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Abstract

Background: Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and
cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the
relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could
provide significant insights into the molecular response to endurance exercise.
For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from
ten horses before and after a 160 km endurance competition.

Results: We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5
miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline,
pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular
pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when
analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple
roles and thus sharing several biochemical pathways.
Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the
transcription factor and miRNA levels.
In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations
between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins
involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide
immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers
at T0 for an increased likelihood for failure to finish an endurance competition.

Conclusions: To the best of our knowledge, the present study is the first to provide a comprehensive and
integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a
key role in regulating the metabolic and immune response to endurance exercise in horses.
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Background
Endurance exercise can be defined as cardiovascular ex-

ercise —such as running, cross-country skiing, cycling,

aerobic exercise or swimming— that is performed for an

extended period of time [1, 2]. Endurance athletes ex-

pose their bodies to extreme physiological conditions

that disrupt homeostasis [2, 3]. The main adaptations to

endurance exercise include changes in neuromuscular

and contractile functions in muscles [4], correction of

electrolyte imbalance [5], decreased glycogen storage

[6], increased mitochondrial biogenesis in muscle tissue

[7], body temperature regulation, oxidative stress [7],

increased intestinal permeability and hypoperfusion,

muscle damage, systemic inflammation and immune re-

sponses [8]. Additionally, the physical demands during

intense exercise can trigger a stress response activating

the sympatho-adreno-medullary and hypothalamus-

pituitary-adrenal (HPA) axes, which results in the

release of corticotrophin-releasing hormone, arginine

vasopressin, adrenocorticotropic hormones, glucocorti-

coids and catecholamines into the circulatory system

(reviewed by Clark and Mach [3]).

Horses serve as an optimal in vivo model for charac-

terizing the response to endurance exercise due to their

natural aptitude for athletic performance and the homo-

geneity of their genetic and environmental backgrounds

[9]. As described by Capomaccio et al. [9], the effort that

an equine athlete exerts during an endurance competi-

tion is comparable to that of a human marathoner or

ultra marathoner.

Over the past decade, the transcriptional and transla-

tional mechanisms of gene regulation that control the

responses to endurance exercise have been studied by

many authors [8, 10–16]. However, gene and miRNA

expression data might only indicate the potential

physiological effects because many pathway feedback

mechanisms are simply not reflected in gene expression

changes [17]. For this reason, metabolomics, which fo-

cuses on the final “omic” layer of a biological system, has

emerged as a more integrative approach towards the un-

derstanding of the biological functions of an organism

[18]. It has been recently shown that proton nuclear mag-

netic resonance (1H NMR)-based metabolomic analysis of

horse [19, 20] and human [21] serum employing unsuper-

vised statistical methods enabled the detection of certain

classes of metabolites such as lactate, amino acids, lipids,

nucleic acids, and secondary metabolites whose levels had

been modified in response to endurance exercise.

Metabolites, such as those previously mentioned, are

the result of a continuum of many integrated enzymatic

and non-enzymatic steps, which include numerous

intermediaries that are regulated by the host genome,

epigenome, metagenome, food and drink consumption,

drug use and exposure to pollutants.

To date, most studies in the field of metabolomics

have failed to fully explain all of the alterations that

occur during the metabolic regulatory processes, tissue

lesions or organ dysfunctions that athletes face when

coping with stress responses during endurance exercise

[18, 20, 22–25]. The need for a deeper understanding of

how these regulatory metabolic networks function in re-

sponse to endurance exercise has led to increased efforts

to model multiple “omic” dimensions simultaneously.

Therefore, we performed an integrated analysis of the

blood metabolome, transcriptome and miRNome in

horse athletes that participated in an endurance compe-

tition. We hypothesized that the identification of the

relationships between blood metabolome, transcrip-

tome and miRNome, which are specifically regulated by

endurance exercise in horses, could (i) characterize the

complex interplay between serum metabolome and

whole-blood transcriptome and miRNome data; and (ii)

reveal unique biomarkers of reactions to stress during

endurance exercise.

Results
The morphological and physiological parameters of the

41 equine athletes used in the study are summarized in

Additional file 1, whereas the biochemical parameters

obtained from blood samples collected after the endur-

ance competition are represented in the Additional file 2.

All horses showed above-average total bilirubin, creatine

kinase, aspartate transaminase, and serum amyloid A con-

centrations, reflecting hemolysis and muscular membrane

permeability or inflammation.

Endurance competition affected the expression of a large

number of genes, miRNAs and metabolites
1H NMR spectra together with custom equine mRNA

and miRNA microarrays were used on an experimental

set of ten horses to study the effects that endurance

exercise has on the blood metabolome, transcriptome

and miRNome. Before delving into multi-layered data

sets integration for the analysis of the regulatory net-

work, we assessed the quality and significance of each

“omic” layer individually.

A total of 54 metabolic peaks were identified, including

several amino acids, energy metabolism-related metabo-

lites, saccharides, and organic osmolytes in the plasma

(Fig. 1). Among the 54 metabolic peaks identified, we

observed two unassigned compounds at 3.72–3.76 and

3.85–3.88 ppm, respectively (Additional file 3).

The effect exercise had on the serum metabolome was

described by multivariate statistical methods. On one

hand, the principle component analysis (PCA) signifi-

cantly discriminated pre and post-endurance competition

samples (Monte Carlo test; p < 0.05; Additional file 4:

Figure S1A). On the other hand, the orthogonal
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projections to latent structures (OPLS) analysis revealed

that a total of 49 metabolites resonances contributed in

the discrimination of the pre and post-endurance compe-

tition samples (Additional file 4: Figure S1C). Lactate,

followed by methylene, N-acetyl moieties, proline, glucose

and phosphocholine presented the highest contribution to

class separation (Additional file 4: Figure S1C). More

precisely, loadings examined on the pre-component basis

as line plot emphasized that post-competition samples

were characterized by higher excursion of lactate, glycerol,

creatine, urea, and aromatic amino acids such as tyrosine,

along with negative excursion of methylene, N-acetyl

moieties, methylene esters, glucose, and phosphocholine

(Additional file 4: Figure S1C).

To ensure the accuracy of the OPLS model (R2 =

0.88 and Q2 = 0.92), permutations testing and cross

validation were used for internal validation of the

OPLS model. The explained variance, predictive

capability and out-of-bag error of OPLS model

remained higher (R2 = 0.57 ± 4.07; Q2 = 0.94 ± 0.03 and

root mean square error of prediction (RMSEP) = 0.30 ±

0.09) than those of the 1,000-permutated models (R2 =

0.53 ± 7.04; Q2 = 0.16 ± 0.48 and RMSEP = 0.65 ± 0.16)

to discriminate pre- and post-endurance competition

samples (p < 0.001).

The relationship between metabolites and the func-

tional map of the metabolites affected by the endur-

ance exercise are provided in the Additional file 5:

Figure S2 and Additional file 6: Figure S3, respectively.

