
IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

1

Understanding the Requirements for Developing Open
Source Software Systems

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi
wscacchi@ics.uci.edu

Abstract
This study presents an initial set of findings from an empirical study of social processes, technical system
configurations, organizational contexts, and interrelationships that give rise to open software. The focus is
directed at understanding the requirements for open software development efforts, and how the
development of these requirements differs from those traditional to software engineering and requirements
engineering. Four open software development communities are described, examined, and compared to help
discover what these differences may be. Eight kinds of software informalisms are found to play a critical
role in the elicitation, analysis, specification, validation, and management of requirements for developing
open software systems. Subsequently, understanding the roles these software informalisms take in a new
formulation of the requirements development process for open source software is the focus of this study.
This focus enables considering a reformulation of the requirements engineering process and its associated
artifacts or (in)formalisms to better account for the requirements for developing open source software
systems.

Revised version appears in:

IEE Proceedings--Software, 149(1), 24-39, February 2002.

http://www.ics.uci.edu/~wscacchi
mailto:wscacchi@ics.uci.edu

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

2

1. Overview
The focus in this paper is directed at understanding the requirements for open software development
efforts, and how the development of these requirements differs from those traditional to software
engineering and requirements engineering [10, 17, 22, 28]. It is not about hypothesis testing or testing the
viability of a prescriptive software engineering methodology or notational form. Instead, this study is about
discovery, description, and abstraction of open software development practices and artifacts in different
settings in different communities. It is about expanding our notions of what requirements engineering
processes and process models need to address to account for open source software development. But to set
the stage for such an analysis, we first need to characterize the research methods and principles employed
in this study. Subsequently, these are used to understand what open software communities are being
examined, and what characteristics distinguish one community from another. This is followed by the model
of the processes and artifacts that give rise to the requirements for developing open source software
systems. The model and artifacts are the focus of the analysis and basis of the concluding discussion. This
includes a discussion of what is new or different in the findings presented in this report, as well as some of
their implications for what can or should be formalized when developing different kinds of open software
systems.

2. Research methodology: comparative methods and principles
This study reports on findings and results from an ongoing investigation of the socio-technical processes,
work practices, and community forms found in open source software development. The purpose of this
multi-year investigation is to develop narrative, semi-structured (i.e., hypertextual), and formal
computational models of these processes, practices, and community forms. This report presents a
systematic narrative model that characterizes the processes through which the requirements for open source
software systems are developed. The model compares in form, and presents a contrasting account of, how
software requirements differ between traditional software engineering and open source approaches. The
model is descriptive and empirically grounded. The model is also comparative in that it attempts to
characterize an open source requirements engineering process that transcends the practice in a particular
project, or within a particular community. This comparative dimension is necessary to avoid premature
generalizations about processes or practices associated with a particular open software system or those that
receive substantial attention in the news media (e.g., the GNU/Linux operating system). Such comparison
also allows for system projects that may follow a different form or version of open source software
development (e.g., those in the Astrophysics research community or networked computer game arena).
Subsequently, the model is neither prescriptive nor proscriptive in that it does not characterize what should
be or what might be done in order to develop open source software requirements, except in the concluding
discussion, where such remarks are bracketed and qualified.

Comparative case studies are also important in that they can serve as foundation for the formalization of
our findings and process models as a process meta-model [24]. Such a meta-model can be used to construct
a predictive, testable, and incrementally refined theory of open software development processes within or
across communities or projects. A process meta-model can also be used to configure, generate, or
instantiate Web-based process modeling, prototyping, and enactment environments that enable modeled
processes to be globally deployed and computationally supported [e.g., 26, 27]. This may be of value to
other academic research or commercial development organizations that seek to adopt "best practices" for
open software development processes well suited to their needs and situation. Therefore, the study and
results presented in this report denote a new foundation on which computational models of open software
requirements processes may be developed, as well as their subsequent analysis, simulation, or redesign
[34].

The study reported here entails the use of empirical field study methods [40] that follow conform to the
principles for conducting and evaluating interpretive research design [19] as identified here. Seven
principles are used in this study in the following manner.

The first principle is that of the hermeneutic circle, here focusing attention on the analysis of the whole
open source requirements process, how it emerges from consideration of its parts (i.e., requirements sub-
processes and associated artifacts), and how the whole interacts with and shapes these parts.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

3

The second principle is that of contextualization, which draws attention to the need to identify a web of
situations, conditions, or events that characterize the social and historical background of requirements
engineering practices found in open source development projects or communities [20]. This begins in
Sections 3 and 4, then continues throughout the presentation of the descriptive model and informal artifacts
of open software requirements processes.

The next principle is that of revealing the interaction of the researcher and the subjects/artifacts. This is a
basic concern that must be addressed and disclosed whenever the research involves an ethnographic field
study, particularly those requiring virtual ethnography [16], as is the situation here. In this study, the
researcher acted as a participant observer who seeks to understand how open source software requirements
for a set of specific open software systems are developed, and to what ends. In the virtual worlds of open
software development projects, there is generally no corporate workplace or single location where software
development work occurs. Thus, traditional face-to-face ethnography and visible participant observation
cannot readily occur. What occurs, and where it occurs, is generally online (i.e., hosted on a Web site or
interactively accessed via Internet mechanisms), open to public access1, and dispersed across geographic
space and multiple time zones. Informal hallway conversations, as well as organized and scheduled
meetings (rare though they may be), generally take place in an electronic and publicly visible online
manner, though the requirements development work itself may be implied, hidden, or otherwise invisible.
Subsequently, as a Web-based participant, the researcher could "sit in" or lurk on a group chat among core
developers when it was a pre-announced event, as casual developers or other reviewers regularly do.

Alternatively, like many others potential or active participants, one could simply browse email, community
bulletin boards (bboards), and related Web site postings that signal the occurrence of events or situations of
interest (e.g., software release announcements or problem reports). These modes of participation are not
uncommon, and are cited as one way how project newcomers can join in and learn the domain language
and issues, with minimal bother or distraction of those doing the core development effort [11, 29, 32].
Social interaction among open software project participants may rarely, if ever, be face-to-face or co-
located in most open source development efforts. However, real-world events like professional conferences
may enable distant collaborators to meet, interact with, and learn about one another, but such events may
occur only once a year, or be effectively inaccessible to project participants due to its distant location.

In open software projects, social and technical interaction primarily occurs in a networked mediated
computing environment populated with Web browsers, email/bboards (and sometimes instant messaging)
utilities, source text editors, and other software development tools (e.g., compilers, debuggers, and version
control systems [14]). Each program/tool runs asynchronously in different end-user processes (application
windows) appearing on a graphic user interface, as well as appearing as artifacts stored and distributed
across one or more repositories [26, 27]. The workplace of open source software development is on the
screen together with the furniture and surroundings that house it. This workplace is experienced, navigated,
and interacted through keystrokes and mouse/cursor movement gestures in concert with what is seen, read,
or written (typed). Thus, to observe, participate, and comprehend what's going on in an open source
development project, it is necessary to become situated, embedded, and immersed as a software contributor,
reviewer, discussant, or reader within such projects, and within such a networked computing environment
and workplace setting.

In all the projects reported here, the researcher was a reader who acted as an interested but unfamiliar
software developer seeking to understand, review, or discuss with other participants contemporary or
legacy software development problems, opportunities, features, and constraints here [cf. 20]. This occurred
while asynchronously running the end-user application sessions and networked computing environment
indicated here, for between 0.5-10+ hours at a time, totaling more than 200 hours over a period of 10
months. The data exhibits that appear in the Section 5 are a comparative though minute sample of such

1 Some modes of participation may be restricted--for example, anyone may check out and download source
code, but typically only those approved by the core development team may upload and check in modified
code into a shared repository [14].

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

4

Web-based experiences and shared artifacts, all presented as screen displays as could be seen by a
community participant, as captured while and where they encountered by the researcher.

The fourth principle is that of abstraction and generalization. The choice to examine and compare
requirements engineering activities and artifacts across four different software development communities is
the response to this motivation. The requirements engineering process in Section 5 provides both a
description and comparison that spans four distinct communities. The model abstracts details that are
presented as summary terms (identified by sub-section headings) that span multiple open source projects in
the sample space in order to create a more general model that covers the details across all the examined
projects. Similarly, the classification of open source software requirements artifacts as software
informalisms in Section 6 also reflects a similar kind of generalization across project and across
community.

