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Article

Understanding the Results
of Multiple Linear Regression:
Beyond Standardized
Regression Coefficients

Kim F. Nimon1 and Frederick L. Oswald2

Abstract

Multiple linear regression (MLR) remains a mainstay analysis in organizational research, yet inter-

correlations between predictors (multicollinearity) undermine the interpretation of MLR weights in

terms of predictor contributions to the criterion. Alternative indices include validity coefficients,

structure coefficients, product measures, relative weights, all-possible-subsets regression, domi-

nance weights, and commonality coefficients. This article reviews these indices, and uniquely, it

offers freely available software that (a) computes and compares all of these indices with one another,

(b) computes associated bootstrapped confidence intervals, and (c) does so for any number of pre-

dictors so long as the correlation matrix is positive definite. Other available software is limited in all

of these respects. We invite researchers to use this software to increase their insights when applying

MLR to a data set. Avenues for future research and application are discussed.

Keywords

multiple regression, quantitative research, exploratory, research design

A continued goal of organizational researchers conducting regression analysis is to make inferences

about the relative importance of predictor variables (cf. Nimon, Gavrilova, & Roberts, 2010; Zien-

tek, Capraro, & Capraro, 2008), yet it is all too common to rely heavily (if not solely) on the regres-

sion coefficients from the analysis which optimize sample-specific prediction (minimize sum of

squared errors). Instead, other metrics that operationalize relative importance in ways that are con-

sistent with such researchers’ goals would seem more appropriate, and a range of metrics and

approaches exists. In addition to regression weights and zero-order correlation coefficients that

researchers likely report, MLR interpretation may be further informed by considering structure
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coefficients, product measures, relative weights, all-possible-subsets regression, dominance

weights, and commonality coefficients. The current article offers software that cogently summarizes

these metrics so that researchers can make more sophisticated judgments about the nature and mean-

ingfulness of variables in a linear regression model than judgments from regression weights or any

single metric in isolation. As noted by Nathans, Oswald, and Nimon (2012), each metric serves a

different purpose and has certain features that support interpreting specific aspects of a multiple

linear regression (MLR) model (see Table 1).

The aforementioned metrics are reviewed here briefly, but for more details we refer the reader to

other work, both recent and historical in nature (e.g., Budescu, 1993; Darlington, 1968; Johnson,

2000; Johnson & LeBreton, 2004; Kraha, Turner, Nimon, Zientek, & Henson, 2012; Krasikova,

LeBreton, & Tonidandel, 2011; Lindeman, Merenda, & Gold, 1980; Tonidandel & LeBreton,

2011). This allows the current article to take a more practical focus on the software tool and its cap-

abilities, with the support of two empirical examples.

Regression Weights

In MLR models, raw data yield unstandardized (raw) regression weights, and standardized data

yield standardized regression weights. Regardless of whether or not the data are standardized, the

values residing in the vector b ¼ b1; b2; b3; . . . bp
� �

are chosen in such a way that the weighted com-

posite bTX is maximally correlated with the dependent variable, Y, which is external to the compo-

site (i.e., choose b so that r[bTX , Y] is maximized). This is the same as choosing b to minimize the

variance of the errors in prediction (i.e., choose b so that ½var Yð Þ � bTRXXb� is minimized). If we

assume that we are using standardized regression coefficients, then each coefficient bk indicates the

expected change in Y, in standard deviation units, given a corresponding 1 standard deviation change

in Xk, when all the other predictors in the model in X (i.e., ðX1;X2; . . .Xk�1;Xkþ1; . . .XpÞT ] are fixed
or controlled for.

It may be reasonable to assume that predictors with larger standardized coefficients (called betas

henceforth) are more important than other predictors with smaller coefficients. Certainly this is true

when variables are uncorrelated, because in that case, betas are exactly equal to the zero-order cor-

relations between X and Y. However, when the predictors in X are correlated, standardizing does not

disentangle the effects of X on Y from the standard deviations of X; in fact, it confounds them in the

service of placing all weights on a z-score metric.

Zero-Order Correlation Coefficients

Obviously, prediction of Y from each independent variable Xi is found in RXY, the vector of zero-

order correlation coefficients (often called validity coefficients). If all variables in X were com-

pletely uncorrelated (i.e., RXX ¼ I, the p � p identity matrix), then the contribution of each Xi to

Y can be clearly represented as the squared values in RXY, because these squared values are indepen-

dent of one another, meaning that they partition R2 or, equivalently, they add up to the model R2 (i.e.,

R
0
XYRXY¼ R2). However, when predictors are correlated, the sum of the elements in r2XY will not add

up to the model R2, necessitating other metrics to determine how the MLR model is affected by

multicollinearity.

Structure Coefficients

One relatively simple approach to determining the contribution of p independent variables in linear

regression is through calculating a p � 1 vector of structure coefficients (sr), which are the correla-

tions between each predictor X and bY , the latter being the predicted values of Y. Equivalently,

2 Organizational Research Methods 00(0)
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structure coefficients can be calculated by dividing the p � 1 vector of zero-order validity coeffi-

cients RXY by the multiple R; thus,

sr ¼ RXYffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTRXY

p ¼ RXY

R
¼ rXŶ : ð1Þ

Structure coefficients have been used to indicate the relative contributions of each Xi to the

prediction of Y, but they cannot be interpreted in a straightforward manner when variables in X are

correlated or when there are suppression effects (i.e., the sum of the elements in r2XŶ does not equal

unity).

Pratt Measure

The Pratt measure, or product measure, of a predictor variable’s relative importance was proposed

by Pratt (1987) and is defined simply as mi ¼ bYXi
rYXi

: the product of the standardized regression

coefficient and the zero-order validity coefficient for Xi. Pratt measures divide the model R2 across

predictor variables, meaning that

R2 ¼ bTRXY ¼
Xp

i¼1

mi; ð2Þ

where each component of the sum is a Pratt measure (mi). The Pratt measure can be viewed as pro-

blematic in cases where individual values are negative or zero values, because those might be prod-

ucts of suppression or multicollinearity that require further explanation (see Thomas, Hughes, &

Zumbo, 1998). However, this decomposition remains in the literature as a common method for

decomposing R2, and we include it in our software package, if only to compare it with more modern

methods such as general dominance and relative weights.

Relative Weights

Relative weights are another way to partition an MLR model R2 across predictors. They are com-

puted by first transforming p predictors into a new set of p variables that are uncorrelated with one

another, yet are correlated as highly as possible with the original predictors; that is, given the data

matrix X ¼ PDQT , then create the new variables Z ¼ PQT . Fabbris (1980) noted that treating X as a

set of dependent variables and regressing X onto Z creates M, the p � p correlation matrix between

the original predictors and their orthogonal counterparts; this was rediscovered by Genizi (1993) and

then in the organizational literature by Johnson (2000). It may be somewhat surprising to know that

M is also equal to the matrix square root of the predictor intercorrelation matrix

(M ¼ ðZ 0
ZÞ�1

ZTX ¼ ZTX ¼ QDQT ¼ R
1=2
xx ). Also surprising might be that the squared elements

in each column (or each row) of M (or R
1=2
xx ) sum to 1.

These elements for each column are used to weight each predictor variable according to its inde-

pendence from other predictor variables (i.e., a higher weight will mean greater independence from

that variable). In addition to this matrix, regressing Y on Z yields a p � 1 vector of orthogonal

weights we call V (i.e., V ¼ Z 0Zð Þ�1
ZTy ¼ ZTy

R
). Because the components of Z are uncorrelated

and all variables are standardized, the squared values in V also sum to 1, where each element

provides the proportional contribution of each orthogonalized predictor Zi to Y.