Among the most enriched pathways are those involved in

glycerolipid metabolism, D-glutamine and D-glutamate

metabolism, pyruvate metabolism, tricarboxylic acid

(TCA) cycle and amino acids metabolism (Additional

file 6: Figure S3).

Fig. 1 Metabolic regulation in the cell after endurance exercise. Endurance exercise increased the production of pyruvate from anaerobic

glycolysis to compensate for ATP production. On one hand, pyruvate was converted into lactate. On the other hand, pyruvate entered in the TCA
cycle to produce NADH and semiquinone. The OXPHOS of fatty acids increased, while amino acids were deaminated to fuel the TCA cycle during
the endurance competition, which increased the production of ammonia. Because glucose levels become too low during endurance exercise, the

keto acid oxaloacetate was preferentially utilized in the process of gluconeogenesis, instead of reacting with acetyl CoA, and diverted to ketone
body formation (e.g. acetone). In the figure, the node color intensity indicates the associated expression level: red = over-expression at T1 and

green = under-expression at T1. G-6-P, glucose 6-phosphate; F-6-P, fructose 6-phosphate; F-1, 6-BP, fructose-1,6- bisphosphate; GSH, reduced glutathione;
GSSG, oxidized glutathione; PEP, phosphoenolpyruvate; R-5-P, ribose-5-phosphate. *denotes statistical significance at 0.05 level. Figure adapted
from Kruiswijk et al. [62] with permission from Nature publishing group (License number: 3902041297601)

Mach et al. BMC Genomics  (2017) 18:187 Page 3 of 17



Afterwards, we focused on the identification of genes

and miRNAs whose expression was significantly altered

at T1 (post-endurance competition) relative to T0

(baseline, pre- endurance competition), with an ad-

justed p-value < 0.05 after implementing Benjamini and

Hochberg correction for multiple testing (Additional

file 7). The application of this threshold led to the iden-

tification of 7,678 differentially expressed genes (DEGs),

3,848 of which were over-expressed and 3,830 of which

were under-expressed at T1 (relative to T0). We identi-

fied 107 miRNAs differentially expressed (DEmiRNAs)

when comparing pre- and post- endurance competition

samples (Additional file 8). Along with orthologous

human-equine DEmiRNAs, we detected 7 equine-specific

DEmiRNAs.

A regulatory network of 11 metabolites, 263 genes, and 5

miRNAs has a key role in controlling the adaptation to

endurance exercise

The 49 metabolite resonances that significantly discrimi-

nated between pre and post- endurance competition

samples, together with the 7,678 DEGs and 107 DEmiR-

NAs were used to perform a multi-step approach and

identify the dynamically co-regulated relationship among

metabolites, genes and miRNAs that could not be de-

tected when analyzing only single metabolites or tran-

scripts alone (Additional file 9: Figure S4).

We performed two different complementary statis-

tical approaches (detailed in the Methods section) to

identify enriched metabolites with significantly more

predictive metabolic genes among the DEGs than

among other genes in the transcriptome. The enzyme-

encoding genes whose protein products participate in

the metabolic reaction of a given metabolite are re-

ferred to here as metabolic genes. Next, for each of the

metabolic genes, we used the multiMiR package in R to

build a comprehensive list of all the putative DEmiRNA

regulators.

In particular, we found a total of 11 differentially

expressed metabolites (Additional file 10) that were puta-

tively regulated by a total of 263 differentially expressed

genes. Interestingly, we discovered that the spatiotemporal

expression of those 263 metabolic genes could be exten-

sively regulated at the transcription and post-transcription

level through a total of 79 DEmiRNAs. For instance, let-

7b-5p, miR-16-5p, miR-21-5p, miR-92a-3p, and miR-192-

5p regulated more than ten metabolic genes each (Fig. 2).

Ultimately, we considered a total of 11 enriched me-

tabolites correlated with the expression of 263 metabolic

genes and 5 miRNAs during exercise to create the

regulatory network (Fig. 2). This regulatory network

underlined several well-known biochemical interactions,

i.e., the relationships between the decreased glucose con-

centration after endurance exercise and the metabolic

genes whose proteins participate in the Forkhead box

protein O (FoxO) and glucagon signaling pathways to

induce gluconeogenesis, and the relationship between

lactate and metabolic genes encoding proteins related to

glucagon signaling and propanoate metabolism (Fig. 2).

Another well-known biochemical interaction was found

between succinate and the expression of multiple com-

ponents of the mitochondrial oxidative phosphorylation

(OXPHOS) system, including multiple subunits of ATP

synthase (seven Fo subunits and the ATP5A1, ATP5B

and ATP5O subunit of F1), NADH: ubiquinone oxidore-

ductase core subunits (ND3, ND5, ND6; complex I) and

cytochrome oxidase subunits (COX4I1, COX5A, COX5B,

COX6A1, COX6B1). As expected, the regulatory network

also highlighted the interaction between glycerol and

metabolic genes that encode enzymes participating in

the pentose and glucuronate pathways, as well as acetate

and many downstream genes of propanoate metabolism,

which included activated protein kinase (AMPK) activa-

tors such as acetyl-CoA carboxylase (ACACB) and acyl-

CoA synthetase short-chain family (ACSS2, ACSS3).

These well-known biochemical interactions were mainly

regulated by miR-16-5p, miR-21-5p, miR-92a-3p, miR-

192-5p and let-7b-5p within the regulatory network.

Remarkably, the “omic” integration of molecular data

in our study predicted some functional links between

metabolites and the transcriptome that could not be

characterized by analyzing separately any of the three

individual data sets. One example is the functional

enrichment of glutamate through metabolic genes be-

longing to the glutathione metabolism, which regulates

the reactive oxygen species (ROS) and nitrogen oxide

species (RONS) substances (e.g. the glutathione S-

transferase (GST) gene family, GST-kappa 1 (GSTK1),

and two microsomal GSTs (MGST1 and MGST3). In

line with the exercise-induced oxidative stress, we ob-

served a significant interaction between tyrosine and

metabolic genes that affected the ubiquinone endogen-

ous antioxidant levels. Another example of the import-

ance of “omic” integration was represented by the

interaction between urea and genes involved in the ca-

tabolism of purine and pyrimidine nucleotides from

ATP to uric acid, in which free radicals are produced

and cause muscle cell damage [26]. Lastly, a significant

interaction that could not be characterized by analyzing

separately any of the three individual data sets was the

link between lactate and the activation of the hypoxia-

inducible factor A (HIF1A) transcription factor, as well as

lactate genes associated with the release of lipopolysaccha-

rides (LPS)-induced pro-inflammatory cytokines, includ-

ing toll-like receptor 4 (TLR4), followed by the activation

of various immune-related transcription factors (TFs)

such as signal transducer and activator of transcription 3

(STAT3) and the nuclear factor kappa beta (NFkβ-RelA).
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Moreover, we found that the regulatory network based

on the 263 metabolic genes included TFs such as

retinoblastoma-Like 2 (RBL2), followed by the coopera-

tively transcriptional cofactors sirtuin 1 (SIRT1), E1A

binding protein P300 (EP300), CREB Binding Protein

(CREBBP), and B-cell lymphoma 6 protein (BCL6;

Fig. 3a). Additionally, results suggested that these TFs

might (i) regulate the spatiotemporal concentration pat-

terns of glucose and lactate (Fig. 3a); and (ii) drive or re-

press the expression of metabolic genes and miRNAs in

a feed-forward and feedback manner [27] (Fig. 3b).