The fifth principle is that of dialogical reasoning which compares the received wisdom of extant theory or
methodology in the software requirements engineering community, with that found empirically through
participant observation in open source software development efforts. This appears in Sections 4 and 5.

The sixth principle is that of multiple interpretations which highlights the need to recognize that different
participants see and experience things differently, though they may still be able to communicate and share
these things with some degree of similarity or replication. The descriptive model presented in this report is
a unique characterization that does not appear in any of the open source software development efforts or
communities described. Thus, the interpretation here is therefore subject to the seventh and last principle,
which is that of suspicion to possible biases or systematic distortions in this presentation. The reader is
cautioned to look for alternative explanations or arrangements of data that might give rise to a different
model of the requirements process to that which follows. If found, such models should be published as a
contribution for review and comparison to the one presented here. Alternatively, the model presented here
could be revised and updated to account for alternative interpretations, as a further generalization that better
accounts for the other principles listed here. These issues are addressed in Sections 7 and 8.

3. Understanding open software development across different communities
We assume there is no a priori model or globally accepted framework that defines how open software is or
should be developed. Subsequently, our starting point is to investigate open software practices in different
communities from an ethnographic perspective [2, 28, 38].

We have chosen four different communities to study. These are those centered about the development of
software for networked computer games, Internet/Web infrastructure, X-ray astronomy and deep space
imaging, and academic software design research. In contrast to efforts that draw attention to generally one
(but sometimes many) open source development project(s) within a single community [e.g., 11, 32], there
is something to be gained by examining and comparing the communities, processes, and practices of open
software development in different communities. This may help clarify what observations may be specific to
a given community (e.g., GNU/Linux projects), compared to those that span multiple, and mostly distinct
communities. In this study, two of the communities are primarily oriented to develop software that supports
scholarly research (X-ray astronomy and academic software design research) with rather small user
communities. In contrast, the other two communities are oriented primarily towards software development
efforts that may replace/create commercially viable systems that are used by large end-user communities.
Thus, there is a sample space that allows comparison of different kinds. So to begin, each community in
this study can be briefly characterized.

3.1 Networked computer game worlds
Participants in this community focus on the development and evolution of first person shooters (FPS)
games (e.g., Quake Arena, Unreal Tournament), massive multiplayer online role-playing games (e.g.,
Everquest, Ultima Online), and others (e.g., The Sims (maxis.com), Neverwinter Nights (bioware.com)).
Interest in networked computer games and gaming environments, as well as their single-user counterparts,
has exploded in recent years as a major (now global) mode of entertainment and playful fun. The release of
DOOM, an early FPS game, onto the Web in open source form in the mid 1990’s, began what is widely
recognized the landmark event that launched the development and redistribution of so-called PC game

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

5

mods [Cleveland 2001]. Mods are updates to or variants of proprietary (closed source) computer game
engines that provide extension mechanisms like game scripting languages to modify and extend a game.
Mods are created by small numbers of users who want and are able to modify games, compared to the huge
numbers of players that enthusiastically use the games as provided. The scope of mods has expanded to
include new game types, game character models and skins (surface textures), levels (game play arenas or
virtual worlds), and artificially intelligent game bots (in-game opponents). The companies, id Software
(makers of DOOM and the Quake game family) and Epic Games (makers of the Unreal game family)
helped encourage the open extension of proprietary game engines. This was done through both game
licenses that require publicly distributed mods to be open source, and the provision of mod tools (level
editors, model builders) and game engine programming or scripting languages for modifying game objects,
behavior, as well as the potential to create entirely new games.2 These companies also recruit new game
development staff from the community of mod developers (see Exhibit 4).

3.2 Internet/Web infrastructure
Participants in this community focus on the development and evolution of systems like the Apache web
server, Mozilla Web browser3, K Development Environment (KDE), InterNet News server, OpenBSD,
mono (an open source implementation of .NET, mostly independent from Microsoft), and thousands of
others4. This community can be viewed as the one most typically considered in popular accounts of open
source software projects. The GNU/Linux operating system environment is of course the largest, most
complex, and most diverse sub-community within this arena, so much so that it merits separate treatment
and examination. Many other Internet or Web infrastructure projects constitute recognizable communities
or sub-communities of practice. The software systems that are the focus generally are not standalone end-
user applications, but are often targeted at system administrators or developers as the targeted user base,
rather than the eventual end-users of such systems. However, notable exceptions like Web browsers, news
readers, instant messaging, and graphic image manipulation programs are growing in number within the
end-user community

3.3 X-ray astronomy and deep space imaging
Participants in this community focus on the development and evolution of software systems supporting the
Chandra X-Ray Observatory, the European Space Agency's XMM-Newton Observatory, the Sloan Digital
Sky Survey, and others. These are three highly visible astrophysics research projects whose scientific
discoveries depend on processing remotely sensed data through a complex network of open source software
applications that process remotely sensed data [35]. In contrast to the preceding two development oriented
communities, open software can play a significant role in scientific research communities. For example,
when scientific findings or discoveries resulting from remotely sensed observations are reported5, then
members of the relevant scientific community want to be assured that the results are not the byproduct of

2 Unreal begat Half-Life under a proprietary license, which gave rise to Half-Life: CounterStrike, the most
popular FPS game (and game mod) at present [7]. Counter-Strike was developed and distributed as open
source by two independent game player-developers. These developers were then financially engaged by
Half-Life’s commercial developer, Valve Software, to participate in the royalty stream generated from
retail sales of CounterStrike, though the CS mod is still publicly accessible on the Web.
3 It is reasonable to note that the two main software systems that enabled the World Wide Web, the NCSA
Mosaic Web browser (and its descendants, like Netscape Navigator and Mozilla), and the Apache Web
server (originally know as "HTTPd") were originally and still remain active open source software
development projects.
4 The SourceForge community web portal (http://www.sourceforge.net) currently stores information on
more than 250K developers and 30K open source software development projects, with more than 10% of
those projects indicating the availability of a mature, released, and actively supported software system.
5 For example, see http://antwrp.gsfc.nasa.gov/apod/ap010725.html which displays a composite image
constructed from both X-ray (Chandra Observatory) and optical (Hubble Space Telescope) sensors. The
open software processing pipelines for each sensor are mostly distinct and are maintained by different
organizations. However, their outputs must be integrated, and the images must be registered and oriented
for synchronized overlay, pseudo-colored, and then composed into a final image, as shown on the cited
Web page. There are dozens of open software programs that must be brought into alignment for such an
image to be produced, and for such a scientific discovery to be claimed and substantiated [31, 35].

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

6

some questionable software calculation or opaque processing trick. In scientific fields like astrophysics that
critically depend on software, open source is increasingly considered an essential precondition for research
to proceed, and for scientific findings to be trusted and open to independent review and validation.
Furthermore, as discoveries in the physics of deep space are made, this in turn often leads to modification
or extension of the astronomical software in use in order to further explore and analyze newly observed
phenomena, or to modify/add capabilities to how the remote sensing mechanisms operate.

3.4 Academic software systems design
Participants in this community focus on the development and evolution of software architecture and UML
centered design efforts, such as for ArgoUML (http://argouml.tigris.org) or xARCH at CMU and UCI
(http://www.isr.uci.edu/projects/xarch/). This community can easily be associated with a mainstream of
software engineering research. People who participate in this community generally develop software for
academic research or teaching purposes in order to explore topics like software design, software
architecture, software design modeling notations, software design recovery (reverse software engineering),
etc. Accordingly, it may not be unreasonable to expect that open software developed in this community
should embody or demonstrate principles from modern software engineering theory or practice.
Furthermore, much like the X-ray astronomy community, members of this community expect that when
breakthrough technologies or innovations have been declared, such as in a refereed conference paper or
publication in a scholarly journal, the opportunity exists for other community members to be able to access,
review, or try out the software to assess and demonstrate its capabilities. An inability to provide such access
may result in the software being labeled as “vaporware” and the innovation claim challenged, discounted,
or rebuked. Alternatively, declarations of “non-disclosure” or “proprietary intellectual property” are
generally not made for academic software, unless or until it is transferred to a commercial firm. However, it
is often acceptable to find that academic software, whether open source or not, constitutes nothing more
than a “proof of concept” demonstration or prototype system, not intended for routine or production use by
end-users.