Thus, a relative weight multiplies or ‘‘glues’’ like elements from the two orthogonal vectors of

M and V weights just described, namely, (a) the ith squared regression weight for the given predictor

regressed onto its orthogonal counterpart multiplied by (b) the ith squared weight regressing the

4 Organizational Research Methods 00(0)
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criterion on that given predictor’s orthogonal counterpart. Mathematically, the relative weight for

predictor i is called e2i and equals

e2i ¼
Xp

j¼1

M2
ijV

2
j

n o
; ð3Þ

and each of the p relative weights across is an independent part of the total model R2, meaning the

weights add to R2 (R2 ¼ ∑
p

i¼1

e2i ) even when the independent variables are correlated (see Fabbris,

1980; Genizi, 1993; Johnson, 2000). In this way, relative weights are easy to explain in the same

way as general dominance weights because they sum to the model R2. Alternatively, the relative

weights can be re-expressed as proportions or percentages of R2.

Relative weights are thus defined as the contribution of a given predictor to criterion variance,

considering the predictor’s contribution alone as well as jointly with the other predictors in the

model. Note that relative weights and general dominance weights have often been found to rank

predictors similarly in terms of relative importance (Johnson, 2000); however, the current software

program can verify where results converge or diverge.

All-Possible-Subsets Regression

As the name implies, all-possible-subsets (APS) regression involves running linear regressionmod-

els on all 2p – 1 subsets of predictors. In doing so, one often takes either a predictor-based approach

or model-based approach to the set of results. APS is best compared to other metrics when taking a

predictor-based approach, where a predictor deemedmore important within a regressionmodel will

tend be one that is more important across submodels in APS regression. APS regressions can be ana-

lyzed in this manner for each predictor, or one can use commonality coefficients or dominance

weights, to be discussed next, because these are based on the results of APS regressions.

In addition to the predictor-based approach, researchers and practitioners also may take a model-

based approach to APS, because it is an exploratory approach to determining the tradeoff between

model parsimony and model fit, where a submodel with fewer predictors retains a model R2 that is

either similar to the full model R2 or is above some practical minimum established by the researcher

or practitioner. Obviously, the model-based approach can be related to the variable-based approach

when there is a consistent recommendation to include and/or exclude specific predictors across

models.

Commonality Analysis

Commonality analysis partitions the R2 explained by all predictors in multiple regression into

variance unique to each predictor and variance shared between each combination of predictors (see

Mayeske et al., 1969; Mood, 1969, 1971; Newton & Spurrell, 1967; Onwuegbuzie & Daniel, 2003;

Rowell, 1996). These components of variance are called commonality coefficients that can then be

evaluated in terms of their magnitude, and they can be compared with one another. As partitions,

commonality coefficients sum to the total R2 for the regression model.

There are two general types of commonality coefficients: unique effects and common effects. The

unique effect of a predictor (also called the uniqueness coefficient) is the square of the semipartial

correlation between a given predictor and the criterion. Thus, if predictors are all uncorrelated, then

predictor importance can be entirely determined by ranking the unique effects. When predictors are

correlated, as is usually the case, the common effects can indicate the extent and pattern of the pre-

dictors’ shared variance in predicting variance in the criterion (Mood, 1971).
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Consider the hypothetical situation discussed by Hedges and Olkin (1981) in which two

variables, X1 and X2, are used to predict a variable X0. For this regression equation, the explained

variance (R2
0.12) can be partitioned into three components:

g1 ¼ unique contribution of X1 to R2
0:12; ð4Þ

g2 ¼ unique contribution of X2 to R2
0:12; ð5Þ

g12 ¼ common contribution of X1 and X2 to R2
0:12; ð6Þ

and they are computed as follows:

g1 ¼ R2
0:12 � R2

0:2; ð7Þ

g2 ¼ R2
0:12 � R2

0:1; ð8Þ

g12 ¼ R2
0:1 þ R2

0:2 � R2
0:12: ð9Þ

Commonality coefficients provide researchers with rich detail about how independent variables

operate together in a given regression model. The coefficients are more specific than regression

weights, relative weights, or general dominance weights. As Seibold and McPhee (1979) noted,

‘‘[Only by] determining the extent to which . . . independent variables, singly and in all combina-

tions, share variance with the dependent variable . . . can we fully know the relative importance of

independent variables with regard to the dependent variable in question’’ (p. 355).

Note that negative values of commonality coefficients generally indicate that a predictor exerts a

suppressor effect, where it is removing (partialing out) the irrelevant variance in the other predictor(s)

to increase the latter’s contributions to the model R2 (Zientek & Thompson, 2006). Unlike other

metrics, commonality coefficients are uniquely able to pinpoint the predictors involved in a suppressor

relationship and the specific nature of that relationship. Summing all negative common effects for a

regression equation can quantify the amount of suppression present in the regression model as a whole.

Dominance Analysis

A regression metric was originally proposed by Chevan and Sutherland (1991), then elaborated upon

by Budescu (1993), who detailed the procedure for conducting a dominance analysis. Dominance anal-

ysis involves computing each predictor’s incremental validity across all possible submodels that

involve that predictor and using the incremental validity coefficients to evaluate complete dominance,

conditional dominance, and general dominance. To make the dominance analysis procedure more con-

crete, see the dominance analysis formulas in Table 2 that support a three-predictor MLR model.

If incremental validity is always higher for Xi than for Xj for every submodel, then Xi is said to

show complete dominance over Xj. Complete dominance is a restricted form of dominance that may

rarely occur. There is a more relaxed form of dominance called conditional dominance, which

occurs when the average incremental variance within each submodel of sizes 0 to p � 1 is greater

for one predictor than another across all model sizes. The average incremental variance components

used to evaluate conditional dominance are called conditional dominance weights. Conditional dom-

inance weights are averaged across p predictors to create general dominance weights that partition

the model R2 across predictors. A predictor is said to show general dominance if it has the highest

overall average incremental validity across regression submodels of sizes 0 to p � 1.

Dominance weights have two appealing properties: First, like relative weights, each general dom-

inance weight is the average contribution of a predictor to a criterion, both on its own and when
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taking all other predictors in the model into account. Second, general dominance weights always

sum to the overall model R2. Third, conditional dominance weights have the potential to illuminate

the properties of model predictors that can get lost in commonality coefficients (which are numerous

and can be difficult to interpret even when p ¼ 3) or averaged away in more general metrics (e.g.,

relative weights, general dominance weights).

Software for Exploring the Predictor Space

The software tool we introduce was developed in R (R Development Core Team, 2013), and it offers

a number of incremental contributions over both the literature and applications of the past addressing

this topic of the relative importance of variables in linear regression analysis. First and most impor-

tantly, the software analyzes a wide variety of regression metrics within a single program. Recently,

researchers have developed and provided computer programs, macros, and software packages to

compute the metrics in linear regression to be discussed here, such as dominance analysis (Azen

& Budescu, 2003) and relative weights (Grömping, 2006; Tonidandel, LeBreton, & Johnson,

2009). Although other researchers have integrated multiple metrics into their programs (Braun &

Oswald, 2011), the current software is much more comprehensive in integrating all regression

metrics reviewed here. Second, the software allows for some computational efficiencies; for

instance, all-possible-subsets regression is computed and applied to multiple metrics rather than

having to be computed each time within different programs. Third, the software computes confi-

dence intervals (CIs) for all coefficients and for differences between specific pairs of coefficients.