The regulatory network is driven by both transcription

factors and miRNAs

As suggested above, both TFs and miRNAs might regu-

late endurance exercise response. In order to ensure the

accuracy of TFs and miRNAs regulation within the

regulatory network, we decided to use the regulatory

impact factor (RIF) algorithm [28, 29]. Our aim was to

identify (i) putative causal regulators, and (ii) the rewired

transcriptional circuits through which the TFs and

miRNAs exert their regulatory impact on the transcrip-

tome following exercise.

Among the most enriched TFs and miRNAs, we con-

firmed CREBBP (RIF2 = -2.51), EP300 (RIF2 = -1.55),

RBL2 (RIF1 = 1.65), SIRT1 (RIF1 = 1.63), BCL6 (RIF2 =

1.48) and let-7b-5p (RIF1 = 1.51; Fig. 2). Details on the

top regulators with greatest scores are fully listed in the

Additional file 11.

The relationship between blood metabolome,

transcriptome and miRNome that occurs during

endurance exercise could be reproduced in an

independent cohort of 31 horses

As a final analysis step, multiple factor analysis (MFA)

was applied to an independent cohort of 31 horses to

Fig. 2 Regulatory network linking metabolites, metabolic genes and miRNAs. We identified a total of 11 unique metabolites, which were
associated with a total of 263 unique metabolic target genes and 5 miRNAs. The network is displayed graphically as nodes (genes, TFs and

miRNAs) and edges (biological relationships). The node color intensity indicates the expression level of the association: red = over-expression
at T1 and green = under-expression at T1. The node shape indicates whether the node is a TF (triangles), a miRNA (hexagon), a metabolite
(round rectangle), membrane receptor (rectangle), transporter (parallelogram), or other type of genes (ellipses)
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further emphasize the reliability of cross-layer “omic”

analysis to predict or explain the exercise response adap-

tations and importantly, to confirm the interactions

within our regulatory network. This independent cohort

included 13 horses sampled only at T0, and 18 other

horses sampled only after completing the endurance

competition (T1).

At T0 (basal time), the MFA superimposed plot of

each type of data and its barycenter showed particularly

high levels of variability in all “omic” layers (Fig. 4a).

However, the MFA projection plot of the partial repre-

sentations for each “omic” layer (metabolome, tran-

scriptome and miRNome) onto PC1 was tightly

clustered (RV-coefficient = 0.51; Fig. 4b). The two me-

tabolites showing the highest correlation (|r2| > 0.80) on

the first axis were glutamine and glucose, whereas the

genes most strongly correlating with PC1 (|r2| > 0.80)

were RNA polymerase 21-kDA subunit (POLR2I), tor-

sin 3A (TOR3A), vesicle-associated membrane protein

5 (VAMP5), histone binding protein 5 (COPR5), N1-

acetyltransferase family member 2 (SAT2), AT-hook

containing transcription factor 1(AHCTF1) and various

ribosomal proteins (Fig. 4d). The eca-miR-425, miR-

106b-5p, miR-138-5p, miR-148a, and miR-20a-5p were

also highly linked to the first principal component (PC)

(|r2| > 0.80; Fig. 4d). Genes such as E3 ligases (UBE3C)

and tripartite motif containing 65 (TRIM65) presented

high correlations with PC2 (|r2| > 0.90; Fig. 4e). The

detailed weights of each metabolite, metabolic genes

and miRNA are provided in Additional file 12.

Although the size of the cohort used at T0 was rela-

tively small, the MFA analysis revealed that the partial

representation of the mean individuals for each “omic”

layer was projected together according to their capacity

to finish the endurance competition (Fig. 4a). Thus, the

molecular profiles at basal time of the animals that did

not finish the endurance competition were projected

close to each other in the space (Fig. 4a). In light of

these findings, we wanted to understand whether the

molecules detected at basal time could be considered as

predictive biomarkers for the elimination during the

endurance competition. Although cause and effect are

usually difficult to decipher, we compared basal pro-

files of molecules that showed high correlation values

(|r2| > 0.80) on the two first dimensions of the MFA

with animals that finished the endurance competition

and animals that were eliminated during the endur-

ance competition because of lameness or metabolic

problems. We discovered that the POLR2I, COPR5,

SAT2 and UBE3C genes were clearly up regulated

(corrected p < 0.05) at basal time in animals that were

eliminated during the endurance competition, whereas

TOR3A and TRIM65 tended to be up regulated (cor-

rected p < 0.10) at basal time. They also presented

numerically higher glutamine and glucose concentra-

tions at basal time (Fig. 4d).

Fig. 3 Activators and repressors of the regulatory network. a The regulatory network was driven by different transcription factors able to up- or

down regulate the glucose and lactate concentration (EP300, CREBBP, SIRT1, BCL6, and REBL2). b The EP300 and SIRT1 transcription factors could be
regulated by the expression of let-7b-5p and miR-223-3p, respectively, and RBL2 might be inhibited by miR-192-5p. In the figure, the node color

intensity indicates the associated expression level: red = over-expression at T1 and green = under-expression at T1
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The combined analysis of metabolome, transcriptome

and miRNome on post-exercise samples then highlighted

an interesting co-structure between data sets (Fig. 5).

Metabolome profile accounted for the highest variance

on PC1, whereas the miRNome data were projected on

the positive end of the PC2 (Fig. 5b). Metabolites such

as lactate and fatty acid methylene moieties presented

high correlation values |r2| > 0.80 with PC1, together

with let-7 family, miR-16-5p, miR-17, miR-20ab-5p,

miR-21-5p,miR-26b-5p and miR-98-3p (Fig. 5d). The

LPS-induced immune markers, specifically TLR4, TNF

alpha induced protein 3 (TNFAIP3) and interleukin-1

receptor-associated kinase-like 2 (IRAK2), were identi-

fied among the strongest variables of the PC1 (Fig. 5d),

along with the increase in expression of genes related

to mitochondrial metabolism (e.g. NADH dehydrogen-

ase (ubiquinone) 1 beta sub-complex 5; NDUFB5).

Additional file 13 shows an expanded list of the genes

related to LPS-induced immune responses with its MFA

impact factor at T1. Biologically interesting genes with

high correlation values on the PC2 were the mitochon-

drial ribosomal protein L35 and L22, respectively

(MRPL35, MRPL22), and mitochondrial single-stranded

DNA-binding protein (SSBP1). The top molecules with

greatest weights on PC1 and PC2 at T1 are listed in the

Additional file 13.