3.5 Community Characteristics
Each community is constituted by people who identify themselves with the development of open software
within one of the four arenas noted above.6 Though participants may employ pseudonyms (user-id’s) in
identifying themselves within a community, they do not assume nor rely on anonymous identifiers, as is
found in other communities for socializing in cyberspace [Preece 2000, Smith and Kollock 1999]. Open
software developers or contributors tend to act in ways where building trust and reputation, “geek fame”,
and being generous with one’s time, expertise, and source code are valued traits of community participants
[Pavlicek 2000]. They work to develop and contribute software representations or content (programs,
design diagrams, execution scripts, code reviews, test case data, Web pages, email comments, etc.) to Web
sites within each community. Making contributions, and being recognized by other community members as
having made substantive contributions, is often a prerequisite for advancing technically and socially within
a community [Fielding 1999, Kim 2000]. As a consequence, participants within these communities often
participate in different roles within both technical and social networks [Smith and Kollock 1999, Preece
2000] in the course of developing, using, and evolving open software.

Administrators of open software community Web sites serve as gatekeepers in the choices they make for
what information to post, when and where within the site to post it, as well as what not to post [36].
Similarly, they may choose to create a site map that constitutes a classification of site and domain content,
as well as a geography of community structure and boundaries [4]. Community participants regularly use
bboards to engage in online discussion forums or threaded email messages as a central way to observe,
participate in, and contribute to public discussions of topics of interest [39]. However, these people also
engage in private online or offline discussions that do not get posted or publicly disclosed, due to their
perceived sensitive content. Finally, in each of the four communities examined here, participants choose on
occasion to author and publish technical reports or scholarly research papers about their software
development efforts, which are publicly available for subsequent examination, review, and secondary
analysis.

6 An alternative scheme for automatically discovering the membership of a Web-based community uses
graph traversal (crawling linked web pages) and s-t maximum flow network algorithms [13].

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

7

Each of these highlighted items point to the public availability of data that can be collected, analyzed, and
re-represented within narrative ethnographies [16, 20], computational process models [8, 24, 27, 34], or for
quantitative studies [6, 21]. Significant examples of each kind of data have been collected and analyzed as
part of this ongoing study. This paper includes a number of examples that serve as this data. Subsequently,
we turn to review what requirements engineering is about, in order to establish a baseline of comparison for
whether what we observe with the development of open software system requirements is similar or
different, and if so how.

4. The classic software requirements engineering process
Experts in the field of software requirements engineering identify a recurring set of activities that
characterize this engineering process [10, 17, 22, 28]. These activities, which are generally construed as
necessary in order to produce a reliable, high quality, trustworthy system, include:

Eliciting requirements: identifies system stakeholders, stakeholder goals, needs, and expectations, and
system boundaries. Elicitation techniques like questionnaire surveys, interviews, documentation review,
focus groups, or joint application development (JAD) team meetings may be employed.

Modeling or specifying requirements: focuses attention to the systematic modeling of both functional and
non-functional software requirements. One can model functional requirements of operational domain
problems by specifying system processing states, events (input events, output events, process execution
flags or signals, error detection, and exception handling triggers), and system data. Specifying system data
may include identification of data objects, data types, data sources, end-user screen displays, and meta-data,
as well as construction of a data dictionary. Functional requirements should also specify system data flow
through system or subsystem states as controlled or synchronized by events. Beyond this, advanced
modeling techniques may include construction of visual animations or simulated walkthroughs of overall
system functionality. In contrast, one can model non-functional requirements as goals, capabilities, and
constraints that situate the functional system within some context of operation. This can involve identifying
an enterprise model, problem domain model, system model type, and data model type.

Analyzing requirements: entails a systematic reasoning of the internal consistency, completeness, or
correctness of a specification. It does not check to see if the requirements are externally correct or an
accurate model of the world. That determination may result from observing a visual animation of the
specification during operational execution (a simulation). More sophisticated analyses may check for
reachability, termination, live-lock and dead-lock, and safety in the modeled system.

Validating requirements: engages domain experts to assess feasibility of modeled system solution, as well
as to identify realizable, plausible, and implausible system requirements. Systematic techniques for
inspecting requirements to assess system usability and feasibility may also be employed. As a result of
validation, the requirements engineer can better calibrate customer expectations about what can be
developed.

Communicating requirements: entails documenting requirements, for example, through the creation of an
software requirements specification (SRS) document, establishing criteria for requirements traceability, and
managing the storage and evolution of the preceding requirements artifacts.

With these activities at hand, it is possible to consider whether this requirements engineering process
captures or suitably characterizes what occurs in the development of requirements for open software
systems, and how it occurs. The objective is not to establish conformity or distance metrics, nor some other
quantitative measures that purport to reveal insights about the comparative quality of different open
software systems, which might then be reused in other experimental situations [40]. Instead, the objective is
to help determine whether the classic process adequately characterizes and covers what is observable in the
development of open software requirements, or whether a new alternative model of requirements
development for open software is needed.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

8

Recently, experts in requirements engineering have begun to recognize the limits of the traditional
requirements engineering process [28, 38]. They call for better modeling and analysis of the problem
domain, as opposed to just focusing on the functional behavior of the software. They draw attention to the
need to develop richer models for capturing and analyzing non-functional requirements. They also point to
opportunities to bridge the gap between requirements elicitation techniques based on contextual and
ethnographic techniques [15, 16, 38], and those techniques for formal specification and analysis. Thus, we
can take into account these suggested improvements as well in our study.

5. Open software processes for developing requirements
In contrast to the world of classic software engineering, open software development communities do not
seem to readily adopt or practice modern software engineering or requirements engineering processes.
Perhaps this is no surprise. However, these communities do develop software that is extremely valuable,
generally reliable, often trustworthy, and readily used within its associated user community. So, what
processes or practices are being used to develop the requirements for open software systems?

From our study to date, we have found many types of software requirements activities being employed
within or across the four communities. However, we have yet to find examples of formal requirements
elicitation, analysis, and specification activity of the kind suggested by software requirements engineering
textbooks [10, 22] in any of the four communities under study. Similarly, we have only found one example7

online (in the Web sites) or offline (in published technical reports) of documents identified as
"requirements specification" documents within these communities. However, what we have found is
different.

5.1 Requirements elicitation vs. assertion of open software requirements
It appears that open software requirements are articulated in a number of ways that are ultimately
expressed, represented, or depicted on the Web. On closer examination, requirements for open software can
appear or be implied within an email message or within a discussion thread that is captured and/or posted
on a project's Web site bboard for open review, elaboration, refutation, or refinement. Consider the
following example found on the Web site for the KDE system (http://www.kde.org/), within the
Internet/Web Infrastructure community. This example displayed in Exhibit 18 reveals asserted capabilities
for the Qt3 subsystem within KDE. These capabilities (identified in the exhibit as the "Re: Benefits of
Qt3?" discussion thread) highlight implied requirements for multi-language character sets (Arabic and
Hebrew, as well as English), database support (“…there is often need to access data from a database and
display it in a GUI, or vice versa…”), and others. These requirements are simply asserted without reference
to other documents, sources, standards, or JAD focus groups--they are requirements because some
developers wanted these capabilities.

