively
correlated with f (r¼�0.177; Po0.0001; Figure 3).
However, the correlation coefficient between the two
variables was weak, despite MLH being measured at a
far larger number of loci than any similar study. In fact,
the observed correlation coefficient between f and H was
considerably weaker than that predicted under the
model (predicted r¼�0.39). Using equation (3a), the
expected correlation coefficient between f and MLH has a
standard deviation of 0.038, such that the observed r(H,

f ) was 5.6 standard deviations lower than expected
(Po0.001).

Is heterozygosity correlated across the genome?: For
marker heterozygosity to provide an estimate of
heterozygosity at functionally important loci, it should
also be correlated between individual marker loci. We
calculated the correlation coefficients between
heterozygosity at pairs of individual loci – for example,
the correlation between heterozygosity at locus a and at
locus b. The process was repeated for every pair of loci
and the sign of the correlation noted. A standard sign test
cannot be used to determine whether there were
significantly more positive than negative correlations
than expected by chance, because not every correlation is
independent. Instead, we used the randomisation
approach described by Slate and Pemberton (2002).
There were more negative correlations (4653) than there
were positive correlations (4630), and there were not
significantly more positive correlations than expected by
chance (P¼ 0.331; based on 10 000 permutations).
However, feeding the observed values of marker
heterozygosity, mean f and s2(f ) into equation (3), it
becomes clear that the power of this test is weak. The
expected correlation in heterozygosity between two
markers is only 0.0045, with a standard deviation
almost 10-fold greater (0.0412). In other words, a
negative correlation is expected to be observed almost
as often as a positive correlation.

An alternative solution to the problem is to pool
together all of the correlations between the 138 loci
within one test. The sum of the covariances in hetero-
zygosity between each pair of loci can be calculated as
(Lynch and Walsh, 1998)

2
Xn

ioj

sðhi; hjÞ ¼ s2ð
X

i

hiÞ �
X

i

s2ðhiÞ

Table 1 Predicted relationship between inbreeding coefficient (f) and MLH in 12 vertebrate populations

Species Mean(f) s2(f) n Mean he L r(H, f)e r(H, f)o r(H, f)100

Coopworth sheep (Ovis aries) 0.052 0.0008 590 0.72 138 (101) �0.46 (�0.39) �0.17 �0.38
Soay sheep (Ovis aries) 0.007a 0.0009 898 0.66g 14 �0.16 �0.42
Bighorn sheep (Ovis canadensis) 0.015* 0.0020 107 0.66 20 �0.27 �0.15 �0.56
Red deer (Cervus elaphus) 0.019a 0.0025 553 0.76i 9 �0.25 �0.60
Arabian oryx (Oryx leucoryx) 0.041a 0.0066 122 0.42 j 6 �0.18 �0.77
Wolves (Canis lupus) 0.103b 0.0192 30 0.66k 29 �0.71w �0.72 �0.90
Lipizzan horses (Equus caballus) 0.101c 0.0007 360 0.67c 17 �0.15 �0.03 �0.36
Collared flycatchers (Ficedula albicollis) 0.002d 0.0005 2107 0.82l 3 �0.08 �0.32
Song sparrows (Melospiza melodia) 0.051e 0.0041 285 0.63m 6 �0.22 �0.69
Large ground finch (Geospiza magrinostris) 0.070h 0.0143 76 0.66h 14 �0.56 �0.54 �0.87
Medium ground finch (Geospiza fortis) 0.010f,y 0.0004 212 0.635n,y 13 �0.10w �0.20 �0.30
Cactus finch (Geospiza scandens) 0.042f,y 0.0044 75 0.607n,y 13 �0.28w �0.04 �0.70

Median 0.042 0.0023 249 0.66 13.5 �0.21 �0.17 �0.58
Mean 0.042 0.0047 451 0.65 20.4 �0.27 �0.26 �0.57