Discussion
The level of exercise performed by horses during an en-

durance competition is similar to that of a human ultra

Fig. 4 Multiple factor analysis projection plot at T0 in an independent cohort of 13 animals. a The different “omics” data sets are connected by
lines where the length of the line is proportional to the divergence between the data from a same animal. Lines are joined by a common point,
representing the reference structure, which maximizes covariance derived from the MFA synthetic analysis; b Summarization of the concordance

between “omics” data set on the space; c “Omics” data sets are shown in the different dimensions while showing the contribution of each eigenvalue
to the total variance; d Boxplot of the expression of the molecules having high weights (|r2| > 0.80) on the PC1 of MFA; e Boxplot of the expression of

genes having high weights (|r2| > 0.90) on the PC2 of MFA. In all cases, animals that finished the endurance competition in the validation set were
colored in cyan color, whereas animals in the validation set that were disqualified during the endurance competition were colored in dark red color.
Additionally, to ensure that expression levels of the animals in the validation set that finished the endurance competition (n = 3) were similar to those

of the experimental set that finished the endurance competition (n = 10), for each molecule, expression levels of animals from experimental
set (dark green color) were also plotted. *, ** denote statistical significance at the 0.10 and 0.05 level respectively

Mach et al. BMC Genomics  (2017) 18:187 Page 7 of 17



marathon runner (from 50 km to 160.934 km) [30] or

to a lesser extent a marathon runner (42.195 km) [9].

Endurance horses run 80–160 km endurance competi-

tions that require energy expenditure and cause phys-

ical stress that the body must adapt to through

coordinated metabolic, immune and hormonal re-

sponses in order to maintain homeostasis. Our previ-

ous work on plasma metabolome profiling mainly

demonstrated that adaptation to endurance exercise in

horses simultaneously involved lipid, protein catabol-

ism and glycoprotein pathways [19]. Our previous

study on blood transcriptome and miRNome response

to endurance exercise in horses mainly reflected im-

mune system processes through white blood cells as

well as regulatory processes involved in various path-

ways such as glucose metabolism, fatty acid oxidation

and mitochondrion biogenesis [8]. Until this current

study, our prior work had been limited to single levels

of biological information, therefore neglecting the glo-

bal network structure and cross talk that occurs across

multiple layers of molecular organization.

No systematic exploration of information flow be-

tween the different biological “omic” layers had been

carried out in athletes. Therefore, we decided to explore

the metabolic plasticity in response to endurance exer-

cise by simultaneously combining plasma metabolite

changes together with the blood transcriptome and miR-

Nome from the same individuals. A similar study in

humans had already described that the concurrent ana-

lysis of cross-sectional multi “omic” data from the same

individuals could be a powerful tool to identify the

underlying molecular mechanisms that occur on a

physiological scale such as fasting in elderly (68.82 ±

4.31 years) [31].

Integrating the results from circulating plasma me-

tabolites, transcriptome and miRNome derived from

the blood of ten endurance horses before and after an

endurance competition, allowed us to reveal biologic-

ally reasonable relationships after the endurance com-

petition, namely: (i) reduction of glucose concentration

and inhibition of FoxO signaling, which up-regulate

genes involved in gluconeogenesis, lipid metabolism

Fig. 5 Multiple factor analysis projection plot at T1 in an independent cohort of 31 animals. a The first two axes of MFA represent metabolome,
transcriptome, and miRNome data sets at T1. Different shapes and colors represent the respective “omic” data sets, which are connected by lines

where the length of the line is proportional to the divergence between the data from a same animal. Lines are joined by a common point,
representing the reference structure, which maximizes covariance derived from the MFA synthetic analysis. b Summarization of the concordance
between “omic” data sets on the space. c Data sets are shown in the different dimensions while showing the contribution of each eigenvalue to

the total variance; d Boxplot of the expression of the molecules having high weights (|r2| > 0.80) on the PC1 of MFA; e Boxplot of the expression
of genes having high weights (|r2| > 0.80) on the PC2 of MFA. In all cases, to ensure that expression levels of the animals in the validation set

confirmed those of the experimental set, for each molecule, expression levels of animals from the validation set (cyan color) and experimental set
(dark green color) are plotted
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and ketone body production and utilization, and activa-

tion of miR-21-5p expression [32]; (ii) increased

OXPHOS to compensate for ATP production; and (iii)

increased concentration of acetate, which subsequently

induced AMPK [33, 34].

Additionally, we found several associations within our

regulatory network, which to the best of our knowledge

have not been fully described before. For example, our

study showed that glutamate was enriched by co-

expressed genes that regulate the control and removal of

ROS and RONS molecules, such as the GST family,

GSTK1, and two microsomal GSTs, suggesting that

under physical stress, glutamate might be used for the

synthesis of glutathione, a major endogenous antioxidant

in mammalian cells. This is in agreement with the ob-

served positive correlation between tyrosine (another

effective antioxidant in biological fluids [26]) and the

expression of genes associated with ubiquinone synthe-

sis, which are redox active and essential lipophilic elec-

tron carriers of the mitochondrial electron transport

chain involved in the Q-cycle [26]. Collectively, the re-

sults suggest that an elevated respiration rate during

endurance exercise may have led to the generation of

more ROS than the antioxidant systems can scavenge,

and that the increase in muscle injury (confirmed by

high levels of plasma aspartate transaminase and serum

amyloid A) also reflected an increase in the generation

of the ROS to levels greater than the antioxidants can

handle.

The presumably persisting oxidative stress and cell

damage after competition was further confirmed by two

different relationships within our regulatory network: (i)

the relationship between lactate and genes that were

likely involved in LPS-induced pro-inflammatory path-

way (Fig. 6), and (ii) the relationship between urea and

genes involved in energy-purine and pyrimidine catabol-

ism, which could result in the accumulation of uric acid

and toxic oxygen free radicals in the cells [26]. Of note,

miR-92a-3p and miR-192-5p, which share the same seed

sequence, were related to oxidative stress genes. As pre-

viously reported, the expression of miR-92a is regulated

negatively by oxidative stress [35].

To further emphasize the reliability of cross-layer

“omic” analysis to predict or explain the endurance re-

sponse adaptations and importantly, and to confirm the

molecules within our regulatory network and their in-

teractions, we applied the MFA approach, which can

infer direct relationships between variables within a set

of repeated observations in the absence of a priori

knowledge. Therefore, we used an independent cohort

of 31 horses and we considered horses at T0 and horses

at T1 separately. For each scenario (T0 or T1), MFA

was used to model interactions between the metabo-

lome, the transcriptome and the miRNome. At basal

time, the MFA approach gave insights about the rea-

sons why a large number of horses analyzed in our in-

dependent cohort at T0 failed to finish the competition

(n = 10). This indicated potential future candidate bio-

markers that could predict the increased likelihood for

failure to finish an endurance competition. Our MFA

analysis suggested that the horses eliminated during the

endurance competition already presented metabolic

and inflammatory issues prior to the endurance compe-

tition possibly due to poor training preparation and

feeding management, uncomfortable transport or other

physiological reasons (e.g. increased intestinal permeabil-

ity, lameness, muscle injury). Thus, the exercise-induced

stress experienced during the 160 km competition made it

more difficult for them to control their energy and inflam-

mation levels. For instance, proteins (represented by their

respective transcripts) related to LPS-induced immune re-

sponses (e.g. TOR3A [36], UBE3C [37]), and inflammation

in the skeletal muscle tissue (e.g. COPR5 [38]) were higher

in animals that were eliminated during the endurance

competition compared to horses that successfully finished

the competition. Additionally, horses that were eliminated

during the endurance competition presented higher

glutamine and SAT2 expression, which is the trans-

porter responsible for glutamine uptake in the neuronal

compartment making them important components of

the glutamate/GABA-glutamine cycle [39]. A study by

Keller et al. [40] using 1H NMR metabolomic analysis

of blood from horses with laminitis also showed in-

creased glutamine levels, further pointing to metabolic

issues as the underlying cause for elimination in these

horses. Overall, these results suggest that analyzing the

expression of metabolic and transcript signaling before

starting the endurance competition could be a useful

tool to predict elimination during the endurance com-

petition at basal time, though larger data sets studies

aimed at investigating the predictive value of these bio-

marker candidates are needed.