Asserted system capabilities are post-hoc requirements characterizing a functional capability that has
already been implemented. The concerned developers justify their requirements through their provision of
the required coding effort to make these capabilities operational. Senior members or core developers in the
community then vote or agree through discussion to include the asserted capability into the system’s
distribution [12]. The historical record may be there, within the email or bboard discussion archive, to
document who required what, where, when, why, and how. However, once asserted, there is generally no

7 “Software Requirements Specifications for the Central Manager (DDNS_CM) CSCI of the Distributed
Data Network System (DDNS)", 29 July 2001, http://www.sourceforge.net/projects/ddns. It seems fair to
observe that this SRS seems to follow guidelines embodied in military standards for software development,
perhaps suggesting its origination in an industrial firm.
8 Each exhibit appears as a screenshot of a Web browsing session. It includes contextual information,
following the second research principle, thus requiring and benefiting from a more complete display view.

http://www.kde.org/)

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

9

Exhibit 1. A sample of implicit requirements for the KDE software subsystem Qt3 expressed in a threaded

email discussion. Source: http://dot.kde.org/996206041/, July 2001.

http://dot.kde.org/996206041/

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

10

further effort apparent to document, formalize, or substantiate such a capability as a system requirement.
Asserted capabilities then become invisible or transparent, taken-for-granted requirements that can be
labeled or treated as obvious (i.e., a shared awareness) to those familiar with the system's development.

Another example reveals a different kind open software requirement. This case, displayed in Exhibit 2,9
finds a requirements “vision” document that conveys a non-functional requirement for “community
software development” in the bottom portion of the exhibit. This can be read as a non-functional
requirement for the system’s developers to embrace community software development as the process to
develop and evolve the ArgoUML system, rather than say through a process which relies on the use of
system models represented as UML diagrams [cf. 38]. Perhaps community software development, and by
extension, community development, are recognized as being important to the development and success of
this system. It may also be a method for improving system quality and reliability when compared to
existing software engineering tools and techniques (i.e., those based on UML, or supporting UML-based
software design).

A third example reveals yet another kind of elicitation found in the Internet/Web infrastructure community.
In Exhibit 3, we see an overview of the mono project. Here we see multiple statements for would-be
software component/class owners to sign-up and commit to developing the required ideas, run-time, (object
service) classes, and projects. These are non-functional requirements for people to volunteer to participate
in community software development, in a manner perhaps compatible with that portrayed in Exhibit 2. The
systems in Exhibits 2 and 3 must also be considered early in their overall development or maturity, since
they call for functional capabilities that are needed to help make sufficiently complete for usage.

Thus, in understanding how the requirements of open software systems are elicited, we find evidence for
elicitation of volunteers to come forward to participate in community software development. A similar
example inviting new participants into the world of game mods appears in Exhibit 4. We also observe the
assertion of requirements that simply appear to exist without question or without trace to a point of
origination, rather than somehow being elicited from stakeholders, customers, or prospective end-users of
open software systems. As previously noted, we have not yet found evidence or data to indicate the
occurrence or documentation of a requirements elicitation effort arising in an open software development
project. However, finding such evidence would not invalidate the other observations; instead, it would
point to a need to broaden the scope of how software requirements are captured or recorded.

5.2 Requirements analysis vs. requirements reading, sense-making, and accountability
In open software development, how does requirements analysis occur, and where and how are requirements
specifications described? Though requirements analysis and specification are interrelated activities, rather
than distinct stages, we first consider examining how open software requirements are analyzed.
Exhibits 5 and 6 come from different points in the same source document, a single research paper
accessible on the Web, associated with the Chandra X-ray Center Data System (CXCDS) for sensing and
imaging deep space (astronomical) objects that radiate in the X-ray spectrum. Exhibit 5 suggests to the
reader that the requirements for the CXCDS are involved and complex (as seen in the "Abstract"), and
Exhibit 6 seems to confirm this claim, as least to an outsider interpreting Figure 2 shown in the exhibit. As
a data-flow diagram, Exhibit 6 either suggests or denotes part of the specification of requirements for the
CXCDS. But how do software developers in this community (astrophysicists) understand what’s involved
in the functional operation of a complex system like this? One answer lies in the observation that
developers who seek such an understanding must read this research paper quite closely, as well as being
able to draw on their prior knowledge and experience in the relevant physical, telemetric, digital, and
software domains. A close reading likely means one that entails multiple re-readings and sense-making
relative to one’s expertise and prior development experience [cf. 1]. A more casual though competent
reading requires some degree of confidence and trust in the authors’ account of how the functionality of the

9 The ArgoUML tool [33] within the academic software design community at http://argouml.tigris.org/.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

11

http://argouml.tigris.org/vision.html

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

12

Exhibit 2. A software requirements vision statement highlighting community development as a software
development objective (i.e., a non-functional requirement). Source: http://argouml.tigris.org/vision.html,

July 2001.

http://www.go-mono.com/ideas.html

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

13

Exhibit 3: A non-functional requirement identifying a need for volunteers to become owners for software
components (or classes) not yet bound to a developer. Source: http://www.go-mono.com/ideas.html,

July 2001. The contents on this page have since been updated to reflect remaining tasks needing
contributors, as well as adding new tasks for development.

http://www.unrealtournament.com/editing

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

14

Exhibit 4. An asserted capability (in the center) that invites would-be open software game developers to
make extensions of whatever kind they require among the various types of available extensions (“…create

your own levels, mods, skins, models, and more”). Source: http://www.unrealtournament.com/editing

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

15

Exhibit 5. An asserted capability indicating that the requirements are very involved and complex, and thus
require an automated, registry-based system software architecture for configuring dozens of application
software pipelines. Source: [31].

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

16

Exhibit 6. A specification of data-flow relationships among a network of software module pipelines that
constitute the processing threads that must be configured in order to transform remotely sensed telemetry
data into digital images of deep space objects. Source: [31]

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

17

CXCDS architecture is configured, in order to accept what is presented as plausible, accurate, and correct.

The notion that requirements for open software system are, in practice, analyzed via the reading of
technical accounts as narratives, together with making sense of how such readings are reconciled with
one’s prior knowledge, is not unique to the X-ray astronomy software community. These same activities
can and do occur in the other three communities. If one reviews the functional and non-functional
requirements appearing in Exhibits 1-4, it is possible to observe that none of the descriptions appearing in
these exhibits is self-contained. Instead, each requires the reader (e.g., a developer within the community)
to closely or casually read what is described, make sense of it, consult other materials or one’s expertise,
and trust that the description’s author(s) are reliable and accountable in some manner for the open software
requirements that have been described [15, 29]. Analyzing open software requirements entails little if any
automated analysis, formal reasoning, or visual animation of software requirements specifications [cf. 28].
Yet, participants in these communities are able to understand what the functional and non-functional
requirements are in ways that are sufficient to lead to the ongoing development and routine use of various
kinds of open software systems.

5.3 Requirements specification and modeling vs. continually emerging webs of software
discourse
If the requirements for open software systems are asserted rather than elicited, how are these requirements
specified or modeled? In examining data from the four communities, it is becoming increasingly apparent
that open software requirements can emerge from the experiences of community participants through their
email and bboard discussion forums (see Exhibit 1 for example). These communication messages in turn
give rise to the development of narrative descriptions that more succinctly specify and condense into a web
of discourse about the functional and non-functional requirements of an open software system. This
discourse is rendered in descriptions that can be found in email and discussion forum archives, on Web
pages that populate community Web sites, and in other informal software descriptions that are posted,
hyperlinked, or passively referenced through the assumed common knowledge that community participants
expect their cohorts to possess.

In Exhibit 5 from the X-ray and deep space imaging software community, we see passing reference in the
opening paragraph to “the requirements for processing Chandra telemetry (imaging data) are very involved
and complex.” To comprehend and recognize what these involved and complex requirements are,
community members who develop open software for such applications will often be astrophysicists
(generally with Ph.D. degrees), and rarely would be simply a competent software engineering professional.
Subsequently, the astrophysicists that develop software in this community do not need to recapitulate any
software system requirement that would be due to the problem domain (astrophysics). Instead, community
members are already assumed to have mastery over such topics prior to software development, rather than
encountering problems in their understanding of astrophysicists arising from technical problems in
developing, operation, or functional enhancement of remote sensing or digital imaging software. Thus, for
openness to be effective, a software developer in this community must be competent in the discourse of
astrophysics, as well as with that for the tools and techniques used in developing open software systems.