Confidence intervals are based on bootstrapping procedures and estimate an interval that 95% of the

time, for example, contains the corresponding population parameter. Although this has been

accomplished for some metrics (e.g., Algina, Keselman, & Penfield, 2010, for squared semipartial

correlations; Lorenzo-Seva, Ferrando, & Chico, 2010, for bootstrapped regression coefficients,

structure coefficients, and relative importance weights; and Tonidandel & LeBreton at the website

http://relativeimportance.davidson.edu/ for bootstrapped relative importance weights in regression,

multivariate regression [regression with multiple criteria], and logistic regression), this has not been

accomplished to date across such a wide array of metrics within a more integrated software package

as we have done here. To conduct statistical significance tests of metrics such as relative weights and

general dominance weights, as in Tonidandel et al. (2009), one can include a randomly generated

variable as an additional predictor in the model. This software will then automatically generate CIs

on the differences between each predictor metric and the metric associated with the randomly gen-

erated variable, which can then be used to assess statistical significance. Our software program also

graphs CIs, keeping in mind that the statistical differences between statistics may still be significant

even when their respective CIs overlap (Cumming & Finch, 2005). Fourth, some software solutions

have limited the number of predictors that are allowed; by contrast, our software computes metrics

for as many predictors as are allowed by computer memory, by the positive definiteness of the pre-

dictor correlation matrix, and by the patience of the user. Fifth and finally, the software is available

in R code, meaning that it is free to use, and anyone can read, learn from, revise, and extend the

program code.

Method

We developed software to compute and bootstrap the regression metrics reviewed in this article,

using R as our underlying platform. R is a ‘‘cutting-edge, free, open source statistical package’’ that

runs on all commonly used operating systems (see R Development Core Team, 2013) and is gaining

popularity across research disciplines (Culpepper & Aguinis, 2011). One major benefit of R plat-

form is the opportunity for researchers to develop and update programs or ‘‘packages’’ to the
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R repository that extend the functions of the base system. To date, the R platform is supported by

4,461 user-contributed packages.

Extending the work of one of the user-contributed packages, yhat (Nimon & Roberts, 2012), the

current article presents software that (a) calculates all of the regression results discussed in this

article (calc.yhat), (b) bootstraps the results (boot.yhat), (c) evaluates the bootstrapped

results (booteval.yhat), and (d) plots relevant CIs (plotCI.yhat). These extensions are

reviewed in the sections that follow. We believe they represent a meaningful update to the yhat

package.

calc.yhat. The calc.yhat function produces four sets of regression metrics. The first set is called

PredictorMetrics and contains the predictor metrics reviewed in this article: b weights, beta

weights, validity coefficients, structure coefficients, squared structure coefficients, unique coeffi-

cients, the sum of common coefficients, conditional dominance weights, general dominance

weights, product measures, and relative weights.

The second set is called OrderedPredictorMetrics, and for each metric simply ranks the

absolute values of the values contained in the PredictorMetrics set.

The third set is called PairedDominanceMetrics and contains the complete, conditional,

and general dominance values (Dij) for each pair of predictors. As in Azen and Budescu (2003), a

value of 1 in Dij indicates that Xi dominates Xj, 0 indicates that Xj dominates Xi, and .5 indicates that

dominance cannot be established between Xi and Xj.

The fourth set is called APSRelatedMetrics and contains commonality coefficients, which

is the criterion variance partitioned across all subsets of independent variables. Also included are the

multiple R2s resulting from an APS regression and the incremental variance for each predictor (the

latter of which is used with uniqueness coefficients to determine general, conditional, and complete

dominance).

boot.yhat. The boot.yhat function is based on the R package boot (Canty & Ripley, 2011) and

supports the bootstrapping of all the metrics computed by calc.yhat. This function also com-

putes a Kendall’s tau correlation for each type of predictor metric (e.g., r, b, rs), correlating bootstrap

metrics with sample metrics to indicate stability of the ranking of each type of predictor metric,

where high correlations imply agreement in the rank ordering. This feature would most likely be

used to correlate the rank order of predictor metrics between like sample and bootstrap statistics.

However, it is also possible for the user to pass a set of statistics such that each set of bootstrap sta-

tistics is correlated to the same set of sample statistics, as in LeBreton, Ployhart, and Ladd (2004),

where the rank order of predictors from general dominance analysis was correlated with the rank

order of predictors generated from alternative methods (e.g., product measure, r2, relative weights

analysis).

booteval.yhat. The booteval.yhat function takes the boot.yhat output generated across boot-

strap iterations and calculates descriptive statistics and CIs based on them. Bootstrapped CIs avoid

the need to rely on multivariate normality assumptions in the data or in the statistics generated from

them. The accelerated bootstrap interval (‘‘bca’’) is the default CI. The basic bootstrap interval

(‘‘basic’’), the accelerated bootstrap interval (‘‘bca’’), the first order normal approximation

(‘‘norm’’), and the bootstrap percentile interval (‘‘perc’’) are also supported.

Descriptive Statistics

Regarding descriptive statistics, booteval.yhat produces tauDS, which contains theM and SD

of Kendall’s tau (described earlier) across bootstrap iterations from boot.yhat. These results
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indicate how consistent the observed predictor ordering is between each bootstrapped sample and

the actual sample (high mean and low variance indicates a consistent ordering). Also, for each pair

of predictors, theM and SE of Dij for each type of dominance is reported alongside the proportion of

Dij ¼ 1 (Pij), Dij ¼ 0 (Pij), and Dij ¼ .5 (Pnoij) across bootstrap replications, as well as the repro-

ducibility of Dij (Reprod).These values are in keeping with Azen and Budescu (2003). The SE of

(Dij)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S�1

PS

s¼1

ðDs
ij � DijÞ

s

, where S equals the number of bootstrap samples and the reproducibility

of Dij is the ‘‘proportion of bootstrap samples that agree with the sample results’’ (p. 141).

Confidence Intervals

For data in the PredictorMetrics and APSRelatedMetrics object, CIs are provided

alongside and apart from sample statistics in objects, respectively, named combCIpm,

lowerCIpm, upperCIpm and combCIaps, lowerCIaps, upperCIaps. The data in

these objects allow researchers to make confidence statements regarding the associated metrics and

to identify whether pairs of metrics differ to a statistically significant degree (i.e., the related CIs do

not overlap).

However, when comparing the metric of one variable to another, overlapping CIs do not neces-

sarily indicate a statistically nonsignificant difference between parameter estimates (see Cumming

& Finch, 2001; Zientek, Yetkiner, & Thompson, 2010). One has to examine the distribution of dif-

ferences between the two bootstrapped estimates of interest across replications. To that end,

booteval.yhat also provides CIs around differences between select pairs of metrics. Confi-

dence intervals around differences between pairs of predictors for each predictor metric are reported

with sample statistics in combCIpmDiff and separately in lowerCIpmDiff and

upperCIpmDiff. For each order of predictor combinations (e.g., 1st order, 2nd order, . . . kth

order, where k ¼ number of predictors), CIs around pairs of APS and commonality coefficients are

reported with sample statistics in combCIapsDiff and separately in lowerCIapsDiff and

upperCIapsDiff. Data in these objects allow researchers to determine whether the R2s or the

commonality coefficients associated with a particular number of predictors are statistically signif-

icantly different from one another, which may be useful for identifying equivalent fitting models

for a particular number of predictors (cf. Thompson, 2006) and for statistically evaluating the dif-

ference between joint variance components (cf. Schoen, DeSimone, & James, 2011). For each pair

of predictors, CIs around differences between incremental variance are reported with sample sta-

tistics in combCIincDiff and separately in lowerCIincDiff and upperCIincDiff. Data

in these objects provide insight into the determination of complete dominance across bootstrapped

samples.

plotCI.yhat. The plotCI.yhat function plots the sample statistics and the upper and lower CI for

associated objects that are passed to it, such as the sample statistics in PredictorMetrics. The

function could also be used to plot the CI around sample statistics in APSRelatedMetrics when

the number of predictors is small.