Mean(f) and s2(f) were estimated from n individuals in each population. All grandparents were known for every individual (often
substantially more pedigree information was available). Each population has also been typed for L microsatellite loci with mean
heterozygosity he. This information is then used to estimate the correlation coefficient between f and MLH: r(H, f)e. Where available, the
observed correlation is also reported: r(H, f)o. Finally, the predicted correlation coefficient between f and H assuming 100 loci with mean
heterozygosity 0.7 is also reported: r(H, f)100. Unless otherwise stated, s2(H) was estimated from equation (1). Estimated and observed r(H, f)
values for Coopworth sheep are for 138 and 101 loci (see Methods).
aMarshall et al (2002), bHedrick et al (2001), cCurik et al (2003), dKruuk et al (2002), eKeller (1998), fKeller et al (2002), gColtman et al (1999),
hGrant et al (2001), iMarshall et al (1998), jMarshall and Spalton (2000), kVila et al (2003), lSheldon and Ellegren (1996), mJeffery et al (2001),
nPetren (1998), *DW Coltman, P O’Donoghue and M Festa-Bianchet (personal communication), yJ Market, K Petren, L Keller, BR Grant and PR
Grant (personal communication), wvariance in H estimated from equation (2).
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where hi is individual heterozygosity at locus i and hj is
individual heterozygosity at locus j, and each individual
is typed at n¼ 138 loci, yielding s(hi, hj)¼ 0.51. Note that
missing values were replaced by the locus population

mean, providing a conservative estimate of the test
statistic. To determine the statistical significance of the
test statistic, individual heterozygosity was permuted
across individuals (sampled without replacement) at
each locus, and s(hi, hj) was recalculated. This pro-
cess was repeated 10 000 times, and the actual test
statistic was not significant (P¼ 0.178). In summary,
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Figure 1 Estimated correlation coefficient between MLH (H) and
inbreeding coefficient (f) as a function of (a) mean f, (b) the variance
in f and (c) the number of loci typed (L). It is assumed that each
locus has a mean heterozygosity of 0.7. Unless otherwise stated, it is
assumed that each individual is typed at 10 loci.
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heterozygosity is not correlated across the genome,
indicating that in this population marker heterozygosity
would not accurately reflect heterozygosity at unlinked
functionally important loci.

For the purposes of this paper, loci are regarded as
linked if they map within 50 cM of each other (alleles at
linked loci separated by greater distances can be
regarded as independently segregating). Among linked
pairs of loci, heterozygosity was more often positively
correlated than negatively correlated (104 positive versus
68 negative correlations; P¼ 0.003; 1000 permutations of
the data). Furthermore, the correlation in heterozygosity
was a function of the Kosambi centiMorgans distance
between loci; r(hi, hj)¼ 0.066–0.0015�distance, P¼ 0.013,
n¼ 172, r2¼ 0.036 (Figure 4). Thus, individual marker
heterozygosity does appear to be an indicator of
heterozygosity at linked loci.

Do MLH or f explain variation in morphological
traits?: Univariate analyses did not reveal significant
associations between any morphological trait and f fitted
as a main effect. However, when fitted as an interac-
tion term with sire, f explained significant variation in
the following traits: empty body weight (F4,551¼ 4.19,
P¼ 0.002); hot carcass weight (F4,552¼4.96, Po0.001);
spleen weight (F4,556¼4.85, Po0.001); liver weight
(F4,559¼3.73, P¼ 0.005); heart weight (F4,554¼3.68,
P¼ 0.006); tibia length (F4,554¼2.94, P¼ 0.020); carcass
length (F4,559¼4.63, Po0.002). Detailed models are
presented in Table 2. For all traits, the association was
largely driven by a strong effect observed in the half-sib
progeny of sire 616, with relatively inbred animals being
generally smaller. These data suggest that, relative to the
other four sires, sire 616 carries more deleterious
recessive alleles at loci that influence growth traits. The
significant relationship between f and morphometric
variation among the progeny of sire 616 is not
attributable to outlying data points. The two terms, f
and f� Sire, together explained between 0.75% (backfat
depth) and 2.80% (spleen weight) of the variation in any
trait.

MLH was not a significant term in any univariate
analysis, whether fitted as a main effect or as an

interaction term with sire. In summary, f, but not MLH,
revealed inbreeding depression for morphometric traits.