When exploring the associations between biological

processes across different biological layers in the post-

endurance competition samples of our independent co-

hort, MFA highlighted the significant role that genomic

factors play a LPS-induced immune response, together

with mitochondrial SSPB1, which protects cells from

proteotoxis stress by increasing stress-induced heat-

shock factor 1 (HSF1) transcriptional activity [41]. We

therefore confirm our hypothesis that an excessive re-

lease of stress hormones induced by physical stress dur-

ing the endurance competition together with increased

body oxygen uptake, lead to the generation of ROS and

RONS in working muscles and in the tissues that

undergo ischemia and hypoperfusion [26]. These pro-

cesses are associated with cell damage and LPS trans-

location outside of the gastrointestinal tract, which in
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turn triggers immune and inflammatory responses

often resulting in increased intestinal permeability and

ROS [3]. In humans, depending on the type of exercise,

intensity, age and other factors, between 20 and 50% of

athletes suffer gastrointestinal symptoms, which have

been shown to increase with exercise intensity [42].

Marathon, triathlete and ultra endurance athletes have

been reported to have plasma LPS concentrations

between 5 and 284 pg/mL and up to 93% of athletes

reported digestive disturbances, which could be caused

by the LPS-induced cytokine response [43].

In line with these results, the MFA was also able to

pinpoint key miRNAs that regulate the immune and in-

flammatory response to endurance exercise such as the

let-7 family, miR-21-5p, miR-16-5p and miR-26b-5p. For

instance, the up-regulation of circulating miR-21-5p in

the plasma of human endurance athletes has been re-

ported [10–15], as well as in circulating peripheral blood

mononuclear cells [44] and blood cells [45] upon exer-

cise. Moreover, miR-16 had been shown to target spe-

cific genes involved in the Janus kinase-signal transducer

and activator of transcription (STAT) pathway during

exercise while modifying neutrophil immune function

[46]. Although there is limited understanding of the role

let-7 plays in the molecular pathways involved in the

endurance exercise, it has been shown that let-7 might

inhibit the pro-inflammatory IL6 expression indirectly

through the NFκB pathway and can increase signaling

pathway such as STAT [47]. Because the let-7 family has

been detected in the horse liver, heart and muscles [48],

further studies are needed to decipher whether let-7

might be biomarker of muscle damage, myocardial in-

jury or endotoxemia during equine endurance events.

While this study provides novel insight into the dy-

namic changes that metabolome, transcriptome and

miRNome undergo during endurance exercise, it also

has some limitations. First, the overall experimental

sample size was small (n = 10). Second, the metabolome

profiles in the current work contained only 54 variables

per spectrum, much fewer compared to the gene and

miRNA expression profiling. Third, the presented regu-

latory network significantly depends on knowledge about

the biochemical pathways structure and involved regula-

tory interactions described in the human literature.

Fourth, working with large p, and small n was computa-

tionally challenging and rendered a more difficult

Fig. 6 A model for increased intestinal permeability after exercise based on coordinated metabolite and gene expression after the endurance

competition. Intestinal homeostasis involves the coordinated actions of epithelial, innate and adaptive immune cells. Our data showed an
increase in TLR4, which probably stimulated the release of pro-inflammatory cytokines such as interferon alpha and gamma (IFNα, INFγ), or
interleukin (IL) 6 (all of them up-regulated after exercise) and sensed the translocated LPS. We also observed an increase of FoxO3, which
regulates IL10 expression during a typical LPS immune response, as well as STAT3, NfkB-RelA, and interferon-gamma receptor (IFNGR-1). This
also correlated with the observed increase in blood serum amyloid protein (SAA) in the post- endurance competition samples, an inflammatory
marker. The node color indicates whether the node is a gene (orange), or a metabolite (violet). This figure was produced using Servier Medical

Art, available from www.servier.com/Powerpoint-image-bank
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interpretation of the relevant variables that provided

more insight into the adaptation response of endurance

exercise.

Nevertheless, our results suggest that this small sam-

ple size was appropriate because the true effects of en-

durance exercise being estimated were genuinely large

enough to be reliably observed in the blood. Addition-

ally, our results show that the limited number of

metabolites measured was highly informative about the

energy and redox status of the animals, as well as the

protein catabolism and LPS-induced immune re-

sponses. Furthermore, we also demonstrated that al-

though metabolites did not fit as neatly into the direct

relationships of gene-transcript-protein [49] and that

transcripts and metabolites may not be synchronized in

time, the physiological relevance of metabolite variation

can be examined through the relationships between the

transcript levels of different enzymes and their up or

downstream metabolites.

Finally, using a larger and independent cohort of en-

durance horses and MFA method, we were able to rep-

licate the results observed in the small set of animals

and confirm that the integrated analysis of different

“omic” layers without a priori information provides

more insights into the adaptive regulatory mechanisms

to endurance exercise than any layer could by itself,

highlighting the complementarity of an integrative

approach. MFA method could be considered a useful

approach to overcome computational issues when p > n

and to display a low-dimensional projection of the data

highlighting the main sources of variability.

Conclusions
Our study highlights the potential of a systems-based

approach for discovering the interactions between blood

metabolome, transcriptome, and miRNome, which

cannot be detected when analyzing single metabolites or

transcripts. We were able to construct a regulatory

network of 11 metabolites, 263 metabolic genes and 5

miRNAs whose expression was significantly altered at

T1 (post- endurance competition) relative to T0 (base-

line, pre- endurance competition). This network under-

lines essential adaptations necessary for homeostasis and

performance during endurance exercise (i.e. energy sens-

ing through FoxO and glucagon signaling pathways, as

well as via activation of the mitochondrial oxidative

phosphorylation system and AMPK system). Remark-

ably, the “omic” integration showed that lactate and glu-

cose metabolites were enriched by genes that coded

proteins likely involved in LPS-induced pro-inflammatory

pathway, whereas glutamate and tyrosine were associated

with genes that regulate the control and removal of ROS

and RONS molecules.