Other Functions

Several other new functions were also written to support these main functions, including but not lim-

ited to functions to conduct commonality analysis, dominance analysis, and relative weights analy-

sis. Although the yhat package (Nimon & Roberts, 2012) supports the calculation of commonality

coefficients, the associated function (commonalityCoefficients) performs an APS
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regression internally and does not provide its results, whereas the current program produces APS

results directly. Furthermore, because the current program computes and reports results for both

commonality analysis and dominance analysis, and because both analyses are based upon an APS

regression, the current software conducts APS regression only once, thus enhancing the efficiency

and comprehensiveness of the current solution.

Illustrative Example 1

To first illustrate the use of calc.yhat, boot.yhat, booteval.yhat, and

plotCI.yhat, we conducted a secondary data analysis on the four-predictor regression example

discussed by Azen and Budescu (2003). We selected their primary four-predictor model as an exam-

ple since dominance analysis did ‘‘not reveal the complex suppression effects’’ (Beckstead, 2012, p.

243), and thus we were interested in seeing what the other regression metrics discussed in this article

might reveal about the regression model. Replicating the example was accomplished in six steps (see

the Appendix for details).

Results for Illustrative Example 1

calc.yhat

In reviewing the results from calc.yhat, we first note similarities and differences in the

PredictorMetrics and OrderedPredictorMetrics presented in Figure 1. In sum, the

bs, betas, uniqueness coefficients, and product measures identify the predictor order as X1, X2,

X3, and X4, whereas the validity coefficients (and their derivatives), general dominance weights, and

relative weights identify the predictor order as X1, X4, X3, and X2, thus swapping X4 and X2. Condi-

tional dominance weights also suggest a predictor order of X1, X4, X3, and X2, except the conditional

dominance weights associated with two predictors (i.e., CD:2) and the last set of conditional dom-

inance weights (i.e., CD:3) that are mathematically identical to uniqueness coefficients and thus

share the same results.

The bs and betas values and ranks are identical, as expected with a data set whose variables have

been standardized to have Ms of 0 and SDs of 1. The uniqueness coefficients and the conditional

dominance weights for k ¼ 3 (i.e., CD:3) are always identical, because both identify the amount

of predictive variance that is unique to a predictor. Also note that the order of the b and betas agrees

with the order of the uniqueness coefficients, and the order of the validity (r), structure (rs),

squared structure coefficients (rs
2), and squared validity (CD:0) are identical. The former agree-

ment is in line with Nunnally and Bernstein (1994), who noted that unique coefficients and b weights

generate the same p values. The latter agreement is aligned with Courville and Thompson (2001),

who point out that structure coefficients are rescaled validity coefficients. The similarity between

the general dominance (GenDom) and relative weights (RLW) is in keeping with research that

indicates that these coefficients typically yield almost identical values, despite different definitions

and computational strategies (see Johnson, 2000; LeBreton et al., 2004).

The Pratt weights diverge from the general dominance and relative weights, even though they

also sum to equal the R2. This divergence likely stems from a disagreement in the signs of X2’s beta

and validity coefficient, which is suggestive of a suppression effect (cf. Thompson, 2006). However,

the conditional dominance weights do not highlight X2 as a suppressor because the conditional dom-

inance weights for X2 (i.e., CD:0, CD:1, CD:2, CD:3) do not increase as subset models

become more complex (cf. Azen & Budescu, 2003; Beckstead, 2012).

The Dij values in the PairedDominanceMetrics set reflect some of the information

revealed by the PredictorMetrics set. The Dij values for general dominance (Gen) are reflective

of the order of the general dominance weights (i.e., X1 > X4 > X3 > X2). TheDij values for conditional
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dominance (Cond) indicate that across regression models of different subset sizes (i.e., k), X1 con-

ditionally dominates the other predictors (i.e., X1 > X2, X3, X4) and contributes more incremental

variance on average to models of different subsets than the other predictors. The Dij values for com-

plete dominance reflect information not previously presented and indicate that X1 completely dom-

inates all other predictors (i.e., X1 > X2, X3, X4).

In reviewing the APSRelatedMetrics set, note that the uniqueness coefficients and squared

validity coefficients are redundant with what is reported in the PredictorMetrics set. This is

done for ease of interpretation in either set. The commonality coefficients (Commonality) in the

regrOut
$PredictorMetrics
           b   Beta   r    rs   rs2 Unique Common CD:0  CD:1  CD:2  CD:3 GenDom 
X1     0.905  0.905 0.6 0.785 0.616  0.246  0.114 0.36 0.300 0.263 0.246  0.292 
X2    -0.466 -0.466 0.3 0.392 0.154  0.071  0.019 0.09 0.074 0.069 0.071  0.076 
X3     0.291  0.291 0.4 0.523 0.274  0.061  0.099 0.16 0.095 0.063 0.061  0.095 
X4     0.129  0.129 0.5 0.654 0.428  0.010  0.240 0.25 0.152 0.073 0.010  0.121 
Total     NA     NA  NA    NA 1.472  0.388  0.472 0.86 0.621 0.468 0.388  0.584 
       Pratt   RLW 
X1     0.543 0.291 
X2    -0.140 0.076 
X3     0.117 0.098 
X4     0.065 0.120 
Total  0.585 0.585 

$OrderedPredictorMetric
   b Beta r rs rs2 Unique Common CD:0 CD:1 CD:2 CD:3 GenDom Pratt RLW 
X1 1    1 1  1   1      1      2    1    1    1    1      1     1   1 
X2 2    2 4  4   4      2      4    4    4    3    2      4     2   4 
X3 3    3 3  3   3      3      3    3    3    4    3      3     3   3 
X4 4    4 2  2   2      4      1    2    2    2    4      2     4   2 

$PairedDominanceMetrics
      Comp Cond Gen 
X1>X2  1.0  1.0   1 
X1>X3  1.0  1.0   1 
X1>X4  1.0  1.0   1 
X2>X3  0.5  0.5   0 
X2>X4  0.5  0.5   0 
X3>X4  0.5  0.5   0 

$APSRelatedMetrics
            Commonality  % Total    R2 X1.Inc X2.Inc X3.Inc X4.Inc 
X1                0.246    0.421 0.360     NA  0.090  0.117  0.113 
X2                0.071    0.121 0.090  0.360     NA  0.138  0.223 
X3                0.061    0.105 0.160  0.317  0.068     NA  0.120 
X4                0.010    0.018 0.250  0.223  0.063  0.030     NA 
X1,X2            -0.013   -0.022 0.450     NA     NA  0.124  0.073 
X1,X3            -0.036   -0.062 0.477     NA  0.097     NA  0.037 
X2,X3            -0.020   -0.035 0.228  0.346     NA     NA  0.110 
X1,X4             0.100    0.170 0.473     NA  0.051  0.041     NA 
X2,X4             0.026    0.045 0.313  0.210     NA  0.025     NA 
X3,X4             0.063    0.107 0.280  0.233  0.058     NA     NA 
X1,X2,X3          0.025    0.043 0.574     NA     NA     NA  0.010 
X1,X2,X4         -0.016   -0.028 0.523     NA     NA  0.061     NA 
X1,X3,X4          0.050    0.086 0.513     NA  0.071     NA     NA 
X2,X3,X4          0.013    0.023 0.338  0.246     NA     NA     NA 
X1,X2,X3,X4       0.004    0.006 0.584     NA     NA     NA     NA 
Total             0.584    1.000    NA     NA     NA     NA     NA