The relationship between f and morphometric varia-
tion was also revealed by the multivariate analysis. The
interaction between sire and f was a significant term
when fitted in the MANOVA of the nine morphometric
traits (F36,2208¼1.451, P¼ 0.041) but f fitted as a main
effect was not (F9,549¼0.903, P¼ 0.523). MLH was not a
significant term either as a main effect (F9,549¼1.5,
P¼ 0.144) or as an interaction with sire (F36,2208¼0.715,
P¼ 0.896). Note that f and MLH were not fitted in the
same model for either the univariate or the multivariate
analyses.

Predictions for other vertebrate populations
In addition to the Coopworth sheep population, sum-
mary statistics relating to f and marker heterozygosity
were collected for 11 other populations. These data were
then used to estimate the correlation coefficient between f
and MLH (a) with the markers that have been typed in
the study population to date, and (b) if 100 markers of
mean heterozygosity 0.7 were typed. Estimates are
presented in Table 1. The population for which MLH
was the best predictor of f was Scandinavian wolves with
an expected r(H, f )¼�0.71 if the 29 documented
microsatellites were typed and an expected r(H, f )¼
�0.90 if 100 loci were typed. The population for which
MLH was worst at predicting f was the collared
flycatchers (Ficedula albicollis) on the Swedish Island of
Gotland, with an expected r(H, f )¼�0.08 if the three
documented microsatellites were typed and an expected
r(H, f )¼�0.32 if 100 loci were typed. Generally, hetero-
zygosity would not provide robust estimates of f, even
when 100 loci are typed. For example, the expected
r(H, f ) is weaker than –0.5 for five of the 12 populations
and weaker than �0.7 for nine of the populations.

In seven of the populations, r(H, f ) had actually been
estimated, enabling a comparison between expected and
observed correlation coefficients (Table 1). In Scandina-
vian wolves and Large Ground Finches, the observed
and expected correlation coefficients were almost iden-
tical. In four of the five other populations, r(H, f )observed

was weaker than r(H, f )expected, perhaps due to errors in
estimation of f (see Discussion).

Discussion

The primary objective of this study was to establish if
and when MLH can be used as a robust surrogate for
individual f. A theoretical model and empirical data both
suggest that the correlation between MLH and f is weak
unless the study population exhibits unusually high
variance in f. The Coopworth sheep data set used in this
study comprised a considerably larger number of
genotypes (590 individuals typed at 138 loci) than any
similar study, yet MLH was only weakly correlated to
individual f. Furthermore, f explained significant varia-
tion in a number of morphometric traits (typically 1–2%
of the overall trait variance), but heterozygosity did not.
From equation (5), it can be seen that the expected
correlation between trait value and MLH is the product
of the correlation coefficient between f and the trait
(hereafter r(W, f )) and r(H, f ). Estimates of the proportion
of phenotypic trait variation explained by f are scarce,
although from the limited available data 2% seems a
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centiMorgans) for linked pairs of microsatellites that map within
50 cM of each other.
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Table 2 Univariate analysis of 10 morphometric traits examined in a population of Coopworth sheep

Term df EBW (kg) HCW (kg) Heart (g) Liver (g) Spleenw (g) Tibia (mm) Carcass length (cm) Testicles (g) Longissimus dorsi (kg) Backfat depth (mm)

Minimal model
n 573 573 573 573 573 573 573 266 573 573
Mean 54.8 27.3 242 819 85 210.0 109.2 456 0.99 23.0
SD 9.4 5.2 39.6 139.7 21.6 10.3 5.5 94.8 0.25 8.7