In an independent cohort of 31 horses, multiple fac-

tor analysis confirmed the physiological adaptation to

physical exertion through genes associated with LPS-

induced immune responses and oxidative stress, as well

as miR-21-5p, miR-16-5p, and let-7 family. Multiple

factor analysis also shed light on key metabolomic and

transcriptomic processes that occur in horses during

endurance exercise, as well as potential transcriptomic

markers at basal time for elimination during the endur-

ance competition.

Integrating results from circulating plasma metabo-

lites, transcriptome and miRNome derived from whole

blood allowed us to (i) confirm that strenuous exercise

in horses leads to coordinated transcriptome and metab-

olome reactions at a systemic level, increasing the meta-

bolic rate, the production of reactive oxygen species,

inflammation and compromising antioxidant defense

system, (ii) identify potential candidate biomarkers at

basal time that could predict the likelihood for failure to

finish an endurance ride; and (iii) provide a basis for fu-

ture studies to gain novel insights into the regulatory

mechanisms that control physiological adaptations to

endurance exercise.

Methods
Animals and samples

The data sets used for metabolome, transcriptome, and

miRNome analysis have already been published by Le

Moyec et al. [19] and Mach et al. [8].

Le Moyec et al. [19] evaluated the effects of long

endurance exercise on the plasma metabolomic profiles,

whereas Mach et al. [8] identified the whole blood

miRNA-mRNA relationships specifically regulated by

endurance exercise in the same horses. Altogether, we

selected samples from a total of 41 pure-breed or half-

breed Arabian horses (13 females and 28 geldings;

mean ± SEM age: 9.7 ± 1.5) participating in a 160 km

endurance competition. All horses were recruited on a

volunteer basis in three different French competitions

(see Additional file 1). For each of these 41 horses, the

combined metabolome, transcriptome, and miRNome

profiles were available. To ensure sample homogen-

eity, the participating horses were subjected to the

same management practices throughout the endur-

ance competition and passed the International Eques-

trian Federation (FEI)’s compulsory examination

before the start. Animals were fed 2–3 h before the

start of the endurance competition with ad libitum

hay and 1 kg of concentrate pellets. During the endur-

ance competition, all the animals underwent veterin-

ary checks every 20 to 40 km, followed by recovery

periods of 40 to 50 min (in accordance with the FEI

rules of endurance riding). After each vet gate check,

animals were provided with ad libitum water and hay
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and a small amount of concentrate pellets. The me-

dian winning speed over the entire endurance compe-

tition was 15.76 ± 1.04 km/h.

In our study, the 41 horses were divided into two non-

overlapping sets: the experimental set and the validation

set. The validation set came from an independent cohort

of animals, to ensure that the observed effects were re-

producible in a broader context. The experimental set

included 10 horses sampled before the 160 km endur-

ance competition (T0, baseline) and post- endurance

competition (T1).

The validation set included 13 horses sampled solely

at T0 and 18 other horses sampled solely at T1. Among

the horses sampled at T0, three animals finished the en-

durance competition, while ten horses failed a vet gate

check for lameness, metabolic disorders or tiredness (see

Additional file 1). All horses sampled at T1 completed

the endurance competition.

Blood samples for metabolome, transcriptome, and

miRNome profiling were obtained from the jugular vein

at rest (Basal, T0) and/or immediately after the end of

the competition (T1). Pretreatment of the blood samples

was carried out immediately after the collection because

field conditions provided access to refrigeration and

electrical power supply. Briefly, whole blood samples

from each horse were collected in sodium fluoride and

oxalate tubes for metabolome profiling in order to in-

hibit further glycolysis that may increase lactate levels

after sampling. Whole blood drawn for plasma gener-

ation was refrigerated immediately at 4 °C to minimize

the metabolic activity of cells and enzymes and kept the

metabolite pattern almost stable. Clotting time at 4 °C

was strictly controlled for all samples to avoid cell lyses

that affect metabolome components. After clotting at 4 °C,

the plasma was separated from the blood cells and subse-

quently transported to the lab at 4 °C and frozen at -80 °C

(no more than 5 h later, in all cases). Additionally, blood

samples were collected in dry tubes at the end of the en-

durance event for the biochemical analysis. After clotting

at room temperature, the tubes were centrifuged and the

harvested serum was stored at 4 °C until analysis (no more

than 48 later, in all cases). PAXgene Blood RNA tubes

(Qiagen, Hilden, Germany) were used for transcriptome

and miRNome profiling. They were kept at room

temperature for no more than 5 h in all cases, and

stored at -80 °C until analysis.

1H NMR data acquisition and statistical analysis

The 1H NMR spectra were acquired with a Bruker®

Advance II spectrometer (Bruker BioSpin, Wissembourg,

France) operating at 500 MHz and using a standard

water-suppressed 1D spectrum (NOESY1D) sequence for

the preservation of lipid signal intensities.

The methods for sample preparation, data acquisition,

data quality control, spectroscopic data-pre-processing,

and data pre-processing including peak alignment, scal-

ing and normalization are broadly explained elsewhere

[19]. In contrast to Le Moyec et al. [19], where in silico

metabolite identification and statistics were done by the

MATLAB commercial program, we used different open-

source R packages, allowing automated qualitative and

quantitative metabolite characterization, calculation of

spatial significance and, importantly, metabolite pathway

analysis.

Peaks with just one non-zero intensity (single mass

events) were removed from the normalized matrix. Add-

itionally, a metabolite peak was considered to be detectable

only if it was expressed in at least 50% of the experimental

samples. The metabolite identification was then performed

by using structure message of metabolites acquired from

other available biochemical databases, such as human

metabolome database (HMD), http://www.hmdb.ca; KEGG,

http://www.genome.jp/kegg/; METLIN, http://metlin.-

scripps.edu/; Chemical Entities of Biological Interest

(http://www.ebi.ac.uk/Databases/); and Lipidmaps (http://

www.lipidmaps.org/). Metabolite assignment of each peak

was considered when chemical shifts of peaks in the

samples were the same as in the publicly available refer-

ence databases (with a shift tolerance level of ±

0.005 ppm), in order to counter-act the effects of mea-

surements and pre-processing variability introduced by

factors such as pH values and solvents. A manual cur-

ation for identified compounds was done by an expert

in horse metabolomics [19, 20]. Afterwards, the relative

abundance of each metabolite was calculated as the

area of the peak [50].

Exploratory analysis of the metabolites signals were

first performed by PCA, which displays the internal

structure of data sets in an unbiased manner and

reduces data dimensionality through linear combina-

tions of the original variables. A PCA score plot was

used to reveal the presence of outliers outside the

95% significance region of ellipse (i.e., strong out-

liers). Interclass PCA of plasma metabolites with pre

and post- endurance competition samples as an in-

strumental variable was also performed, based on a

Monte Carlo test with 999 replicates. Unsupervised

and supervised methods were performed with a tool-

box to explore NMR metabolomic data sets in the R

environment [51]. Then, we performed supervised

projections to latent structures-Discriminant Analysis

(PLS-DA) and the OPLS analysis, which integrates

an orthogonal signal correction (OSC) to identify

and characterize metabolic changes induced by en-

durance exercise. The OSC-correction approach was

conducted using DeviumWeb R package; (https://

github.com/dgrapov/DeviumWeb) [52].
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By extracting variation from its computed partial least

squares (PLS) components that is uncorrelated (orthog-

onal) to the responses, OPLS produces a more interpretable

regression model compared to PLS [53]. Loading plots

combining the reliability and correlation from the OPLS

models were used to identify differential metabolites among

the pre and post- endurance competition samples. In the

loading plots, signals with a positive direction corresponded

to metabolites that were present at high concentrations at

T1. The negative direction indicated a negative direction of

metabolite values at T1. A high loading score means that

the metabolite in question has an excellent ability to

separate pre and post-endurance competition samples.