Figure 1. Output from calc.yhat for illustrative example.
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APSRelatedMetrics set confirm suppression in the regression model. In particular, they iden-

tify suppression involving the following subsets of independent variables: X1 and X2, X1 and X3, X2

and X3, and X1, X2, and X4. The APSRelatedMetrics set contains the results of the APS regres-

sion and shows, for example, that there is little difference in the multiple R2 produced from the

regression model with variables X1, X2, and X3 (R
2 ¼ .523) and the regression model with variables

X1, X3, and X4 (R
2 ¼ .513). Finally, the APSRelatedMetrics identify the amount of variance

each predictor adds to each subset model, which can be used to understand the determination of com-

plete dominance. One sees, for example, that X4 does not completely dominate X2 because X2 (i.e.,

.097) adds less variance to the regression model with X1 and X3 than does X4 (i.e., .037).

booteval.yhat and plotCI.yhat

Figure 2 presents the bootstrapped CIs around select coefficients from the PredictorMetrics

set. Note that with few exceptions (e.g., betas for X1 and X2, product measures for X1 and X2, relative

Figure 2. Output from plot.yhat for select predictor metrics from illustrative example.
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weights for X1 and X2), it is difficult to determine visually whether or not a pair of predictor metrics

differs by a statistically significant amount. However, differences between predictor coefficients can

easily be seen in Figure 3. The CIs that are indicated with an asterisk (*) identify differences between

pairs of predictor coefficients that are statistically significantly different from zero. One sees that

across metrics, X1 tends to produce coefficients that are statistically significantly greater than the

remaining predictors. The exception to this rule involves X4 where its structure coefficient (rs),

squared validity coefficient (CD:0), conditional dominance weight for k ¼ 1 (CD:1) are statis-

tically equivalent to X1’s. Also note that with the exception of X3 and X4, all betas are statistically

significant from one another and that the structure coefficient, squared validity coefficient, and prod-

uct measure (Pratt) for X2 are statistically significantly different from X4’s.

Figure 4 presents the descriptive statistics of the bootstrapped Kendall’s tau correlation between

the sample predictor metrics and the bootstrap statistics of like metrics. Across metrics, the order of

b and betas (Ms¼ .948, .946) was most reproducible across bootstrapped samples. Note that the var-

iance of the correlations across bootstraps is lower as the mean of the correlations is higher (in fact,

the correlation between the mean and variance across metrics was –.98). Figure 4 also presents the

sampleDij values along with theirMs, SEs, and probabilities and reproducibility over the 1,000 boot-

strap samples. It is interesting to note that X1 completely dominated X2 in each of the bootstrapped

samples. Given the hierarchical nature of dominance analyses, X1 also conditionally and generally

dominated X2 in each of the bootstrapped samples.

Figure 5 presents the bootstrapped CIs around the coefficients in the APSRelatedMetrics set.

Note that the CIs around the uniqueness coefficients and the squared validity coefficients found in

Figure 3 are also presented in Figure 5, for ease of interpretation. With only a few nonoverlapping

CIs, it is difficult to visually identify statistically significant differences among pairs of coefficients.

However, statistically significant differences between APS-related coefficients can readily be seen

in Figures 6 and 7, indicated by an asterisk next to the CIs for pairs of APS-related coefficients that

are statistically significantly different from zero. One sees, for example, that a majority of the joint

variance components involving two predictors are statistically significant different from one another

combCIpmDiff[,c("Beta","rs","CD:0","CD:1","CD:2","CD:3","GenDom","Pratt","RLW")]
                        Beta                     rs                   CD:0 
X1-X2    1.371(0.925,1.713)*    0.393(0.235,0.526)*    0.270(0.151,0.372)* 
X1-X3    0.614(0.333,0.831)*    0.262(0.000,0.492)*    0.200(0.000,0.377)* 
X1-X4    0.776(0.400,1.100)*   0.131(-0.099,0.336)    0.110(-0.084,0.283)
X2-X3 -0.757(-1.018,-0.460)*  -0.131(-0.435,0.159)   -0.070(-0.220,0.091)
X2-X4 -0.595(-0.805,-0.355)* -0.262(-0.530,-0.009)* -0.160(-0.326,-0.005)* 
X3-X4   0.162(-0.171,0.490)   -0.131(-0.380,0.113)   -0.090(-0.262,0.079)
                       CD:1                  CD:2                 CD:3 
X1-X2   0.226(0.130,0.312)*   0.194(0.110,0.276)*  0.175(0.088,0.261)* 
X1-X3   0.205(0.032,0.338)*   0.200(0.043,0.326)*  0.185(0.035,0.315)* 
X1-X4  0.148(-0.019,0.299)    0.190(0.035,0.328)*  0.236(0.075,0.374)* 
X2-X3 -0.021(-0.133,0.068)   0.006(-0.084,0.068)  0.010(-0.088,0.086)
X2-X4 -0.078(-0.197,0.013)  -0.004(-0.098,0.064)  0.061(-0.028,0.129)
X3-X4 -0.057(-0.189,0.080)  -0.010(-0.116,0.105)  0.051(-0.043,0.143)
                     GenDom                  Pratt                   RLW 
X1-X2   0.216(0.125,0.298)*    0.683(0.410,0.925)*   0.215(0.123,0.297)* 
X1-X3   0.197(0.040,0.322)*    0.426(0.176,0.626)*   0.193(0.033,0.319)* 
X1-X4   0.171(0.013,0.310)*    0.478(0.202,0.698)*   0.171(0.010,0.317)* 
X2-X3 -0.019(-0.122,0.057)  -0.257(-0.372,-0.141)* -0.022(-0.126,0.056)
X2-X4 -0.045(-0.149,0.030)  -0.205(-0.327,-0.088)* -0.044(-0.149,0.035)
X3-X4 -0.026(-0.148,0.097)    0.052(-0.134,0.236)  -0.022(-0.148,0.105)

Figure 3. Select predictor metric differences from booteval.yhat for illustrative example.
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(e.g., X1, X3 vs. X1, X4; X2, X3 vs. X3, X4). One also sees out of the 15 comparisons involving regres-

sion models with k ¼ 2, 7 contained statistically significant differences in multiple R2s; for the 6

comparisons involving regression models with k¼ 3, 3 contained statistically significant differences

in multiple R2s. One can also see that X1 did not completely dominate X4 across bootstrapped sam-

ples because of statistically nonsignificant differences in incremental variance in the cases where

k ¼ 0 and where k ¼ 1.

Illustrative Example 2

We also conducted a secondary data analysis on the correlation matrix reported in Podsakoff,

Ahearne, and MacKenzie (1997) to provide an illustrative example of how one might write up the

results from the software presented in this article to be suitable for publication. We examined the

model that regressed work crew (n ¼ 40) quantity on ‘‘crew members’ assessments of their crews’

helping behavior, civic virtue, and sportsmanship . . . aggregated at the work group level’’ (p. 265).

We selected the model as it has been previously identified in the literature (e.g., Courville & Thomp-

son, 2001; Nimon & Reio, 2011) as a model that benefitted from examining multiple metrics.

Although prior literature has examined the regression model using bs, betas, rss, and commonality

coefficients, it does not appear that the model has been examined using other metrics presented in

this article, including dominance analysis or relative weights. To analyze their model, we modified

the example code previously presented to accommodate their correlation matrix, which we present

in Table 3.