Subsequently, spanning the four communities and the six exhibits, we begin to observe that the
requirements for open software are specified in webs of discourse that reference or link:
� email or bboard discussion threads,
� system vision statements,
� ideas about system functionality and the non-functional need for volunteer developers to implement

the functionality,
� promotional encouragement to specify and develop whatever functionality you need, which might also

help you get a new job, and
� scholarly scientific research publications that underscore how the requirements of domain-specific

software (e.g., for astronomical imaging), though complex, are understood without elaboration, since
they rely on prior scientific/domain knowledge and tradition of open scientific research.

http://www.tigris.org/

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

18

Each of these modes of discourse, as well as their Web-based specification and dissemination, is a
continually emerging source of open software requirements from new contributions, new contributors or
participants, new ideas, new career opportunities, and new research publications [cf. 37].

5.4 Requirements validation vs. condensing discourse that hardens and concentrates
system functionality and community development
Software requirements are validated with respect to the software’s implementation. Since open software
requirements are generally not recorded in a formal SRS document, nor are these requirements typically
cast in a mathematical logic, algebraic, or state transition-based notational scheme, then how are the
software implementations to be validated against their requirements?

In each of the four communities, it appears that the requirements for open software are co-mingled with
design, implementation, and testing descriptions and software artifacts, as well as with user manuals and
usage artifacts (e.g., input data, program invocation scripts). Similarly, the requirements are spread across
different kinds of electronic documents including Web pages, sites, hypertext links, source code directories,
threaded email transcripts, and more. In each community, requirements are described, asserted, or implied
informally. Yet it is possible to observe in threaded email/bboard discussions that community participants
are able to comprehend and condense wide-ranging software requirements into succinct descriptions using
lean media [39] that pushes the context for their creation into the background. Goguen [15] suggests the
metaphor of "concentrating and hardening of requirements" as a way to characterize how software
requirements evolve into forms that are perceived as suitable for validation. His characterization seems to
quite closely match what can be observed in the development of requirements for open software.
Subsequently, we find that requirements validation is an implicit by-product, rather than an explicit goal, of
how open software requirements are constituted, described, discussed, cross-referenced, and hyperlinked to
other informal descriptions of system and its implementations.

5.5 Communicating requirements vs. global access to open software webs
One distinguishing feature of open software associated with each of the four communities is that their
requirements, informal as they are, are organized and typically stored in a persistent form that is globally
accessible. This is true of community Web sites, site contents and hyperlinkage, source code directories,
threaded email and bboard discussion forums, descriptions of known bugs and desired system
enhancements, records of multiple system versions, and more. Persistence, hypertext-style organization and
linkage, and global access to open software descriptions appear as conditions that do not receive much
attention within the classic requirements engineering approaches, with few exceptions [9]. Yet, each of
these conditions helps in the communication of open software requirements. These conditions also
contribute to the ability of community participants or outsiders looking in to trace the development and
evolution of software requirements both within the software development descriptions, as well as across
community participants. This enables observers or developers to navigationally trace, for example, a web of
different issues, positions, arguments, policy statements, and design rationales that support (e.g., see
Exhibit 1) or challenge the viability of emerging software requirements [cf.5, 23]. Nonetheless, these traces
appear to lack a persistent representation beyond the awkward "history" file of a Web browser.

Each of the four communities also communicates community-oriented requirements. These non-functional
requirements may seem similar to those for enterprise modeling [28]. However, there are some differences,
though they may be minor. First, each community is interested in sustaining and growing the community as
a development enterprise [cf. 26]. Second, each community is interested in sustaining and growing the
community’s open software artifacts, descriptions, and representations. Third, each community is interested
in updating and evolving the community's information sharing Web sites. In recognition of these
community requirements, it is not surprising to observe the emergence of commercial efforts (e.g.,
SourceForge and CollabNet) that offer community support systems that are intended to address these
requirements, such as is used in the ArgoUML community site, http://www.tigris.org, in the academic
software design community.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

19

5.6 Identifying a common foundation for the development of open software requirements
Based on the data and analysis presented above, it is possible to begin to identify what items, practices, or
capabilities may better characterize how the requirements for open software are developed. This centers of
the emergent creation, usage, and evolution of informal software descriptions as the vehicle for developing
open software requirements. This is explored in the following section.

6. Informalisms for Open Software System Requirements
The functional and non-functional requirements for open software systems are elicited, analyzed, specified,
validated, and managed through a variety of Web-based descriptions. These descriptions can be treated
collectively as software informalisms. The choice to designate these descriptions as informalisms10 is to
draw a distinction between how the requirements of open software systems are described, in contrast to the
recommended use of formal, logic-based requirements notations (“formalisms”) that are advocated in
traditional approaches [10, 17, 22, 28]. In the four communities examined in this study, software
informalisms appear to be the preferred scheme for describing or representing open software requirements.
There is no explicit objective or effort to treat these informalisms as "informal software requirements" that
should be refined into formal requirements [9, 17, 22] within any of these communities. Accordingly, we
can present an initial classification scheme that inventories the available types of software requirements
informalisms that have been found in one or more of the four communities in this study. Along the way, we
seek to identify some of the relations that link them together into more comprehensive stories, storylines, or
intersecting story fragments that help convey as well as embody the requirements of an open source
software system.

Eight types of software informalisms can be identified, and each has sub-types that can be identified as
follows.

6.1 Community communications
The requirements for open software are asserted, read, discussed, condensed, and made accountable
through a small set of computer-based communication tools and modalities. In the absence of co-located
workplaces, a community’s communication infrastructure serves as the “place” where software
requirements engineering work is performed, and where requirements artifacts are articulated, refined,
stored, or discarded. These communication systems, appear in the form of: (a) messages placed in a Web-
based bboard discussion forums; (b) email list servers; (c) network news groups; or less frequently in (d)
Internet-based chat (instant messaging)11. Messages written and read through these systems, together with
references or links to other messages or software webs, then provide some sense of context for how to
understand messages, or where and how to act on them.

6.2 Scenarios of usage as linked Web pages
Open software developers who do not meet face-to-face create, employ, read, and revise shared mental
constructions of how a given system is suppose to function. Since shared understanding must occur at a
distance in space or time, then community participants create artifacts like screenshots, guided tours, or
navigational click-through sequences (e.g., “back”, “next” Web page links) with supplementary narrative
descriptions in attempting to convey their intent or understanding of how the system operates, or how it
appears to a user when used. This seems to occur when participants find it simpler or easier to explain what
is suppose to happen or be observable at the user interface with pictures (or related hypermedia) than with
just words. Similarly, participants may publish operational program execution scripts or recipes for how to
develop or extend designated types of open software artifacts. These hypermedia scenarios of usage may
serve a similar purpose to formally elicited and modeled Use Cases, though there is no apparent effort to
codify these usage scenarios in such manner or notational form in any of the communities in this study.

10 As Goguen [15] observes, formalisms are not limited to those based on a mathematical logic or state
transition semantics, but can include descriptive schemes that are formed from structured or semi-
structured narratives, such as those employed in Software Requirements Specifications documents.
11 Instant messaging can be more widely observed in the networked computer game community in contrast
to the academic software design and X-ray astrophysics community, where we are yet to find traces of
instant messaging activities in support of open software development.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

20

6.3 HowTo Guides
Online documents that capture and condense “how to” perform some behavior, operation, or function with
a system, serve as a semi-structured narrative that assert or imply end-user requirements. “Formal”
HowTo's descriptions include explicit declarations of their purpose as a HowTo and may be identified as a
system tutorial. Community participants may seek these formal HowTo’s when they need to add a system
module or class structure, or contribute other resources or efforts to the open software project. In contrast,
informal HowTo’s may appear as a selection, composition, or recomposition of any of the proceeding.
These informal HowTo guides may be labeled as a “FAQ”; that is, as a list of frequently asked questions
about how a system operates, how to use it, where to find it’s development status, who developed what,
known bugs and workarounds, etc. However, most FAQs do not indicate how frequently any of the
questions may have been asked, or if effort has been made to measure or track FAQ usage/reference.

6.4 External Publications
In each of the four communities in this study, there are external publications that describe open software
available for consumption by the public or by community members. Most common among these are
technical articles, while books are less common, though of growing popularity in the Internet/Web
infrastructure and computer game community. Many developers find that books, especially those derived
from composition and extension of other open software informalisms, are both a valuable and convenient
source for recording, recontextualizing, and explaining the functional and non-functional requirements of
an open software system, or how it was developed [e.g., 11, 14, 32].