Sex 1 440.99*** 187.34*** 245.09*** 540.31*** 25.11*** 118.79*** 406.34*** — 0.04 81.85***
Maternal line 2 20.28*** 3.29* 22.77*** 16.03*** 34.83*** 39.03*** 64.34*** 28.29*** 7.94*** 76.25***
Sire 4 17.60*** 18.72*** 5.43*** 12.63*** 8.87*** 2.79* 72.78*** 5.81*** 8.99*** 11.72***
Rearing rank 1 — 6.33* 4.59* 8.75*** — — 5.00* — — —
Slaughter order 1 — — 0.74 — 0.01 — — — 54.00*** —
Birth date 1 5.39* 8.22** — — — — — — 6.21* 9.20**
Sire� Sex 4 4.21** 3.62** — — — 2.55* — — 4.14** —
Sire�Line 4 — — — — — — — — — 3.31**
Sire�Order 4 — — 3.34* — — — — —— — —
Sex�Order 2 — — — — 9.33** — — — — —
Line�RearRk 2 4.47* — — — — — — — — —
Line� Sex 2 — — — — — — — — — 4.43*

With inbreeding terms
f 1 0.81 0.27 0.52 0.16 2.10 0.11 0.02 0.88 0.45 2.17
f-Sire 4 4.19** 4.99*** 3.68** 3.73** 4.85*** 2.94* 4.63** 0.70 2.37 1.98

Residual SS 18 562 6520 47 2641 5 204 909 4.354 41 535 6987 1 800 682 22.82 17 664
f%ss 1.15 1.54 1.45 1.26 2.80 1.27 1.35 1.24 1.13 0.75

MLH 1 2.05 0.62 0.18 0.02 0.02 1.33 0.00 0.05 1.49 0.04
MLH Sire 4 0.47 0.36 0.36 0.21 1.39 1.35 1.25 1.05 0.25 1.80

Coefficients (SE)
f �5.18 (9.32) �0.77 (5.57) 50.16 (47.26) �14.85 (155.56) 0.27 (0.14) �2.46 (14.11) 0.74 (5.70) �86.21 (202.87) �0.12 (0.33) �11.26 (9.50)
f� 608 �9.16 (15.76) �6.09 (9.40) �55.89 (79.87) �86.66 (263.49) �0.38 (0.24) �17.74 (23.63) �2.83 (9.66) �136.97 (348.13) �0.48 (0.56) �3.76 (15.98)
f� 610 �0.93 (8.53) �1.62 (5.10) �8.03 (43.11) �24.77 (141.96) �0.18 (0.13) 19.25 (12.91) 3.11 (5.20) 210.97 (202.00) �0.15 (0.30) �4.01 (8.88)
f� 616 �23.20 (5.75) �14.78 (3.44) �109.47 (29.06) �363.50 (95.84) �0.30 (0.09) �29.08 (8.72) �14.55 (3.51) �151.81 (114.22) �0.57 (0.20) �13.68 (5.74)
f� 620 2.02 (4.74) 2.82 (2.78) 8.68 (23.59) 43.21 (77.40) �0.18 (0.07) 10.12 (7.04) 1.59 (2.84) �77.23 (97.00) 0.16 (0.16) 6.07 (4.68)
MLH 4.41 (4.34) 1.53 (2.59) �20.19 (22.23) �10.24 (72.59) �0.04 (0.07) �13.22 (6.52) �1.12 (2.68) �72.19 (94.47) 0.18 (0.15) 4.54 (4.34)

EBW¼empty body weight, HCW¼hot carcass weight. For a detailed description of the model, see the Methods section. The F statistic of each significant term in the minimal model is reported,
in addition to the F statistic of each genetic term (f or MLH and their interaction with sire). Note that terms containing f and MLH were not fitted to the same model. F statistics for f� Sire that are
in bold font were significant after sequential Bonferroni correction (Rice, 1989) for multiple tests performed (k¼ 10 traits). f%ss refers to the percentage of the null model sum of the squares that
is explained by adding the terms containing f to the minimal model. The coefficient of each genetic term is also reported. A negative coefficient between f (or f� Sire) indicates that relatively
inbred animals had lower trait values. Note that the coefficient was generally greatest in progeny of sire 616. wLog transformed. *Po0.05; **Po0.01; ***Po0.001.
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typical value (see for example Kruuk et al, 2002; this
paper, Table 2). Assuming r(W, f )2¼ 0.02, and given the
median value of r(H, f )¼�0.21 reported in Table 1, a
crude estimate of average r(W, H) is 0.03, which is
equivalent to MLH explaining o0.1% of trait variance.
These findings are consistent with a recent meta-analysis
that reported a mean r(W, H) of 0.09 for life history traits
and 0.01 for morphometric traits (Coltman and Slate,
2003). In summary, MLH is a poor replacement for f, such
that very large sample sizes are required to detect
variance in inbreeding in most populations.