Results for Illustrative Example 2

The model that regressed aggregated civic virtue, sportsmanship, and helping behavior on work

crew quality was statistically and practically significant, F(3, 36) ¼ 3.886, p¼ .017, R2 ¼ .247. The

aggregated organizational citizenship behaviors explained *25% of the variance in work crew

result$tauDS
         b  Beta     r    rs   rs2 Unique Common  CD:0  CD:1  CD:2  CD:3 GenDom Pratt   RLW 
Mean 0.948 0.946 0.835 0.835 0.834  0.775  0.776 0.836 0.784 0.559 0.775  0.717 0.905 0.706 
SD   0.121 0.123 0.202 0.202 0.202  0.236  0.206 0.202 0.218 0.377 0.236  0.257 0.150 0.257 

result$domBoot
          Dij  Mean    SE   Pij   Pji Pijno Reprod 
Com_X1>X2 1.0 1.000 0.000 1.000 0.000 0.000  1.000 
Com_X1>X3 1.0 0.982 0.092 0.965 0.000 0.035  0.965 
Com_X1>X4 1.0 0.916 0.187 0.831 0.000 0.169  0.831 
Com_X2>X3 0.5 0.470 0.230 0.077 0.138 0.785  0.785 
Com_X2>X4 0.5 0.458 0.151 0.007 0.091 0.902  0.902 
Com_X3>X4 0.5 0.486 0.255 0.117 0.144 0.739  0.739 
Con_X1>X2 1.0 1.000 0.000 1.000 0.000 0.000  1.000 
Con_X1>X3 1.0 0.984 0.096 0.971 0.003 0.026  0.971 
Con_X1>X4 1.0 0.932 0.171 0.864 0.000 0.136  0.864 
Con_X2>X3 0.5 0.390 0.310 0.107 0.326 0.567  0.567 
Con_X2>X4 0.5 0.460 0.162 0.016 0.095 0.889  0.889 
Con_X3>X4 0.5 0.496 0.265 0.137 0.144 0.719  0.719 
Gen_X1>X2 1.0 1.000 0.000 1.000 0.000 0.000  1.000 
Gen_X1>X3 1.0 0.990 0.100 0.990 0.010 0.000  0.990 
Gen_X1>X4 1.0 0.983 0.129 0.983 0.017 0.000  0.983 
Gen_X2>X3 0.0 0.335 0.472 0.335 0.665 0.000  0.665 
Gen_X2>X4 0.0 0.159 0.366 0.159 0.841 0.000  0.841 
Gen_X3>X4 0.0 0.330 0.470 0.330 0.670 0.000  0.670 

Figure 4. Descriptive statistics output from booteval.yhat for illustrative example.
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quality. Tables 4 and 5, respectively, present the predictor and APS-related metrics, including 95%

accelerated bootstrap confidence intervals that were produced over 1,000 iterations.

With the exception of betas that identify helping behavior as the most important predictor, fol-

lowed by sportsmanship and civic virtue, the remaining predictor metrics identify sportsmanship

as the most important predictor and helping behavior as the second most important predictor. This

means that although sportsmanship (a) shares the most variance with the work crew quality and

predicted work crew quality, (b) contributes the most unique and common variance to work crew

quality, (c) adds the most incremental variance, on average, to models of different subsizes, and

(d) accounts for the largest partition of R2 as computed with general dominance weights, Pratt mea-

sures, and relative weights, helping behavior is given the greatest credit in the regression equation.

The predictor metrics also identify civic virtue as a suppressor variable. In addition to it contributing

Figure 5. Output from plot.yhat for all-possible-subsets (APS)–related metrics from illustrative example.
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result$combCIapsDiff
                             Commonality                     R2 
X1-X2                0.175(0.088,0.261)*    0.270(0.151,0.372)* 
X1-X3                0.185(0.035,0.315)*    0.200(0.000,0.377)* 
X1-X4                0.236(0.075,0.374)*   0.110(-0.084,0.283)
X2-X3               0.010(-0.088,0.086)   -0.070(-0.220,0.091)
X2-X4               0.061(-0.028,0.129)  -0.160(-0.326,-0.005)* 
X3-X4               0.051(-0.043,0.143)   -0.090(-0.262,0.079)
X1,X2-X1,X3         0.023(-0.091,0.147)   -0.027(-0.165,0.089)
X1,X2-X2,X3         0.007(-0.095,0.127)     0.222(0.023,0.397)* 
X1,X2-X1,X4        -0.113(-0.257,0.038)   -0.023(-0.150,0.077)
X1,X2-X2,X4        -0.039(-0.155,0.092)    0.137(-0.067,0.309)
X1,X2-X3,X4        -0.076(-0.195,0.050)    0.170(-0.029,0.341)
X1,X3-X2,X3        -0.016(-0.043,0.013)     0.249(0.149,0.333)* 
X1,X3-X1,X4       -0.136(-0.231,-0.043)*   0.004(-0.101,0.114)
X1,X3-X2,X4       -0.062(-0.109,-0.009)*    0.164(0.014,0.301)* 
X1,X3-X3,X4       -0.099(-0.187,-0.020)*    0.197(0.030,0.334)* 
X2,X3-X1,X4       -0.120(-0.217,-0.037)* -0.245(-0.384,-0.084)* 
X2,X3-X2,X4       -0.046(-0.091,-0.009)*  -0.085(-0.230,0.062)
X2,X3-X3,X4       -0.083(-0.159,-0.026)*  -0.052(-0.197,0.070)
X1,X4-X2,X4          0.074(0.018,0.144)*    0.160(0.071,0.255)* 
X1,X4-X3,X4         0.037(-0.054,0.143)     0.193(0.049,0.314)* 
X2,X4-X3,X4        -0.037(-0.105,0.019)    0.033(-0.065,0.125)
X1,X2,X3-X1,X2,X4   0.041(-0.044,0.108)    0.051(-0.043,0.143)
X1,X2,X3-X1,X3,X4  -0.025(-0.100,0.040)    0.061(-0.028,0.130)
X1,X2,X3-X2,X3,X4   0.012(-0.038,0.052)     0.236(0.075,0.375)* 
X1,X2,X4-X1,X3,X4  -0.066(-0.145,0.036)    0.010(-0.088,0.086)
X1,X2,X4-X2,X3,X4  -0.029(-0.097,0.052)     0.185(0.036,0.315)* 
X1,X3,X4-X2,X3,X4   0.037(-0.007,0.079)     0.175(0.087,0.261)* 

Figure 6. Commonality coefficient and R2 differences from booteval.yhat for illustrative example.

result$combCIincDiff
            X1.Inc-X2.Inc       X1.Inc-X3.Inc        X1.Inc-X4.Inc 
.     0.270(0.151,0.372)* 0.200(0.000,0.377)* 0.110(-0.084,0.283)
X1                     NA                  NA                   NA 
X2                     NA 0.222(0.022,0.397)* 0.137(-0.067,0.309)
X3    0.249(0.149,0.333)*                  NA  0.197(0.030,0.333)* 
X4    0.160(0.071,0.255)* 0.193(0.049,0.315)*                   NA 
X1,X2                  NA                  NA                   NA 
X1,X3                  NA                  NA                   NA 
X2,X3                  NA                  NA  0.236(0.075,0.375)* 
X1,X4                  NA                  NA                   NA 
X2,X4                  NA 0.185(0.035,0.315)*                   NA 
X3,X4 0.175(0.088,0.261)*                  NA                   NA 
              X2.Inc-X3.Inc          X2.Inc-X4.Inc         X3.Inc-X4.Inc 
.     -0.070(-0.220,0.091)  -0.160(-0.326,-0.005)* -0.090(-0.262,0.079)
X1    -0.027(-0.165,0.089)   -0.023(-0.150,0.077)   0.004(-0.101,0.114)
X2                       NA                     NA -0.085(-0.229,0.062)
X3                       NA  -0.052(-0.197,0.070)                     NA 
X4     0.033(-0.065,0.126)                      NA                    NA 
X1,X2                    NA                     NA  0.051(-0.043,0.143)
X1,X3                    NA   0.060(-0.028,0.130)                     NA 
X2,X3                    NA                     NA                    NA 
X1,X4  0.010(-0.088,0.087)                      NA                    NA 
X2,X4                    NA                     NA                    NA 
X3,X4                    NA                     NA                    NA 

Figure 7. Incremental predictor variance differences from booteval.yhat for illustrative example.
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more unique variance to the regression effect than it has in common with the work crew quality and

yielding a negative Pratt’s measure (as a result of inconsistent signs between its beta and validity

coefficient), the conditional dominance weights for civic virtue do not decrease monotonically with

more complex models (cf. Azen & Budescu, 2003).