On the other hand, professional articles that inform interested readers or promote the author’s interests in a
certain open software technology, help identify general functional and non-functional software
requirements for these systems. These article may appear in trade publications, like the Linux Journal or
Game Developer [7]. Academic articles that are refereed and appear in conference proceedings or scholarly
journals [25, 33, 35], serve a similar purpose as professional articles, though usually with more technical
depth, theoretical recapitulation, analytical detail, and extensive bibliography of related efforts. However, it
may be the case that readers of academic research papers bring to their reading a substantial amount of
prior domain knowledge. This expertise may enable them to determine what open software requirements
being referenced may be obvious from received wisdom, versus those requirements that are new,
innovative, or otherwise noteworthy.

6.5 Open Software Web Sites and Source Webs
As already suggested, open software is most easily found on the Web or Internet. Neither information
infrastructure is an absolute necessity for open software. However, such global infrastructure is an enabler
of open software communities, processes, and practices. But open software communities take advantage of
a community Web site as an information infrastructure for publishing and sharing open descriptions of
software in the form of Web pages, Web links, and software artifact content indexes or directories. These
pages, hypertext links, and directories are community information structures that serve as a kind of
organizational memory and community information system. Such a memory and information system
records, stores, and retrieves how open software systems and artifacts are being articulated, negotiated,
employed, refined, and coordinated within a community of collaborating developer-users [5, 23, 1].

Web pages in each of the four open software communities include content that incorporates text, tables or
presentation frames, diagrams, or navigational images (image maps) to describe their associated open
software systems. This content may describe vision statements, assert system features, or otherwise
characterize through a narrative, the functional and non-functional capabilities of an open software system.
Whether this content can be considered a software requirements specification document is unclear, since to
do so would seem to allow almost any document with a narrative about some software system to be
considered as an SRS document, and thus a formal requirements specification.

Web content that describes an open software system often comes with many embedded Web links. These
links associate content across Web pages, sites, or applications. These links may simply denote traversal
links (i.e., “goto” links to related software components, for example, go to the source code for a named
procedure call) or other source/Web content where there is no further explicit meaning or semantics

http://www.mozilla.org/projects/bugzilla/

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

21

assigned to the link. Alternatively, they may serve as enumerated navigational index links (e.g., site
indexes) that helps direct a community participant (or outsider) to find their way around the community, its
community information base, and the community’s open source code base. Beyond this, they can serve as
links to implied “helper applications” or tools invoked by navigational access to remotely served file types
that are registered on the client, and associated with external application programs or plug-in programs that
are invoked when selected or traversed [26, 27].

Each of the open software communities in this study provides access to Web-based source code directories,
files, or compositions for download, build and/or installation. These directories and files contain
operational software or open source code, as well as some related support files or Web pages. Source code
denote requirements implementations, rather than requirements specifications. Program execution scripts,
which take the form of C-shell, Tcl, Perl, Python, or Java scripts on Linux/Unix systems, may be employed
for invoking other system modules. These execution scripts are functional in the sense that they invoke or
cause system behavior that is implemented in the open software source code. Since scripts are generally
platform specific, they effectively impose their own functional requirements on an implemented system.
Thus, it is not surprising to find examples in each community for Web pages or files that describe these
requirements explicitly, while the requirements of the open software system whose behavior in under
control of the script has its requirements left implicit. The same kinds of concerns and explication of
functional requirements is also found for make files (compilation or build scripts), CVS files that specify,
control and synchronize concurrent software versions, and deployment-installation compositions (e.g.,
“tarballs” or zip files) for coordinating shared software production and distribution [14].

6.6 Software bug reports and issue tracking
One of the most obvious and frequent types of discourse that appears with open software systems is
discussion about operational problems with the current version of the system implementation. Bugs and
other issues (missing functionality, incorrect calculation, incorrect rendering of application domain
constructs, etc.) are common to open software, much like they are with all other software. However, in an
open software development situation, community participants rely on lean communication media like
email, bug report bboards, and related issue tracking mechanisms to capture, rearticulate, and refine
implicit, mis-stated, or unstated system requirements [39]. We find the capabilities of bug report or issue-
tracking systems like Bugzilla in the Internet/Web infrastructure community, are also appearing in the
academic software design community and networked game communities. In contrast, software developers
in X-ray astrophysics community still rely on threaded email discussion lists to manage their (re) emerging
requirements, often with relatively few message postings.

6.7 Traditional software system documentation
Open software systems are not without online system documentation or documentation intended to be
printed in support of end-users or developers. For all of the systems examined in this study, it was possible
to locate online man pages or help pages that describe commands and command parameters for how to
invoke or use a system. Similarly, it was possible to locate online user manuals for most of these systems. It
was apparent in both situations that online documentation was usually dated, and subsequently inconsistent
with current functional capabilities or system commands.

This may just be what should be expected of both closed and open software systems. However, it is
apparent that there are many other information resources, that is, the other software informalisms, that are
available to developers and end-users to help them detect or resolve inconsistencies in such documentation.

The overall set of software informalisms serve as a context for reconstructing what a system’s functional
requirements were, are, or can be. Thus, while open software manuals are not necessarily any better or
worse than for other software, the context for their use may enable the typical inconsistencies one
encounters to be more readily resolved. Subsequently, there are few incentives to make online manuals or
help files for open software systems any better than the minimum needed to assist an unfamiliar user or
developer to get started, or where to look for further help. Good enough documentation is good enough.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

22

6.8 Software extension mechanisms and architectures
The developers of software systems in each of the four communities seek to keep their systems open
through provision of a variety of extension mechanisms and architectures. These are more than just open
application program interfaces (APIs); generally they represent operational mechanisms or capabilities. The
extensions include embedded scripting languages, such as UnrealScript for Unreal Tournament; and
Perl/Python for Internet/Web infrastructure applications. Open software architectures accommodate
operational plug-in modules, as in the case for the Apache web server and Chandra system infrastructure.
Other open architectural schemes accommodate reconfigurable processing pipelines, like the Chandra Data
Processing Infrastructure. Finally, in the networked computer game community, we see game vendors
providing tools and utilities to assist advanced users so that they can develop their own extensions or
custom programs in order to keep an open software system alive and continuously evolving.

Whether these mechanisms and architectures can or should be treated as software formalisms is perhaps
subject to debate. However, across the four community, it is apparent that software extensions mechanisms
and extensible software architectures contribute to, as well as enable, the continuing emergence open
software requirements.

Overall, it appears that none of these software informalisms would defy an effort to formalize them in some
mathematical logic or analytically rigorous notation. Nonetheless, in the four software communities
examined in this study, there is no perceived requirement for such formalization, nor no unrecognized
opportunity to somehow improve the quality, usability, or cost-effectiveness of the open software systems,
that has been missed. If formalization of these software benefits has demonstrable benefit to members of
these communities, beyond what they already realize from current practices, these benefits have yet to be
articulated in the discourse that pervades each community.

7. Understanding open software requirements
In open software development projects, requirements engineering efforts are implied activities that
routinely emerge as a by-product of community discourse about what their software should or should not
do, as well as who will take responsibility for realizing such requirements. Open software system
requirements appear in the form of situated discourse within private and public email discussion threads,
emergent artifacts (e.g., source code fragments included within a message) and dialectical social actions
that negotiate interest, commitment, and accountability [15, 37]. More simply, traditional requirements
engineering activities do not have first-class status as an assigned or recognized task within open software
development communities. Similarly, there are no software engineering tools used to support the capture,
negotiation, and cost estimate (e.g., level of effort, expertise/skill, and timeliness) of open software
development efforts, though each of these activities occurs regularly but informally.

Open software systems may be very reliable and high quality in their users’ assessments. Nonetheless
requirements do exist, though finding or recognizing them demands familiarity and immersion within the
community and its discussions. This of course stands in contrast to efforts within the academic software
engineering or requirements engineering community to develop and demonstrate tools for explicitly
capturing requirements, negotiating trade-offs among system requirements and stakeholder interests, and
constructive cost estimation or modeling [e.g., 3]. Furthermore, in open software systems, the developers
are generally end-users of the systems they develop, whereas in traditional software requirements
engineering efforts, developers and users are distinct, and developers tend not to routinely use the systems
they develop. Perhaps this in why open software systems can suffice with reliance on software
informalisms, while traditional software engineering efforts must struggle to convert informal requirements
into more formal ones.