Importantly, only metabolites with loadings plots different

from zero along any OPLS principal component axis were

considered to have a contribution to the model. These

metabolites were considered to be biological relevant and

suitable for downstream analysis.

The 10-fold within model cross validation and permu-

tation Monte Carlo testing (n = 1,000) were applied for

internal validation of the Q2, R2 and the RMSEP values,

which represent the predictability of the model, the

explained variance and the error, respectively. The firm-

ness of the model was evaluated with R2 outcomes and

the precision of the prediction (Q2).

Complementary to the multivariate statistical methods

to identify metabolites that were statistically different

between T0 and T1 samples, analysis of variance

(ANOVA) was performed to delineate whether there

was a significant difference between the average values

of metabolites normalized intensities between pre and

post- endurance competition samples. Because of the

multiple testing issues, Bonferroni corrected P-values

were calculated. A significance level of corrected p < 0.05

was accepted.

This data is available at the NIH Common Fund’s

Data Repository and Coordinating Center (supported by

NIH grant, U01-DK097430) website, http://www.meta

bolomicsworkbench.org), where it has been assigned a

Metabolomics Workbench Project ID: (UrqK1489).

The data is directly accessible at: http://dev.metabolomics

workbench.org:22222/data/DRCCMetadata.php?Mode=

Study&DataMode=AllData&StudyID=ST000503&Study

Type=NMR&ResultType=2&access=UrqK1489#DataTabs

Metabolic pathway construction

Metabolic pathways were constructed according to

pathway analysis on Metpa (freely available at http://

metpa.metabolomics.ca). Metpa high-level functional

analysis is organism specific. Because the metabolite

pathways for Equus caballus do not currently exist, the

enrichment analysis was performed using Homo sapiens

metabolite sets.

The MetPA’s pathway’s topological analysis is based

on the centrality measures of a metabolite in a given

metabolic network [54]. Centrality is a local quanti-

tative measure of the position of a node relative to

the other nodes, and is often used to estimate a

node’s relative importance or role in network

organization [54]. Since metabolic networks are

directed graphs, MetPA uses relative betweenness

centrality and out degree centrality measures to

calculate compound importance. The impact of a

pathway is calculated as the sum of the importance mea-

sures of the matched metabolites normalized by the sum

of the importance measures of all metabolites in each

pathway [54].

RNA isolation, microarray experiments and mRNA and

miRNA statistical analysis

Transcriptome and miRNome profiling were performed

using Agilent microarrays as described earlier [8]. All the

transcriptome and miRNome pre-processing, normalization

and statistical analysis steps were carried out as

described elsewhere [8]. In contrast to the Mach et al.

[8] study, the p-values were corrected for multiple test-

ing using the Benjamini and Hochberg method with a

threshold of adjusted p < 0.05, as a compromise be-

tween the unadjusted analysis and the Bonferroni

procedures.

The data sets supporting the conclusions of this article

are available in the Gene Expression Omnibus (GEO)

repository, [GSE73104; (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE73104].

Regulatory network of metabolites, metabolic genes and

miRNAs: enrichment analysis

The underlying assumption behind the enrichment

analysis is that by combining the evidence based on

changes in both gene expression and metabolite

concentrations, one is more likely to pinpoint the me-

tabolites and pathways involved in the underlying

biological processes during endurance exercise. The

power of this approach is that such models can pro-

vide non-intuitive metabolic and physiological hypoth-

esis [55].

First of all, we converted the equine Ensembl gene IDs

to their orthologous associated Homo sapiens gene IDs

through the Biomart retrieval tool (Ensembl release 83;

http://www.ensembl.org/biomart/).

Then after, for each metabolite with a loading different

from zero along any OPLS principal component axis, we

identified all the metabolic pathways that the given me-

tabolite participates in through the KEGGREST package

in R (Homo sapiens, [hsa] organism). We retrieved the

list of genes that encode proteins that participate in the

reaction steps around the given metabolic pathway
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(using the KeggGet function from the KEGGREST pack-

age in R). The enzyme-encoding genes whose protein

products participate in the metabolic reaction of a given

metabolite are referred to here as metabolic genes. We

considered metabolic genes as targets of a specific me-

tabolite when they were operating in the metabolic path-

ways that the metabolite participates in. Each metabolite

may be associated with multiple metabolic pathways,

and each metabolic gene may be involved in several

metabolic pathways.

To investigate the metabolites, transcripts and path-

ways with more biological relevance during the endur-

ance exercise, we used two complementary statistical

approaches. For each of the metabolites presenting at

least one metabolic pathway with one coding metabolic

gene, we performed: (i) the hypergeometric test for en-

richment in target metabolic genes correlated with the

metabolite; and (ii) the generalization of the hypergeo-

metric test. Both methods were implemented on the

experimental set of ten animals. For the hypergeo-

metric test, we performed a pair-wise Pearson correl-

ation analysis of the expression levels of DEGs and the

expression levels of metabolites presenting at least one

target metabolic gene. Subsequently, we subtracted the

set of correlated metabolites-DEGs with r | > 0.5|; with a p

< 0.05. We next looked at whether the metabolic target

genes were over-represented when compared with the

other genes in the transcriptome. Benjamini and Hochberg

correction [56] for multiple testing was applied to the

p-values obtained (false discovery rate (FDR) < 0.10).

Moreover, in order to address the hypergeometric

test’s lack of power when the numbers of metabolic

target genes for a given metabolite was very small, we

also implemented a variant of the hypergeometric test.

In this variant, we tested for enrichment in metabolic

target genes by selecting DEGs regardless of the sign

and value of their correlation with the metabolite. When

considering a given metabolite with at least one meta-

bolic target gene, we looked at whether their metabolic

target genes presented smaller p-values than the other

genes in the transcriptome using a one-sided Wilcoxon

rank sum test (implemented with the “wilcox.test”

function in R). The FDR was determined to correct for

multiple testing. Lastly, only metabolites that were

significant either in the hypergeometric test or its

generalization after correction for multiple testing (FDR

< 0.1) were analyzed further. The FDR was set to 0.1 in

order to retain as many biological functions as possible.