If MLH has limited power to detect variance in
inbreeding, what is the most parsimonious explanation
for studies reporting HFCs? One possibility is that
marker loci are in physical linkage with loci that
determine trait variation, such that detected HFCs are
attributable to local effects rather than a general effect
caused by variance in inbreeding. In fact, general and
local effects reflect the same phenomenon, that is, the
existence of deleterious recessives and/or overdominant
alleles dispersed throughout individual genomes. Het-
erozygosity at marker loci will always be more correlated
to autozygosity at closely linked fitness loci than at
unlinked loci, as linkage is known to increase identity
disequilibria. However, depending on how many fitness
loci are segregating in a population, and on population
structure and history, the contribution of the chromoso-
mal vicinity of a given marker to HFC may or may not be
negligible compared to that of the rest of the genome.
Models of general effects (such as the above model)
assume (i) that inbreeding depression is homogeneously
distributed throughout the genome, rather than concen-
trated in a few loci, and (ii) that all loci are unlinked.
When one or both of these conditions are seriously
violated, general effect models predict less HFC than
there actually is, as local effects take more importance. In
such conditions, we would also expect that the contribu-
tions of different marker loci to HFC become signifi-
cantly different, and that linked markers tend to behave
in the same way with regard to HFC. It should be noted
that although 4% of our loci were linked, only 0.11% of
locus pairs were separated by a distance of less than
10 cM. Furthermore, the maximum correlation in hetero-
zygosity observed between any pair of loci was very low
(r¼ 0.01), indicating that each of the 138 loci can be
regarded as an independent sample of heterozygosity.

Although no association was detected between MLH
and trait variation in Coopworth sheep, it is notable that
heterozygosity was only correlated between linked loci
and that the correlation declined as a function of physical
distance (Figure 4). Thus, if an association had been
detected, it could potentially be attributable to a local
effect. Among studies reporting significant HFCs, a
recent analysis of Great Reed Warblers (Acrophalus
aruninaceus) provides the best evidence for local effects
being the underlying mechanism (Hansson et al, 2001).
The Great Reed Warbler experiment maximised the
probability of detecting local effects, as it was conducted
within pairs from the same brood (hence each member of
a pair had the same f, and general effects were excluded).
The more heterozygous member of a pair had greater
probability of recruiting to the adult population. Else-
where, local effects and identity disequilibrium were
found to explain simultaneously an association between
birth weight and MLH at 71 microsatellites typed in red

deer (Cervus elaphus). MLH was positively and signifi-
cantly associated with birth weight, and heterozygosity
was correlated across loci (Slate and Pemberton, 2002).
However, heterozygosity at two individual loci ex-
plained additional variation in birth weight after MLH
at the remaining loci was fitted to the model. The two loci
were subsequently shown to be physically linked to birth
weight QTL on two separate chromosomes (Slate et al,
2002). Thus, local effects have been demonstrated to be a
cause of some HFCs. Note that the studies we refer to
concern only vertebrates, the main source of pedigreed
data sets. The mating systems of vertebrates (obligate
biparental reproduction, frequent postnatal dispersal)
may leave less opportunity to generate a high variance in
inbreeding, than exists in other organisms such as
molluscs or self-fertile plants, in which HFC has
traditionally been observed. It may be that vertebrate
populations are especially favourable situations in which
to observe local effects.