Developing open software requirements is a community building process that must be institutionalized both
within a community and its software informalisms to flourish [30, 36]. In this regard, the development of
requirements for open software is not a traditional requirements engineering process, at least, not yet. It is
instead socio-technical process that entails the development of constructive social relationships, informally
negotiated social agreements, and a commitment to participate through sustained contribution of software
discourse and shared representations. Thus, community building and sustaining participation are essential

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

23

and recurring activities that enable open software requirements and system implementation to emerge and
persist without central corporate authority.

Open software Web sites serve as hubs that centralize attention for what is happening with the development
of the focal open software system, its status, participants and contributors, discourse on pending/future
needs, etc. Furthermore, by there very nature, open software Web sites (those accessible outside of a
corporate firewall) are generally global in reach and accessibility. This means the potential exists for
contributors to come from multiple remote sites (geographic dispersion) at different times (24/7), from
multiple nations, potentially representing the interests of multiple cultures or ethnicity. All of these
conditions point to new kinds of requirements—for example, community building requirements,
community software requirements, and community information sharing system (Web site and interlinked
communication channels for email, forums, and chat) requirements. These requirements may entail both
functional and non-functional requirements, but they will most typically be expressed using open software
informalisms, rather than using formal notations based on some system of mathematical logic.

8. Conclusions
The paper reports on a study that investigates, compares, and describes how the requirements engineering
processes occurs in open source software development projects found in different communities. A number
of conclusions can be drawn from the findings presented.

First, this study sought to discover and describe the practices and artifacts that characterize how the
requirements for developing open software systems are developed. Perhaps the processes and artifacts that
were described were obvious to the reader. This might be true for those scholars and students of software
requirements engineering who have already participated in open software projects. However, advocates of
open source software do not identify or report on the processes described here [11, 29, 32]. Thus, we must
ask what is obvious to whom, and on what source of knowledge or experience is it based? For the majority
of students who have not participated, it is disappointing to not find such descriptions, processes, or
artifacts within the classic or contemporary literature on requirements engineering [10, 17, 22, 28]. In
contrast, this study sought to develop a baseline characterization of the how the requirements process for
open software occurs and the artifacts (and other mechanisms).

Given such a baseline of the "as-is" process for open software requirements engineering, it now becomes
possible to juxtapose one or more "to-be" prescriptive models for the requirements engineering process,
then begin to address what steps are needed to transform the as-is into the to-be [34]. Said differently, what
is the process that gets open software development from "here to there", from the as-is to the to-be? Such a
position provides a basis for further studies which could examine how to redesign open software practices
into those closer to that advocated by classic or contemporary scholars of software requirements
engineering. This would enable students or scholars of software requirements engineering, for example, to
determine whether or not open source software development would benefit from more rigorous
requirements elicitation, analysis, and management, and if so, how. Similarly, it might help determine when
a software requirements process that relies on the use of informalisms will be more/less effective than one
rooted in formalisms.

Second, this report describes a new set of processes that constitute how open software requirements are
developed or engineered in the form of a narrative model (cf. Section 5). We can therefore begin a follow-
on step to develop a more comprehensively detailed model of these processes [20, 38], which in turn can be
further analyzed or simulated if codified as a computational process model [24, 27, 34]. Such a process
model could then be aligned and combined with those for traditional requirements engineering (cf. Section
4). Such an integration of processes would broaden the scope of requirements engineering to include open
software development, not as an example of poor quality software engineering, but as an alternative to the
dominant tradition advocated by contemporary software requirements experts and scholars. Clearly, the
development of open software systems entails social and technical relations that differ from those
advocated within traditional software or requirements engineering texts. It is unclear what kinds of software
systems are most amenable to an open source approach, and which still seem to require the struggle to
formalize traditional software requirements specifications.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

24

Third, this study reports on the centrality and importance of open software requirements processes and
software informalisms to the development of open software systems, projects, and communities. This result
might be construed as an advocacy of the 'informal' over the 'formal' in how software system requirements
are or should be developed and validated, though it is not so intended. Instead, attention to software
informalisms used in open software projects, without the need to coerce or transform them into more
mathematically formal notations, raises the issue of what kinds of engineering virtues should be articulated
to evaluate the quality, reliability, or feasibility of open software system requirements so expressed. For
example, traditional software requirements engineering advocates the need to assess requirements in terms
of virtues like consistency, completeness, traceability, and correctness [10, 17]. From the study presented
here, it appears that open software requirements artifacts might be assessed in terms of virtues like
encouragement of community building; freedom of expression and multiplicity of expression with software
informalisms; readability and ease of navigation; and implicit versus explicit structures for organizing,
storing and sharing open software requirements. "Low" measures of such virtues might potentially point to
increased likelihood of a failure to develop a sustainable open software system. Subsequently, improving
the quality of such virtues for open software requirements may benefit from tools that encourage
community development; social interaction and communicative expression; software reading and
comprehension; community hypertext portals and Web-based repositories. Nonetheless, resolving such
issues is an appropriate subject for further study.

Overall, open software development practices are giving rise to a new view of how complex software
systems can be constructed, deployed, and evolved. Software informalisms and their corresponding
software applications/tools are not yet part of, nor integrated with, the traditional requirements engineer's
toolset. Open software development does not adhere to the traditional engineering rationality or virtues
found in the legacy of software engineering life cycle models or prescriptive standards.

The development open software system requirements is inherently and undeniably a complex web of socio-
technical processes, development situations, and dynamically emerging development contexts [2, 15, 20,
37, 38]. In this way, the requirements for open software systems continually emerge through a web of
community narratives. These extended narratives embody discourse that is manifest through an open
software requirements engineering process. Participants in this process capture in persistent, globally
accessible, open software informalisms that serve as their organizational memory [1], hypertextual issue-
based information system [5, 23], and a networked community environment for information sharing,
communication, and social interaction [18, 30, 36, 37]. Consequently, ethnographic methods are needed to
elicit, analyze, validate, and communicate what these narratives are, what form they take, what practices
and processes give them their form, and what research methods and principles are employed to examine
them [15, 16, 19, 20, 28, 38]. Employing these methods reveals what is involved in this open software
process, and how developer-users participate to create their discourse using software requirement
informalisms in the course of developing the open software systems they seek to use and sustain. This
report thus contributes a new study of this kind.

Acknowledgements
The research described in this report is supported by a grant from the National Science Foundation #IIS-
0083075, and from the Defense Acquisition University by contract N487650-27803. No endorsement
implied. Mark Ackerman at the University of Michigan, Mark Bergman, Xiaobin Li, and Margaret Elliott,
at the UCI Institute for Software Research, and also Julia Watson at The Ohio State University are
collaborators on the research project described in this paper.

8. References
1. ACKERMAN, M.S. and HALVERSON, C.A.: 'Reexamining Organizational Memory',

Communications ACM, 43, (1), pp. 59-64, January 2000.
2. ATKINSON, C.J.: 'Socio-Technical and Soft Approaches to Information Requirements Elicitation in

the Post-Methodology Era', Requirements Engineering, 5, pp. 67-73, 2000.
3. BOEHM, B., EGYED, A., KWAN, J. PORT, D., SHAH, A., AND MADACHY, R.: 'Using the

WinWin Spiral Model: A Case Study', Computer, 31, (7), pp. 33-44, 1998.

http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/
http://www.softwaresystems.org/future.html

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

25

4. BOWKER, G.C. and STAR, S.L.: 'Sorting Things Out: Classification and Its Consequences', MIT
Press, Cambridge, MA, 1999.

5. CONKLIN, J. and BEGEMAN, M.L.: 'gIBIS: A Hypertext Tool for Effective Policy Discussion', ACM
Transactions Office Information Systems, 6, (4), pp. 303-331, October 1988.

6. COOK, J.E., VOTTA, L.G., and WOLF, A.L.: 'Cost-effective analysis of in-place software processes',
IEEE Transactions Software Engineering, 24, (8), pp. 650-663, 1998.