Identification of miRNAs involved in the regulation of the

identified metabolite-metabolic target genes regulatory

network

The multiMiR package in R was used to identify poten-

tial miRNAs regulating the metabolic target genes

included in the regulatory network [57]. For each

miRNA expressed in our data set, we assembled a com-

prehensive list of all experimentally validated target

genes using the multiMiR package in R. multiMiR is a

comprehensive collection of predicted and validated

miRNA–target interactions and their associations with

diseases and drugs [58]. It contains human and murine

data from 14 external databases that are categorized into

three components, including three validated miRNA–

target databases (miRecords, miRTarBase and TarBase),

eight predicted miRNA–target databases (DIANA-

microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar,

PITA and TargetScan), and three disease- or drug-

related miRNA databases (miR2Disease, Pharmaco-miR

and PhenomiR) [58]. Subsequently, we subtracted the

set of miRNAs presenting at least one metabolic target

gene within our regulatory network.

Regulatory impact factors analysis to unravel the

transcription regulation within the regulatory network

The RIF metric [28, 29] was used to identify transcrip-

tion factors and miRNAs regulators within the set of

DEGs. RIF method contrasts two conditions (e.g., case

vs. control) and provides a metric to each regulator con-

sidering the change in co-expression between the regula-

tor and DEGs. In this study, we focused on genes whose

expression was significantly altered at T1 relative to T0,

with an adjusted p < 0.05, and we used them as putative

regulators for all transcription factors reported by

Vaquerizas et al. [59] and the 362 miRNAs expressed in

the custom microarray (Additional file 14). The method

estimated two RIF alternative measures (RIF1 and RIF2).

RIF1 provides information of those regulators that are

consistently more differentially co-expressed with the

highly abundant and the highly differentially expressed

genes. RIF2 scores each regulator considering the most

altered ability to act as predictors of the abundance

of DEGs.

Multiple factor analysis in an independent cohort

of 31 horses

The MFA [60] was applied as an exploratory analysis of

the metabolome, transcriptome, and miRNome using

FactoMineR [61] R package. MFA was applied in our in-

dependent cohort of animals (n = 31) to model complex

biological interaction in a holistic manner and identify

potential biomarkers with a functional readout of the

cellular state. MFA is an extension of PCA tailored to

handle multiple data tables that measure sets of variables

collected on the same individuals. MFA proceeds in

three steps: first, it computes a PCA of each subset of

variables and ‘normalizes’ each data table by dividing all

its elements by the first singular value obtained from its

PCA. In other words, it weights each data table to
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account from different variances among groups. Second,

all the normalized data tables are aggregated into a

grand data table that is analyzed via a (non-normalized)

PCA that gives a set of factor scores for the observations

and loadings for the variables. Third, in order to identify

the contribution of each data set to the total variance,

that is, to what extent each data set deviates or agrees

with what the majority of data sets support, MFA

projects a superimposed representation of individuals

with each group of data and its barycenter. MFA also

provides a measurement of similarity between the geo-

metrical representations derived from each group of

variables though a RV coefficient, which is a multivariate

generalization of the Pearson correlation coefficient. For

each pair of “omic” data sets, the RV-coefficient is calcu-

lated as the total co-inertia (sum of eigenvalues of co-

inertia, i.e. sum of eigenvalues of the product of two

cross product matrices) divided by the square root of the

product of the squared total inertia (sum of the eigen-

values) from the individual analysis. As the co-structure

between two data sets increases, the RV score move to-

wards to 1. A zero RV score indicates no similarity.

Additional files

Additional file 1: The horses’ morphological and physiological
parameters. (XLS 49 kb)

Additional file 2: Biochemical parameters obtained from 41 blood
samples collected after the 160 km endurance competition. Samples
were obtained for ten horses from the experimental set and 31 horses
from the validation set. (XLS 34 kb)

Additional file 3: 1H NMR metabolites present in the plasma of horses
following endurance exercise. (XLS 33 kb)

Additional file 4: Figure S1. Differential metabolite expression profiles
in plasma. (A) PCA of metabolites in plasma when comparing T1 with T0.
The first axis accounted for 27.91% of the total variance, and the first two
components accounted for 79.79% of the total variance (p < 0.05); (B)
PLS-DA plot scores. Discrimination in the first and second component
indicates metabolic differences between pre and post- endurance
competition samples. In all cases, individual horses are represented
as purple dots (for T0) and green dots (for T1); (C) OPLS-loading plot
represents the enhanced metabolites in plasma in pre- and post-
endurance competition samples. A positive loading score indicated
there was a relatively greater concentration of metabolite present in
post- endurance competition samples and a negative loading score
indicated a relatively lower concentration, with respect to pre- endurance
competition samples. (TIF 21383 kb)

Additional file 5: Figure S2. Unsupervised analysis on metabolite
expression profiles in plasma. (A) Correlation network with a threshold of
0.8 between the metabolites; (B) Heatmap image of the correlations; (C)
Boxplot of the expression of the main metabolites in plasma. Individual
horses are represented as purple color (for T0) and green color (for T1).
*, **, *** denote statistical significance at the 0.10, 0.05 and 0.001 level
respectively, after multiple testing correction using the Bonferroni
method. (TIF 21557 kb)

Additional file 6: Figure S3. A functional map of the metabolites
affected by the endurance exercise. The metabolic pathways were
constructed according to pathway analysis on Metpa. The size of the
node corresponds to the statistical significance of the enrichment term
together with the impact. (TIF 13708 kb)

Additional file 7: Differentially expressed genes in 10 animals following
endurance exercise (a 160 km endurance competition). (XLS 1568 kb)

Additional file 8: Differentially expressed miRNAs in 10 animals following
endurance exercise (a 160 km endurance competition). (XLSX 65 kb)

Additional file 9: Figure S4. Overview of the data analysis. Step 1: a
linear model analysis of DEGs and DEmiRNAs and a supervised analysis of
metabolites. Step 2: determination of the corresponding gene ontology
(GO) terms, Kyoto encyclopedia of genes and genomes (KEGG) pathways
and TFs and miRNAs regulating the DEGs. Step 3: selection of metabolic
target genes involved in the pathways that metabolites participate in.
Step 4: generation of the correlation matrix for DEGs and metabolites
(in the hypergeometric test only). Step 5: the enrichment test (using the
hypergeometric test or its generalization) used to select candidate-
enriched metabolites. Step 6: the functional regulatory network analysis
(TFs and miRNAs); Step 7: validation of the regulatory network, using an
independent cohort and multiple factor analysis. (TIF 8893 kb)

Additional file 10: Enriched metabolites. (XLS 40 kb)

Additional file 11: RIF scores according to RIF1 or RIF2 for transcription
factors and miRNAs. Only molecules with RIF z-scores < −1.40 or > 1.40
are described. (XLS 52 kb)

Additional file 12: Factor scores of multiple factor analysis for the
observations on the axis 1 and 2 in the validation set at T0. (XLS 124 kb)

Additional file 13: Factor scores of multiple factor analysis for the
observations on the axis 1 and 2 in the validation set at T1. (XLS 316 kb)

Additional file 14: Expressed miRNAs. (XLSX 159 kb)
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NFkβ: Nuclear factor kappa beta; NOESY1D: Standard water-suppressed 1D
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