The APS-related metrics show that civic virtue contributes the most incremental variance

when added to a regression model that contains sportsmanship and helping behavior and that

its addition suppresses irrelevant variance in sportsmanship and helping behavior, making them

better predictors than if civic virtue was not included. This means that if sportsmanship and

helping behavior are to have maximum impact in predicting work crew quality, the measures

should be refined to eliminate irrelevant variance related to civic virtue. Analysis of the bivari-

ate correlations and the incremental validity coefficients reported in Table 4 indicates that

Table 3. Correlation Matrix for Example 2.

Helping Civic Virtue Sportsmanship

Civic virtue .69
Sportsmanship .46 .54
Quantity .36 .17 .40

Table 4. Predictor Metrics for Example 2.

Metric Civic Virtue Sportsmanship Helping Behavior

Beta –.314 (–.785, .087) .386 (–.011,. 713) .399 (.023, .826)
r .170 (–.092, .480) .400 (.074, .639) .360 (.035, .605)
rs .344 (–.280, .803) .809 (.247, .982) .728 (.172, .982)
rs
2 .118 (.000, .605) .654 (.061, .964) .530 (.045, .969)

Unique .045 (.000, .235) .103 (.001, .353) .082 (.003, .331)
Common –.016 (–.225, .170) .057 (–.064, .249) .048 (–.079, .280)
CD:0 .029 (.000, .226) .160 (.006, .408) .130 (.003, .367)
CD:1 .007 (.000, .034) .102 (.004, .332) .076 (.003, .264)
CD:2 .045 (.000, .235) .103 (.001, .353) .082 (.003, .331)
GenDom .027 (.002, .059) .122 (.006, .336) .096 (.006, .287)
Pratt –.053 (–.242, .003) .154 (–.001, .419) .144 (.003, .447)
RLW .024 (.002, .051) .124 (.007, .332) .097 (.006, .278)

Note: Unique ¼ uniqueness coefficient; common ¼ r2 – uniqueness; CD ¼ conditional dominance weights; GenDom ¼ gen-
eral dominance weights; Pratt ¼ Pratt measure; RLW ¼ relative weights.

Table 5. All-Possible-Subset–Related Metrics for Example 2.

Subset Commonality R2 Civ.Inc Sprt.Inc Help.Inc

Civ .045 (.000, .235) .029 (.000, .226) NA .134 (.002, .389) .112 (.003,. 350)
Sprt .103 (.001, .353) .160 (.006, .408) .003 (0, .030) NA .039 (.000, .232)
Help .082 (.003, .331) .130 (.003, .367) .012 (0, .112) .070 (.000, .301) NA
CivSprt –.034 (–.166, .005) .163 (.009, .388) NA NA .082 (.003, .331)
CivHelp –.042 (–.208, .016) .141 (.007, .361) NA .103 (.001, .353) NA
SprtHelp .031 (–.011, .173) .199 (.013, .424) .045 (0, .235) NA NA
CivSprtHelp .060 (–.007, .225) .245 (.024, .435) NA NA NA

Note: Civ ¼ civic virtue; Sprt ¼ sportsmanship; Help ¼ helping behavior.
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sportsmanship completely dominates helping behavior, which completely dominates civic vir-

tue. This means that across all possible subset models, (a) sportsmanship adds more incremental

variance than helping behavior and civic virtue and (b) helping behavior adds more incremental

variance than civic virtue.

It is important to note that many of the study’s findings may not be replicable, given its small

sample size. Across bootstrapped samples, the predictor order based on betas was most consistent

with the sample data. As presented in Table 6, the average Kendall’s tau, correlating beta weight-

based predictor order from bootstraps to sample data, was .641 (SD ¼ .367). Predictor order based

on unique variance was least replicable (M ¼ .353, SD ¼ .540). Bootstrap analysis of differences

between predictor metrics found only a few statistically significant differences (see Table 7). Boot-

strap analyses of differences between appropriate APS metrics found no statistically significant dif-

ferences. For each order of predictor combinations, there were no statistically significant differences

among the multiple R2 or commonality coefficient produced, nor were there statistically significant

differences among the predictors’ incremental validity coefficients.

Table 6. Descriptive Statistics for Kendall’s Tau Across Bootstrap Iterations.

Metric M SD

Beta .641 .367
r .668 .415
rs .667 .415
rs
2 .645 .435

Unique .353 .540
Common .554 .521
CD:0 .646 .434
CD:1 .531 .492
CD:2 .353 .540
GenDom .530 .490
Pratt .634 .402
RLW .566 .480

Note: Unique ¼ uniqueness coefficient; common ¼ r2 – uniqueness; CD ¼ conditional dominance weights; GenDom ¼ gen-
eral dominance weights; Pratt ¼ Pratt measure; RLW ¼ relative weights.

Table 7. Differences in Predictor Metrics for Example 2.

Metric Civ-Sprt Civ-Help Sprt-Help

Beta –.700 (–1.367, –.065)* –.713 (–1.543, –.042)* –.013 (–.738, .489)
r –.230 (–.523, .039) –.190 (–.457, .012) .040 (–.313, .354)
rs –.465 (–.977, .050) –.384 (–.846, –.013)* .081 (–.601, .710)
rs
2 –.536 (–.906, –.026)* –.412 (–.806, –.024)* .124 (–.715, .813)

Unique –.058 (–.308, .093) –.037 (–.246, .056) .021 (–.275, .298)
Common –.073 (–.301, .005) –.064 (–.230, .003) .009 (–.042, .166)
CD:0 –.131 (–.388, .009) –.101 (–.284, .003) .030 (–.213, .288)
CD:1 –.095 (–.340, .030) –.069 (–.250, .017) .026 (–.232, .293)
CD:2 –.058 (–.308, .093) –.037 (–.246, .056) .021 (–.275, .298)
GenDom –.095 (–.340, .030) –.069 (–.249, .016) .026 (–.231, .294)
Pratt –.207 (–.557, –.004)* –.197 (–.626, .001) .010 (–.415, .330)
RLW –.100 (–.340, .021) –.073 (–.245, .014) .027 (–.219, .288)

Note: Civ ¼ civic virtue; Sprt ¼ sportsmanship; Help ¼ helping behavior. * indicates that the confidence interval does not
contain 0.
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Discussion

Although the interpretation of linear regression weights is straightforward when the goal is predic-

tion, it has long been known that when the goal of a regression analysis is instead to make some

conclusions about the relative importance of the predictors in the model, the intercorrelations

between predictors (multicollinearity) undermine the use of regression weights for this purpose.