7. CLEVELAND, C.: 'The Past, Present, and Future of PC Mod Development', Game Developer, pp. 46-
49, February 2001.

8. CURTIS, B., KELLNER, M.I. and OVER, J.: 'Process modeling', Communications ACM, 35, (9), pp.
75- 90, 1992.

9. CYBULSKI, J.L. and REED, K.: 'Computer-Assisted Analysis and Refinement of Informal Software
Requirements Documents', Proceedings Asia-Pacific Software Engineering Conference (APSEC'98),
Taipei, Taiwan, R.O.C., pp. 128-135, December 1998.

10. DAVIS, A.M.: 'Software Requirements: Analysis and Specification', Prentice-Hall, 1990.
11. DIBONA, C. OCKMAN, S. and STONE, M.: 'Open Sources: Voices from the Open Source

Revolution', O'Reilly Press, Sebastopol, CA, 1999.
12. FIELDING,R.T.: 'Shared Leadership in the Apache Project', Communications ACM, 42, (4), pp. 42-43,

April 1999.
13. FLAKE, G.W., LAWRENCE, S., and GILES, C.L.: 'Efficient Identification of Web Communities',

Proc. Sixth Intern. Conf. Knowledge Discovery and Data Mining, (ACM SIGKDD-2000), Boston,
MA, pp. 150-160, August 2000.

14. FOGEL, K.: 'Open Source Development with CVS'. Coriolis Press, 1999.
15. GOGUEN, J.A.: 'Formality and Informality in Requirements Engineering (Keynote Address)', Proc.

4th. Intern. Conf. Requirements Engineering, pp. 102-108, IEEE Computer Society, 1996.
16. HINE, C.: 'Virtual Ethnography', SAGE Publishers, London, 2000.
17. JACKSON, M.: 'Software Requirements & Specifications: Practice, Principles, and Prejudices',

Addison-Wesley Pub. Co., Boston, MA, 1995.
18. KIM, A.J.: 'Community-Building on the Web: Secret Strategies for Successful Online Communities',

Peachpit Press, 2000.
19. KLEIN, H. AND MYERS, M.D.: 'A Set of Principles for Conducting and Evaluating Intrepretive Field

Studies in Information Systems', MIS Quarterly, 23, (1), pp. 67-94, March 1999.
20. KLING, R. and SCACCHI, W.: 'The Web of Computing: Computer technology as social organization'.

In M. Yovits (ed.), Advances in Computers, 21, pp. 3-90. Academic Press, New York, 1982.
21. KOCH, S. and SCHNEIDER, G.: 'Results from software engineering research into open source

development projects using public data', Diskussionspapiere zum Taetigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, H.R. Hansen und W.H. Janko (Hrsg.), Nr. 22,
Wirtschaftsuniversitaet Wien, 2000.

22. KOTONYA, G. and SOMMERVILLE, I.: 'Requirements Engineering: Processes and Techniques',
John Wiley and Sons, Inc, New York, 1998.

23. LEE, J.: 'SIBYL: a tool for managing group design rationale', Proceedings of the Conference on
Computer-Supported Cooperative Work, Los Angeles, CA, ACM Press, pp. 79-92, 1990.

24. MI, P. and SCACCHI, W.: ' * A Meta-Model for Formulating Knowledge-Based Models of Software
Development', Decision Support Systems, 17, (4), pp. 313-330, 1996.

25. MOCKUS, A., FIELDING, R.T., and HERBSLEB, J.: 'A Case Study of Open Software Development:
The Apache Server', Proc. 22nd. International Conference on Software Engineering, Limerick, IR, pp.
263-272, 2000.

26. NOLL, J. and SCACCHI, W.: 'Supporting Software Development in Virtual Enterprises'. J. Digital
Information, 1, (4), February 1999, http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

27. NOLL, J. and SCACCHI. W.: 'Specifying Process-Oriented Hypertext for Organizational Computing',
J. Network and Computer Applications, 24, (1), pp. 39-61, 2001.

28. NUSEIBEH, R. and EASTERBROOK, S.: 'Requirements Engineering: A Roadmap', in A. Finkelstein
(ed.), The Future of Software Engineering, ACM and IEEE Computer Society Press,
http://www.softwaresystems.org/future.html, 2000.

29. PAVLICEK, R.: 'Embracing Insanity: Open Source Software Development', SAMS Publishing,
Indianapolis, IN, 2000.

IEE Proceedings -- Software
Paper number 29840, Accepted for publication with revisions, December 2001.

26

30. PREECE, J.: 'Online Communities: Designing Usability, Supporting Sociability'. Chichester, UK: John
Wiley & Sons, 2000.

31. PLUMMER, D.A. and SUBRAMANIAN, S.: 'The Chandra Automatic Data Processing Infrastructure',
in ASP Conference. Series, 238, Astronomical Data Analysis Software and Systems X, in F. R.
Harnden, Jr., F. A. Primini, & H. E. Payne (eds.), San Francisco: ASP, Paper #475, 2000.

32. RAYMOND, E.: 'The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary', O’Reilly and Associates, Sebastopol, CA, 2001.

33. ROBBINS, J. E. and REDMILES, D. F.: 'Cognitive support, UML adherence, and XMI interchange in
Argo/UML', Information and Software Technology, 42, (2), pp. 71-149, 25 January 2000.

34. SCACCHI, W.: 'Understanding Software Process Redesign using Modeling, Analysis and Simulation ,
Software Process--Improvement and Practice, 5, (2/3), pp. 183-195, 2000.

35. SHORTRIDGE, K.: 'Astronomical Software--A Review', ASP Conference. Series., 238, Astronomical
Data Analysis Software and Systems X, in F. R. Harnden, Jr., F. A. Primini, & H. E. Payne (eds.), San
Francisco: ASP, Paper #343, 2000.

36. SMITH, M. and KOLLOCK, P. (eds.): 'Communities in Cyberspace', Routledge, London, 1999.
37. TRUEX, D., BASKERVILLE, R. and KLEIN, H.: 'Growing Systems in an Emergent Organization',

Communications ACM, 42, (8), pp. 117-123, 1999.
38. VILLER, S. and SOMMERVILLE, I.: 'Ethnographically informed analysis for software engineers', Int.

J. Human-Computer Studies, 53, pp. 169-196, 2000.
39. YAMAGUCHI, Y., YOKOZAWA, M., SHINOHARA, T., and ISHIDA, T.: 'Collaboration with Lean

Media: How Open-Source Software Succeeds', Proceedings of the Conference on Computer Supported
Cooperative Work, (CSCW'00), pp. 329-338, Philadelphia, PA, ACM Press, December 2000.

40. ZELOKOWITZ, M.V. and WALLACE, D.: 'Experimental Models for Validating Technology',
Computer, 31, (5), pp. 23-31, May 1998.

	Abstract
	Revised version appears in:
	IEE Proceedings--Software, 149(1), 24-39, February 2002.�1. Overview
	2. Research methodology: comparative methods and principles
	3. Understanding open software development across different communities
	3.5 Community Characteristics

	4. The classic software requirements engineering process
	5. Open software processes for developing requirements
	5.1 Requirements elicitation vs. assertion of open software requirements
	5.2 Requirements analysis vs. requirements reading, sense-making, and accountability
	
	
	Exhibit 2. A software requirements vision statement highlighting community development as a software development objective (i.e., a non-functional requirement). Source: http://argouml.tigris.org/vision.html,
	July 2001.

	5.3 Requirements specification and modeling vs. continually emerging webs of software discourse
	5.4 Requirements validation vs. condensing discourse that hardens and concentrates system functionality and community development
	5.5 Communicating requirements vs. global access to open software webs
	5.6 Identifying a common foundation for the development of open software requirements
	Eight types of software informalisms can be identified, and each has sub-types that can be identified as follows.
	6.1 Community communications
	6.2 Scenarios of usage as linked Web pages
	6.3 HowTo Guides
	6.4 External Publications
	6.5 Open Software Web Sites and Source Webs
	6.6 Software bug reports and issue tracking
	6.7 Traditional software system documentation
	6.8 Software extension mechanisms and architectures

	7. Understanding open software requirements
	8. Conclusions
	Acknowledgements
	8. References