It is also clear that there is a publication bias in favour
of HFCs of greatest magnitude (Coltman and Slate, 2003).
Often HFC studies are conducted simply because the
marker data are available, for example, after microsa-
tellites were typed to examine population genetic
structure or for parentage analysis. There may be a
tendency for spurious associations to be reported in the
literature and presented as evidence for inbreeding
depression. Significant HFCs are only likely to be caused
by inbreeding depression if s2(f ) or r(W, f ) are large.
Alternatively, those studies that do reveal a significant
association may represent the low proportion of experi-
ments expected to generate a significant test statistic
despite a lack of power. Therefore, it seems reasonable to
conclude that any attempt to infer inbreeding depression
via variance in MLH is likely to end in failure even when
very large numbers of individuals or markers (or both)
are typed. Furthermore, those experiments that do reveal
significant HFCs usually reveal little information about
the underlying mechanism, and in the absence of
additional support do not provide evidence of inbreed-
ing depression.

Overall, the model was a good predictor of the
observed correlation between f and MLH (r(H, f )observed¼
0.11þ1.06r(H, f )expected; r2¼ 0.78, Po0.01; df¼ 5). There
was a trend for r(H, f )observed to be weaker than
r(H, f )expected among those populations for which the
comparison was possible. The most likely explanation
for this trend is that the pedigrees contained some errors,
resulting in errors in estimated f. Alternatively, the
founder animals in each pedigree had nonzero values
of f or were related. Under either scenario, individual f
inferred from the pedigree may be inaccurate, adding
noise to r(H, f )observed. This explanation is supported by
the observation that the Scandinavian Wolf and Large
Ground Finch populations provided very similar esti-
mated and observed correlation coefficients. The wolves
were from a captive population that has been closely
managed and is small, making pedigree errors unlikely.
Furthermore, the eight founder animals came from four
geographical locations (two animals per location) so that
each founder can safely be assumed to be unrelated to at
least six of the seven other founders (Hedrick et al, 2001).
The Finch population was recently founded by a small
number of immigrant birds, making accurate pedigree
construction relatively straightforward. In contrast, the
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other populations were all large or were not intensively
managed, making inaccuracies in estimated f more
likely. Given that observed and estimated correlations
were only available for seven populations, it seems
prudent to avoid drawing more solid conclusions at this
stage.

One area of future investigation that might be
addressed is to examine whether alternative microsatel-
lite-based variables are superior indicators of f. One
measure, mean d2, has received recent attention,
although theoretical (Tsitrone et al, 2001), empirical (Slate
and Pemberton, 2002) and meta-analytical (Coltman and
Slate, 2003) studies suggest that this metric is even less
useful than heterozygosity. A more promising alternative
is the use of methods that estimate the relatedness of an
individual’s parents from the focal individual’s genotype
(Ritland, 1996; Lynch and Ritland, 1999; Amos et al,
2001). The potential advantage of such an approach is
that allele frequency is incorporated into the measure; for
example, an individual homozygous for a rare allele is
more likely to be inbred than an individual homozygous
for a common allele. Unfortunately, the Coopworth
sheep microsatellites were scored in such a way as to
make such an analysis impossible.

For the purposes of this analysis, the Coopworth sheep
data set was chosen for its magnitude (with respect to the
number of animals and loci typed), rather than as an
attempt to better understand the genetics of production
traits in sheep per se. However, the observed inbreeding
depression and/or heterosis in this population is not
surprising or unprecedented. Inbreeding depression for
morphological traits in other breeds has been described
elsewhere (Falconer, 1989; Wiener et al, 1992). Further-
more, the two lines from which these sheep were derived
showed an asymmetric response towards selection for
backfat depth (Morris et al, 1997), an observation
consistent with a trait having a relatively large dom-
inance variance component (Falconer, 1989; Frankham,
1991; Merilä and Sheldon, 1999), and so being susceptible
to inbreeding depression.

To conclude, a theoretical model and an extensive data
set suggest that MLH is a poor indicator of f even in
populations where inbreeding is common. These find-
ings are consistent with previous investigations that have
failed to detect significant HFCs in large, randomly
mating populations (Houle, 1989; Savolainen and He-
drick, 1995) or in structured populations (Whitlock,
1993). Furthermore, it is apparent that marker hetero-
zygosity does not always provide a robust estimate of
genome-wide heterozygosity but may reflect heterozyg-
osity at linked loci. These issues should always be
considered when attempting to detect inbreeding de-
pression in populations for which pedigree records are
unavailable.
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