Alternative metrics are required—and perhaps more than one set of metrics is interesting to consider

because each is operationalized differently and carries different assumptions. Specific to the current

article, we review regression weights, zero-order validity coefficients, structure coefficients, Pratt

measures, relative importance weights, all-possible-subsets regression, commonality coefficients,

and dominance weights.

Perhaps more important than this review of a wide range of metrics relevant to linear regression,

our article offers a freely available software package in R code that (a) computes all of these indices

at once, (b) computes associated bootstrapped confidence intervals, (c) compares pairs of predictors

against one another in terms of their bootstrapped metric, and (d) performs these contributions for

any number of predictors so long as the correlation matrix is positive definite (invertible). Other soft-

ware is limited in all four respects.

We hope researchers will use this software to change their fundamental approach to conducting

and interpreting linear regression analysis as applied to their data. Given the variety of weights avail-

able, it can be informative to consider an array of weights and to report the most appropriate impor-

tance weights, or to examine how they converge and diverge, rather than merely focus on the

weights that are the most popular or typically available. The program we offer obviously requires

the expertise of the researcher or practitioner to determine which set or sets of importance weights

are most appropriate to report. Fortunately, Nathans et al. (2012) provided an accessible treatment of

the metrics reported by the software presented along with strengths, limitations, and recommenda-

tions for practice. This along with other works that also address predictor importance in detail (e.g.,

Budescu & Azen, 2004; LeBreton et al., 2004) and the examples in the current article should provide

researchers a general template for their own work in interpreting and reporting MLR models.

Although the regression indices we have reviewed can be informative, and the software can be a

useful tool to make use of these indices, there are several avenues for future research that extend

beyond the current purview. First, it is possible that the study of some psychological phenomena

requires multiple criteria as well as multiple predictors, leading to a complex canonical prediction

problem (e.g., Azen & Budescu, 2006; LeBreton & Tonidandel, 2008; Nimon, Henson, & Gates,

2010). Second, another frequent concern is the reliability or stability of importance-weight estimates

across independent samples to which a regression model is supposed to generalize (e.g., Azen &

Budescu, 2003; Johnson, 2004). We implemented bootstrapping to compute standard errors of the

coefficients for all metrics and to address directly the problem of stability in a random sample; how-

ever, there is no guarantee that similar results would be obtained in a nonrandom sample, in partic-

ular a sample that is supposed to exhibit the same pattern of relationships and variable importance

but that is a substantively different sample from the first one (e.g., an Army sample vs. an Air Force

sample). Thus, research could examine replication and generalizability of these MLR metrics across

samples of varying degrees of generalizability.

Third, we provide information on the submodels from all-possible-subsets regression for further

investigation, and future research could quickly apply statistical and graphical exploratory tools to rep-

resent and test patterns within APS that go beyond the submodel summaries provided by general and

conditional dominance analysis. Fourth, future research could considerMLRmodels that remain linear

in their parameter estimates but include interaction terms and/or nonlinear terms, which would likely

raise additional considerations (Dalal & Zickar, 2012). Perhaps many of these metrics could be

extended to the hierarchical regression analysis framework; this might be something like APS yet
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would impose constraints or a structure on the sets of models to be tested. Fifth and finally, although

we have covered a wide range of metrics, we also realize that other metrics could eventually be incor-

porated into the yhat package (e.g., the Lasso method and its variants, Tibshirani, 1996; Bayesian

variable selection, Mitchell & Beauchamp, 1988; Bayesian model averaging, Raftery, Madigan, &

Hoeting, 1997).

Although all of these suggestions might prove worthy of consideration in future research, it was

beyond the scope of this article to address them in detail. Again, our main focus is in providing a

comprehensive and freely available program useful for bringing together and generating different

types of predictor importance metrics in multiple regression analysis and to provide empirical exam-

ples that accompany the program, both of which we hope will allow researchers to think about and

conduct regression analysis in a fundamentally different manner. Previously, such metrics were

examined in isolation, often without much consideration of the other metrics available. Thus, regular

use of the program in the future will hopefully provide researchers with new insights and guidance

for the use of regression metrics that nobody—including ourselves—has yet offered.

Consider the work of Seibold and McPhee (1979) who examined the impact that cognition

and social affect had in minority women’s intent to get a cancer screening test. Had the

researchers only considered betas, they would have missed identifying cognition as a suppres-

sor variable and the need to purify cognitive relevance from screening messages aimed at

addressing social affect in order to have the maximum impact on intentions. To generalize from

this example, we believe and envision that the software described can become an essential tool

in substantive research, to understand the predictive relationships and interrelationships among

variables in regression models more closely and from different perspectives, as well as in simu-

lation research, to understand and appreciate statistical conditions that cause convergence and

divergence among different regression metrics (extending the foundational work of LeBreton

et al., 2004). Without conducting such detailed analyses, researchers may miss detecting and

interpreting valuable relationships in their data.

Appendix

Steps to Replicate Illustrative Example 1

First, we adapted the R software in Kraha, Turner, Nimon, Zientek, and Henson (2012) to generate a

data set (exdata) from Azen and Budescu’s (2003) correlation matrix reported in Table 3.

library(MASS)

library(corpcor)

covm<-c( 1,  .6, .3, .4, .5,

        .6,  1, .8, .1, .3,

        .3, .8,  1, .1, .1, 

        .4, .1, .1,  1, .5, 

        .5, .3, .1, .5,  1) 

covm<-matrix(covm,5,5)

varlist<-c("Y", "X1", "X2", "X3", "X4") 

dimnames(covm)<-list(varlist,varlist)

exdata<-mvrnorm(n=100,rep(0,5),covm,empirical=TRUE)

exdata<-data.frame(exdata)
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Second, we applied the regression function lm in R to create lm.out, an object that contained the

primary results of the regression model:

library(yhat)

library(miscTools)

lm.out<-lm(Y~X1+X2+X3+X4,data=exdata)

Third, we used both calc.yhat on lm.out and saved the results (e.g., predictor metrics, dominance

metrics, all-possible-subsets (APS)–related metrics) in an object named regrOut:

regrOut<-calc.yhat(lm.out)

Fourth, we bootstrapped the results produced from calc.yhat, where the boot function operated

off of the sample data (exdata), the boot.yhat function, the number of bootstrap samples (1,000), the

regression output from lm (lm.out), and the output from calc.yhat (regrOut). Results were saved in

an object named boot.out.

library(boot)

boot.out<- boot(exdata,boot.yhat,1000,lmOut=lm.out, regrout0=regrOut) 

Fifth, we used the output of boot (boot.out) and calc.yhat (regrOut) to create summary statistics of

the bootstrap data. We saved these summary data in an object called result.

result<-booteval.yhat(regrOut,bty= "perc",boot.out)

Sixth, we reviewed results and created plots of relevant data.

library(plotrix)

regrOut

result$tauDS

result$domBoot

plotCI.yhat(regrOut$PredictorMetrics[-

nrow(regrOut$PredictorMetrics),],result$upperCIpm,result$lowerCIpm,

pid=which(colnames(regrOut$PredictorMetrics) %in% 

c("Beta","rs","CD:0","CD:1","CD:2","CD:3","GenDom","Pratt","RLW") == 

TRUE), nr=3,nc=3) 

result$combCIpmDiff[,c("Beta","rs","CD:0","CD:1","CD:2","CD:3","GenDom","Prat

t","RLW")]

plotCI.yhat(regrOut$APSRelatedMetrics[-nrow(regrOut$APSRelatedMetrics),-

2],result$upperCIaps,result$lowerCIaps,nr=3,nc=2)

result$combCIapsDiff

result$combCIincDiff
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